Source

gauge / usb_serial.c

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/* USB Serial Example for Teensy USB Development Board
 * http://www.pjrc.com/teensy/usb_serial.html
 * Copyright (c) 2008,2010,2011 PJRC.COM, LLC
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// Version 1.0: Initial Release
// Version 1.1: support Teensy++
// Version 1.2: fixed usb_serial_available
// Version 1.3: added transmit bandwidth test
// Version 1.4: added usb_serial_write
// Version 1.5: add support for Teensy 2.0
// Version 1.6: fix zero length packet bug
// Version 1.7: fix usb_serial_set_control

#define USB_SERIAL_PRIVATE_INCLUDE
#include "usb_serial.h"

#include <usb.h>


/**************************************************************************
 *
 *  Configurable Options
 *
 **************************************************************************/

// You can change these to give your code its own name.  On Windows,
// these are only used before an INF file (driver install) is loaded.
#define STR_MANUFACTURER	L"Your Name"
#define STR_PRODUCT		L"USB Serial"

// All USB serial devices are supposed to have a serial number
// (according to Microsoft).  On windows, a new COM port is created
// for every unique serial/vendor/product number combination.  If
// you program 2 identical boards with 2 different serial numbers
// and they are assigned COM7 and COM8, each will always get the
// same COM port number because Windows remembers serial numbers.
//
// On Mac OS-X, a device file is created automatically which
// incorperates the serial number, eg, /dev/cu-usbmodem12341
//
// Linux by default ignores the serial number, and creates device
// files named /dev/ttyACM0, /dev/ttyACM1... in the order connected.
// Udev rules (in /etc/udev/rules.d) can define persistent device
// names linked to this serial number, as well as permissions, owner
// and group settings.
#define STR_SERIAL_NUMBER	L"12345"

// Mac OS-X and Linux automatically load the correct drivers.  On
// Windows, even though the driver is supplied by Microsoft, an
// INF file is needed to load the driver.  These numbers need to
// match the INF file.
#define VENDOR_ID		0x16C0
#define PRODUCT_ID		0x047A

// When you write data, it goes into a USB endpoint buffer, which
// is transmitted to the PC when it becomes full, or after a timeout
// with no more writes.  Even if you write in exactly packet-size
// increments, this timeout is used to send a "zero length packet"
// that tells the PC no more data is expected and it should pass
// any buffered data to the application that may be waiting.  If
// you want data sent immediately, call usb_serial_flush_output().
#define TRANSMIT_FLUSH_TIMEOUT	5   /* in milliseconds */

// If the PC is connected but not "listening", this is the length
// of time before usb_serial_getchar() returns with an error.  This
// is roughly equivilant to a real UART simply transmitting the
// bits on a wire where nobody is listening, except you get an error
// code which you can ignore for serial-like discard of data, or
// use to know your data wasn't sent.
#define TRANSMIT_TIMEOUT	25   /* in milliseconds */

// USB devices are supposed to implment a halt feature, which is
// rarely (if ever) used.  If you comment this line out, the halt
// code will be removed, saving 116 bytes of space (gcc 4.3.0).
// This is not strictly USB compliant, but works with all major
// operating systems.
#define SUPPORT_ENDPOINT_HALT



/**************************************************************************
 *
 *  Endpoint Buffer Configuration
 *
 **************************************************************************/

// These buffer sizes are best for most applications, but perhaps if you
// want more buffering on some endpoint at the expense of others, this
// is where you can make such changes.  The AT90USB162 has only 176 bytes
// of DPRAM (USB buffers) and only endpoints 3 & 4 can double buffer.

#define ENDPOINT0_SIZE		16
#define CDC_ACM_ENDPOINT	2
#define CDC_RX_ENDPOINT		3
#define CDC_TX_ENDPOINT		4
#if defined(__AVR_AT90USB162__)
#define CDC_ACM_SIZE		16
#define CDC_ACM_BUFFER		EP_SINGLE_BUFFER
#define CDC_RX_SIZE		32
#define CDC_RX_BUFFER 		EP_DOUBLE_BUFFER
#define CDC_TX_SIZE		32
#define CDC_TX_BUFFER		EP_DOUBLE_BUFFER
#else
#define CDC_ACM_SIZE		16
#define CDC_ACM_BUFFER		EP_SINGLE_BUFFER
#define CDC_RX_SIZE		64
#define CDC_RX_BUFFER 		EP_DOUBLE_BUFFER
#define CDC_TX_SIZE		64
#define CDC_TX_BUFFER		EP_DOUBLE_BUFFER
#endif

