
Package ‘toaster’
April 9, 2014

Type Package

Title analytics and visualization with Aster Database

Version 0.2.5

Author Gregory Kanevsky <gregory.kanevsky@teradata.com>

Maintainer Gregory Kanevsky <gregory.kanevsky@teradata.com>

Description toaster (a.k.a 'to Aster') is a set of tools to perform
in-database analytics with Teradata Aster Discovery Platform.
toaster embraces simple approach by dividing tasks into 2 steps:
compute in Aster - visualize and analyze in R. toaster `compute` functions
use distributed, highly scalable, parallel SQL and map-reduce
for processing of large data sets in Aster database. Then
`create` functions visualize results with boxplots, scatter-
plots,histograms, heatmaps, word clouds, maps, or slope graphs. Advanced options
such as faceting, coloring, labeling, and others are supported with most plots.

URL https://grigory@bitbucket.org/grigory/toaster.git

SystemRequirements Teradata Aster 5.1 or higher, Teradata Aster
Analytical Foundation 5.10 or higher (5.11 or higher is recommended)

Depends R (>= 2.14), RODBC (>= 1.3-9)

Suggests testthat (>= 0.2), memoise

Imports plyr (>= 1.8), reshape2 (>= 1.2.2), ggplot2 (>= 0.9.3.1),scales, RColorBrewer (>= 1.0-
5), grid, wordcloud (>= 2.4),ggmap (>= 2.3)

License GPL-2

Collate 'toaster.R' 'misc.R' 'utils.R' 'computeCorrelations.R'
'computeHistogram.R' 'computeHeatmap.R' 'plotting.R' 'maps.R'
'showData.R' 'computeAggregates.R' 'computeBarchart.R'
'computeSample.R' 'computePercentiles.R' 'computeLm.R'

1

2 computeAggregates

R topics documented:

computeAggregates . 2
computeBarchart . 3
computeCorrelations . 5
computeHeatmap . 6
computeHistogram . 7
computeLm . 9
computePercentiles . 10
computeSample . 11
createBoxplot . 12
createBubblechart . 14
createHeatmap . 15
createHistogram . 17
createMap . 19
createPopPyramid . 22
createSlopegraph . 24
createWordcloud . 25
getCharacterColumns . 27
getCharacterTypes . 27
getDateTimeColumns . 28
getMatchingColumns . 28
getNumericColumns . 29
getNumericTypes . 30
getTableSummary . 30
getTemporalTypes . 32
showData . 32
theme_empty . 36
toaster . 36
viewTableSummary . 36

Index 38

computeAggregates Compute aggregate values.

Description

Compute aggregates using SQL SELECT...GROUP BY in Aster. Aggregates may be any valid SQL
expressions (including SQL WINDOW functions) in context of group columns (parameter by). Neither
SQL ORDER BY nor LIMIT clauses are supported (use computeBarchart when they are required).

Usage

computeAggregates(channel, tableName,
aggregates = c("COUNT(*) cnt"), by = vector(),
where = NULL, stringsAsFactors = FALSE, test = FALSE)

computeBarchart 3

Arguments

channel connection object as returned by odbcConnect

tableName table name
by character vecotr of column names and/or expressions on which grouping is per-

formed (with SQL GROUP BY ...). Each can be a column or a valid SQL non-
aggregate expression with otional alias separated by space (e.g. "UPPER(car_make) make").

aggregates vector of SQL aggregates to compute. Aggregates may have optional aliases
like in "AVG(era) avg_era"

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

stringsAsFactors

logical: should character vectors returned as part of results be converted to fac-
tors?

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions like sqlQuery and sqlSave).

Examples

data = computeAggregates(channel = conn, tableName = "teams_enh",
by = c("name || ', ' || park teamname", "lgid", "teamid", "decadeid"),
aggregates = c("min(name) name", "min(park) park", "avg(rank) rank",

"avg(attendance) attendance"))

compute total strike-outs for each team in decades starting with 1980
and also percent (share) of team strikeouts within a decade
data = computeAggregates(channel = conn, "pitching_enh",

by = c("teamid", "decadeid"),
aggregates = c("sum(so) so",

"sum(so)/(sum(sum(so)) over (partition by decadeid)) percent"),
where = "decadeid >= 1980")

computeBarchart Compute one or more aggregates across single class.

Description

Compute aggregates across category class represented by the table column. Values are one or more
SQL aggregates that are valid expressions with GROUP BY <class column>. Class column
usually is of character or other discrete type. Typical example is computing a bar chart for the
column using SQL COUNT(*) ... GROUP BY - hence the name of the function. Result is a data
frame to visualize as bar charts or heatmaps (see creating visualizations with createHistogram
and createHeatmap).

Usage

computeBarchart(channel, tableName, category,
aggregates = "COUNT(*) cnt", where = NULL,
orderBy = NULL, top = NULL, by = NULL,
withMelt = FALSE, stringsAsFactors = FALSE,
test = FALSE)

4 computeBarchart

Arguments

channel connection object as returned by odbcConnect

tableName table name

category column name or expression associated with categories. Name may be valid SQL
expression and can contain otional alias (e.g. "UPPER(car_make) make")

aggregates SQL aggregates to compute. Each aggregate corresponds to category value.
Aggregates may have optional aliases like in "AVG(era) era"

by for optional grouping by one or more columns for faceting or alike (effectively
these elements will be part of GROUP BY ...)

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

orderBy list of column names, aliases, references or their combinations to use in SQL
ORDER BY clause. Use in combination with top below to compute only limited
number of results in certain order.

top if specified indicates number of bars to include in bar plot. In combination with
orderBy it works as computing first top results in certain order.

withMelt logical if TRUE then uses reshape2 melt to transform result data frame aggre-
gate values into a molten data frame

stringsAsFactors

logical: should columns returned as character and not excluded by as.is and
not converted to anything else be converted to factors?

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions like sqlQuery and sqlSave).

Value

Data frame to use for bar chart plots with createHistogram.

See Also

computeHistogram, createHistogram

Examples

Compute average team season era, walks, and hits for each decade starting with 1980
computeBarchart(channel=conn, "teams_enh", "teamid team",

aggregates=c("avg(era) era", "avg(bb) bb", "avg(h) h"),
where="yearid >=1980", by=c("decadeid"))

multipe aggregates in the same bar chart (with melt)
bc = computeBarchart(channel=conn, tableName="pitching_enh", category="teamid",

aggregates=c("AVG(era) era", "AVG(whip) whip"), withMelt=TRUE,
where="yearid >= 2000 and lgid='AL'")

adding facets by decadeid
bc = computeBarchart(channel=conn, tablelName="pitching_enh", category="teamid",

aggregates=c("AVG(era) era", "AVG(whip) whip", "AVG(ktobb) ktobb"),
where="yearid >= 1990 and lgid='AL'", by="decadeid", withMelt=TRUE)

computeCorrelations 5

computeCorrelations Compute correlation between pairs of columns.

Description

Compute global correlation between all pairs of numeric columns in table. Result includes all
pairwise combinations of numeric columns in the table, with optionally limiting columns to those in
the parameter include or/and excluding columns defined by parameter except. Limit computation
on the table subset defined with where.

Usage

computeCorrelations(channel, tableName, tableInfo,
include, except = NULL, where = NULL, test = FALSE)

Arguments

channel connection object as returned by odbcConnect

tableName database table name

tableInfo pre-built summary of data to use (must have with test=TRUE)

include a vector of column names to include. Output never contains attributes other than
in the list.

except a vector of column names to exclude. Output never contains attributes from the
list.

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions like sqlQuery and sqlSave).

Value

data frame with columns:

• corr pair of 1st and 2d columns "column1:column2"

• value computed correlation value

• metric1 name of 1st column

• metric2 name of 2d column

• sign correlation value sign sign(value) (-1, 0, or 1)

Note that while number of correlations function computes is choose(N, 2), where N is number
of table columns specified, resulting data frame contains twice as many rows by duplicating each
correlation value with swaped column names (1st column to 2d and 2d to 1st positions). This makes
resulting data frame symmetrical with respect to column order in pairs and is necessary to correctly
visualize correlation matrix with createBubblechart.

See Also

createBubblechart and showData.

