PaRSEC

Parallel Runtime Scheduling and Execution Control

http:/ /icl.utk.edu/parsec http://icl.utk.edu/dague

George Bosilca, Aurelien Bouteiller,

Anthony Danalis,
Mathieu Faverge,
Thomas Herault, Stephanie Moreau, Jack Dongarra

INMEVATIVE
COMPUTING LABORATORY
the UNIVERSITY of TENNESSEE É

Where we are today

- Today software developers face systems with
- ~1 TFLOP of compute power per node
- 32+ of cores, 100+ hardware threads
- Highly heterogeneous architectures (cores + specialized cores + accelerators/coprocessors)
- Deep memory hierarchies
- But wait there is more: They are distributed!
- Consequence is systemic load imbalance
- And we still ask the same question: How to harness these devices productively?
- SPMD produces choke points, wasted wait times
- We need to improve efficiency, power and reliability

The missing parallelism

- Too difficult to find parallelism, to debug, maintain and get good performance for everyone
- Increasing gaps between the capabilities of today's programming environments, the requirements of emerging applications, and the challenges of future parallel architectures

Popular
belief

Decouple "System issues" from Algorithm

- Keep the algorithm simple
- Depict only the flow of data between tasks
- Distributed Dataflow Environment based on Dynamic Scheduling of (Micro) Tasks
- Programmability: layered approach
- Algorithm / Data Distribution
- Parallel applications without parallel programming
- Portability / Efficiency
- Use all available hardware; overlap data movements / computation
- Progress is still possible when imbalance arise

Dataflow with Runtime scheduling

- Algorithms need help to unleash their power
- Hardware specificities: a runtime can provide portability, performance, scheduling heuristics, heterogeneity management, data movement, ...
- Scalability: maximize parallelism extraction, but no centralized scheduling or entire DAG unpacking: dynamic and independent discovery of the relevant portions during the execution
- Jitter resilience: Do not support explicit communications, instead make them implicit and schedule to maximize overlap and load balance
- The need to express the algorithms differently

Divide-and-orchestrate

ICL®ur

Divide-and-orchestrate

- Leave the optimization of each level to specialized entities
- Compiler do marvels when the cost of memory accesses is known
- Think hierarchical super-scalar
- Compiler focus on problems that fit in the cache
- Humans focus on depicted the flow of data between tasks
- And a runtime orchestrate the flows to maximize the throughput of the architecture

The PaRSEC framework

Domain Specific Extensions

- DSEs \Rightarrow higher productivity for developers
- High-level data types \& ops tailored to domain
- E.g., relations, matrices, triangles, ...
- Portable and scalable specification of parallelism
- Automatically adjust data structures, mapping, and scheduling as systems scale up
- Toolkit of classical data distributions, etc

PaRSEC toolchain

ICL@GT

PaRSEC Compiler

Serial Code to Dataflow Representation

Example: QR Factorization

```
FOR k = 0 .. SIZE - 1
    A[k][k], T[k][k] <- GEQRT( A[k][k] )
    FOR m = k+1 .. SIZE - 1
        A[k][k]|Up, A[m][k], T[m][k] <-
            TSQRT( A[k][k]|Up, A[m][k], T[m][k] )
    FOR n = k+1 .. SIZE - 1
    A[k][n] <- UNMOR( A[k][k]|Low, T[k][k], A[k][n] )
    FOR m = k+1 .. SIZE - 1
        A[k][n], A[m][n] <-
            TSMQR( A[m][k], T[m][k], A[k][n], A[m][n] )
```


GEQRT

Input Format - Quark/StarPU/MORSE

```
for (k = 0; k < A.mt; k++) {
    Insert_Task( zgeqrt, A[k][k], INOUT,
        T[k][k], OUTPUT);
    for (m = k+1; m < A.mt; m++) {
    Insert_Task(ztsqrt, A[k][k], INOUT | REGION_DIREGION_U,
                            A[m][k], INOUT | LOCALITY,
                            T[m][k], OUTPUT);
}
for (n = k+1; n < A.nt; n++) {
    Insert_Task(zunmqr, A[k][k], INPUT | REGION_L,
            T[k][k], INPUT,
            A[k][m], INOUT);
    for (m = k+1; m < A.mt; m++)
    Insert_Task( ztsmqr, A[k][n], INOUT,
            A[m][n], INOUT | LOCALITY,
            A[m][k], INPUT,
            T[m][k], INPUT);
    }
}
```

