Source

python-rsa / rsa / _version200.py

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""RSA module

Module for calculating large primes, and RSA encryption, decryption,
signing and verification. Includes generating public and private keys.

WARNING: this implementation does not use random padding, compression of the
cleartext input to prevent repetitions, or other common security improvements.
Use with care.

"""

__author__ = "Sybren Stuvel, Marloes de Boer, Ivo Tamboer, and Barry Mead"
__date__ = "2010-02-08"
__version__ = '2.0'

import math
import os
import random
import sys
import types
from rsa._compat import byte

# Display a warning that this insecure version is imported.
import warnings
warnings.warn('Insecure version of the RSA module is imported as %s' % __name__)


def bit_size(number):
    """Returns the number of bits required to hold a specific long number"""

    return int(math.ceil(math.log(number,2)))

def gcd(p, q):
    """Returns the greatest common divisor of p and q
    >>> gcd(48, 180)
    12
    """
    # Iterateive Version is faster and uses much less stack space
    while q != 0:
        if p < q: (p,q) = (q,p)
        (p,q) = (q, p % q)
    return p
    

def bytes2int(bytes):
    """Converts a list of bytes or a string to an integer

    >>> (((128 * 256) + 64) * 256) + 15
    8405007
    >>> l = [128, 64, 15]
    >>> bytes2int(l)              #same as bytes2int('\x80@\x0f')
    8405007
    """

    if not (type(bytes) is types.ListType or type(bytes) is types.StringType):
        raise TypeError("You must pass a string or a list")

    # Convert byte stream to integer
    integer = 0
    for byte in bytes:
        integer *= 256
        if type(byte) is types.StringType: byte = ord(byte)
        integer += byte

    return integer

def int2bytes(number):
    """
    Converts a number to a string of bytes
    """

    if not (type(number) is types.LongType or type(number) is types.IntType):
        raise TypeError("You must pass a long or an int")

    string = ""

    while number > 0:
        string = "%s%s" % (byte(number & 0xFF), string)
        number /= 256
    
    return string

def to64(number):
    """Converts a number in the range of 0 to 63 into base 64 digit
    character in the range of '0'-'9', 'A'-'Z', 'a'-'z','-','_'.
    
    >>> to64(10)
    'A'
    """

    if not (type(number) is types.LongType or type(number) is types.IntType):
        raise TypeError("You must pass a long or an int")

    if 0 <= number <= 9:            #00-09 translates to '0' - '9'
        return byte(number + 48)

    if 10 <= number <= 35:
        return byte(number + 55)     #10-35 translates to 'A' - 'Z'

    if 36 <= number <= 61:
        return byte(number + 61)     #36-61 translates to 'a' - 'z'

    if number == 62:                # 62   translates to '-' (minus)
        return byte(45)

    if number == 63:                # 63   translates to '_' (underscore)
        return byte(95)

    raise ValueError(u'Invalid Base64 value: %i' % number)


def from64(number):
    """Converts an ordinal character value in the range of
    0-9,A-Z,a-z,-,_ to a number in the range of 0-63.
    
    >>> from64(49)
    1
    """

    if not (type(number) is types.LongType or type(number) is types.IntType):
        raise TypeError("You must pass a long or an int")

    if 48 <= number <= 57:         #ord('0') - ord('9') translates to 0-9
        return(number - 48)

    if 65 <= number <= 90:         #ord('A') - ord('Z') translates to 10-35
        return(number - 55)

    if 97 <= number <= 122:        #ord('a') - ord('z') translates to 36-61
        return(number - 61)

    if number == 45:               #ord('-') translates to 62
        return(62)

    if number == 95:               #ord('_') translates to 63
        return(63)

    raise ValueError(u'Invalid Base64 value: %i' % number)


def int2str64(number):
    """Converts a number to a string of base64 encoded characters in
    the range of '0'-'9','A'-'Z,'a'-'z','-','_'.
    
    >>> int2str64(123456789)
    '7MyqL'
    """

    if not (type(number) is types.LongType or type(number) is types.IntType):
        raise TypeError("You must pass a long or an int")

    string = ""

    while number > 0:
        string = "%s%s" % (to64(number & 0x3F), string)
        number /= 64

    return string


def str642int(string):
    """Converts a base64 encoded string into an integer.
    The chars of this string in in the range '0'-'9','A'-'Z','a'-'z','-','_'
    
    >>> str642int('7MyqL')
    123456789
    """

    if not (type(string) is types.ListType or type(string) is types.StringType):
        raise TypeError("You must pass a string or a list")

    integer = 0
    for byte in string:
        integer *= 64
        if type(byte) is types.StringType: byte = ord(byte)
        integer += from64(byte)

    return integer

def read_random_int(nbits):
    """Reads a random integer of approximately nbits bits rounded up
    to whole bytes"""

    nbytes = int(math.ceil(nbits/8.))
    randomdata = os.urandom(nbytes)
    return bytes2int(randomdata)

def randint(minvalue, maxvalue):
    """Returns a random integer x with minvalue <= x <= maxvalue"""