6 computeHeatmap

Examples

cormat = computeCorrelations(channel=conn, "pitching_enh", sqlColumns(conn, "pitching_enh"),
include = c('w','l','cg','sho','sv','ipouts','h','er','hr','bb',

'so','baopp','era','whip','ktobb','fip'),
where = "decadeid = 2000", test=FALSE)

remove duplicate correlation values (no symmetry)
cormat = cormat[cormat$metric1 < cormat$metric2,]

computeHeatmap Compute 2-dimensional multi-layered matrix for heat map visualiza-
tions.

Description

Compute aggregate value(s) across two category classes represented by the table columns dimension1
and dimension2. Resulting data frame represents 2-dimensional multi-layered matrix where each
layer comprises values from single aggregate. Category columns usually are of character, tem-
poral, or discrete types. Values are aggregates computed across category columns utilizing SQL
GROUP BY <dimension1>, <dimension2>. Aggregate formula may use any SQL expressions
allowed with the GROUP BY as defined above. Results are usually fed into createHeatmap for heat
map visualizations. If defined, parameter by expands grouping columns to be used with heat maps
with faceting.

Usage

computeHeatmap(channel, tableName, dimension1,
dimension2, aggregates = "COUNT(*) cnt",
aggregateFun = NULL, aggregateAlias = NULL,
dimAsFactor = TRUE, withMelt = FALSE, where = NULL,
by = NULL, test = FALSE)

Arguments

channel connection object as returned by odbcConnect

tableName table name

dimension1 name of the column for for heatmap x values. This value along with dimension2
are x and y scales of heatmap table.

dimension2 name of the column for for heatmap y values. This value along with dimension1
are x and y scales of heatmap table.

aggregates vector with SQL aggregates to compute values for heat map. Aggregate may
have optional aliases like in "AVG(era) avg_era". Subsequently, use in createHeatmap
as color (fill), text, and threshold values for heat map cells.

aggregateFun deprecated. Use aggregates instead.

aggregateAlias deprecated. Use aggregates instead.

dimAsFactor logical indicates if dimensions and optional facet columns should be converted
to factors. This is almost always necessary for heat maps.

computeHistogram 7

withMelt logical if TRUE then uses reshape2 melt to transform data frame with aggregate
values in designated columns into a molten data frame.

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

by for optional grouping by one or more values for faceting or alike

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions: sqlQuery and sqlSave).

Details

Result represents 2-dimensional matrix with as many data layers as there were aggregates computed.
Additionally more layers defined with parameter by support facets.

Value

Data frame representing 2-dimensional multi-layered matrix to use with createHeatmap. Matrix
has as many layers as there are aggregates computed. If by defined, data frame contains multiple
matrices for each value(s) from the column(s) in by (to support facets). When withMelt TRUE
function melt applies transforming data frame and columns with aggregate values for easy casting:
expands number of rows and replaces all aggregate columns with two: variable and value.

See Also

createHeatmap

Examples

hm = computeHeatmap(conn, "teams_enh", 'franchid', 'decadeid', 'avg(w) w',
where="decadeid >= 1950")

hm$decadeid = factor(hm$decadeid)
createHeatmap(hm, 'decadeid', 'franchid', 'w')

with diverging color gradient
hm = computeHeatmap(conn, "teams_enh", 'franchid', 'decadeid', 'avg(w-l) wl',

where="decadeid >= 1950")
hm$decadeid = factor(hm$decadeid)
createHeatmap(hm, 'decadeid', 'franchid', 'wl', divergingColourGradient = TRUE)

computeHistogram Compute histogram distribution of the column.

Description

Compute histogram of the table column in Aster by mapping its value to bins based on parame-
ters specified. When column is of numeric or temporal data type it uses map-reduce histogram
function over continuous values. When column is categorical (character data types) it defers to
computeBarchart that uses SQL aggregate COUNT(*) with GROUP BY <column>. Result is a data
frame to visualize as bar charts (see creating visualizations with createHistogram).

8 computeHistogram

Usage

computeHistogram(channel, tableName, columnName,
tableInfo = NULL, columnFrequency = FALSE,
binMethod = "manual", binsize = NULL,
startvalue = NULL, endvalue = NULL, numbins = NULL,
useIQR = TRUE, datepart = NULL, where = NULL,
by = NULL, test = FALSE, oldStyle = FALSE)

Arguments

channel connection object as returned by odbcConnect

tableName Aster table name
columnName table column name to compute histogram
tableInfo pre-built summary of data to use (require when test=TRUE). See getTableSummary.
columnFrequency

logical indicates to build histogram of frequencies of column
binMethod one of several methods to determine number and size of bins: 'manual' in-

dicates to use paramters below, both 'Sturges' or 'Scott' will use corre-
sponding methods of computing number of bins and width (see http://en.
wikipedia.org/wiki/Histogram#Number_of_bins_and_width).

binsize size (width) of discrete intervals defining histogram (all bins are equal)
startvalue lower end (bound) of values to include in histogram
endvalue upper end (bound) of values to include in histogram
numbins number of bins to use in histogram
useIQR logical indicates use of IQR interval to compute cutoff lower and upper bounds

for values to be included in histogram: [Q1 - 1.5 * IQR, Q3 + 1.5 *
IQR], IQR = Q3 - Q1

datepart field to extract from timestamp/date/time column to build histogram on
where specifies criteria to satisfy by the table rows before applying computation. The

creteria are expressed in the form of SQL predicates (inside WHERE clause).
by for optional grouping by one or more values for faceting or alike
test logical: if TRUE show what would be done, only (similar to parameter test in

RODBC functions like sqlQuery and sqlSave).
oldStyle logical indicates if old style histogram paramters are in use (before Aster AF

5.11)

See Also

computeBarchart and createHistogram

Examples

Histogram of team ERA distribution: Rangers vs. Yankees in 2000s
h2000s = computeHistogram(channel=conn, tableName='pitching_enh', columnName='era',

binsize=0.2, startvalue=0, endvalue=10, by='teamid',
where="yearID between 2000 and 2012 and teamid in ('NYA','TEX')")

createHistogram(h2000s, fill='teamid', facet='teamid',
title='TEX vs. NYY 2000-2012', xlab='ERA', ylab='count',
legendPosition='none')

http://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width
http://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width

computeLm 9

computeLm Fit Linear Model and return its coefficients.

Description

Outputs coefficients of the linear model fitted to Aster table according to the formula expression
containing column names. The zeroth coefficient corresponds to the slope intercept. R formula
expression with column names for response and predictor variables is exactly as in lm function
(though less features supported).

Usage

computeLm(channel, tableName, expr, where = NULL,
test = FALSE)

Arguments

channel connection object as returned by odbcConnect

tableName Aster table name

expr an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ‘Details‘.

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions like sqlQuery and sqlSave).

Details

Models for computeLm are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) column and terms is a series of column terms which specifies a
linear predictor for response. A terms specification of the form first + second indicates all the
terms in first together with all the terms in second with duplicates removed. A specification of the
form first:second and first*second (interactions) are not supported yet.

Value

Outputs data frame containing 3 columns:

coefficient_name name of predictor table column, zeroth coefficient name is "0"

coefficient_index index of predictor table column starting with 0

value coefficient value

Examples

model1 = computeLm(channel=conn, tableName="batting_enh", expr= ba ~ rbi + bb + so)

10 computePercentiles

computePercentiles Compute percentiles of column values.

Description

Compute percentiles including boxplot quartiles across values of column columnName. Multiple
sets of percentiles achieved with the parameter by. Vector by may contain arbitrary number of
column names: the percentiles are computed for each combination of values from these columns.
Remember that when using computed quartiles with function createBoxplot it can utilize up to 3
columns by displaying them along the x-axis and inside facets.

Usage

computePercentiles(channel, tableName, columnName,
percentiles = c(0, 5, 10, 25, 50, 75, 90, 95, 100),
by = NULL, where = NULL, stringsAsFactors = FALSE,
test = FALSE)

Arguments

channel connection object as returned by odbcConnect

tableName Aster table name

columnName name of the column to compute percentiles on

percentiles integer vector with percentiles to compute. Values 0, 25, 50, 75, 100 will
always be added if omitted.

by for optional grouping by one or more values for faceting or alike. If used with
createBoxplot then use first name for x-axis and the rest for wrap or grid
faceting.

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

stringsAsFactors

logical: should columns returned as character and not excluded by as.is and
not converted to anything else be converted to factors?

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions like sqlQuery and sqlSave).

Examples

ipouts percentiles for pitching ipouts for AL in 2000s
ipop = computePercentiles(conn, "pitching", "ipouts",

where = "lgid = 'AL' and yearid >= 2000")

ipouts percentiles by league
ipopLg = computePercentiles(conn, "pitching", "ipouts", by="lgid")

computeSample 11

computeSample Randomly sample data from the table.