- Sequential C code
- Annotated through some specific syntax
- Insert_Task
- INOUT, OUTPUT, INPUT
- REGION_L, REGION_U, REGION_D, ...
- LOCALITY

Dataflow Analysis

- data flow analysis
- Example on task DGEQRT of QR
- Polyhedral Analysis through Omega Test
- Compute algebraic expressions for:
- Source and destination tasks
- Necessary conditions for that data flow to exist

ICL®ur

Intermediate Representation: Job Data Flow

```
GEQRT(k)
/* Execution space */
k = 0..( MT < NT ) ? MT-1 : NT-1 )
/* Locality */
:A(k, k)
RW A <- (k == 0) ? A(k,k)
                :A1 TSMQR(k-1,k, k)
    -> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
    -> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
    -> (k == MT-1) ? A(k, k) [type = UPPER]
WRITE T <- T(k,k)
    -> T(k, k)
    -> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)
/* Priority */
;(NT-k)*(NT-k)*(NT-k)
```

END

GEQRT

PaRSEC Compiler

Dataflow Representation

Example: Reduction Operation

- Reduction: apply a user defined operator on each data and store the result in a single location.
(Suppose the operator is associative and commutative)

```
for(s = 1; s < N/2; s = 2*s)
    for(i = 0; i < N-s; i += s)
    operator(V[i], V[i+s])
```

Issue: Non-affine loops lead to non-polyhedral array accessing

Example: Reduction Operation

Solution: Hand-writing of the data dependency using the intermediate Data Flow representation

```
reduce(l, p)
: V(p)
l = 1 .. depth+1
p = 0 .. (MT / (1<<l))
RW A <- (1 == l) ? V(2*p)
        : A reduce( l-1, 2*p )
        -> ((depth+1) == l) ? V(0)
        -> (0 == (p%2))? A reduce(l+1, p/2)
        : B reduce(l+1, p/2)
READ B <- ((p*(1<<l) + (1<<<(l-1))) > MT) ? V(0)
    <- (1 == l) ? V(2*p+1)
    <- (1 != l) ? A reduce( l-1, p*2+1 )
BODY
    operator(A, B);
END
```


Data/Task Distribution

- Flexible data distribution
- Decoupled from the algorithm
- Expressed as a user-defined function
- Only limitation: must evaluate uniformly across all nodes
- Common distributions provided in DSEs
- 1D cyclic, 2D cyclic, etc.
- Symbol Matrix for sparse direct solvers

Algorithm is now expressed as a DAG (potentially Parameterized) Parallel Runtime

, homation

- .

wowow
"wnum.

2 why - Whas

civy obety

- Tra wow whow
inge

Womb onotry
"rove vilumy
3010 (arin
one wown
0 an
"uy
wivy
ovin
in
- DAG too large to be generated ahead of time
- Generate it dynamically
- Merge parameterized DAGs with dynamically generated DAGs

HPC is about distributed heterogeneous resources

- Have to get involved in message passing
- Distributed management of the scheduling
- Dynamically deal with heterogeneity

Runtime DAG scheduling

- Every process has the symbolic DAG representation
- Only the (node local) frontier of the DAG is considered
- Distributed Scheduling based on remote completion notifications
- Background remote data transfer automatic with overlap
- NUMA / Cache aware Scheduling
- Work Stealing and sharing based on memory hierarchies

Scheduling Heuristics in PaRSEC

- Manages parallelism \& locality
- Achieve efficient execution (performance, power, ...)
- Handles specifics of HW system (hyper-threading, NUMA, ...)
- Per-object capabilities
- Read-only or write-only, output data, private, relaxed coherence
- engine tracks data usage, and targets to improve data reuse
- NUMA aware hierarchical bounded buffers to implement work stealing
- Users hints: expressions for distance to critical path
- Insertion in waiting queue abides to priority, but work stealing can alter this ordering due to locality
- Communications heuristics
- Communications inherits priority of destination task
- Algorithm defined scheduling

Now we have a runtime and some algorithms What's next?

