
This document illustrates the use of SMAUDE by giving the small-step se-
mantics of a simple synchronous language with arithmetic expressions. Code
snippets of the Maude language are used to illustrate explicitly how the infras-
tructure in SMAUDE is extended. Therefore, some familiarity with Maude’s
syntax is assumed (see [1] for a reference to the Maude language and system).

Consider a language S that consists of two kinds of elements: memory ele-
ments Mem(m, v) and assignment elements m:=e, where m denotes a memory
name, v denotes a numerical value, and e denotes an arithmetic expression.
Arithmetic expressions are recursively formed using memory names, numerical
values, and expressions of the form e1 + e2, where e1 and e2 are arithmetic ex-
pressions. In this case, set T consists of all elements having the form Mem(m, v)
or m:=v.

The small-step semantics of S requires the definition of an evaluation func-
tion eval that takes as inputs a context Γ, which is a set of elements T , and an
arithmetic expression e. It is inductively defined on expressions:

eval(Γ, e) =


v if e is the numerical value v,

v if e is the memory name m and Mem(m, v) ∈ Γ,

v1 + v2 if e has the form e1 + e2, vi = eval(Γ, ei) for i ∈ {1, 2}.

The (parametric) atomic relation →S of the language S is defined for a
context Γ by A →Γ

S B if and only if A ⊆ Γ, A = {Mem(m, v),m:=e}, B =
{Mem(m,u),m:=e}, and u = eval(A, e), for some memory name m, values v
and u, and expression e. The semantic relation of the language is the relation
→Γ,s

S (or →s
S), where s is the ≺-maximal →Γ-strategy, Γ is a ground context,

and ≺S is the empty priority.

Example 1. If Γ = {Mem(x, 3),Mem(y, 4), x:=y, y:=x}, then:

Mem(x, 3),Mem(y, 4), x:=y, y:=x →Γ,s
S Mem(x, 4),Mem(y, 3), x:=y, y:=x.

Language S is specified by the Maude system module SIMPLE, which in-
cludes system module SMAUDE, and has the following syntax:

mod SIMPLE is

including SMAUDE .

eq MODULE-NAME = ’SIMPLE .

...

endm

Note that constant MODULE-NAME is identified with the quoted identifier
representing the name of module SIMPLE.

Element identifiers include the following constructors with sort Eid:

op a : Nat -> Eid [ctor] .

ops x y : -> Eid [ctor] .
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Memory elements use constructors x and y for element identifiers, and as-
signment elements use constructors a( ) for element identifiers.

Attribute identifiers include the following constructors with sort Aid:

ops mem body to : -> Aid [ctor] .

Memory elements have attribute mem as their only attribute, while assign-
ment elements have attributes body and to as their only attributes. In the syntax
of SIMPLE, memory element Mem(x, v) and an assignment element x:=e can
be represented, respectively, by elements

< x | mem : v > < a(1) | body : e, to : x > .

Built-in natural numbers are values of the language and addition corresponds
to the built-in one in Maude. These are specified in SIMPLE with the following
subsort and operation declarations:

subsort Nat < Val .

op _+_ : Expr Expr -> Expr [ditto] .

Expressions are evaluated equationally by following the definition of eval:

var C : Ctx . vars I J : Eid . vars E E’ : Expr .

var M : Map . var N : Nat .

eq eval(C,N) = N .

eq eval(( < I | mem : N , M > C), I ) = N .

eq eval(C,E + E’) = eval(C,E) + eval(C,E’) .

Atomic rule r–1 specifies the atomic relation of the language:

rl [r-1] :

< I | mem : N > < J | body : E, to : I >

=> < I | mem : eval(E) > .

The specification of atomic rules is slightly different to the usual specification
of rules in rewriting logic. First, in the lefthand side of an atomic rule, it is
sufficient to only mention the attributes involved in the atomic transition. In
this case, SMAUDE will complete each lefthand side term by automatically
adding a variable of sort Map, unique for each element, before any matching
is performed. Second, in the righthand side of an atomic rule, it is sufficient
to only mention the elements and the attributes that can change in the atomic
step. In this case, SMAUDE updates in the current state only the attributes
of the elements occurring in the righthand side of the rule, while keeping the
other ones intact. So, in atomic rule r–1, the only attribute that can change is
attribute mem of the memory element. Note also that in the righthand side of
r–1, a unary version of function eval, without mention of any particular context,
is used; SMAUDE will automatically extend it to its binary counterpart, for the
given context, when computing function max-strat.

The context Γ in Example 1, written in the syntax of SIMPLE, is

< x | mem : 3 > < y | mem : 4 >

< a(1) | body : y, to : x > < a(2) | body : x, to : y > .
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Maude’s search command can be used to compute, for instance, the one-step
synchronous semantic relation of the language in Example 1 from context Γ:

Maude> search { Γ } =>1 X:Sys .

search in SIMPLE : { Γ } =>1 X:Sys .

Solution 1 (state 1)

states: 2 rewrites: 514 in 53ms cpu (54ms real) (9655 rewrites/second)

X:Sys --> {< x | mem : 4 > < y | mem : 3 >

< a(1) | body : y, to : x > < a(2) | body : x, to : y > }
No more solutions.

References

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott, editors. All About Maude - A High-Performance Logi-
cal Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

3


