
PaRSEC
Parallel Runtime Scheduling and Execution Control

George Bosilca,
Aurelien Bouteiller,

Anthony Danalis,
Mathieu Faverge,
Thomas Herault,

Stephanie Moreau,
Jack Dongarra

Where we are today
•  Today software developers face systems with

•  ~1 TFLOP of compute power per node
•  32+ of cores, 100+ hardware threads
•  Highly heterogeneous architectures (cores + specialized cores +

accelerators/coprocessors)
•  Deep memory hierarchies
•  But wait there is more: They are distributed!
•  Consequence is systemic load imbalance

•  And we still ask the same question: How to harness these
devices productively?
•  SPMD produces choke points, wasted wait times
•  We need to improve efficiency, power and reliability

The missing parallelism
•  Too difficult to find parallelism, to debug,

maintain and get good performance for
everyone

•  Increasing gaps between the capabilities
of today’s programming environments,
the requirements of emerging
applications, and the challenges of future
parallel architectures

Popular

belief

Over-sized Decent
sizes

Decouple “System issues” from Algorithm

•  Keep the algorithm simple
•  Depict only the flow of data between tasks
•  Distributed Dataflow Environment based on Dynamic

Scheduling of (Micro) Tasks
•  Programmability: layered approach

•  Algorithm / Data Distribution
•  Parallel applications without parallel programming

•  Portability / Efficiency
•  Use all available hardware; overlap data movements /

computation
•  Progress is still possible when imbalance arise

Dataflow with Runtime scheduling
•  Algorithms need help to unleash their power

•  Hardware specificities: a runtime can provide
portability, performance, scheduling heuristics,
heterogeneity management, data movement, …

•  Scalability: maximize parallelism extraction, but no
centralized scheduling or entire DAG unpacking:
dynamic and independent discovery of the relevant
portions during the execution

•  Jitter resilience: Do not support explicit
communications, instead make them implicit and
schedule to maximize overlap and load balance

•  The need to express the algorithms differently

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

Divide-and-orchestrate

Divide-and-orchestrate
•  Leave the optimization of each

level to specialized entities
•  Compiler do marvels when the cost

of memory accesses is known
•  Think hierarchical super-scalar

•  Compiler focus on problems that fit
in the cache

•  Humans focus on depicted the flow
of data between tasks

•  And a runtime orchestrate the flows
to maximize the throughput of the
architecture

GEQRT

TSQRT

UNMQR

TSMQR

S
ca

LA
P

A
C

K
 Q

R

P
LA

S
M

A
 Q

R

The PaRSEC framework

Cores
Memory

Hierarchies
Coherence

Data
Movement

Accelerators

Data
Movement

P
ar

al
le

l
R

un
tim

e
H

ar
dw

ar
e

D
om

ai
n

S
pe

ci
fic

Ex

te
ns

io
ns

Dense LA … Sparse LA

Scheduling
Scheduling

Scheduling

Data

Compact
Representation - PTG

Dynamic Discovered
Representation - DTG

Specialized
Kernels Specialized

Kernels Specialized
Kernels

Tasks
Tasks

Tasks

Domain Specific Extensions
•  DSEs ⇒ higher productivity for developers

•  High-level data types & ops tailored to domain
•  E.g., relations, matrices, triangles, …

•  Portable and scalable specification of parallelism
•  Automatically adjust data structures, mapping, and scheduling

as systems scale up
•  Toolkit of classical data distributions, etc

PaRSEC toolchain

Serial
Code

DAGuE
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
libraries

MPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

DAGuE Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

Serial Code to Dataflow
Representation

PaRSEC Compiler
Serial
Code

DAGuE
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
libraries

MPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

DAGuE Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

Example: QR Factorization

GEQRT

TSQRT

UNMQR

TSMQR

FOR k = 0 .. SIZE - 1

 A[k][k], T[k][k] <- GEQRT(A[k][k])

 FOR m = k+1 .. SIZE - 1

 A[k][k]|Up, A[m][k], T[m][k] <-
 TSQRT(A[k][k]|Up, A[m][k], T[m][k])

 FOR n = k+1 .. SIZE - 1

 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

 FOR m = k+1 .. SIZE - 1

 A[k][n], A[m][n] <-
 TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

Input Format – Quark/StarPU/MORSE
for (k = 0; k < A.mt; k++) {
 Insert_Task(zgeqrt, A[k][k], INOUT,
 T[k][k], OUTPUT);
 for (m = k+1; m < A.mt; m++) {
 Insert_Task(ztsqrt, A[k][k], INOUT | REGION_D|REGION_U,
 A[m][k], INOUT | LOCALITY,
 T[m][k], OUTPUT);
 }
 for (n = k+1; n < A.nt; n++) {
 Insert_Task(zunmqr, A[k][k], INPUT | REGION_L,
 T[k][k], INPUT,
 A[k][m], INOUT);
 for (m = k+1; m < A.mt; m++)
 Insert_Task(ztsmqr, A[k][n], INOUT,
 A[m][n], INOUT | LOCALITY,
 A[m][k], INPUT,
 T[m][k], INPUT);
 }
}