Description

Draws a sample of rows from the table randomly. The function offers two sampling schemes: - a
simple binomial (Bernoulli) sampling on a row-by-row basis with given sample rate(s) - sampling
a given number of rows without replacement The sampling can be applied to the entire table or can
be refined with conditions.

Usage

computeSample(channel, tableName, sampleFraction,
sampleSize, include = NULL, except = NULL,
where = NULL, as.is = FALSE, stringsAsFactors = FALSE,
test = FALSE)

Arguments

channel connection object as returned by odbcConnect

tableName table name

sampleFraction one or more sample fractions to use in the sampling of data. (multipe sampling
fractions are not yet supported.)

sampleSize total sample size (applies only when sampleFraction is missing).

include a vector of column names to include. Output never contains attributes other than
in the list.

except a vector of column names to exclude. Output never contains attributes from the
list.

where specifies criteria to satisfy by the table rows before applying computation. The
creteria are expressed in the form of SQL predicates (inside WHERE clause).

as.is which (if any) columns returned as character should be converted to another
type? Allowed values are as for read.table. See also sqlQuery.

stringsAsFactors

logical: should columns returned as character and not excluded by as.is and
not converted to anything else be converted to factors?

test logical: if TRUE show what would be done, only (similar to parameter test in
RODBC functions like sqlQuery and sqlSave).

Examples

batters = computeSample(conn, "batting", sampleFraction=0.01)
dim(batters)

pitchersAL = computeSample(conn, "pitching", sampleSize=1000,
where="lgid = 'AL'")

dim(ptichersAL)

12 createBoxplot

createBoxplot Create box plot.

Description

Create box plot visualization using quartiles calculated with computePercentiles. The simplest
case without x value displays single boxplot from the single set of percentiles. To plot multiple box
plots and multiple or single box plots with facets use parameters x and/or facet.

Usage

createBoxplot(data, x = NULL, fill = x, useIQR = FALSE,
facet = NULL, ncol = 1, facetScales = "fixed",
paletteValues = NULL, palette = "Set1",
title = paste("Boxplots", ifelse(is.null(x), NULL, paste("by", x))),
xlab = x, ylab = NULL, legendPosition = "right",
coordFlip = FALSE, baseSize = 12, baseFamily = "sans",
defaultTheme = theme_bw(base_size = baseSize, base_family = baseFamily),
themeExtra = NULL)

Arguments

data quartiles precomputed with computePercentiles

x column name of primary variance. Multiple boxplots are placed along the x-
axis. Each value of x must have corresponding percentiles calculated.

fill name of a column with values to colour box plots

useIQR logical indicates use of IQR interval to compute cutoff lower and upper bounds:
[Q1 - 1.5 * IQR, Q3 + 1.5 * IQR], IQR = Q3 - Q1, if FALSE then
use maximum and minimum bounds (all values).

facet vector of 1 or 2 column names to split up data to plot the subsets as facets. If
single name then subset plots are placed next to each other, wrapping with ncol
number of columns (uses facet_wrap). When two names then subset plots vary
on both horizontal and vertical directions (grid) based on the column values
(uses facet_grid).

ncol number of facet columns (applies when single facet column supplied only - see
parameter facet).

facetScales Are scales shared across all subset plots (facets): "fixed" - all are the same,
"free_x" - vary across rows (x axis), "free_y" - vary across columns (Y axis,
default), "free" - both rows and columns (see in facet_wrap parameter scales
)

paletteValues actual palette colours for use with scale_fill_manual (if specified then pa-
rameter palette is ignored)

palette Brewer palette name - see display.brewer.all in RColorBrewer package for
names

title plot title.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

createBoxplot 13

baseSize theme base font size

baseFamily theme base font family

legendPosition the position of legends. ("left", "right", "bottom", "top", or two-element numeric
vector). "none" is no legend.

coordFlip logical flipped cartesian coordinates so that horizontal becomes vertical, and
vertical horizontal (see coord_flip).

defaultTheme plot theme to use: theme_bw (default), theme_grey, theme_classic or custom.

themeExtra any additional theme settings that override default theme.

Details

Multiple box plots: x is a name of variable where each value corresponds to a set of percentiles.
The boxplots will be placed along the x-axis. Simply use computePercentiles with parameter
by="name to be passed in x variable".

Facets: facet vector contains one or two names of vairables where each combination of values
corresponds to a set of percentiles. The boxplot(s) will be placed inside separate sections of the plot
(facets). Both single boxplot (without variable x and with one) are supported.

Usually, with multiple percentile sets varying along single value use parameter x and add facets
on top. The exception is when scale of percentile values differs between each boxplot. Then omit
parameter x and use facet with facetScales='free_y'.

See Also

computePercentiles for computing boxplot quartiles

Examples

boxplot of pitching ipouts for AL in 2000s
ipop = computePercentiles(conn, "pitching", "ipouts")
createBoxplot(ipop)

boxplots by the league of pitching ipouts
ipopLg = computePercentiles(conn, "pitching", "ipouts", by="lgid")
createBoxplot(ipopLg, x="lgid")

boxplots by the league with facet yearid of pitching ipouts in 2010s
ipopLgYear = computePercentiles(conn, "pitching", "ipouts", by=c("lgid", "yearid"),

where = "yearid >= 2010")
createBoxplot(ipopLgYear, x="lgid", facet="yearid", ncol=3)

boxplot with facets only
bapLgDec = computePercentiles(conn, "pitching_enh", "ba", by=c("lgid", "decadeid"),

where = "lgid in ('AL','NL')")
createBoxplot(bapLgDec, facet=c("lgid", "decadeid"))

14 createBubblechart

createBubblechart Create Bubble Chart type of plot.

Description

Create a bubble chart that utilizes three dimensions of data. It is a variation of the scatter plot with
data points replaced with shapes ("bubbles"): x and y are bubble location and z is its size. It can
optionally assign data points labels and fill shapes with colors.

Usage

createBubblechart(data, x, y, z, label = z, fill = NULL,
facet = NULL, ncol = 1, facetScales = "fixed",
xlim = NULL, baseSize = 12, baseFamily = "sans",
shape = 21, shapeColour = "black", scaleSize = TRUE,
shapeSizeRange = c(3, 10), shapeMaxSize = 100,
paletteValues = NULL, palette = "Set1",
title = paste("Bubble Chart by", fill), xlab = x,
ylab = y, labelSize = 5, labelFamily = "",
labelFontface = "plain", labelColour = "black",
labelVJust = 0.5, labelHJust = 0.5, labelAlpha = 1,
labelAngle = 0, legendPosition = "right",
defaultTheme = theme_bw(base_size = baseSize, base_family = baseFamily),
themeExtra = NULL)

Arguments

data data frame contains data computed for bubblechart

x name of a column containing x variable values

y name of a column containing y variable values

z name of a column containing bubble size value

label name of a column containing bubble label

fill name of a column with values to use for bubble colours

facet vector of 1 or 2 column names to split up data to plot the subsets as facets. If
single name then subset plots are placed next to each other, wrapping with ncol
number of columns (uses facet_wrap). When two names then subset plots vary
on both horizontal and vertical directions (grid) based on the column values
(uses facet_grid).

ncol number of facet columns (applies when single facet column supplied only - see
parameter facet).

facetScales Are scales shared across all subset plots (facets): "fixed" - all are the same,
"free_x" - vary across rows (x axis), "free_y" - vary across columns (Y axis,
default), "free" - both rows and columns (see in facet_wrap parameter scales
)

baseSize theme base font size

baseFamily theme base font family

xlim a vector specifying the data range for the x scale and the default order of their
display in the x axis.

createHeatmap 15

shape bubble shape

shapeColour colour of shapes

scaleSize logical if TRUE then scale the size of shape to be proportional to the value, if
FALSE then scale the area.

shapeSizeRange bubble size range (applies only when scaleSize = TRUE)

shapeMaxSize size of largest shape (applies only when scaleSize = FALSE)

paletteValues actual palette colours for use with scale_fill_manual (if specified then pa-
rameter palette is ignored)

palette Brewer palette name - see display.brewer.all in RColorBrewer package for
names

title plot title.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

labelSize size of labels

labelFamily label font name or family name

labelFontface label font face (c("plain","bold","italic","bold.italic"))

labelColour color of labels

labelVJust position of the anchor (0=bottom edge, 1=top edge), can go below 0 or above 1

labelHJust position of the label anchor (0=left edge, 1=right edge), can go below 0 or above
1

labelAlpha the transparency of the text label

labelAngle the angle at which to draw the text label

legendPosition the position of legends. ("left", "right", "bottom", "top", or two-element numeric
vector). "none" is no legend.

defaultTheme plot theme to use: theme_bw (default), theme_grey, theme_classic or custom.

themeExtra any additional theme settings that override default theme.