    # Safety - get a lot of random data even if the range is fairly
    # small
    min_nbits = 32

    # The range of the random numbers we need to generate
    range = (maxvalue - minvalue) + 1

    # Which is this number of bytes
    rangebytes = ((bit_size(range) + 7) / 8)

    # Convert to bits, but make sure it's always at least min_nbits*2
    rangebits = max(rangebytes * 8, min_nbits * 2)
    
    # Take a random number of bits between min_nbits and rangebits
    nbits = random.randint(min_nbits, rangebits)
    
    return (read_random_int(nbits) % range) + minvalue

def jacobi(a, b):
    """Calculates the value of the Jacobi symbol (a/b)
    where both a and b are positive integers, and b is odd
    """

    if a == 0: return 0
    result = 1
    while a > 1:
        if a & 1:
            if ((a-1)*(b-1) >> 2) & 1:
                result = -result
            a, b = b % a, a
        else:
            if (((b * b) - 1) >> 3) & 1:
                result = -result
            a >>= 1
    if a == 0: return 0
    return result

def jacobi_witness(x, n):
    """Returns False if n is an Euler pseudo-prime with base x, and
    True otherwise.
    """

    j = jacobi(x, n) % n
    f = pow(x, (n-1)/2, n)

    if j == f: return False
    return True

def randomized_primality_testing(n, k):
    """Calculates whether n is composite (which is always correct) or
    prime (which is incorrect with error probability 2**-k)

    Returns False if the number is composite, and True if it's
    probably prime.
    """

    # 50% of Jacobi-witnesses can report compositness of non-prime numbers

    for i in range(k):
        x = randint(1, n-1)
        if jacobi_witness(x, n): return False
    
    return True

def is_prime(number):
    """Returns True if the number is prime, and False otherwise.

    >>> is_prime(42)
    0
    >>> is_prime(41)
    1
    """

    if randomized_primality_testing(number, 6):
        # Prime, according to Jacobi
        return True
    
    # Not prime
    return False

    
def getprime(nbits):
    """Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In
    other words: nbits is rounded up to whole bytes.

    >>> p = getprime(8)
    >>> is_prime(p-1)
    0
    >>> is_prime(p)
    1
    >>> is_prime(p+1)
    0
    """

    while True:
        integer = read_random_int(nbits)

        # Make sure it's odd
        integer |= 1

        # Test for primeness
        if is_prime(integer): break

        # Retry if not prime

    return integer

def are_relatively_prime(a, b):
    """Returns True if a and b are relatively prime, and False if they
    are not.

    >>> are_relatively_prime(2, 3)
    1
    >>> are_relatively_prime(2, 4)
    0
    """

    d = gcd(a, b)
    return (d == 1)

def find_p_q(nbits):
    """Returns a tuple of two different primes of nbits bits"""
    pbits = nbits + (nbits/16)  #Make sure that p and q aren't too close
    qbits = nbits - (nbits/16)  #or the factoring programs can factor n
    p = getprime(pbits)
    while True:
        q = getprime(qbits)
        #Make sure p and q are different.
        if not q == p: break
    return (p, q)

def extended_gcd(a, b):
    """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
    """
    # r = gcd(a,b) i = multiplicitive inverse of a mod b
    #      or      j = multiplicitive inverse of b mod a
    # Neg return values for i or j are made positive mod b or a respectively
    # Iterateive Version is faster and uses much less stack space
    x = 0
    y = 1
    lx = 1
    ly = 0
    oa = a                             #Remember original a/b to remove 
    ob = b                             #negative values from return results
    while b != 0:
        q = long(a/b)
        (a, b)  = (b, a % b)
        (x, lx) = ((lx - (q * x)),x)
        (y, ly) = ((ly - (q * y)),y)
    if (lx < 0): lx += ob              #If neg wrap modulo orignal b
    if (ly < 0): ly += oa              #If neg wrap modulo orignal a
    return (a, lx, ly)                 #Return only positive values

# Main function: calculate encryption and decryption keys
def calculate_keys(p, q, nbits):
    """Calculates an encryption and a decryption key for p and q, and
    returns them as a tuple (e, d)"""

    n = p * q
    phi_n = (p-1) * (q-1)

    while True:
        # Make sure e has enough bits so we ensure "wrapping" through
        # modulo n
        e = max(65537,getprime(nbits/4))
        if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break

    (d, i, j) = extended_gcd(e, phi_n)

    if not d == 1:
        raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n))
    if (i < 0):
        raise Exception("New extended_gcd shouldn't return negative values")
    if not (e * i) % phi_n == 1:
        raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n))

    return (e, i)


def gen_keys(nbits):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.
    """

    (p, q) = find_p_q(nbits)
    (e, d) = calculate_keys(p, q, nbits)

    return (p, q, e, d)

def newkeys(nbits):
    """Generates public and private keys, and returns them as (pub,
    priv).