static const uint8_t PROGMEM endpoint_config_table[] = {
	0,
	1, EP_TYPE_INTERRUPT_IN,  EP_SIZE(CDC_ACM_SIZE) | CDC_ACM_BUFFER,
	1, EP_TYPE_BULK_OUT,      EP_SIZE(CDC_RX_SIZE) | CDC_RX_BUFFER,
	1, EP_TYPE_BULK_IN,       EP_SIZE(CDC_TX_SIZE) | CDC_TX_BUFFER
};


/**************************************************************************
 *
 *  Descriptor Data
 *
 **************************************************************************/

// Descriptors are the data that your computer reads when it auto-detects
// this USB device (called "enumeration" in USB lingo).  The most commonly
// changed items are editable at the top of this file.  Changing things
// in here should only be done by those who've read chapter 9 of the USB
// spec and relevant portions of any USB class specifications!

static struct usb_device_descriptor PROGMEM device_descriptor = {
	.bLength		= sizeof(device_descriptor),
	.bDescriptorType	= 1,
	.bcdUSB			= 0x0200,
	.bDeviceClass		= USB_CLASS_COMM,
	.bDeviceSubClass	= 0,
	.bDeviceProtocol	= 0,
	.bMaxPacketSize0	= ENDPOINT0_SIZE,
	.idVendor		= VENDOR_ID,
	.idProduct		= PRODUCT_ID,
	.bcdDevice		= 0x0100,
	.iManufacturer		= 1,
	.iProduct		= 2,
	.iSerialNumber		= 3,
	.bNumConfigurations	= 1,
};


#define CONFIG1_DESC_SIZE (9+9+5+5+4+5+7+9+7+7)
static uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {
	// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
	9, 					// bLength;
	2,					// bDescriptorType;
	LSB(CONFIG1_DESC_SIZE),			// wTotalLength
	MSB(CONFIG1_DESC_SIZE),
	2,					// bNumInterfaces
	1,					// bConfigurationValue
	0,					// iConfiguration
	0xC0,					// bmAttributes
	50,					// bMaxPower
	// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
	9,					// bLength
	4,					// bDescriptorType
	0,					// bInterfaceNumber
	0,					// bAlternateSetting
	1,					// bNumEndpoints
	0x02,					// bInterfaceClass
	0x02,					// bInterfaceSubClass
	0x01,					// bInterfaceProtocol
	0,					// iInterface
	// CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26
	5,					// bFunctionLength
	0x24,					// bDescriptorType
	0x00,					// bDescriptorSubtype
	0x10, 0x01,				// bcdCDC
	// Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27
	5,					// bFunctionLength
	0x24,					// bDescriptorType
	0x01,					// bDescriptorSubtype
	0x01,					// bmCapabilities
	1,					// bDataInterface
	// Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28
	4,					// bFunctionLength
	0x24,					// bDescriptorType
	0x02,					// bDescriptorSubtype
	0x06,					// bmCapabilities
	// Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33
	5,					// bFunctionLength
	0x24,					// bDescriptorType
	0x06,					// bDescriptorSubtype
	0,					// bMasterInterface
	1,					// bSlaveInterface0
	// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
	7,					// bLength
	5,					// bDescriptorType
	CDC_ACM_ENDPOINT | 0x80,		// bEndpointAddress
	0x03,					// bmAttributes (0x03=intr)
	CDC_ACM_SIZE, 0,			// wMaxPacketSize
	64,					// bInterval
	// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
	9,					// bLength
	4,					// bDescriptorType
	1,					// bInterfaceNumber
	0,					// bAlternateSetting
	2,					// bNumEndpoints
	0x0A,					// bInterfaceClass
	0x00,					// bInterfaceSubClass
	0x00,					// bInterfaceProtocol
	0,					// iInterface
	// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
	7,					// bLength
	5,					// bDescriptorType
	CDC_RX_ENDPOINT,			// bEndpointAddress
	0x02,					// bmAttributes (0x02=bulk)
	CDC_RX_SIZE, 0,				// wMaxPacketSize
	0,					// bInterval
	// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
	7,					// bLength
	5,					// bDescriptorType
	CDC_TX_ENDPOINT | 0x80,			// bEndpointAddress
	0x02,					// bmAttributes (0x02=bulk)
	CDC_TX_SIZE, 0,				// wMaxPacketSize
	0					// bInterval
};