•  Sequential C code
•  Annotated through

some specific syntax
•  Insert_Task
•  INOUT, OUTPUT, INPUT
•  REGION_L, REGION_U,

REGION_D, …
•  LOCALITY

Dataflow Analysis

•  data flow analysis
•  Example on task DGEQRT of

QR
•  Polyhedral Analysis through

Omega Test
•  Compute algebraic

expressions for:
•  Source and destination

tasks
•  Necessary conditions for

that data flow to exist

FOR k = 0 .. SIZE - 1

 A[k][k], T[k][k] <- GEQRT(A[k][k])

 FOR m = k+1 .. SIZE - 1

 A[k][k]|Up, A[m][k], T[m][k] <-
 TSQRT(A[k][k]|Up, A[m][k], T[m][k])

 FOR n = k+1 .. SIZE - 1

 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

 FOR m = k+1 .. SIZE - 1

 A[k][n], A[m][n] <-
 TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

MEM

n = k+1
m = k+1

k = 0

k = SIZE-1

LOWER

UPPER

Incoming Data
Outgoing Data Serial

Code
DAGuE

compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
libraries

MPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

DAGuE Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

Intermediate Representation:
Job Data Flow

GEQRT

TSQRT

UNMQR

TSMQR

Control flow is eliminated, therefore maximum parallelism is possible

GEQRT(k)
 /* Execution space */
 k = 0..(MT < NT) ? MT-1 : NT-1)
 /* Locality */
 : A(k, k)
 RW A <- (k == 0) ? A(k, k)
 : A1 TSMQR(k-1, k, k)
 -> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
 -> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
 -> (k == MT-1) ? A(k, k) [type = UPPER]
 WRITE T <- T(k, k)
 -> T(k, k)
 -> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)
 /* Priority */
 ;(NT-k)*(NT-k)*(NT-k)

BODY
 zgeqrt(A, T)
END

Dataflow Representation
PaRSEC Compiler

Serial
Code

DAGuE
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
libraries

MPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

DAGuE Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

Example: Reduction Operation
•  Reduction: apply a user defined

operator on each data and store
the result in a single location.
(Suppose the operator is associative
and commutative)

Issue: Non-affine loops lead to non-polyhedral array accessing

for(s = 1; s < N/2; s = 2*s)
 for(i = 0; i < N-s; i += s)
 operator(V[i], V[i+s])

Example: Reduction Operation
reduce(l, p)
: V(p)
l = 1 .. depth+1
p = 0 .. (MT / (1<<l))

RW A <- (1 == l) ? V(2*p)
 : A reduce(l-1, 2*p)
 -> ((depth+1) == l) ? V(0)
 -> (0 == (p%2))? A reduce(l+1, p/2)
 : B reduce(l+1, p/2)
READ B <- ((p*(1<<l) + (1<<(l-1))) > MT) ? V(0)
 <- (1 == l) ? V(2*p+1)
 <- (1 != l) ? A reduce(l-1, p*2+1)
BODY
 operator(A, B);
END

Solution: Hand-writing of the data
dependency using the intermediate
Data Flow representation

Data/Task Distribution
•  Flexible data distribution

•  Decoupled from the algorithm
•  Expressed as a user-defined

function
•  Only limitation: must evaluate

uniformly across all nodes
•  Common distributions provided in

DSEs
•  1D cyclic, 2D cyclic, etc.
•  Symbol Matrix for sparse direct

solvers
Serial
Code

DAGuE
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
libraries

MPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

DAGuE Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

Parallel Runtime
Algorithm is now expressed as a DAG (potentially Parameterized)

•  DAG too large to be generated
ahead of time

•  Generate it dynamically
•  Merge parameterized

DAGs with dynamically
generated DAGs

•  HPC is about distributed
heterogeneous resources

•  Have to get involved in
message passing

•  Distributed management
of the scheduling

•  Dynamically deal with
heterogeneity

Runtime DAG scheduling
•  Every process has the symbolic DAG

representation
•  Only the (node local) frontier of the

DAG is considered
•  Distributed Scheduling based on

remote completion notifications
•  Background remote data transfer

automatic with overlap
•  NUMA / Cache aware Scheduling

•  Work Stealing and sharing based on
memory hierarchies

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

Scheduling Heuristics in PaRSEC
•  Manages parallelism & locality

•  Achieve efficient execution (performance, power, …)
•  Handles specifics of HW system (hyper-threading, NUMA, …)

