PLASMA  2.8.0
PLASMA - Parallel Linear Algebra for Scalable Multi-core Architectures
int PLASMA_zgeqp3 ( int  M,
int  N,
PLASMA_Complex64_t *  A,
int  LDA,
int *  jpvt,
PLASMA_Complex64_t *  tau,
PLASMA_Complex64_t *  work,
double *  rwork 
)

PLASMA_zgeqp3 - Computes the QR factorization with column pivoting of a complex M-by-N matrix A: A*P = Q*R.

Parameters
[in]MThe number of rows of the matrix A. M >= 0.
[in]NThe number of columns of the matrix A. N >= 0.
[in,out]AOn entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if M >= N); the elements below the diagonal represent the unitary matrix Q as a product of elementary reflectors stored by tiles.
[in]LDAThe leading dimension of the array A. LDA >= max(1,M).
[in,out]jpvtInteger array of dimension N. On exit, if jpvt(j)=k, then the j-th column of A*P was the k-th column of A. Uses 1-based indexing for Fortran compatability.
[out]tauOn exit, scalars that define Householder reflectors, size n.
[out]workWorkspace of size (n + 1)*nb.
[out]rworkWorkspace of size 2*n.
Returns
Return values
PLASMA_SUCCESSsuccessful exit
<0if -i, the i-th argument had an illegal value
See also
PLASMA_zgeqp3_Tile
PLASMA_zgeqp3_Tile_Async
PLASMA_cgeqp3
PLASMA_dgeqp3
PLASMA_sgeqp3