// If you're desperate for a little extra code memory, these strings
// can be completely removed if iManufacturer, iProduct, iSerialNumber
// in the device desciptor are changed to zeros.
struct usb_string_descriptor_struct {
	uint8_t bLength;
	uint8_t bDescriptorType;
	int16_t wString[];
};
static struct usb_string_descriptor_struct PROGMEM string0 = {
	4,
	3,
	{0x0409}
};
static struct usb_string_descriptor_struct PROGMEM string1 = {
	sizeof(STR_MANUFACTURER),
	3,
	STR_MANUFACTURER
};
static struct usb_string_descriptor_struct PROGMEM string2 = {
	sizeof(STR_PRODUCT),
	3,
	STR_PRODUCT
};
static struct usb_string_descriptor_struct PROGMEM string3 = {
	sizeof(STR_SERIAL_NUMBER),
	3,
	STR_SERIAL_NUMBER
};

// This table defines which descriptor data is sent for each specific
// request from the host (in wValue and wIndex).
static struct descriptor_list_struct {
	uint16_t	wValue;
	uint16_t	wIndex;
	const uint8_t	*addr;
	uint8_t		length;
} PROGMEM descriptor_list[] = {
	{0x0100, 0x0000, (const void *) &device_descriptor, sizeof(device_descriptor)},
	{0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)},
	{0x0300, 0x0000, (const uint8_t *)&string0, 4},
	{0x0301, 0x0409, (const uint8_t *)&string1, sizeof(STR_MANUFACTURER)},
	{0x0302, 0x0409, (const uint8_t *)&string2, sizeof(STR_PRODUCT)},
	{0x0303, 0x0409, (const uint8_t *)&string3, sizeof(STR_SERIAL_NUMBER)}
};
#define NUM_DESC_LIST (sizeof(descriptor_list)/sizeof(struct descriptor_list_struct))


/**************************************************************************
 *
 *  Variables - these are the only non-stack RAM usage
 *
 **************************************************************************/

// zero when we are not configured, non-zero when enumerated
static volatile uint8_t usb_configuration=0;

// the time remaining before we transmit any partially full
// packet, or send a zero length packet.
static volatile uint8_t transmit_flush_timer=0;
static uint8_t transmit_previous_timeout=0;

// serial port settings (baud rate, control signals, etc) set
// by the PC.  These are ignored, but kept in RAM.
static uint8_t cdc_line_coding[7]={0x00, 0xE1, 0x00, 0x00, 0x00, 0x00, 0x08};
static uint8_t cdc_line_rtsdtr=0;


/**************************************************************************
 *
 *  Public Functions - these are the API intended for the user
 *
 **************************************************************************/

// initialize USB serial
void usb_init(void)
{
	HW_CONFIG();
        USB_FREEZE();				// enable USB
        PLL_CONFIG();				// config PLL, 16 MHz xtal
        while (!(PLLCSR & (1<<PLOCK))) ;	// wait for PLL lock
        USB_CONFIG();				// start USB clock
        UDCON = 0;				// enable attach resistor
	usb_configuration = 0;
	cdc_line_rtsdtr = 0;
        UDIEN = (1<<EORSTE)|(1<<SOFE);
	sei();
}

// return 0 if the USB is not configured, or the configuration
// number selected by the HOST
uint8_t usb_configured(void)
{
	return usb_configuration;
}

// get the next character, or -1 if nothing received
int16_t usb_serial_getchar(void)
{
	uint8_t c, intr_state;

	// interrupts are disabled so these functions can be
	// used from the main program or interrupt context,
	// even both in the same program!
	intr_state = SREG;
	cli();
	if (!usb_configuration) {
		SREG = intr_state;
		return -1;
	}
	UENUM = CDC_RX_ENDPOINT;
	retry:
	c = UEINTX;
	if (!(c & (1<<RWAL))) {
		// no data in buffer
		if (c & (1<<RXOUTI)) {
			UEINTX = 0x6B;
			goto retry;
		}	
		SREG = intr_state;
		return -1;
	}
	// take one byte out of the buffer
	c = UEDATX;
	// if buffer completely used, release it
	if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;
	SREG = intr_state;
	return c;
}