    The public key consists of a dict {e: ..., , n: ....). The private
    key consists of a dict {d: ...., p: ...., q: ....).
    """
    nbits = max(9,nbits)           # Don't let nbits go below 9 bits
    (p, q, e, d) = gen_keys(nbits)

    return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} )

def encrypt_int(message, ekey, n):
    """Encrypts a message using encryption key 'ekey', working modulo n"""

    if type(message) is types.IntType:
        message = long(message)

    if not type(message) is types.LongType:
        raise TypeError("You must pass a long or int")

    if message < 0 or message > n:
        raise OverflowError("The message is too long")

    #Note: Bit exponents start at zero (bit counts start at 1) this is correct
    safebit = bit_size(n) - 2                   #compute safe bit (MSB - 1)
    message += (1 << safebit)                   #add safebit to ensure folding

    return pow(message, ekey, n)

def decrypt_int(cyphertext, dkey, n):
    """Decrypts a cypher text using the decryption key 'dkey', working
    modulo n"""

    message = pow(cyphertext, dkey, n)

    safebit = bit_size(n) - 2                   #compute safe bit (MSB - 1)
    message -= (1 << safebit)                   #remove safebit before decode

    return message

def encode64chops(chops):
    """base64encodes chops and combines them into a ',' delimited string"""

    chips = []                              #chips are character chops

    for value in chops:
        chips.append(int2str64(value))

    #delimit chops with comma
    encoded = ','.join(chips)

    return encoded

def decode64chops(string):
    """base64decodes and makes a ',' delimited string into chops"""

    chips = string.split(',')               #split chops at commas

    chops = []

    for string in chips:                    #make char chops (chips) into chops
        chops.append(str642int(string))

    return chops

def chopstring(message, key, n, funcref):
    """Chops the 'message' into integers that fit into n,
    leaving room for a safebit to be added to ensure that all
    messages fold during exponentiation.  The MSB of the number n
    is not independant modulo n (setting it could cause overflow), so
    use the next lower bit for the safebit.  Therefore reserve 2-bits
    in the number n for non-data bits.  Calls specified encryption
    function for each chop.

    Used by 'encrypt' and 'sign'.
    """

    msglen = len(message)
    mbits = msglen * 8
    #Set aside 2-bits so setting of safebit won't overflow modulo n.
    nbits = bit_size(n) - 2             # leave room for safebit
    nbytes = nbits / 8
    blocks = msglen / nbytes

    if msglen % nbytes > 0:
        blocks += 1

    cypher = []
    
    for bindex in range(blocks):
        offset = bindex * nbytes
        block = message[offset:offset+nbytes]
        value = bytes2int(block)
        cypher.append(funcref(value, key, n))

    return encode64chops(cypher)   #Encode encrypted ints to base64 strings

def gluechops(string, key, n, funcref):
    """Glues chops back together into a string.  calls
    funcref(integer, key, n) for each chop.

    Used by 'decrypt' and 'verify'.
    """
    message = ""

    chops = decode64chops(string)  #Decode base64 strings into integer chops
    
    for cpart in chops:
        mpart = funcref(cpart, key, n) #Decrypt each chop
        message += int2bytes(mpart)    #Combine decrypted strings into a msg
    
    return message

def encrypt(message, key):
    """Encrypts a string 'message' with the public key 'key'"""
    if 'n' not in key:
        raise Exception("You must use the public key with encrypt")

    return chopstring(message, key['e'], key['n'], encrypt_int)

def sign(message, key):
    """Signs a string 'message' with the private key 'key'"""
    if 'p' not in key:
        raise Exception("You must use the private key with sign")

    return chopstring(message, key['d'], key['p']*key['q'], encrypt_int)

def decrypt(cypher, key):
    """Decrypts a string 'cypher' with the private key 'key'"""
    if 'p' not in key:
        raise Exception("You must use the private key with decrypt")

    return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int)

def verify(cypher, key):
    """Verifies a string 'cypher' with the public key 'key'"""
    if 'n' not in key:
        raise Exception("You must use the public key with verify")

    return gluechops(cypher, key['e'], key['n'], decrypt_int)

# Do doctest if we're not imported
if __name__ == "__main__":
    import doctest
    doctest.testmod()

__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify"]