See Also

computeAggregates computes data for the bubble chart.

createHeatmap Create Heat Map type of plot.

Description

Create heat map visualization of 2D matrix from the data frame data pre-computed with computeHeatmap.

16 createHeatmap

Usage

createHeatmap(data, x, y, fill, facet = NULL, ncol = 1,
baseSize = 12, baseFamily = "sans",
thresholdValue = NULL, thresholdName = fill,
text = FALSE, textFill = fill, percent = FALSE,
digits = ifelse(percent, 2, 4),
divergingColourGradient = FALSE,
lowGradient = ifelse(divergingColourGradient, muted("red"), "#56B1F7"),
midGradient = "white",
highGradient = ifelse(divergingColourGradient, muted("blue"), "#132B43"),
title = paste("Heatmap by", fill), xlab = x, ylab = y,
legendPosition = "right",
defaultTheme = theme_bw(base_size = baseSize, base_family = baseFamily),
themeExtra = NULL)

Arguments

data data frame contains data computed for heatmap

x name of a column containing x variable values (1st or horizontal dimenstion) in
2D matrix

y name of a column containing y variable values (2d or vertical dimension) in 2D
matrix

fill name of a column with values to map to heatmap gradient colors (lowGradient,
highGradient, and optionally midGradient).

facet vector of 1 or 2 column names to split up data to plot the subsets as facets. If
single name then subset plots are placed next to each other, wrapping with ncol
number of columns (uses facet_wrap). When two names then subset plots vary
on both horizontal and vertical directions (grid) based on the column values
(uses facet_grid).

ncol number of facet columns (applies when single facet column supplied only - see
parameter facet).

baseSize theme base font size

baseFamily theme base font family

thresholdValue threshold to use to display data in heatmap (if NULL then do not use threshold)

thresholdName name of data attribute from data to use (by defult use fill)

text if TRUE then display values in heatmap table (default: FALSE)

textFill text to display (applies only when text is TRUE), by defaul use fill values

percent format text as percent

digits number of digits to use in text

lowGradient colour for low end of gradient.

midGradient colour for mid point.

highGradient colour for high end of gradient.
divergingColourGradient

logical diverging colour gradient places emphasize on both low and high leaving
middle neutral. Use when both end grandient colours represent critical values
such as negative and positive extremes (e.g. temprature, outliers, etc.)

title plot title

createHistogram 17

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

legendPosition the position of legends. ("left", "right", "bottom", "top", or two-element numeric
vector). "none" is no legend.

defaultTheme plot theme to use: theme_bw (default), theme_grey, theme_classic or custom.

themeExtra any additional theme settings that override default theme.

See Also

computeHeatmap for computing data for heat map

createHistogram Create histogram type of plot.

Description

Create histogram plot from the pre-computed distribution of data. Parameter data is a data frame
containing intervals (bins) and counts obtained using computeHistogram or computeBarchart).

Usage

createHistogram(data, x = "bin_start", y = "bin_count",
fill = NULL, position = "dodge", facet = NULL,
ncol = 1, facetScales = "free_y", baseSize = 12,
baseFamily = "", xlim = NULL, breaks = NULL,
text = FALSE, percent = FALSE, digits = 0,
textVJust = -2, mainColour = "black",
fillColour = "grey", scaleGradient = NULL,
paletteValues = NULL, palette = "Set1", trend = FALSE,
trendLinetype = "solid", trendLinesize = 1,
trendLinecolour = "black",
title = paste("Histgoram by", fill), xlab = x,
ylab = y, legendPosition = "right", coordFlip = FALSE,
defaultTheme = theme_bw(base_size = baseSize, base_family = baseFamily),
themeExtra = NULL)

Arguments

data data frame contains computed histogram

x name of a column containing bin labels or interval values

y name of a column containing bin values or counts (bin size)

fill name of a column with values to colour bars

position histogram position parameter to use for overlapping bars: stack, dodge (defult),
fill, identity

mainColour Perimeter color of histogram bars

fillColour Fill color of histogram bars (applies only when fill is NULL)

scaleGradient control ggplot2 scale fill gradient manually, e.g use scale_colour_gradient
(if specified then parameter palette is ignored)

18 createHistogram

paletteValues actual palette colours for use with scale_fill_manual (if specified then pa-
rameter palette is ignored)

palette Brewer palette name - see display.brewer.all in RColorBrewer package for
names

facet vector of 1 or 2 column names to split up data to plot the subsets as facets. If
single name then subset plots are placed next to each other, wrapping with ncol
number of columns (uses facet_wrap). When two names then subset plots vary
on both horizontal and vertical directions (grid) based on the column values
(uses facet_grid).

ncol number of facet columns (applies when single facet column supplied only - see
parameter facet).

facetScales Are scales shared across all subset plots (facets): "fixed" - all are the same,
"free_x" - vary across rows (x axis), "free_y" - vary across columns (Y axis,
default), "free" - both rows and columns (see in facet_wrap parameter scales
)

baseSize theme base font size

baseFamily theme base font family

xlim a character vector specifying the data range for the x scale and the default order
of their display in the x axis.

breaks a character vector giving the breaks as they should appear on the x axis.

text if TRUE then display values above bars (default: FALSE) (this feature is in
development)

percent format text as percent

digits number of digits to use in text

textVJust vertical justificaiton of text labels (relative to the top of bar).

trend logical indicates if trend line is shown.

trendLinetype trend line type

trendLinesize size of trend line
trendLinecolour

color of trend line

title plot title

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

legendPosition the position of legends. ("left", "right", "bottom", "top", or two-element numeric
vector). "none" is no legend.

coordFlip logical flipped cartesian coordinates so that horizontal becomes vertical, and
vertical horizontal (see coord_flip).

defaultTheme plot theme to use: theme_bw (default), theme_grey, theme_classic or custom.

themeExtra any additional theme settings that override default theme.

See Also

computeHistogram and computeBarchart to compute data for histogram

createMap 19

Examples

AL teams pitching stats by decade
bc = computeBarchart(channel=conn, tableName="pitching_enh", category="teamid",

aggregates=c("AVG(era) era", "AVG(whip) whip", "AVG(ktobb) ktobb"),
where="yearid >= 1990 and lgid='AL'", by="decadeid", withMelt=TRUE)

createHistogram(bc, "teamid", "value", fill="teamid",
facet=c("variable", "decadeid"),
legendPosition="bottom",
title = "AL Teams Pitching Stats by decades (1990-2012)",
themeExtra = guides(fill=guide_legend(nrow=2)))

AL Teams Average Win-Loss Difference by Decade
franchwl = computeBarchart(conn, "teams_enh", "franchid",

aggregates=c("AVG(w) w", "AVG(l) l", "AVG(w-l) wl"),
by="decadeid",
where="yearid >=1960 and lgid = 'AL'")

createHistogram(franchwl, "decadeid", "wl", fill="franchid",
facet="franchid", ncol=5, facetScales="fixed",
legendPosition="none",
trend=TRUE,
title="Average W-L difference by decade per team (AL)",
ylab="Average W-L")

Histogram of team ERA distribution: Rangers vs. Yankees in 2000s
h2000s = computeHistogram(channel=conn, tableName='pitching_enh', columnName='era',

binsize=0.2, startvalue=0, endvalue=10, by='teamid',
where="yearID between 2000 and 2012 and teamid in ('NYA','TEX')")

createHistogram(h2000s, fill='teamid', facet='teamid',
title='TEX vs. NYY 2000-2012', xlab='ERA', ylab='count',
legendPosition='none')

createMap Locate map, geocode data, then plot both.

Description

createMap is a smart function that places data artifact on the map. If necessary it geocodes the data,
locates map that fits all data artifacts, and plots the map with the data shapes sized and colored using
metrics.

