PLASMA  2.8.0
PLASMA - Parallel Linear Algebra for Scalable Multi-core Architectures
void CORE_zher2k ( PLASMA_enum  uplo,
PLASMA_enum  trans,
int  N,
int  K,
PLASMA_Complex64_t  alpha,
const PLASMA_Complex64_t *  A,
int  LDA,
const PLASMA_Complex64_t *  B,
int  LDB,
double  beta,
PLASMA_Complex64_t *  C,
int  LDC 
)

CORE_zher2k - Performs one of the hermitian rank 2k operations

\[ C = \alpha [ op( A ) \times conjg( op( B )' )] + conjg( \alpha ) [ op( B ) \times conjg( op( A )' )] + \beta C \]

, or

\[ C = \alpha [ conjg( op( A )' ) \times op( B ) ] + conjg( \alpha ) [ conjg( op( B )' ) \times op( A ) ] + \beta C \]

,

where op( X ) is one of

op( X ) = X or op( X ) = conjg( X' )

where alpha and beta are real scalars, C is an n-by-n symmetric matrix and A and B are an n-by-k matrices the first case and k-by-n matrices in the second case.

Parameters
[in]uplo= PlasmaUpper: Upper triangle of C is stored; = PlasmaLower: Lower triangle of C is stored.
[in]transSpecifies whether the matrix A is transposed or conjugate transposed: = PlasmaNoTrans:

\[ C = \alpha [ op( A ) \times conjg( op( B )' )] + conjg( \alpha ) [ op( B ) \times conjg( op( A )' )] + \beta C \]

= PlasmaConjTrans:

\[ C = \alpha [ conjg( op( A )' ) \times op( B ) ] + conjg( \alpha ) [ conjg( op( B )' ) \times op( A ) ] + \beta C \]

[in]NN specifies the order of the matrix C. N must be at least zero.
[in]KK specifies the number of columns of the A and B matrices with trans = PlasmaNoTrans. K specifies the number of rows of the A and B matrices with trans = PlasmaTrans.
[in]alphaalpha specifies the scalar alpha.
[in]AA is a LDA-by-ka matrix, where ka is K when trans = PlasmaNoTrans, and is N otherwise.
[in]LDAThe leading dimension of the array A. LDA must be at least max( 1, N ), otherwise LDA must be at least max( 1, K ).
[in]BB is a LDB-by-kb matrix, where kb is K when trans = PlasmaNoTrans, and is N otherwise.
[in]LDBThe leading dimension of the array B. LDB must be at least max( 1, N ), otherwise LDB must be at least max( 1, K ).
[in]betabeta specifies the scalar beta.
[in,out]CC is a LDC-by-N matrix. On exit, the array uplo part of the matrix is overwritten by the uplo part of the updated matrix.
[in]LDCThe leading dimension of the array C. LDC >= max( 1, N ).