•  Per-object capabilities
•  Read-only or write-only, output data, private, relaxed coherence
•  engine tracks data usage, and targets to improve data reuse
•  NUMA aware hierarchical bounded buffers to implement work stealing

•  Users hints: expressions for distance to critical path
•  Insertion in waiting queue abides to priority, but work stealing can alter this

ordering due to locality
•  Communications heuristics

•  Communications inherits priority of destination task
•  Algorithm defined scheduling

What’s next?
Now we have a runtime and some algorithms

Auto-tuning
•  Multi-level tuning

•  Tune the kernels based
on local architecture

•  Then tune the algorithm
•  Depends on the

network, type and
number of cores

•  For a fixed size matrix
increasing the task
duration (or the tile
size) decrease
parallelism

•  For best performance:
auto-tune per system

 50

 60

 70

 80

 90

 100

 120
 160

 200
 260

 300
 340

 460
 640

 1000

%
 e

ffi
ci

en
cy

Block Size (NB)

1 Nodes (8 cores)
4 Nodes (32 cores)

81 Nodes (648 cores)

Not enough parallelism

GEQRT

TSQRT

UNMQR

TSMQR

Weak-scaling

References
[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects.
Journal of Physics: Conference Series, 180, 2009.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1992. URL http://www.netlib.org/lapack/lug/.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A
unified platform for task scheduling on heterogeneous multicore archi-
tectures. In Proceedings of Euro-par’09, LNCS, Delft, Netherlands,
2009.

[4] C. Bischof and C. van Loan. The WY representation for products of
Householder matrices. J. Sci. Stat. Comput., 8:2–13, 1987.

[5] L. S. Blackford, J. Choi, A. J. Cleary, E. F. D’Azevedo, J. Dem-
mel, I. S. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. W. Walker, and R. C. Whaley. ScaLAPACK: A linear
algebra library for message-passing computers. In Proceedings of the
Eighth SIAM Conference on Parallel Processing for Scientific Com-
puting. SIAM, 1997. ISBN 0-89871-395-1.

[6] R. Bolze, F. Cappello, E. Caron, M. J. Daydé, F. Desprez,
E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mor-
net, R. Namyst, P. Primet, B. Quétier, O. Richard, E.-G. Talbi,
and I. Touche. Grid’5000: A large scale and highly reconfig-
urable experimental grid testbed. IJHPCA, 20(4):481–494, 2006.
DOI: 10.1177/1094342006070078.

[7] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst. hwloc: a generic framework
for managing hardware affinities in HPC applications. In IEEE, editor,
the 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing (PDP), Pisa Italy, Feb 2010.

[8] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. To-
mov. The impact of multicore on math software. In Applied Parallel
Computing. State of the Art in Scientific Computing, 8th International
Workshop, PARA, volume 4699 of LNCS, pages 1–10. Springer, 2006.
ISBN 978-3-540-75754-2. DOI: 10.1007/978-3-540-75755-9 1.

[9] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. Parallel tiled
QR factorization for multicore architectures. Concurrency Computat.:
Pract. Exper., 20(13):1573–1590, 2008. DOI: 10.1002/cpe.1301.

[10] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class
of parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Comput., 35(1):38–53, 2009. ISSN 0167-8191.
DOI: 10.1016/j.parco.2008.10.002.

[11] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn.
Supermatrix out-of-order scheduling of matrix operations for smp and
multi-core architectures. In SPAA ’07: Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures,
pages 116–125, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-667-7. DOI: 10.1145/1248377.1248397.

[12] M. Cosnard and E. Jeannot. Automatic parallelization tech-
niques based on compact DAG extraction and symbolic
scheduling. Parallel Processing Letters, 11:151–168, 2001.
DOI: 10.1142/S012962640100049X.

[13] M. Cosnard, E. Jeannot, and T. Yang. Compact dag representation
and its symbolic scheduling. Journal of Parallel and Distributed
Computing, 64(8):921–935, Aug 2004.

[14] O. Delannoy, N. Emad, and S. Petiton. Workflow global computing
with yml. In 7th IEEE/ACM International Conference on Grid Com-
puting, Sep 2006.

[15] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core
parallel programming environment. In Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU), 2007.

[16] J. J. Dongarra, J. D. Croz, I. S. Duff, , and S. Hammarling. A set of
level 3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16:
1–17, 1990.

[17] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:
Past, present and future. Concurrency Computat.: Pract. Exper., 15(9):
803–820, 2003. DOI: 10.1002/cpe.728.

[18] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns
Hopkins University Press, 1996. ISBN 0801854148.

[19] F. G. Gustavson. Recursion leads to automatic variable blocking for
dense linear-algebra algorithms. IBM J. Res. & Dev., 41(6):737–756,
1997. DOI: 10.1147/rd.416.0737.