// number of bytes available in the receive buffer
uint8_t usb_serial_available(void)
{
	uint8_t n=0, i, intr_state;

	intr_state = SREG;
	cli();
	if (usb_configuration) {
		UENUM = CDC_RX_ENDPOINT;
		n = UEBCLX;
		if (!n) {
			i = UEINTX;
			if (i & (1<<RXOUTI) && !(i & (1<<RWAL))) UEINTX = 0x6B;
		}
	}
	SREG = intr_state;
	return n;
}

// discard any buffered input
void usb_serial_flush_input(void)
{
	uint8_t intr_state;

	if (usb_configuration) {
		intr_state = SREG;
		cli();
		UENUM = CDC_RX_ENDPOINT;
		while ((UEINTX & (1<<RWAL))) {
			UEINTX = 0x6B; 
		}
		SREG = intr_state;
	}
}

// transmit a character.  0 returned on success, -1 on error
int8_t usb_serial_putchar(uint8_t c)
{
	uint8_t timeout, intr_state;

	// if we're not online (enumerated and configured), error
	if (!usb_configuration) return -1;
	// interrupts are disabled so these functions can be
	// used from the main program or interrupt context,
	// even both in the same program!
	intr_state = SREG;
	cli();
	UENUM = CDC_TX_ENDPOINT;
	// if we gave up due to timeout before, don't wait again
	if (transmit_previous_timeout) {
		if (!(UEINTX & (1<<RWAL))) {
			SREG = intr_state;
			return -1;
		}
		transmit_previous_timeout = 0;
	}
	// wait for the FIFO to be ready to accept data
	timeout = UDFNUML + TRANSMIT_TIMEOUT;
	while (1) {
		// are we ready to transmit?
		if (UEINTX & (1<<RWAL)) break;
		SREG = intr_state;
		// have we waited too long?  This happens if the user
		// is not running an application that is listening
		if (UDFNUML == timeout) {
			transmit_previous_timeout = 1;
			return -1;
		}
		// has the USB gone offline?
		if (!usb_configuration) return -1;
		// get ready to try checking again
		intr_state = SREG;
		cli();
		UENUM = CDC_TX_ENDPOINT;
	}
	// actually write the byte into the FIFO
	UEDATX = c;
	// if this completed a packet, transmit it now!
	if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
	transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
	SREG = intr_state;
	return 0;
}


// transmit a character, but do not wait if the buffer is full,
//   0 returned on success, -1 on buffer full or error 
int8_t usb_serial_putchar_nowait(uint8_t c)
{
	uint8_t intr_state;

	if (!usb_configuration) return -1;
	intr_state = SREG;
	cli();
	UENUM = CDC_TX_ENDPOINT;
	if (!(UEINTX & (1<<RWAL))) {
		// buffer is full
		SREG = intr_state;
		return -1;
	}
	// actually write the byte into the FIFO
	UEDATX = c;
		// if this completed a packet, transmit it now!
	if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
	transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
	SREG = intr_state;
	return 0;
}

// transmit a buffer.
//  0 returned on success, -1 on error
// This function is optimized for speed!  Each call takes approx 6.1 us overhead
// plus 0.25 us per byte.  12 Mbit/sec USB has 8.67 us per-packet overhead and
// takes 0.67 us per byte.  If called with 64 byte packet-size blocks, this function
// can transmit at full USB speed using 43% CPU time.  The maximum theoretical speed
// is 19 packets per USB frame, or 1216 kbytes/sec.  However, bulk endpoints have the
// lowest priority, so any other USB devices will likely reduce the speed.  Speed
// can also be limited by how quickly the PC-based software reads data, as the host
// controller in the PC will not allocate bandwitdh without a pending read request.
// (thanks to Victor Suarez for testing and feedback and initial code)

int8_t usb_serial_write(const uint8_t *buffer, uint16_t size)
{
	uint8_t timeout, intr_state, write_size;

