Commits

dan mackinlay  committed 500ab68

trader stats for the latest round of ophs thi i sear this is the last round o my god its final for real this time FINAL FINAL FINAL actually almost vertainly not actually final fucking experiment fucking runs so that we can finally put to death this hateful, hateful excuse for science

  • Participants
  • Parent commits 4d1f028

Comments (0)

Files changed (2)

File trader_experiments.py

 """
 from utils import Bunch
 from sampling import Range
-from trader_stats_sets import gu_danesque_continuous_test, gu_danesque_2d, wicks_vs_me, wicks_vs_me_vs_ince, no_stats, order_mi_susc_ftw2, mi_slapdown_stats_set_2d, slim_mi_slapdown_stats_set_2d, slim_mi_slapdown_high_d_stats_set, stats_2d, order_mi_susc_test, order_mi_susc_ftw_trimmed, whitened_stats_2d, swept_stats, hi_d_test_stats, whitened_stats_hi_d, particlewise_angley, particlewise_angley_swept, particlewise_angley2_test, particlewise_distance_correlations
+from trader_stats_sets import gu_danesque_continuous_test, what_terry_wants, gu_danesque_2d, wicks_vs_me, wicks_vs_me_vs_ince, no_stats, order_mi_susc_ftw2, mi_slapdown_stats_set_2d, slim_mi_slapdown_stats_set_2d, slim_mi_slapdown_high_d_stats_set, stats_2d, order_mi_susc_test, order_mi_susc_ftw_trimmed, whitened_stats_2d, swept_stats, hi_d_test_stats, whitened_stats_hi_d, particlewise_angley, particlewise_angley_swept, particlewise_angley2_test, particlewise_distance_correlations
 from math import pi
 
 ### Stock experiments
+fuckfuckfuck_emergency_wicks_panic = Bunch(
+        trader_factory="WicksTraderSet",
+        limit=(65,), num_agents=1000,
+        keep_raw_data=True,
+        save_model_to_box=True,
+        keep_steps=5000,
+        discard_steps=10000,
+        repeat=1,
+        P1=Range(0,2*pi),
+        P2=0.3,
+        P3=0.94,
+        dimensions=2,
+        seed_offset=2345,
+        sampler='GridSampler',
+        stats_set=what_terry_wants,
+        norm_periodic=False,
+        desc="""Using Wick's parameters and his stats on the 2d case""")
 
 wicks_dim_sweep = Bunch(
         trader_factory="WicksTraderSet",
         P2=0.3,
         P3=0.94,
         dimensions=2,
+        keep_raw_data=True,
+        save_model_to_box=True,
         seed_offset=232345,
         sampler='GridSampler',
         stats_set=no_stats,
         limit=(129,), num_agents=3000,
         keep_steps=5000,
         discard_steps=10000,
-        repeat=8,
+        repeat=4,
         P1=Range(0,2*pi),
         P2=0.3,
         P3=0.94,
         dimensions=2,
+        keep_raw_data=True,
+        save_model_to_box=True,
         seed_offset=2345,
         sampler='GridSampler',
         stats_set=wicks_vs_me_vs_ince,

File trader_stats_sets.py

   ("mi_wicks_2d_complete", "mi_wicks_2d", d(n_slices=1)),
 ]
 
+what_terry_wants = [
+  ("order_complete", "order", d(n_slices=1)),
+  ("order_continuous", "order", d(n_steps=1)),
+  ("mi_wicks_2d_piecewise_squished", "mi_wicks_2d", d(n_slices=10, squish=True, estimator='plugin')),
+  ("mi_wicks_2d_stepwise_squished", "mi_wicks_2d", d(n_steps=1, skip=50, squish=True, estimator='plugin')),
+  ("mi_wicks_2d_piecewise_adaptive", "mi_wicks_2d", d(n_slices=10, squish=True, binning='cont', estimator='plugin')),
+  ("mi_wicks_2d_stepwise_adaptive", "mi_wicks_2d", d(n_steps=1, skip=50, squish=True, binning='cont', estimator='plugin')),
+  ("mi_distance_angular_vel_particlewise_macerated_100_5_apriori", "mi_distance_angular_vel_particlewise_macerated", d(n_steps=100, estimator="naive", oversample=5, binning='disc', squish=True)),
+  ("mi_distance_angular_vel_particlewise_macerated_100_5_cont", "mi_distance_angular_vel_particlewise_macerated", d(n_steps=100, estimator="naive", oversample=5, binning='cont')),
+]
+
 gu_danesque_2d = [
   ("mi_distance_angular_vel_apriori_particlewise_alt_50", "mi_distance_angular_vel_apriori_particlewise", d(n_slices=1, estimator="naive", n_agents=2, oversample=50)),
   ("mi_distance_angular_vel_apriori_particlewise_alt_500", "mi_distance_angular_vel_apriori_particlewise", d(n_slices=1, estimator="naive", n_agents=2, oversample=500)),