Usage

createMap(data, maptype = "terrain",
mapColor = c("color", "bw"),
source = c("google", "osm", "stamen", "cloudmade"),
location = NULL, locator = "center",
boxBorderMargin = 10, zoom = NULL, locationName = NULL,
lonName = "LONGITUDE", latName = "LATITUDE",

20 createMap

metricName = NULL, labelName = NULL,
scaleRange = c(1, 6), shapeColour = "red",
textColour = "black", textFamily = "mono",
textFace = "plain", textSize = 4, facet = NULL,
ncol = 1, facetScales = "fixed",
geocodeFun = memoise(geocode), getmapFun = get_map,
urlonly = FALSE, api_key = NULL, baseSize = 12,
baseFamily = "sans", title = NULL,
legendPosition = "right",
defaultTheme = theme_bw(base_size = baseSize),
themeExtra = NULL)

Arguments

data data frame with artifacts and their locations and metric(s) to be placed on the
map. If location name is provided (with locationName) then it is used to gecode
artifacts first. If not location then longitude and latitude must be provided. It is
caller’s responsibility adjust locations with value of zoom parameter to fit arti-
facts on the map.

maptype map theme as defined in get_map. options available are ’terrain’, ’satellite’,
’roadmap’, and ’hybrid’

mapColor color ('color') or black-and-white ('bw')
source Google Maps (’google’), OpenStreetMap (’osm’), Stamen Maps (’stamen’), or

CloudMade maps (’cloudmade’)
location location of the map: longitude/latitude pair (in that order), or left/bottom/right/top

bounding box: ’center’ uses 2 value vector for the center of the map, while ’box’
uses 4 value vector as left/bottom/right/top. If missing then function will derive
map location using parameter locator and the data.

locator in absence of location specifies how to use data to determine map location:
when ’center’ then function averages out data point longitude and latitude val-
ues to get approximate cneter for the map; when ’box’ it will use min/max of
longitude and latitude values to determine bounding box: left/bottom/right/top.
If parameter locationName is specified then function will geocode values from
this column first. If paramter locationName is missing then it assumes that
data is already geocoded and stored in the columns with the names lonName and
latName.

boxBorderMargin

margin size in percent of box sizes to increase box when computed from data
locations.

zoom map zoom as defined in get_map: an integer from 3 (continent) to 21 (building),
default value 10 (city). Properly setting zoom for each map is responsibility of a
caller. Zoom is optional when using bounding box location specification.

locationName name of the column with strings to be geocoded to determine longitude and
latitude for each data point. If this value is specified then parameters lonName
and latName are ignored.

lonName name of the column with longitude value. This value (in combination with value
from column latName) is used to place each data point on the map. This param-
eter is ignored if locationName is defined.

latName name of the column with latitude value. This value (in combination with value
from column lonName) is used to place each data point on the map. This param-
eter is ignored if locationName is defined.

createMap 21

metricName name of the column to use for the artifact metric when displaying data.

scaleRange a numeric vector of lenght 2 that specifies the minimum and maximum size of
the plotting symbol after transformation (see parameter range of scale_size).

labelName name of the column to use for the artifact label text when displaying data.

shapeColour color of of artifact placed on map.

textColour color of artifact labels on map.

textFamily font family (when available) to use for artfiact labels.

textFace font style to apply to artifact labels: ’plain’ (default), ’bold’, ’italic’, or ’bold.italic’.

textSize font size of artifact labels.

facet name of a column to divide plot into facets for specificed parameter (defualt
is NULL - no facets). If facet is single value then facet wrap applied (see
facet_wrap), otherwise facet grid (see facet_grid with 1st 2 values of the
vector.

ncol number of facet columns (applies when single facet column supplied only - see
parameter facet).

facetScales Are scales shared across all facets: "fixed" - all are the same, "free_x" - vary
across rows (x axis), "free_y" - vary across columns (Y axis) (default), "free" -
both rows and columns (see in facet_wrap parameter scales).

geocodeFun geocode function. Default is geocode but due to Google API restrictions use
memoised version, e.g. memoise(geocode), instead (see package memoise).

getmapFun get map function. Defayult is get_map but due to map APIs restrictions use
memoised version, e.g. memose(get_map), instead (see package memoise).

urlonly return url only.

api_key an api key for cloudmade maps.

baseSize base font size.

baseFamily base font family.

title plot title.

legendPosition the position of legends. ("left", "right", "bottom", "top", or two-element numeric
vector. "none" is no legend.)

defaultTheme plot theme to use, default is theme_bw.

themeExtra any additional ggplot2 theme attributes to add.

Details

Geocoding: If parameter locationName is missing then no geocoding is possible. In that case
parameters lonName and latName must contain names of columns with longitude and latitude in-
formation assigned to each data artifact (data point). If parameter locationName is defined then
geocoding attempts to use values from the column with this name. Function geocodeFun specifies
geocoding function (with default geocode from ggmap package). To speed up processing and avoid
hitting global limit on Google Map API use memoised version of this function: memoise(geocode)
(see memoise).

Map Locating: Function operates in 2 modes: explicit map location mode and implicit mode. In
explicit mode value location locates the map using one of two supported formats. If it is a 2-
value vector then it contains a center of the map. If it is 4-value vector then it contains bounding
box coordinates: left/bottom/right/top. In implicit mode, when location is missing, fuction uses
parameters locator and data to locate the map. If locator is equal to 'center' then it centers

22 createPopPyramid

map by averaging longitude and latitude values of all data artifacts. If locator is equal to 'box'
then it determines min/max values of longitutude and latitude of all data artifacts and locates the
map by corresponding bounding box. Note that both modes support require explicit parameter zoom
if applicable.

Map Types: variety of map avaiable are from several public sources: google, OpenStreetMap,
Stamen, and CloudMade maps. The options and terms for each are different. For example, not all
sources support both color and black-and-white options, or map types terrain, satellite, roadmap or
hybrid. Note that in most cases by using Google source you are agreeing to the Google Maps API
Terms of Service at https://developers.google.com/maps/terms.

Shapes: data artifacts are shapes placed over the map. Their size is scaled using values in metricName
column and their location is determined either by geocoding values from locationName column or
with longitude and latitude values stored in lonName and latName columns.

Labels: If labelName is specified then column with such name contains text labels to place on the
map (using the same locations as for the shapes).

Examples

data = computeAggregates(asterConn, "pitching",
columns = c("name || ', ' || park teamname", "lgid", "teamid", "decadeid"),
aggregates = c("min(name) name", "min(park) park", "avg(rank) rank",

"avg(attendance) attendance")
)

geocodeMem = memoise(geocode)

createMap(data=data[data$decadeid>=2000,],
source = "stamen", maptype = "watercolor", zoom=4,
facet=c("lgid", "decadeid"),
locationName='teamname', locationNameBak='park', metricName='attendance',
labelName='name', shapeColour="blue", scaleRange = c(2,12), textColour="black",
title='Game Attendance by Decade and League (yearly, 2000-2012)',
geocodeFun=geocodeMem)

createPopPyramid Create Population Pyramid type of histogram plot.

Description

Create population pyramid type of histogram plot: two back-to-back bar graphs on the same cat-
egory class (e.g. age) placed on Y-axis and distribution (population) placed on the X-axis. Bar
graphs correspond to two distinct groups, e.g. sex (male and female), baseball leagues (AL and
NL), or customer types (new customers and established customers).

Usage

createPopPyramid(data, bin = "bin_start",
count = "bin_count", divideBy, values = NULL,
fillColours = c("blue", "red"), mainColour = "black",
facet = NULL, ncol = 1, facetScales = "fixed",
baseSize = 12, baseFamily = "sans",

createPopPyramid 23

title = paste("Population Pyramid Histogram by", divideBy),
xlab = bin, ylab = count, legendPosition = "right",
defaultTheme = theme_bw(base_size = baseSize, base_family = baseFamily),
themeExtra = NULL)

Arguments

data data frame contains 2 histograms for the same bins. Bins are divided into 2 sets
with parameter divideBy.

bin name of a column containing bin labels or interval values

count name of a column containing bin values or counts (bin size)

divideBy name of the column to divide data into two histograms

values two-valued vector containing values in divideBy (optional). If missing then it
uses 1st 2 values from column divideBy (sorted with default order).

fillColours 2-value vector with colours for left and right histograms.

mainColour histogram bar colour.

facet vector of 1 or 2 column names to split up data to plot the subsets as facets. If
single name then subset plots are placed next to each other, wrapping with ncol
number of columns (uses facet_wrap). When two names then subset plots vary
on both horizontal and vertical directions (grid) based on the column values
(uses facet_grid).

ncol number of facet columns (applies when single facet column supplied only - see
parameter facet).

facetScales Are scales shared across all subset plots (facets): "fixed" - all are the same,
"free_x" - vary across rows (x axis), "free_y" - vary across columns (Y axis,
default), "free" - both rows and columns (see in facet_wrap parameter scales
)

baseSize theme base font size

baseFamily theme base font family

title plot title.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

legendPosition the position of legends. ("left", "right", "bottom", "top", or two-element numeric
vector). "none" is no legend.

defaultTheme plot theme to use: theme_bw (default), theme_grey, theme_classic or custom.

themeExtra any additional theme settings that override default theme.