[20] F. G. Gustavson. New generalized matrix data structures lead to a
variety of high-performance algorithms. In Proceedings of the IFIP
TC2/WG2.5 Working Conference on the Architecture of Scientific Soft-
ware, pages 211–234, Ottawa, Canada, Oct 2000. Kluwer Academic
Publishers. ISBN: 0792373391.

[21] F. G. Gustavson, J. A. Gunnels, and J. C. Sexton. Minimal data copy
for dense linear algebra factorization. In Applied Parallel Computing,
State of the Art in Scientific Computing, 8th International Workshop,
PARA 2006, volume 4699, pages 540–549, Umeå, Sweden, Jun 2006.
LNCS. DOI: 10.1007/978-3-540-75755-9 66.

[22] F. G. Gustavson, L. Karlsson, and B. Kågström. Distributed
SBP cholesky factorization algorithms with near-optimal schedul-
ing. ACM Trans. Math. Softw., 36(2):1–25, 2009. ISSN 0098-3500.
DOI: 10.1145/1499096.1499100.

[23] P. Husbands and K. A. Yelick. Multi-threading and one-sided commu-
nication in parallel lu factorization. In B. Verastegui, editor, Proceed-
ings of the ACM/IEEE Conference on High Performance Network-
ing and Computing, SC 2007, November 10-16, 2007, Reno, Nevada,
USA. ACM Press, 2007. ISBN 978-1-59593-764-3.

[24] E. Jeannot. Automatic multithreaded parallel program generation for
message passing multiprocessors using parameterized task graphs. In
International Conference ’Parallel Computing 2001’ (ParCo2001),
Sep 2001.

[25] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for FORTRAN usage. ACM Trans. Math. Soft.,
5:308–323, 1979.

[26] J. Perez, R. Badia, and J. Labarta. A dependency-aware task-based
programming environment for multi-core architectures. In Cluster
Computing, 2008 IEEE International Conference on, pages 142 –151,
Oct 2008. DOI: 10.1109/CLUSTR.2008.4663765.

[27] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing ’91: Proceed-
ings of the 1991 ACM/IEEE conference on Supercomputing, pages 4–
13, New York, NY, USA, 1991.

[28] E. S. Quintana-Ortı́ and R. A. van de Geijn. Updating an LU fac-
torization with pivoting. ACM Trans. Math. Softw., 35(2):11, 2008.
DOI: 10.1145/1377612.1377615.

[29] R. Schreiber and C. van Loan. A storage-efficient WY representation
for products of Householder transformations. J. Sci. Stat. Comput., 10:
53–57, 1991.

[30] J. A. Sharp, editor. Data flow computing: theory and practice. Ablex
Publishing Corp, 1992.

[31] F. Song, A. YarKhan, and J. Dongarra. Dynamic task schedul-
ing for linear algebra algorithms on distributed-memory multicore
systems. In SC ’09: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, pages 1–
11, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-744-8.
DOI: 10.1145/1654059.1654079.

[32] G. W. Stewart. Matrix algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001. ISBN 0-89871-503-2.

[33] F. G. van Zee. libflame: The Complete Reference. www.lulu.com,
2009.

[34] J. Yu and R. Buyya. A taxonomy of workflow management systems
for grid computing. Journal of Grid Computing, 2005.

10 2010/9/13

DSBP

81 dual Intel Xeon L5420@2.5GHz
(2x4 cores/node) è 648 cores
MX 10Gbs, Intel MKL, Scalapack

 0

 1

 2

 3

 4

 5

 6

 7

 1
3k

 2
6k

 4
0k

 5
3k

 6
7k

 8
0k

 9
4k

10
7k

12
0k

13
0k

T
F

lo
p

/s

Matrix size (N)

DPOTRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
DSBP
ScaLAPACK

 0

 1

 2

 3

 4

 5

 6

 7

 1
3k

 2
6k

 4
0k

 5
3k

 6
7k

 8
0k

 9
4k

10
7k

12
0k

13
0k

T
F

lo
p

/s

Matrix size (N)

DGEQRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
ScaLAPACK

 0

 1

 2

 3

 4

 5

 6

 7

 1
3k

 2
6k

 4
0k

 5
3k

 6
7k

 8
0k

 9
4k

10
7k

12
0k

13
0k

T
F

lo
p

/s

Matrix size (N)

DGETRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
HPL
ScaLAPACK

References
[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects.
Journal of Physics: Conference Series, 180, 2009.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1992. URL http://www.netlib.org/lapack/lug/.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A
unified platform for task scheduling on heterogeneous multicore archi-
tectures. In Proceedings of Euro-par’09, LNCS, Delft, Netherlands,
2009.

[4] C. Bischof and C. van Loan. The WY representation for products of
Householder matrices. J. Sci. Stat. Comput., 8:2–13, 1987.

