PLASMA  2.8.0
PLASMA - Parallel Linear Algebra for Scalable Multi-core Architectures
int CORE_ztsrfb ( PLASMA_enum  side,
PLASMA_enum  trans,
int  direct,
int  storev,
int  M1,
int  N1,
int  M2,
int  N2,
int  K,
PLASMA_Complex64_t *  A1,
int  LDA1,
PLASMA_Complex64_t *  A2,
int  LDA2,
const PLASMA_Complex64_t *  V,
int  LDV,
const PLASMA_Complex64_t *  T,
int  LDT,
PLASMA_Complex64_t *  WORK,
int  LDWORK 
)

CORE_ztsrfb applies a complex block reflector H or its transpose H' to a complex rectangular matrix formed by coupling two tiles A1 and A2, from either the left or the right.

Parameters
[in]side
  • PlasmaLeft : apply Q or Q**H from the Left;
  • PlasmaRight : apply Q or Q**H from the Right.
[in]trans
  • PlasmaNoTrans : No transpose, apply Q;
  • PlasmaConjTrans : ConjTranspose, apply Q**H.
[in]directIndicates how H is formed from a product of elementary reflectors
  • PlasmaForward : H = H(1) H(2) . . . H(k) (Forward)
  • PlasmaBackward : H = H(k) . . . H(2) H(1) (Backward)
[in]storevIndicates how the vectors which define the elementary reflectors are stored:
  • PlasmaColumnwise
  • PlasmaRowwise
[in]M1The number of columns of the tile A1. M1 >= 0.
[in]N1The number of rows of the tile A1. N1 >= 0.
[in]M2The number of columns of the tile A2. M2 >= 0.
[in]N2The number of rows of the tile A2. N2 >= 0.
[in]KThe order of the matrix T (= the number of elementary reflectors whose product defines the block reflector).
[in,out]A1On entry, the M1-by-N1 tile A1. On exit, A1 is overwritten by the application of Q.
[in]LDA1The leading dimension of the array A1. LDA1 >= max(1,N1).
[in,out]A2On entry, the M2-by-N2 tile A2. On exit, A2 is overwritten by the application of Q.
[in]LDA2The leading dimension of the tile A2. LDA2 >= max(1,N2).
[in]V(LDV,K) if STOREV = 'C' (LDV,M2) if STOREV = 'R' and SIDE = 'L' (LDV,N2) if STOREV = 'R' and SIDE = 'R' The matrix V.
[in]LDVThe leading dimension of the array V. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M2); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N2); if STOREV = 'R', LDV >= K.
[out]TThe triangular K-by-K matrix T in the representation of the block reflector. T is upper triangular by block (economic storage); The rest of the array is not referenced.
[in]LDTThe leading dimension of the array T. LDT >= K.
[in,out]WORK
[in]LDWORKThe dimension of the array WORK.
Returns
Return values
PLASMA_SUCCESSsuccessful exit
<0if -i, the i-th argument had an illegal value