Examples

pitchingInfo = getTableSummary(asterConn, tableName='pitching',
where='yearid between 2000 and 2013')

battingInfo = getTableSummary(asterConn, tableName='batting',
where='yearid between 2000 and 2013')

salaryHistAll = computeHistogram(asterConn, tableName='public.salaries', columnName='salary',
binsize=200000, startvalue=0,
by='lgid', where='yearID between 2000 and 2013')

24 createSlopegraph

createPopPyramid(data=salaryHistAll, bin='bin_start', count='bin_count', divideBy='lgid',
values=c('NL','AL'),
title="Salary Pyramid by MLB Leagues",
xlab='Salary', ylab='Player Count')

salaryHist5Mil = computeHistogram(asterConn, tableName='salaries', columnName='salary',
binsize=100000, startvalue=0, endvalue=5000000,
by='lgid', where='yearID between 2000 and 2013')

createPopPyramid(data=salaryHist5Mil, divideBy='lgid', values=c('NL','AL'),
title="Salary Pyramid by MLB Leagues (less 5M only)",
xlab='Salary', ylab='Player Count')

eraHist = computeHistogram(asterConn, tableName='pitching', columnName='era',
binsize=.1, startvalue=0, endvalue=10,
by='lgid', where='yearid between 2000 and 2013')

createPopPyramid(data=eraHist, divideBy='lgid', values=c('NL','AL'),
title="ERA Pyramid by MLB Leagues", xlab='ERA', ylab='Player Count')

Log ERA
eraLogHist = computeHistogram(asterConn, tableName='pitching', columnName='era_log',

binsize=.02, startvalue=-0.42021640338318984325,
endvalue=2.2764618041732441,

by='lgid', where='yearid between 2000 and 2013 and era > 0')
createPopPyramid(data=eraLogHist, divideBy='lgid', values=c('NL','AL'),

title="log(ERA) Pyramid by MLB Leagues",
xlab='log(ERA)', ylab='Player Count')

Batting (BA)
battingHist = computeHistogram(asterConn, tableName='batting_enh', columnName='ba',

binsize=.01, startvalue=0.01, endvalue=0.51,
by='lgid', where='yearid between 2000 and 2013')

createPopPyramid(data=battingHist, divideBy='lgid', values=c('NL','AL'),
title="Batting BA Pyramid by MLB Leages", xlab='BA', ylab='Player Count')

createSlopegraph Create plot with Slope Graph visualization.

Description

Create plot with Slope Graph visualization.

Usage

createSlopegraph(data, id, rankFrom, rankTo,
reverse = TRUE, na.rm = FALSE, scaleFactor = 1,
fromLabel = rankFrom, toLabel = rankTo,
title = paste("Slopegraph by", rankTo), baseSize = 12,
baseFamily = "sans", classLabels = c(rankFrom, rankTo),
classTextSize = 12, colour = "#999999",
upColour = "#D55E00", downColour = "#009E73",
highlights = integer(0), lineSize = 0.15,
textSize = 3.75, panelGridColour = "black",
panelGridSize = 0.1,

createWordcloud 25

defaultTheme = theme_classic(base_size = baseSize, base_family = baseFamily),
themeExtra = NULL)

Arguments

data data frame contains data computed for slopegraph

id name of column identifying each graph element having from (before) and to
(after) pair of values

rankFrom name of column with from (before) value

rankTo name of column with to (after) value

reverse logical reverse values if TRUE (smaller is better)

na.rm logical value indicating whether NA values should be stripped before the visu-
alization proceeds.

scaleFactor scale factor applied to all values (-1 can be used instead of reverse TRUE).

fromLabel label for left values (from or before)

toLabel label for right values (to or after)

classLabels pair of labels for to and from columns (or classes)

classTextSize size of text for class labels

colour default colour

upColour colour of up slope

downColour colour of down slope

highlights vector with indexes of highlighted points

lineSize size of slope lines

textSize size of text
panelGridColour

background panel grid colour

panelGridSize background panel grid size

title plot title

baseSize base font size

baseFamily base font family

defaultTheme plot theme to use: theme_bw, theme_grey, theme_classic (default) or custom.

themeExtra any additional theme settings that override default theme.

createWordcloud Create Word Cloud Visualization.

Description

Wrapper around wordcloud function that optionally saves graphics to the file of one of supported
formats.

26 createWordcloud

Usage

createWordcloud(words, freq, title = "Wordcloud",
scale = c(8, 0.2), minFreq = 10, maxWords = 40,
filename,
format = c("png", "bmp", "jpeg", "tiff", "pdf"),
width = 480, height = 480, units = "px",
palette = brewer.pal(8, "Dark2"), titleFactor = 1)

Arguments

words the words

freq their frequencies

title plot title

scale a vector indicating the range of the size of the words (default c(4,.5))

minFreq words with frequency below minFreq will not be displayed

maxWords Maximum number of words to be plotted (least frequent terms dropped).

filename file name to use where to save graphics

format format of graphics device to save wordcloud image

width the width of the output graphics device

height the height of the output graphics device

units the units in which height and width are given. Cab be px (pixels, the default),
in (inches), cm or mm.

palette color words from least to most frequent

titleFactor numeric title character expansion factor; multiplied by par("cex") yields the
final title character size. NULL and NA are equivalent to a factor of 1.

Details

Uses base graphics and worldcloud package to create a word cloud (tag cloud) visual reprsentation
of for text data. Function uses 2 vectors of equal lengths: one contains list of words and the other
has their frequencies.

Resulting graphics is saved in file in one of available graphical formats (png, bmp, jpeg, tiff, or pdf).

Word Cloud visuals apply to any concept that satisfies following conditions: * each data point
(artifact) can be expressed with distinct word or compact text in distinct and self-explanatory fashion
and * it assigns each artifact scalar non-negative metric. Given these two conditions we can use
Word Clouds to visualize top, bottom or all artifacts in single word cloud visual.

Value

nothing

See Also

wordcloud

getCharacterColumns 27

getCharacterColumns Filter character columns.

Description

Selects character columns (names or rows) from table info data frame.

Usage

getCharacterColumns(tableInfo, names.only = TRUE,
include = NULL, except = NULL)

Arguments

tableInfo data frame obtained by calling getTableSummary.

include a vector of column names to include. Output is restricted to this list.

except a vector of column names to exclude. Output never contains names from this
list.

names.only logical: if TRUE returns column names only, otherwise full rows of tableInfo.

See Also

getTableSummary

Examples

pitchingInfo = getTableSummary(channel=conn, 'pitching_enh')
getCharacterColumns(pitchingInfo)
char_cols_df = getCharacterColumns(pitchingInfo, names.only=FALSE)

getCharacterTypes List Aster character data types.

Description

List Aster character data types.

Usage

getCharacterTypes()

Value

character vector with names of Aster character data types

Examples

getCharacterTypes()

28 getMatchingColumns

getDateTimeColumns Filter Date and Time Table Columns.

Description

Selects date and time columns (names or rows) from table info data frame.

Usage

getDateTimeColumns(tableInfo, names.only = TRUE,
include = NULL, except = NULL)

Arguments

tableInfo data frame obtained by calling getTableSummary.

include a vector of column names to include. Output is restricted to this list.

except a vector of column names to exclude. Output never contains names from this
list.

names.only logical: if TRUE returns column names only, otherwise full rows of tableInfo.

See Also

getTableSummary

Examples

masterInfo = getTableSummary(channel=conn, 'master')
getDateTimeColumns(masterInfo)
date_cols_df = getDateTimeColumns(masterInfo, names.only=FALSE)

getMatchingColumns Filter columns by pattern.

Description

Selects columns with names matching regular expression pattern.