	// if we're not online (enumerated and configured), error
	if (!usb_configuration) return -1;
	// interrupts are disabled so these functions can be
	// used from the main program or interrupt context,
	// even both in the same program!
	intr_state = SREG;
	cli();
	UENUM = CDC_TX_ENDPOINT;
	// if we gave up due to timeout before, don't wait again
	if (transmit_previous_timeout) {
		if (!(UEINTX & (1<<RWAL))) {
			SREG = intr_state;
			return -1;
		}
		transmit_previous_timeout = 0;
	}
	// each iteration of this loop transmits a packet
	while (size) {
		// wait for the FIFO to be ready to accept data
		timeout = UDFNUML + TRANSMIT_TIMEOUT;
		while (1) {
			// are we ready to transmit?
			if (UEINTX & (1<<RWAL)) break;
			SREG = intr_state;
			// have we waited too long?  This happens if the user
			// is not running an application that is listening
			if (UDFNUML == timeout) {
				transmit_previous_timeout = 1;
				return -1;
			}
			// has the USB gone offline?
			if (!usb_configuration) return -1;
			// get ready to try checking again
			intr_state = SREG;
			cli();
			UENUM = CDC_TX_ENDPOINT;
		}

		// compute how many bytes will fit into the next packet
		write_size = CDC_TX_SIZE - UEBCLX;
		if (write_size > size) write_size = size;
		size -= write_size;

		// write the packet
		switch (write_size) {
			#if (CDC_TX_SIZE == 64)
			case 64: UEDATX = *buffer++;
			case 63: UEDATX = *buffer++;
			case 62: UEDATX = *buffer++;
			case 61: UEDATX = *buffer++;
			case 60: UEDATX = *buffer++;
			case 59: UEDATX = *buffer++;
			case 58: UEDATX = *buffer++;
			case 57: UEDATX = *buffer++;
			case 56: UEDATX = *buffer++;
			case 55: UEDATX = *buffer++;
			case 54: UEDATX = *buffer++;
			case 53: UEDATX = *buffer++;
			case 52: UEDATX = *buffer++;
			case 51: UEDATX = *buffer++;
			case 50: UEDATX = *buffer++;
			case 49: UEDATX = *buffer++;
			case 48: UEDATX = *buffer++;
			case 47: UEDATX = *buffer++;
			case 46: UEDATX = *buffer++;
			case 45: UEDATX = *buffer++;
			case 44: UEDATX = *buffer++;
			case 43: UEDATX = *buffer++;
			case 42: UEDATX = *buffer++;
			case 41: UEDATX = *buffer++;
			case 40: UEDATX = *buffer++;
			case 39: UEDATX = *buffer++;
			case 38: UEDATX = *buffer++;
			case 37: UEDATX = *buffer++;
			case 36: UEDATX = *buffer++;
			case 35: UEDATX = *buffer++;
			case 34: UEDATX = *buffer++;
			case 33: UEDATX = *buffer++;
			#endif
			#if (CDC_TX_SIZE >= 32)
			case 32: UEDATX = *buffer++;
			case 31: UEDATX = *buffer++;
			case 30: UEDATX = *buffer++;
			case 29: UEDATX = *buffer++;
			case 28: UEDATX = *buffer++;
			case 27: UEDATX = *buffer++;
			case 26: UEDATX = *buffer++;
			case 25: UEDATX = *buffer++;
			case 24: UEDATX = *buffer++;
			case 23: UEDATX = *buffer++;
			case 22: UEDATX = *buffer++;
			case 21: UEDATX = *buffer++;
			case 20: UEDATX = *buffer++;
			case 19: UEDATX = *buffer++;
			case 18: UEDATX = *buffer++;
			case 17: UEDATX = *buffer++;
			#endif
			#if (CDC_TX_SIZE >= 16)
			case 16: UEDATX = *buffer++;
			case 15: UEDATX = *buffer++;
			case 14: UEDATX = *buffer++;
			case 13: UEDATX = *buffer++;
			case 12: UEDATX = *buffer++;
			case 11: UEDATX = *buffer++;
			case 10: UEDATX = *buffer++;
			case  9: UEDATX = *buffer++;
			#endif
			case  8: UEDATX = *buffer++;
			case  7: UEDATX = *buffer++;
			case  6: UEDATX = *buffer++;
			case  5: UEDATX = *buffer++;
			case  4: UEDATX = *buffer++;
			case  3: UEDATX = *buffer++;
			case  2: UEDATX = *buffer++;
			default:
			case  1: UEDATX = *buffer++;
			case  0: break;
		}
		// if this completed a packet, transmit it now!
		if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
		transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
		SREG = intr_state;
	}
	return 0;
}


// immediately transmit any buffered output.
// This doesn't actually transmit the data - that is impossible!
// USB devices only transmit when the host allows, so the best
// we can do is release the FIFO buffer for when the host wants it
void usb_serial_flush_output(void)
{
	uint8_t intr_state;

	intr_state = SREG;
	cli();
	if (transmit_flush_timer) {
		UENUM = CDC_TX_ENDPOINT;
		UEINTX = 0x3A;
		transmit_flush_timer = 0;
	}
	SREG = intr_state;
}