[5] L. S. Blackford, J. Choi, A. J. Cleary, E. F. D’Azevedo, J. Dem-
mel, I. S. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. W. Walker, and R. C. Whaley. ScaLAPACK: A linear
algebra library for message-passing computers. In Proceedings of the
Eighth SIAM Conference on Parallel Processing for Scientific Com-
puting. SIAM, 1997. ISBN 0-89871-395-1.

[6] R. Bolze, F. Cappello, E. Caron, M. J. Daydé, F. Desprez,
E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mor-
net, R. Namyst, P. Primet, B. Quétier, O. Richard, E.-G. Talbi,
and I. Touche. Grid’5000: A large scale and highly reconfig-
urable experimental grid testbed. IJHPCA, 20(4):481–494, 2006.
DOI: 10.1177/1094342006070078.

[7] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst. hwloc: a generic framework
for managing hardware affinities in HPC applications. In IEEE, editor,
the 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing (PDP), Pisa Italy, Feb 2010.

[8] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. To-
mov. The impact of multicore on math software. In Applied Parallel
Computing. State of the Art in Scientific Computing, 8th International
Workshop, PARA, volume 4699 of LNCS, pages 1–10. Springer, 2006.
ISBN 978-3-540-75754-2. DOI: 10.1007/978-3-540-75755-9 1.

[9] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. Parallel tiled
QR factorization for multicore architectures. Concurrency Computat.:
Pract. Exper., 20(13):1573–1590, 2008. DOI: 10.1002/cpe.1301.

[10] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class
of parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Comput., 35(1):38–53, 2009. ISSN 0167-8191.
DOI: 10.1016/j.parco.2008.10.002.

[11] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn.
Supermatrix out-of-order scheduling of matrix operations for smp and
multi-core architectures. In SPAA ’07: Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures,
pages 116–125, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-667-7. DOI: 10.1145/1248377.1248397.

[12] M. Cosnard and E. Jeannot. Automatic parallelization tech-
niques based on compact DAG extraction and symbolic
scheduling. Parallel Processing Letters, 11:151–168, 2001.
DOI: 10.1142/S012962640100049X.

[13] M. Cosnard, E. Jeannot, and T. Yang. Compact dag representation
and its symbolic scheduling. Journal of Parallel and Distributed
Computing, 64(8):921–935, Aug 2004.

[14] O. Delannoy, N. Emad, and S. Petiton. Workflow global computing
with yml. In 7th IEEE/ACM International Conference on Grid Com-
puting, Sep 2006.

[15] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core
parallel programming environment. In Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU), 2007.

[16] J. J. Dongarra, J. D. Croz, I. S. Duff, , and S. Hammarling. A set of
level 3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16:
1–17, 1990.

[17] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:
Past, present and future. Concurrency Computat.: Pract. Exper., 15(9):
803–820, 2003. DOI: 10.1002/cpe.728.

[18] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns
Hopkins University Press, 1996. ISBN 0801854148.

[19] F. G. Gustavson. Recursion leads to automatic variable blocking for
dense linear-algebra algorithms. IBM J. Res. & Dev., 41(6):737–756,
1997. DOI: 10.1147/rd.416.0737.

[20] F. G. Gustavson. New generalized matrix data structures lead to a
variety of high-performance algorithms. In Proceedings of the IFIP
TC2/WG2.5 Working Conference on the Architecture of Scientific Soft-
ware, pages 211–234, Ottawa, Canada, Oct 2000. Kluwer Academic
Publishers. ISBN: 0792373391.

[21] F. G. Gustavson, J. A. Gunnels, and J. C. Sexton. Minimal data copy
for dense linear algebra factorization. In Applied Parallel Computing,
State of the Art in Scientific Computing, 8th International Workshop,
PARA 2006, volume 4699, pages 540–549, Umeå, Sweden, Jun 2006.
LNCS. DOI: 10.1007/978-3-540-75755-9 66.

[22] F. G. Gustavson, L. Karlsson, and B. Kågström. Distributed
SBP cholesky factorization algorithms with near-optimal schedul-
ing. ACM Trans. Math. Softw., 36(2):1–25, 2009. ISSN 0098-3500.
DOI: 10.1145/1499096.1499100.

[23] P. Husbands and K. A. Yelick. Multi-threading and one-sided commu-
nication in parallel lu factorization. In B. Verastegui, editor, Proceed-
ings of the ACM/IEEE Conference on High Performance Network-
ing and Computing, SC 2007, November 10-16, 2007, Reno, Nevada,
USA. ACM Press, 2007. ISBN 978-1-59593-764-3.

[24] E. Jeannot. Automatic multithreaded parallel program generation for
message passing multiprocessors using parameterized task graphs. In
International Conference ’Parallel Computing 2001’ (ParCo2001),
Sep 2001.

