PLASMA  2.8.0
PLASMA - Parallel Linear Algebra for Scalable Multi-core Architectures
int CORE_dssssm ( int  M1,
int  N1,
int  M2,
int  N2,
int  K,
int  IB,
double *  A1,
int  LDA1,
double *  A2,
int  LDA2,
const double *  L1,
int  LDL1,
const double *  L2,
int  LDL2,
const int *  IPIV 
)

CORE_dssssm applies the LU factorization update from a complex matrix formed by a lower triangular IB-by-K tile L1 on top of a M2-by-K tile L2 to a second complex matrix formed by a M1-by-N1 tile A1 on top of a M2-by-N2 tile A2 (N1 == N2).

This is the right-looking Level 2.5 BLAS version of the algorithm.

Parameters
[in]M1The number of rows of the tile A1. M1 >= 0.
[in]N1The number of columns of the tile A1. N1 >= 0.
[in]M2The number of rows of the tile A2 and of the tile L2. M2 >= 0.
[in]N2The number of columns of the tile A2. N2 >= 0.
[in]KThe number of columns of the tiles L1 and L2. K >= 0.
[in]IBThe inner-blocking size. IB >= 0.
[in,out]A1On entry, the M1-by-N1 tile A1. On exit, A1 is updated by the application of L (L1 L2).
[in]LDA1The leading dimension of the array A1. LDA1 >= max(1,M1).
[in,out]A2On entry, the M2-by-N2 tile A2. On exit, A2 is updated by the application of L (L1 L2).
[in]LDA2The leading dimension of the array A2. LDA2 >= max(1,M2).
[in]L1The IB-by-K lower triangular tile as returned by CORE_dtstrf.
[in]LDL1The leading dimension of the array L1. LDL1 >= max(1,IB).
[in]L2The M2-by-K tile as returned by CORE_dtstrf.
[in]LDL2The leading dimension of the array L2. LDL2 >= max(1,M2).
[in]IPIVThe pivot indices array of size K as returned by CORE_dtstrf.
Returns
Return values
PLASMA_SUCCESSsuccessful exit
<0if INFO = -k, the k-th argument had an illegal value