Auto-tuning

- Multi-level tuning
- Tune the kernels based on local architecture
- Then tune the algorithm
- Depends on the network, type and number of cores
- For a fixed size matrix increasing the task duration (or the tile size) decrease parallelism
- For best performance: auto-tune per system

DPOTRF performance problem scaling 648 cores (Myrinet 10G)

22] F G. Gustavson, L Karlsson, and B Kågström Distributed SBP cholesky factorization algorithms with near-optimal scheduling. ACM Trans. Math. Softw., 36(2):1-25, 2009. ISSN 0098-3500. DOI: 10.1145/1499096.1499100.

DGEQRF performance problem scaling 648 cores (Myrinet 10G)

DGETRF performance problem scaling 648 cores (Myrinet 10G)

81 dual Intel Xeon L5420@2.5GHz [2×4 cores/node] $\rightarrow 648$ cores MX 10Gbs, Intel MKL, Scalapack

ICL®ut

Scalability in Distributed Memory

- Parameterized

Task Graph
representation

- Independent distributed scheduling
Scalable

HPL or LU with Partial Pivoting

Inria Bordeaux, UTK

- Why LU is different? 2 reasons:
- The panel is expressed using dataflow, generating many tiny tasks
- Provides very poor performance
- The DAG depends on the content of the data
- The strict dataflow model we imposed on this exercise prevents message agregation
- Our implementation is not message optimal
- Explore all cases with as less tasks as possible

Hierarchical QR

ENS Lyon, Inria Bordeaux, UTK, UCD

- How to compose trees to get the best pipeline?
- Flat, Binary, Fibonacci, Greedy, ..
- Study on critical path lengths
- Surprisingly Flat trees are better for communications on square cases:
- Less communications
- Good pipeline

ICLBuT

Sparse Direct Solvers

Inria Bordeaux, UTK

- Based on PaStiX solver
- Super-nodal method as in SuperLU
- Exploits an elimination tree => DAG
- LU, LL $\& L^{t} L^{t}$ factorizations for shared memory with
DAGuE/PaRSEC and StarPU
- GPU panel and update kernels
- Based on blocked representation
- Problems:
- Around 40 times more tasks than an equivalent dense factorization
- Average task size can be very small (20x20)

- Sizes are not regular

MHD	485,597	$12,359,369$	61.20	$9.84 \mathrm{e}+12$	Real	$L U$	University of Minnesota
Audi	943,695	$39,297,771$	31.28	$5.23 \mathrm{e}+12$	Real	$L L^{T}$	PARASOL Collection
10 M	10,423737	$89,072,871$	75.66	$1.72 \mathrm{e}+14$	Complex	$L D L^{T}$	French CEA-Cesta