[25] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for FORTRAN usage. ACM Trans. Math. Soft.,
5:308–323, 1979.

[26] J. Perez, R. Badia, and J. Labarta. A dependency-aware task-based
programming environment for multi-core architectures. In Cluster
Computing, 2008 IEEE International Conference on, pages 142 –151,
Oct 2008. DOI: 10.1109/CLUSTR.2008.4663765.

[27] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing ’91: Proceed-
ings of the 1991 ACM/IEEE conference on Supercomputing, pages 4–
13, New York, NY, USA, 1991.

[28] E. S. Quintana-Ortı́ and R. A. van de Geijn. Updating an LU fac-
torization with pivoting. ACM Trans. Math. Softw., 35(2):11, 2008.
DOI: 10.1145/1377612.1377615.

[29] R. Schreiber and C. van Loan. A storage-efficient WY representation
for products of Householder transformations. J. Sci. Stat. Comput., 10:
53–57, 1991.

[30] J. A. Sharp, editor. Data flow computing: theory and practice. Ablex
Publishing Corp, 1992.

[31] F. Song, A. YarKhan, and J. Dongarra. Dynamic task schedul-
ing for linear algebra algorithms on distributed-memory multicore
systems. In SC ’09: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, pages 1–
11, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-744-8.
DOI: 10.1145/1654059.1654079.

[32] G. W. Stewart. Matrix algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001. ISBN 0-89871-503-2.

[33] F. G. van Zee. libflame: The Complete Reference. www.lulu.com,
2009.

[34] J. Yu and R. Buyya. A taxonomy of workflow management systems
for grid computing. Journal of Grid Computing, 2005.

10 2010/9/13

DSBP

81 dual Intel Xeon L5420@2.5GHz
(2x4 cores/node) è 648 cores
MX 10Gbs, Intel MKL, Scalapack

 0

 1

 2

 3

 4

 5

 6

 7

 1
3k

 2
6k

 4
0k

 5
3k

 6
7k

 8
0k

 9
4k

10
7k

12
0k

13
0k

T
F

lo
p

/s

Matrix size (N)

DPOTRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
DSBP
ScaLAPACK

 0

 1

 2

 3

 4

 5

 6

 7

 1
3k

 2
6k

 4
0k

 5
3k

 6
7k

 8
0k

 9
4k

10
7k

12
0k

13
0k

T
F

lo
p

/s

Matrix size (N)

DGEQRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
ScaLAPACK

 0

 1

 2

 3

 4

 5

 6

 7

 1
3k

 2
6k

 4
0k

 5
3k

 6
7k

 8
0k

 9
4k

10
7k

12
0k

13
0k

T
F

lo
p

/s

Matrix size (N)

DGETRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
HPL
ScaLAPACK

Extracts more
parallelism Independence

between data
layout and
algorithm

Competes with
Hand tuned

Hardware
conscious
scheduling

Scalability in Distributed Memory
•  Parameterized

Task Graph
representation

•  Independent
distributed
scheduling

•  Scalable 0

 5

 10

 15

 20

 25

 30

 108
 432

 768
 1200

 3072

P
e
rf

o
rm

a
n

c
e
 (

T
F

lo
p

/s
)

Number of cores

DGEQRF performance weak scaling
Cray XT5

Practical peak (GEMM)
DAGuE
libSCI Scalapack

DPOTRF

HPL or LU with Partial Pivoting
Inria Bordeaux, UTK

 0

 200

 400

 600

 800

 1000

 1200

 0 10000 20000 30000 40000 50000

G
F

lo
p

/s

Matrix Size

Dancer: 16*8 cores E5520, IB 20Gbs, Intel MKL

Solid = 8 cores/node
Dashed = 7 cores/node

GEMM PEAK
Without pivoting

Incremental pivoting
Scalapack

Partial pivoting

Figure 6.1: Performance of LU decomposition with PTG

is a mathematical library for parallel distributed memory machines using the LA-
PACK library. For that, we used the Netlib1 version. ScaLAPACK was run by
assigning one process MPI per core.

We implemented Task flow 3 for panel factorization and Task flow 5 for swap-
ping operations in update. We used a 2D block cyclic distribution for matrix. The
size of tile used was 200 for DAGuE and 120 for ScaLAPACK and has been chosen
to get the best asymptotic performance. The matrices where generated randomly
with the same side for all measurements.

For each measurement, we do five iterations of the execution, we do not take
in count the maximal and minimal values obtained. We display the average of the
three other values. In most of the tests, we obtain a low standard deviation (less
than 1 Gflop/s).

The results obtained are encouraging because our implementation outperform
the ScaLAPACK implementation and reached 75% of the GEMM peak. How-
ever, the incremental pivoting algorithm which enables more parallelism and less
synchronization in the panel factorization still provide better performance.