// functions to read the various async serial settings.  These
// aren't actually used by USB at all (communication is always
// at full USB speed), but they are set by the host so we can
// set them properly if we're converting the USB to a real serial
// communication
uint32_t usb_serial_get_baud(void)
{
	return *(uint32_t *)cdc_line_coding;
}
uint8_t usb_serial_get_stopbits(void)
{
	return cdc_line_coding[4];
}
uint8_t usb_serial_get_paritytype(void)
{
	return cdc_line_coding[5];
}
uint8_t usb_serial_get_numbits(void)
{
	return cdc_line_coding[6];
}
uint8_t usb_serial_get_control(void)
{
	return cdc_line_rtsdtr;
}
// write the control signals, DCD, DSR, RI, etc
// There is no CTS signal.  If software on the host has transmitted
// data to you but you haven't been calling the getchar function,
// it remains buffered (either here or on the host) and can not be
// lost because you weren't listening at the right time, like it
// would in real serial communication.
int8_t usb_serial_set_control(uint8_t signals)
{
	uint8_t intr_state;

	intr_state = SREG;
	cli();
	if (!usb_configuration) {
		// we're not enumerated/configured
		SREG = intr_state;
		return -1;
	}

	UENUM = CDC_ACM_ENDPOINT;
	if (!(UEINTX & (1<<RWAL))) {
		// unable to write
		// TODO; should this try to abort the previously
		// buffered message??
		SREG = intr_state;
		return -1;
	}
	UEDATX = 0xA1;
	UEDATX = 0x20;
	UEDATX = 0;
	UEDATX = 0;
	UEDATX = 0; // 0 seems to work nicely.  what if this is 1??
	UEDATX = 0;
	UEDATX = 1;
	UEDATX = 0;
	UEDATX = signals;
	UEINTX = 0x3A;
	SREG = intr_state;
	return 0;
}



/**************************************************************************
 *
 *  Private Functions - not intended for general user consumption....
 *
 **************************************************************************/


// USB Device Interrupt - handle all device-level events
// the transmit buffer flushing is triggered by the start of frame
//
ISR(USB_GEN_vect)
{
	uint8_t intbits, t;

        intbits = UDINT;
        UDINT = 0;
        if (intbits & (1<<EORSTI)) {
		UENUM = 0;
		UECONX = 1;
		UECFG0X = EP_TYPE_CONTROL;
		UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER;
		UEIENX = (1<<RXSTPE);
		usb_configuration = 0;
		cdc_line_rtsdtr = 0;
        }
	if (intbits & (1<<SOFI)) {
		if (usb_configuration) {
			t = transmit_flush_timer;
			if (t) {
				transmit_flush_timer = --t;
				if (!t) {
					UENUM = CDC_TX_ENDPOINT;
					UEINTX = 0x3A;
				}
			}
		}
	}
}


// Misc functions to wait for ready and send/receive packets
static inline void usb_wait_in_ready(void)
{
	while (!(UEINTX & (1<<TXINI))) ;
}
static inline void usb_send_in(void)
{
	UEINTX = ~(1<<TXINI);
}
static inline void usb_wait_receive_out(void)
{
	while (!(UEINTX & (1<<RXOUTI))) ;
}
static inline void usb_ack_out(void)
{
	UEINTX = ~(1<<RXOUTI);
}



// USB Endpoint Interrupt - endpoint 0 is handled here.  The
// other endpoints are manipulated by the user-callable
// functions, and the start-of-frame interrupt.
//
ISR(USB_COM_vect)
{
        uint8_t intbits;
	const uint8_t *list;
        const uint8_t *cfg;
	uint8_t i, n, len, en;
	uint8_t *p;
	uint8_t bmRequestType;
	uint8_t bRequest;
	uint16_t wValue;
	uint16_t wIndex;
	uint16_t wLength;
	uint16_t desc_val;
	const uint8_t *desc_addr;
	uint8_t	desc_length;