Usage

getMatchingColumns(pattern, channel, tableName,
tableInfo, names.only = TRUE, ignore.case = TRUE,
invert = FALSE)

getNumericColumns 29

Arguments

pattern character string containing a regular expression to be matched in the given table
info.

channel connection object as returned by odbcConnect. Only used in combination with
tableName.

tableName Aster table name to use. If missing then tableInfo will be used instead.

tableInfo data frame obtained by calling getTableSummary or sqlColumns.

names.only logical: if TRUE returns column names only, otherwise full rows of tableInfo.

ignore.case if TRUE case is ignored during matching, otherwise matching is case sensitive.

invert logical. if TRUE return columns that do not match.

See Also

grep

getNumericColumns Filter numeric columns.

Description

Select numeric columns (names or rows) from table info data frame.

Usage

getNumericColumns(tableInfo, names.only = TRUE,
include = NULL, except = NULL)

Arguments

tableInfo data frame obtained by calling getTableSummary.

names.only logical: if TRUE returns column names only, otherwise full rows of tableInfo.

include a vector of column names to include. Output is restricted to this list.

except a vector of column names to exclude. Output never contains names from this
list.

See Also

getTableSummary

Examples

pitchingInfo = getTableSummary(channel=conn, 'pitching_enh')
getNumericColumns(pitchingInfo)
num_cols_df = getNumericColumns(pitchingInfo, names.only=FALSE)

30 getTableSummary

getNumericTypes List Aster numeric data types.

Description

List Aster numeric data types.

Usage

getNumericTypes()

Value

character vector with names of Aster numeric data types

Examples

getNumericTypes()

getTableSummary Compute columnwise statistics on Aster table.

Description

For table compute column statistics in Aster and augment data frame structure obtained with sqlColumns
with columns containing computed statistics.

Usage

getTableSummary(channel, tableName, include = NULL,
except = NULL, modeValue = FALSE,
percentiles = c(0, 5, 10, 25, 50, 75, 90, 95, 100),
where = NULL, mock = FALSE)

Arguments

channel object as returned by odbcConnect.
tableName name of the table in Aster.
include a vector of column names to include. Output never contains attributes other than

in the list.
except a vector of column names to exclude. Output never contains attributes from the

list.
modeValue logical indicates if mode values should be computed. Default is FALSE.
percentiles list of percentiles (integers between 0 and 100) to collect (always collects 25th

and 75th for IQR calculation). There is no penalty in specifying more percentiles
as they get calculated in a single call for each column - no matter how many
different values are requested.

where SQL WHERE clause limiting data from the table (use SQL as if in WHERE
clause but omit keyword WHERE).

mock logical: if TRUE returns pre-computed table statistics for tables pitching or
batting, only.

getTableSummary 31

Details

Computes columns statistics for all or specified table columns and adds them to the data frame
with basic ODBC table metadata obtained with sqlColumns. Computed statistics include counts of
all, non-null, distinct values; statistical summaries of maximum, minimum, mean, standard devia-
tion, median (50th percentile), mode (optional), interquartile range, and desired percentiles. Each
computed statistic adds a column to ODBC metadata data frame.

Value

data frame returned by sqlColumns with additional columns:

total_count total row count - the same for each table column
distinct_count distinct values count
not_null_count not null count
minimum minimum value (numerical data types only)
maximum maximum value (numerical data types only)
average mean (numerical data types only)
deviation standard deviation (numerical data types only)
percentiles defaults: 0,5,10,25,50,75,90,95,100. Always adds percentiles 25, 50 (median), 75
IQR interquartile range is the 1st Quartile subtracted from the 3rd Quartile
minimum_str minimum string value (character data types only)
maximum_str maximum string value (character data types only)
mode mode value (optional)
mode_count mode count (optional)

See Also

sqlColumns

Examples

pitchingInfo = getTableSummary(channel=conn, 'pitching_enh')
list all table columns
pitchingInfo$COLUMN_NAME

compute statistics on subset of baseball data after 1999
battingInfo = getTableSummary(channel=conn, 'batting_enh',

where='yearid between 2000 and 2013')

compute statistics for certain columns including each percentile from 1 to 99
pitchingInfo = getTableSummary(channel=conn, 'pitching_enh',

include=c('h', 'er', 'hr', 'bb', 'so'),
percentiles=seq(1,99))

list data frame column names to see all computed statistics
names(pitchingInfo)

compute statitics on all numeric columns except certain columns
teamInfo = getTableSummary(channel=conn, 'teams_enh',

include=getNumericColumns(sqlColumns(conn, 'teams_enh')),
except=c('lgid', 'teamid', 'playerid', 'yearid', 'decadeid'))

32 showData

getTemporalTypes List Aster temporal data types.

Description

List Aster temporal data types.

Usage

getTemporalTypes()

Value

character vector with names of Aster temporal data types

Examples

getTemporalTypes()

showData Plot table level statistics, histograms, correlations and scatterplots in
one go.

Description

showData is the basic plotting function in the toaster package, designed to produce set of standard
visualizations (see parameter format) in a single call. Depending on the format it is a wrapper to
other functions or simple plotting function. It does all work in a single call by combining database
round-trip (if necessary) and plotting functionality.

Usage

showData(channel = NULL, tableName = NULL,
tableInfo = NULL, include = NULL, except = NULL,
type = "numeric", format = "histgoram",
measures = NULL,
title = paste("Table", toupper(tableName), format, "of", type, "columns"),
numBins = 30, useIQR = FALSE, extraPoints = NULL,
extraPointShape = 15, sampleFraction = NULL,
sampleSize = NULL, pointColour = NULL,
facetName = NULL, regressionLine = FALSE,
corrLabel = "none", digits = 2, shape = 21,
shapeSizeRange = c(1, 10), facet = FALSE, ncol = 4,
scales = ifelse(facet & format %in% c("boxplot", "overview"), "free", "fixed"),
coordFlip = FALSE, paletteName = "Set1", baseSize = 12,
baseFamily = "sans", legendPosition = "none",
defaultTheme = theme_bw(base_size = baseSize),
themeExtra = NULL, where = NULL, test = FALSE)

showData 33

Arguments

channel connection object as returned by odbcConnect

tableName Aster table name

tableInfo pre-built summary of data to use (parameters channel, tableName, where may
not apply depending on format). See getTableSummary.

include a vector of column names to include. Output never contains attributes other than
in the list.

except a vector of column names to exclude. Output never contains attributes from the
list.

type what type of data to visualize: numerical ("numeric"), character ("character"
or date/time ("temporal")

format type of plot to use: 'overview', 'histogram', 'boxplot', 'corr' for corre-
lation matrix or 'scatterplot'

measures applies to format 'overview' only. Use one or more of the following with
'numieric' type: maximum,minimum,average,deviation,0 Use one or more
of the following with 'character' type: distinct_count,not_null_count. By
default all measures above are used per respeictive type.

title plot title

corrLabel column name to use to label correlation table: 'value', 'pair', or 'none'
(default)

digits number of digits to use in correlation table text (when displaying correlation
coefficient value)

shape shape of correlation figure (default is 21)

shapeSizeRange correlation figure size range

facet Logical - if TRUE then divide plot into facets for each COLUMN (defualt is
FALSE - no facets). When set to TRUE and format is ’boxplot’ scales defalut
changes from ’fixed’ to ’free’. Has no effect when format is ’corr’.

numBins number of bins to use in histogram(s)

useIQR logical indicates use of IQR interval to compute cutoff lower and upper bounds
for values to be included in boxplot or histogram: [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR], IQR = Q3 - Q1,
if FALSE then maximum and minimum are bounds (all values)

extraPoints vector contains names of extra points to add to boxplot lines.
extraPointShape

extra point shape (see ’Shape examples’ in aes_linetype_size_shape).

sampleFraction sample fraction to use in the sampling of data for 'scatterplot'

sampleSize if sampleFraction is not specified then size of sample must be specified for
'scatterplot'.

pointColour name of column with values to colour points in 'scatterplot'.

facetName name(s) of the column(s) to use for faceting when format is 'scatterplot'.
When single name then facet wrap kind of faceting is used. When two names
then facet grid kind of faceting is used. It overrides facet value in case of
'scatterplot'. Must be part of column list (e.g. include).

regressionLine logical if TRUE then adds regression line to scatterplot.

ncol Number of columns in facet wrap.

