Introduction to Beam Physics and Accelerator Technology

University of Ferrara, Italy
April 26 - May 5, 2022
Giulio Stancari
Fermilab
bitbucket.org/gist/apufe22

Seminar on current research topics

Where is Fermilab?

The Fermilab campus

The Fermilab accelerator complex

The Fermilab accelerator complex

IOTA and the FAST Facility at Fermilab

The Integrable Optics Test Accelerator (IOTA) is part of the
Fermilab Accelerator Science and Technology (FAST) facility, located on the north side of the Fermilab campus

Overview of IOTA/FAST

Photoinjector

Superconducting Linac

 Broemmelsiek et al., New J. Phys. 20, 113018 (2018)

Main features of IOTA

- Dedicated to beam physics research
- Flexible layout and lattice, to accommodate several modular experiments
- Can store
- electrons up to 150 MeV
- fast synchrotron-radiation damping, nonlinear "single-particle" dynamics
- protons at 2.5 MeV
- studies with strong space charge

	Electrons	Protons
Circumference, C	39.96 m	39.96 m
Kinetic energy, K_{b}	$100-150 \mathrm{MeV}$	2.5 MeV
Revolution period, $\tau_{\text {rev }}$	133 ns	$1.83 \mu \mathrm{~s}$
Revolution frequency, $f_{\text {rev }}$	7.50 MHz	0.547 MHz
Rf harmonic number, h	4	4
Rf frequency, f_{r}	30.0 MHz	2.19 MHz
Max. rf voltage, V_{rf}	1 kV	1 kV
Number of bunches	1	4 or coasting
Bunch population, N_{b}	$1 e^{-}-3.3 \times 10^{9} e^{-}$	$<5.7 \times 10^{9} p$
Beam current, I_{b}	$1.2 \mathrm{pA}-4 \mathrm{~mA}$	$<2 \mathrm{~mA}$
Transverse emittances (rms, geom.), $\epsilon_{x, y}$	$20-90 \mathrm{~nm}$	$3-4 \mu \mathrm{~m}$
Momentum spread, $\delta_{p}=\Delta p / p$	$1-4 \times 10^{-4}$	$1-2 \times 10^{-3}$
Radiation damping times, $\tau_{x, y, z}$	$0.2-2 \mathrm{~s}$	-
Max. space-charge tune shift, $\left\|\Delta v_{\mathrm{sc}}\right\|$	$<10^{-3}$	0.5

- Accurate beam optics
- Large aperture (50 mm)
- Advanced instrumentation

The IOTA storage ring

[^0]
The IOTA research program

GOALS

- Address the challenges posed by high-intensity and high-brightness machines, such as instabilities and losses
- Carry out basic research in beam physics
- Provide education and training for scientists, engineers and technicians

Examples of RESEARCH AREAS

- mitigation of beam losses and coherent instabilities via

Landau damping, with nonlinear magnets or electron lenses

- optical stochastic cooling and electron cooling
- classical and quantum properties of undulator radiation
- novel beam instrumentation
- machine learning for accelerator optimization

SUPPORTED mainly by

- the high-energy-physics community at large (P5, Snowmass community planning), through the US DOE HEP General Accelerator R\&D (GARD) sub-program
- external collaborators and research groups

IOTA timeline

Nonlinear integrable optics experiments

First observations of optical stochastic cooling
(April 20, 2021)

Construction completed (July 2018)

First circulating beam (Aug 21, 2018)

COVID-19 lockdown
(March 2020)

operation with stored electrons

- The machine runs beam a few months per year
- Experimental runs are interleaved with shutdowns for maintenance and installations

Nonlinear Integrable Optics (NIO)

(1) In a real accelerator, is it possible to have a nonlinear lattice that stabilizes the beam via Landau damping, suppresses resonances and does not reduce dynamic aperture?
(2) How robust are nonlinear integrable lattices agains imperfections?
(3) Can the benefits of NIO be demonstrated in a high-intensity synchrotron?

Two implementations:
(A) Segmented octupole channel Quasi-Integrable (QI) system
(B) Segmented elliptic-potential magnet

Both require fine control of beta functions ($\sim 1 \%$) and phase advances $\left(\sim 10^{-3}\right)$ through the nonlinear section

Danilov and Nagaitsev, PRAB 13, 084002 (2010)
Valishev et al., PAC (2011)
Mitchell et al., PRAB 23, 064002 (2020)

NIO experiments

Demonstrated integrable focusing systems experimentally Observed large detuning with amplitude

QI system (octupole channel)
Achieved detuning of 0.04

DN system (elliptic potential)
Achieved detuning of 0.08

Valishev et al., IPAC 2021
Kuklev, PhD Thesis, U. Chicago (2021) Szustkowski, PhD Thesis, NIU (2020)

Crossed integer resonance without beam loss
Observed predicted transverse splitting into stable beamlets

Nonlinear integrable optics and instability thresholds

Tested the effect of the NIO QI system on instability thresholds, using a positive feedback (anti-damper) to excite the beam

Observed a factor 2 increase in the instability thresholds with the strength of the octupole channel
Valishev et al., IPAC 2021
Eddy et al., Beams-doc-9171 (2021)

Optical Stochastic Cooling (OSC): design and apparatus

Can a particle's radiation be used to manipulate its phase space and yield cooling? Stochastic cooling uses microwave electromagnetic pickups and kickers (bandwidth $\sim G H z$, sample length $\sim \mathrm{cm}$). An optical analogue ($\sim 10 \mathrm{THz}, \sim \mu \mathrm{m}$) could increase cooling rates by 3 orders of magnitude.