        UENUM = 0;
        intbits = UEINTX;
        if (intbits & (1<<RXSTPI)) {
                bmRequestType = UEDATX;
                bRequest = UEDATX;
                wValue = UEDATX;
                wValue |= (UEDATX << 8);
                wIndex = UEDATX;
                wIndex |= (UEDATX << 8);
                wLength = UEDATX;
                wLength |= (UEDATX << 8);
                UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
                if (bRequest == GET_DESCRIPTOR) {
			list = (const uint8_t *)descriptor_list;
			for (i=0; ; i++) {
				if (i >= NUM_DESC_LIST) {
					UECONX = (1<<STALLRQ)|(1<<EPEN);  //stall
					return;
				}
				desc_val = pgm_read_word(list);
				if (desc_val != wValue) {
					list += sizeof(struct descriptor_list_struct);
					continue;
				}
				list += 2;
				desc_val = pgm_read_word(list);
				if (desc_val != wIndex) {
					list += sizeof(struct descriptor_list_struct)-2;
					continue;
				}
				list += 2;
				desc_addr = (const uint8_t *)pgm_read_word(list);
				list += 2;
				desc_length = pgm_read_byte(list);
				break;
			}
			len = (wLength < 256) ? wLength : 255;
			if (len > desc_length) len = desc_length;
			do {
				// wait for host ready for IN packet
				do {
					i = UEINTX;
				} while (!(i & ((1<<TXINI)|(1<<RXOUTI))));
				if (i & (1<<RXOUTI)) return;	// abort
				// send IN packet
				n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
				for (i = n; i; i--) {
					UEDATX = pgm_read_byte(desc_addr++);
				}
				len -= n;
				usb_send_in();
			} while (len || n == ENDPOINT0_SIZE);
			return;
                }
		if (bRequest == SET_ADDRESS) {
			usb_send_in();
			usb_wait_in_ready();
			UDADDR = wValue | (1<<ADDEN);
			return;
		}
		if (bRequest == SET_CONFIGURATION && bmRequestType == 0) {
			usb_configuration = wValue;
			cdc_line_rtsdtr = 0;
			transmit_flush_timer = 0;
			usb_send_in();
			cfg = endpoint_config_table;
			for (i=1; i<5; i++) {
				UENUM = i;
				en = pgm_read_byte(cfg++);
				UECONX = en;
				if (en) {
					UECFG0X = pgm_read_byte(cfg++);
					UECFG1X = pgm_read_byte(cfg++);
				}
			}
        		UERST = 0x1E;
        		UERST = 0;
			return;
		}
		if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) {
			usb_wait_in_ready();
			UEDATX = usb_configuration;
			usb_send_in();
			return;
		}
		if (bRequest == CDC_GET_LINE_CODING && bmRequestType == 0xA1) {
			usb_wait_in_ready();
			p = cdc_line_coding;
			for (i=0; i<7; i++) {
				UEDATX = *p++;
			}
			usb_send_in();
			return;
		}
		if (bRequest == CDC_SET_LINE_CODING && bmRequestType == 0x21) {
			usb_wait_receive_out();
			p = cdc_line_coding;
			for (i=0; i<7; i++) {
				*p++ = UEDATX;
			}
			usb_ack_out();
			usb_send_in();
			return;
		}
		if (bRequest == CDC_SET_CONTROL_LINE_STATE && bmRequestType == 0x21) {
			cdc_line_rtsdtr = wValue;
			usb_wait_in_ready();
			usb_send_in();
			return;
		}
		if (bRequest == GET_STATUS) {
			usb_wait_in_ready();
			i = 0;
			#ifdef SUPPORT_ENDPOINT_HALT
			if (bmRequestType == 0x82) {
				UENUM = wIndex;
				if (UECONX & (1<<STALLRQ)) i = 1;
				UENUM = 0;
			}
			#endif
			UEDATX = i;
			UEDATX = 0;
			usb_send_in();
			return;
		}
		#ifdef SUPPORT_ENDPOINT_HALT
		if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE)
		  && bmRequestType == 0x02 && wValue == 0) {
			i = wIndex & 0x7F;
			if (i >= 1 && i <= MAX_ENDPOINT) {
				usb_send_in();
				UENUM = i;
				if (bRequest == SET_FEATURE) {
					UECONX = (1<<STALLRQ)|(1<<EPEN);
				} else {
					UECONX = (1<<STALLRQC)|(1<<RSTDT)|(1<<EPEN);
					UERST = (1 << i);
					UERST = 0;
				}
				return;
			}
		}
		#endif
        }
	UECONX = (1<<STALLRQ) | (1<<EPEN);	// stall
}