Heterogeneity Support

```
/* POTRF Lower case */
GEMM(k, m, n)
// Execution space
k = 0 .. MT-3
m}=\textrm{k}+2... MT-
n=k+1 .. m-1
// Parallel partitioning
: A(m, n)
// Parameters
READ A <- C TRSM(m,k)
READ B <- C TRSM(n, k)
RW C <- (k== 0) ? A(m,n) : C GEMM(k-1,m,n)
    -> (n == k+1) ? C TRSM(m,n) : C GEMM(k+1,m,n)
BODY [CPU, CUDA, MIC, *]
- A BODY is a task on a specific device (codelet)
- Currently the system supports CUDA and cores
- A CUDA device is considered as one additional memory level
- Data locality and data versioning define the transfers to and from the GPU/Co-processors
- Multi GPU single node

- Single node
- 4xTesla (C1060)
- 16 cores (AMD opteron)
- Multi GPU - distributed

\section*{SPOTRF performance problem scaling 12 GPU nodes (Infiniband 20G) \\  \\ Scalability \\ SPOTRF performance weak scaling 12 GPU nodes (Infiniband 20G) \\ }

\title{
Energy efficiency
}


Total energy consumption
\begin{tabular}{|l|c|c|c|}
\hline \# Cores & Library & Cholesky & QR \\
\hline \multirow{2}{*}{128} & ScaLAPACK & 192000 & 672000 \\
& DPLASMA & 128000 & 540000 \\
\hline \multirow{2}{*}{256} & ScaLAPACK & 240000 & 816000 \\
& DPLASMA & 96000 & 540000 \\
\hline \multirow{2}{*}{512} & ScaLAPACK & 325000 & 1000000 \\
& DPLASMA & 125000 & 576000 \\
\hline
\end{tabular}

Work in progress with Hatem Ltaief
- Energy used depending on the number of cores
- Up to \(62 \%\) more energy efficient while using a high performance tuned scheduling
- Power efficient scheduling
(b) DPLASMA.

\section*{ICLBET}

\section*{Analysis Tools}


\section*{Conclusion}
- Programming must be made easy(ier)
- Portability: inherently take advantage of all hardware capabilities
- Efficiency: deliver the best performance on several families of algorithms
- Computer scientists were spoiled by MPI
- Now let's think about our users
- Let different people focus on different problems
- Application developers on their algorithms
- System developers on system issues
- Compilers on whatever they can

The end

\section*{icl@ur}

\section*{Resilience}

- The fault propagate in the system based on the data dependencies
- However, if the original data can be recovered, the execution complete without user interaction
- Automatic recovery made simple

\section*{Composition}

- An algorithm is a series of operations with data dependencies
- A sequential composition limit the parallelism due to strict synchronizations
- Following the flow of data we can loosen the synchronizations and transform them in data dependencies

\section*{Composition}

- An algorithm is a series of operations with data dependencies
- A sequential composition limit the parallelism due to strict synchronizations
- Following the flow of data we can loosen the synchronizations and transform them in data dependencies

\section*{ICL®ur}

\section*{Composition}

- An algorithm is a series of operations with data dependencies
- A sequential composition limit the parallelism due to strict synchronizations
- Following the flow of data we can loosen the synchronizations and transform them in data dependencies

\section*{ICL®ur}

\section*{Other Systems}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \text { H }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \frac{0}{8} \\
& \text { W } \\
& \hline 6
\end{aligned}
\] &  & \[
\begin{array}{r}
+\frac{9}{?} \\
+\frac{0}{3} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \pi \\
& \frac{1}{7}
\end{aligned}
\] & \[
\begin{aligned}
& \frac{0}{c} \\
& \frac{0}{x}
\end{aligned}
\] & \[
\begin{aligned}
& \frac{1}{2} \\
& \frac{0}{0} \\
& \frac{0}{0}
\end{aligned}
\] & - \\
\hline Scheduling & \begin{tabular}{l}
Distr. \\
[1/core]
\end{tabular} & Repl [1/node] & \begin{tabular}{l}
Repl \\
[1/node]
\end{tabular} & Distr. [Actors] & \begin{tabular}{l}
w/ \\
SuperMatrix
\end{tabular} & Repl [1/node] & Centr. & Centr. \\
\hline Language & Internal or Seq. w/ Affine Loops & Seq. w/ add_task & Seq. w/ add_task & \begin{tabular}{l}
Msg- \\
Driven \\
Objects
\end{tabular} & Internal [LA DSL] & Seq. w/ add_task & Seq. w/ add_task & Internal \\
\hline Accelerator & GPU & GPU & GPU & & GPU & GPU & & \\
\hline Availability & Public & Public & Public & Public & Public & Public & Not Avail. & Not Avail. \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Early stage: ParalleX \\
Non-academic: Swarm, MadLINQ, CnC
\end{tabular}} & & \multicolumn{5}{|r|}{All projects support Distributed and Shared Memory [QUARK with QUARKd; FLAME with Elemental]} \\
\hline
\end{tabular}

\section*{History: Beginnings of Data Flow}
- "Design of a separable transition-diagram compiler", M.E. Conway, Comm. ACM, 1963
- Coroutines, flow of data between process
- J.B. Dennis, 60's
- Data Flow representation of programs
- Reasoning about parallelism, equivalence of programs, ...
- "The semantics of a simple language for parallel programming", G. Kahn
- Kahn Networks```