34 showData

scales Are scales shared across all facets: "fixed" - all are the same, "free_x" -
vary across rows (x axis), "free_y" - vary across columns (Y axis) (default),
"free" - both rows and columns (see in facet_wrap parameter scales. Also
see parameter facet for details on default values.)

coordFlip logical flipped cartesian coordinates so that horizontal becomes vertical, and
vertical, horizontal (see coord_flip).

paletteName palette name to use (run display.brewer.all to see available palettes).

baseSize base font size.

baseFamily base font family.

legendPosition legend position.

defaultTheme plot theme to use, default is theme_bw.

themeExtra any additional ggplot2 theme attributes to add.

where SQL WHERE clause limiting data from the table (use SQL as if in WHERE
clause but omit keyword WHERE).

test logical: when applicable if TRUE show what would be done, only (similar to
parameter test in RODBC functions like sqlQuery and sqlSave). Doesn’t apply
when no sql expected to run, e.g. format is 'boxplot'.

Details

All formats support parameters include and except to include and exclude table columns respec-
tively. The include list guarantees that no columns outside of the list will be included in the results.
The excpet list guarantees that its columns will not be included in the results.

Format overview: produce set of histograms - one for each statistic measure - across table columns.
Thus, it allows to compare averages, IQR, etc. across all or selected columns.

Format boxplot: produce boxplots for table columns. Boxplots can belong to the same plot or can
be placed inside facet each (see logical parameter facet).

Format histogram: produce histograms - one for each column - in a single plot or in facets (see
logical parameter facet).

Format corr: produce correlation matrix of numeric columns.

Format scatterplot: produce scatterplots of sampled data.

Value

A ggplot visual object.

Examples

get summaries to save time
pitchingInfo = getTableSummary(conn, 'pitching_enh')
battingInfo = getTableSummary(conn, 'batting_enh')

Boxplots
all numerical attributes
showData(conn, tableInfo=pitchingInfo, format='boxplot',

title='Boxplots of numeric columns')
select certain attributes only
showData(conn, tableInfo=pitchingInfo, format='boxplot',

include=c('wp','whip', 'w', 'sv', 'sho', 'l', 'ktobb', 'ibb', 'hbp', 'fip',

showData 35

'era', 'cg', 'bk', 'baopp'),
useIQR=TRUE, title='Boxplots of Pitching Stats')

exclude certain attributes
showData(conn, tableInfo=pitchingInfo, format='boxplot',

except=c('item_id','ingredient_item_id','facility_id','rownum','decadeid','yearid',
'bfp','ipouts'),

useIQR=TRUE, title='Boxplots of Pitching Stats')
flip coordinates
showData(conn, tableInfo=pitchingInfo, format='boxplot',

except=c('item_id','ingredient_item_id','facility_id','rownum','decadeid','yearid',
'bfp','ipouts'),

useIQR=TRUE, coordFlip=TRUE, title='Boxplots of Pitching Stats')

boxplot with facet (facet_wrap)
showData(conn, tableInfo=pitchingInfo, format='boxplot',

include=c('bfp','er','h','ipouts','r','so'), facet=TRUE, scales='free',
useIQR=TRUE, title='Boxplots Pitching Stats: bfp, er, h, ipouts, r, so')

Correlation matrix
on all numerical attributes
showData(conn, tableName='pitching_enh', tableInfo=pitchingInfo,

format='corr')

correlation matrix on selected attributes
with labeling by attribute pair name and
controlling size of correlation bubbles
showData(conn, tableName='pitching', tableInfo=pitchingInfo,

include=c('era','h','hr','gs','g','sv'),
format='corr', corrLabel='pair', shapeSizeRange=c(5,25))

Histogram on all numeric attributes
showData(conn, tableName='pitching', tableInfo=pitchingInfo, include=c('hr'),

format='histogram')

Overview is a histogram of statistical measures across attributes
showData(conn, tableName='pitching', tableInfo=pitchingInfo,

format='overview', type='numeric', scales="free_y")

Scatterplots
Scatterplot on pair of numerical attributes
sample by size with 1d facet (see \code{\link{facet_wrap}})
showData(conn, 'pitching_enh', format='scatterplot',

include=c('so', 'er'), facetName="lgid", pointColour="lgid",
sampleSize=10000, regressionLine=TRUE,
title="SO vs ER by League 1980-2000",
where='yearid between 1980 and 2000')

sample by fraction with 2d facet (see \code{\link{facet_grid}})
showData(conn, 'pitching_enh', format='scatterplot',

include=c('so','er'), facetName=c('lgid','decadeid'), pointColour="lgid",
sampleFraction=0.1, regressionLine=TRUE,
title="SO vs ER by League by Decade 1980 - 2012",
where='yearid between 1980 and 2012')

36 viewTableSummary

theme_empty Creates empty theme.

Description

Good to use with slopegraphs.

Usage

theme_empty(baseSize = 12, baseFamily = "")

Arguments

baseSize base font size

baseFamily base font family

See Also

createHistogram and other visualization functions that start with create.

toaster toaster: analytical and visualization toolbox for Teradata Aster Dis-
covery and Big Data Analytics Platform.

Description

toaster: analytical and visualization toolbox for Teradata Aster Discovery and Big Data Analytics
Platform.

viewTableSummary Invoke a Data Viewer on table statistics.

Description

view computed column statistics in a spreadsheet-style viewer in R.

Usage

viewTableSummary(tableInfo, types = NULL, include = NULL,
except = NULL, basic = FALSE, percentiles = FALSE)

viewTableSummary 37

Arguments

tableInfo data frame with columns statistics to display.

types vector with types of columns to include: numerical ("numeric"), character
("character" or date/time ("temporal")

include a vector of column names to include. Output never contains attributes other than
in the list.

except a vector of column names to exclude. Output never contains attributes from the
list.

basic logical: if TRUE display minimum, maximum, average, deviation and mode (if
present)

percentiles logical: if TRUE display percentiles

Details

When both parameters basic and percentiles are FALSE view displays all statistics.

See Also

getTableSummary

Examples

pitchingInfo = getTableSummary(channel=conn, 'pitching_enh')
viewTableSummary(pitchingInfo, percentiles=TRUE)

viewTableSummary(pitchingInfo, types=c("numeric", "temporal"))

Index

aes_linetype_size_shape, 33

computeAggregates, 2, 15
computeBarchart, 2, 3, 7, 8, 17, 18
computeCorrelations, 5
computeHeatmap, 6, 15, 17
computeHistogram, 4, 7, 17, 18
computeLm, 9
computePercentiles, 10, 12, 13
computeSample, 11
coord_flip, 13, 18, 34
createBoxplot, 10, 12
createBubblechart, 5, 14
createHeatmap, 3, 6, 7, 15
createHistogram, 3, 4, 7, 8, 17, 36
createMap, 19
createPopPyramid, 22
createSlopegraph, 24
createWordcloud, 25

facet_grid, 12, 14, 16, 18, 21, 23
facet_wrap, 12, 14, 16, 18, 21, 23

geocode, 21
get_map, 20, 21
getCharacterColumns, 27
getCharacterTypes, 27
getDateTimeColumns, 28
getMatchingColumns, 28
getNumericColumns, 29
getNumericTypes, 30
getTableSummary, 8, 27–29, 30, 33, 37
getTemporalTypes, 32
ggmap, 21
grep, 29

lm, 9

melt, 4, 7
memoise, 21

odbcConnect, 3–6, 8–11, 29, 30, 33

par, 26

read.table, 11
regular expression, 29
RODBC, 3–5, 8–11, 34

scale_size, 21
showData, 5, 32
sqlColumns, 29–31
sqlQuery, 3–5, 7–11, 34
sqlSave, 3–5, 7–11, 34

theme, 13–18, 23, 25
theme_bw, 13, 15, 17, 18, 23, 25
theme_classic, 13, 15, 17, 18, 23, 25
theme_empty, 36
theme_grey, 13, 15, 17, 18, 23, 25
toaster, 36
toaster-package (toaster), 36

viewTableSummary, 36

wordcloud, 25, 26

38

	computeAggregates
	computeBarchart
	computeCorrelations
	computeHeatmap
	computeHistogram
	computeLm
	computePercentiles
	computeSample
	createBoxplot
	createBubblechart
	createHeatmap
	createHistogram
	createMap
	createPopPyramid
	createSlopegraph
	createWordcloud
	getCharacterColumns
	getCharacterTypes
	getDateTimeColumns
	getMatchingColumns
	getNumericColumns
	getNumericTypes
	getTableSummary
	getTemporalTypes
	showData
	theme_empty
	toaster
	viewTableSummary
	Index