1
http://www.netlib.org/

28

•  Why LU is different? 2 reasons:
•  The panel is expressed using dataflow,

generating many tiny tasks
•  Provides very poor performance

•  The DAG depends on the content of the
data

•  The strict dataflow model we imposed
on this exercise prevents message
agregation

•  Our implementation is not message
optimal

•  Explore all cases with as less tasks as
possible

Hierarchical QR
ENS Lyon, Inria Bordeaux, UTK, UCD

•  How to compose trees to get
the best pipeline?

•  Flat, Binary, Fibonacci,
Greedy, …

•  Study on critical path lengths
•  Surprisingly Flat trees are

better for communications on
square cases:

•  Less communications
•  Good pipeline

Sparse Direct Solvers
Inria Bordeaux, UTK

•  Based on PaStiX solver
•  Super-nodal method as in SuperLU
•  Exploits an elimination tree => DAG

•  LU, LLt & LDLt factorizations for
shared memory with
DAGuE/PaRSEC and StarPU

•  GPU panel and update kernels
•  Based on blocked representation

•  Problems:
•  Around 40 times more tasks than an

equivalent dense factorization
•  Average task size can be very small

(20x20)
•  Sizes are not regular

Name N NNZA Fill ratio OPC Type Factorization Source
MHD 485,597 12,359,369 61.20 9.84e+12 Real LU University of Minnesota
Audi 943,695 39,297,771 31.28 5.23e+12 Real LLT PARASOL Collection
10M 10,423737 89,072,871 75.66 1.72e+14 Complex LDLT French CEA-Cesta

TABLE I: Matrices description

1 2 4 6 12 24 36 48
0

200

400

600

800

1,000

1,200

1,400

1,600

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

Fig. 6: LU decomposition on MHD (double precision)

original scheduler on Audi and MHD test matrices. A good
scalability was obtained using all three approaches. On these
two test cases, generic schedulers behaved quite well, and
obtained the performances similar to the fine-tuned PASTIX
scheduler. On a small number of processors, we could even
obtain better results using the generic schedulers. DAGUE lost
some performance when more than a socket (12 cores) was
used, but recovered as soon as the computation spawned over
more than 2 sockets. The DAGUE scheduler seemed to not
be able to extract any performance gain between 12 and 24
cores.

With the 10 Millions test matrix (Fig. 7), the finely-tuned
scheduler of PASTIX outperformed the generic runtimes.
Specifically, STARPU showed its limitation as the number of
threads increased, while DAGUE maintained a good scalabil-
ity. This can be explained by the fact that STARPU does not
take data locality into account.

B. Experiments with GPUs

Fig. 8 and 9 show the results of using one and two GPUs.
For these experiments, we did not use all 48 available cores
for computation as one core was dedicated to each GPU.
The CUDA kernel gave good acceleration on both single

1 2 4 6 12 24 36 48
0

10,000

20,000

30,000

40,000

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

Fig. 7: LDL

T decomposition on 10M (double complex)

and double precision. The factorization time was reduced
significantly using the first GPU when the number of cores
was small. The speedups of up to 5 was obtained using one
GPU. However, the second GPU was relevant only with a
small number of cores (less than 4 threads in single precision
(Fig. 8), and less than 12 threads in double precision (Fig. 9)).
With one GPU, once the cores on a socket (12 core on
Romulus, and 6 on Mirage) were fully utilized, the GPU had
no effect on the factorization time.

We also conducted additional GPU experiments using a
compute node of the Mirage machine from INRIA - Bordeaux.
Mirage nodes are composed of 2 Hexa-core (Westmere Intel
Xeon X5650), with 36GB of RAM. The results on Mirage
(Fig. 10) were similar to the ones on Romulus.

V. CONCLUSION

In this paper, we examined the potential benefits of using
generic runtime systems, DAGUE and STARPU, in a parallel
sparse direct solver PASTIX. The experimental results using
up to 48 cores and two NVIDIA Tesla GPUs demonstrated the
potential of this approach to design a sparse direct solver on
heterogeneous manycore architectures with accelerators using
a uniform interface.

Name N NNZA Fill ratio OPC Type Factorization Source
MHD 485,597 12,359,369 61.20 9.84e+12 Real LU University of Minnesota
Audi 943,695 39,297,771 31.28 5.23e+12 Real LLT PARASOL Collection
10M 10,423737 89,072,871 75.66 1.72e+14 Complex LDLT French CEA-Cesta

TABLE I: Matrices description

1 2 4 6 12 24 36 48
0

200

400

600

800

1,000

1,200

1,400

1,600

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

Fig. 6: LU decomposition on MHD (double precision)

original scheduler on Audi and MHD test matrices. A good
scalability was obtained using all three approaches. On these
two test cases, generic schedulers behaved quite well, and
obtained the performances similar to the fine-tuned PASTIX
scheduler. On a small number of processors, we could even
obtain better results using the generic schedulers. DAGUE lost
some performance when more than a socket (12 cores) was
used, but recovered as soon as the computation spawned over
more than 2 sockets. The DAGUE scheduler seemed to not
be able to extract any performance gain between 12 and 24
cores.