Technological challenges:

- overlap of beam and radiation in the kicker undulator within $0.2 \mathrm{~mm}, 0.1 \mathrm{mrad}, 0.3 \mathrm{fs}$
- relative stability of radiation path and magnetic bypass much smaller than wavelength ($\mu \mathrm{m}$)
van der Meer, RMP 57, 689 (1985)
Mikhailichenko and Zolotorev, PRL 71, 4146 (1993)
Zolotorev and Zholents, PRE 50, 3087 (1994)
Lebedev, Jarvis et al., JINST 16, T05002 (2021)

Optical stochastic cooling: first results

time (s)

Simultaneous cooling in all degrees of freedom

Observed heating and cooling of a single electron!

Measured cooling rates $8 x$ faster than natural radiation damping

Lebedev, IOTA/FAST Collab. Meeting (2021) Jarvis, IOTA/FAST Collab. Meeting (2021) Jarvis, Lebedev, Romanov et al., arXiv:2203.08899, accepted in Nature (2022)

Dynamics of single electrons

Single electrons (or a known given number of electrons) can be stored for minutes to hours (in a single bucket or multiple buckets)

Synchrotron oscillations of a single electron

Tune vs. amplitude
Tracking $1 e^{-}$in all 3 dimensions yields "single particle" lifetimes, emittances, tunes, damping times, beam energies and gas scattering rates

Detection of synchrotron radiation at IOTA

Classical and quantum properties of undulator radiation

What are the statistical properties of undulator radiation from single or multiple electrons? Can they be used for beam diagnostics?

Verified that intensity fluctuations contain a calculable term that depends on beam sizes (interference)

$$
\operatorname{var}(\mathcal{N})=\langle\mathcal{N}\rangle+\frac{\langle\mathcal{N}\rangle^{2}}{M}
$$

Intensity fluctuations can be used to infer small beam emittances

$$
\begin{aligned}
& \text { Lobach et al., PRAB 23, } 090703 \text { (2020) } \\
& \text { Lobach et al., PRAB 24, } 040701(2021) \\
& \text { Lobach et al., PRL 126, 134802 (2021) } \\
\longrightarrow & \text { Lobach, PhD Thesis }(2021)
\end{aligned}
$$

IOTA Run 4 program (2022)

Nonlinear Integrable Optics

- Complete systematic studies started in Run 2
- Study conservation of invariants with improved decoherence
- Test new implementations of NIO
- Study the effect on instability thresholds with a flexible feedback system (new strip-lines and digital control of gain and phase)

Single-Electron Phase-Space Tracking

- Improved detectors and methods for general proof of principle and to support the NIO program
Undulator Radiation Interferometry
- Measure the quantum properties of radiation emitted by single electrons
Machine-learning

- Study techniques to improve accelerator operations

Construction of the IOTA proton source (2022)

Next key facility upgrade for the research program on space-charge-dominated beams

Typical IOTA proton parameters (bunched beam):

$$
2.5 \mathrm{MeV}
$$

$$
1.3 \mathrm{~mA}, 4 \mu \mathrm{~m} \text { (geom.) }
$$

$\Delta \nu_{\mathrm{sc}} \sim 0.5$

Edstrom, Romanov et al.

Examples of research areas planned after Run 4

Research with the IOTA electron lens

- Novel implementations of NIO schemes
- Electron cooling
- Tune-spread generation for Landau damping
- Space-charge compensation
- Beam diagnostics

Stancari et al., JINST 16, P05002 (2021)

Instabilities, Space Charge and Controlled Feedback

- Excite and detect instabilities with a wake-building feedback and intra-bunch monitor over varying wake amplitudes and space-charge intensities

Ainsworth et al., ECA Grant

Examples of research areas planned after Run 4

Optical Stochastic Cooling with Amplification

- Development of optical parametric amplifier, transverse sampling, specialized optics
- Demonstration of achievable cooling rates

Quantum Computing with Stored Crystalline Ion Beams

- Preliminary feasibility and scalability studies. Study and mitigation of heating mechanisms in a storage ring.
- Major upgrades: ion source, laser cooling

Birkl et al., Nature 357, 310 (1992)
Habs and Grimm, ARNPS 45, 391 (1995)
Schätz et al., Nature 412, 717 (2001)
Shaftan, NSLSII-ASD-TN-299 and 309 (2019)
Brown and Roser, PRAB 23, 054701 (2020)
Brown et al., Snowmass White Paper (2020)
Shaftan and Blinov, PRAB 24, 094701 (2021)

Resources

IOTA/FAST web site
fast.fnal.gov

IOTA/FAST Scientific Committee
cdcvs.fnal.gov/redmine/projects/ifsc/wiki/

IOTA/FAST Scientific Committee (ISC)

+ overview Activity Documents Wiki Files Settings
Proposing an experiment at IOTA/FAST

Contacts
IOTA/FAST Scientific Committee (ISC)
Giulio Stancari (chair) 630-840-3934 stancari@fnal.gov
Dan Broemmelsiek 630-840-4124 broemmel@fnal.gov
Alexander Valishev $630-840-2875$ valishev@fnal.gov

Special Issue of the Journal of Instrumentation
iopscience.iop.org/journal/1748-0221/page/extraproc90
IOPSClence Journals ~ Books Publishing Support Login ~ Search hopscience content

Journal of Instrumentation

Accelerator Science and Technology Research at the Fermilab Integrable Optics Test Accelerator
Editors
Giulio Stancari and Alexander Valishev from Fermi National Accelerator Laboratory

[^0]: 164 Giulio Stancari Introduction to Beam Physics and Accelerator Technology