With the 10 Millions test matrix (Fig. 7), the finely-tuned
scheduler of PASTIX outperformed the generic runtimes.
Specifically, STARPU showed its limitation as the number of
threads increased, while DAGUE maintained a good scalabil-
ity. This can be explained by the fact that STARPU does not
take data locality into account.

B. Experiments with GPUs

Fig. 8 and 9 show the results of using one and two GPUs.
For these experiments, we did not use all 48 available cores
for computation as one core was dedicated to each GPU.
The CUDA kernel gave good acceleration on both single

1 2 4 6 12 24 36 48
0

10,000

20,000

30,000

40,000

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

Fig. 7: LDL

T decomposition on 10M (double complex)

and double precision. The factorization time was reduced
significantly using the first GPU when the number of cores
was small. The speedups of up to 5 was obtained using one
GPU. However, the second GPU was relevant only with a
small number of cores (less than 4 threads in single precision
(Fig. 8), and less than 12 threads in double precision (Fig. 9)).
With one GPU, once the cores on a socket (12 core on
Romulus, and 6 on Mirage) were fully utilized, the GPU had
no effect on the factorization time.

We also conducted additional GPU experiments using a
compute node of the Mirage machine from INRIA - Bordeaux.
Mirage nodes are composed of 2 Hexa-core (Westmere Intel
Xeon X5650), with 36GB of RAM. The results on Mirage
(Fig. 10) were similar to the ones on Romulus.

V. CONCLUSION

In this paper, we examined the potential benefits of using
generic runtime systems, DAGUE and STARPU, in a parallel
sparse direct solver PASTIX. The experimental results using
up to 48 cores and two NVIDIA Tesla GPUs demonstrated the
potential of this approach to design a sparse direct solver on
heterogeneous manycore architectures with accelerators using
a uniform interface.

Heterogeneity Support
•  A BODY is a task on a specific device (codelet)
•  Currently the system supports CUDA and cores
•  A CUDA device is considered as one additional

memory level
•  Data locality and data versioning define the

transfers to and from the GPU/Co-processors

/* POTRF Lower case */
GEMM(k, m, n)

// Execution space
k = 0 .. MT-3
m = k+2 .. MT-1
n = k+1 .. m-1

// Parallel partitioning
: A(m, n)

// Parameters
READ A <- C TRSM(m, k)
READ B <- C TRSM(n, k)
RW C <- (k == 0) ? A(m, n) : C GEMM(k-1, m, n)
 -> (n == k+1) ? C TRSM(m, n) : C GEMM(k+1, m, n)

BODY [CPU, CUDA, MIC, *]

•  Single node
•  4xTesla (C1060)
•  16 cores (AMD opteron)

•  Multi GPU –
single node

•  Multi GPU - distributed

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

20k 30k 40k 50k 60k 70k 80k 90k 100k
110k

120k

P
e

r
fo

r
m

a
n

c
e

 (
T

F
lo

p
/s

)

Matrix Size

SPOTRF performance problem scaling
12 GPU nodes (Infiniband 20G)

Practical peak (GEMM)
C2070 + 8 cores per node
8 cores per node

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1
;5
4k

 2
;7
6k

 4
;1
08

k

 8
;1
52

k

12
;1
76

k

P
e

r
f
o

r
m

a
n

c
e

 (
T

F
lo

p
/s

)

Number of Nodes;Matrix Size (N)

SPOTRF performance weak scaling
12 GPU nodes (Infiniband 20G)

Practical peak (GEMM)
C2070 + 8 cores per node
8 cores per node

Scalability

•  12 nodes
•  12xFermi (C2070)
•  8 cores/node (Intel core2)

 0

 200

 400

 600

 800

 1000

 1200

 1400

10k 20k 30k 40k 50k

P
er

fo
rm

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

C1060x4
C1060x3
C1060x2
C1060x1

Energy efficiency

•  Energy used depending on the number of cores
•  Up to 62% more energy efficient while using a

high performance tuned scheduling
•  Power efficient scheduling

Total energy consumption
QR factorization (256 cores)

Work in progress with Hatem Ltaief

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35
P

o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 11. Power Profiles of the Cholesky Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 12. Power Profiles of the QR Factorization.

smaller number of cores. The engine could then decide to
turn off or lower the frequencies of the cores using Dynamic
Voltage Frequency Scaling [16], a commonly used technique
with which it is possible to achieve reduction of energy
consumption.

ACKNOWLEDGMENT

The authors would like to thank Kirk Cameron and Hung-
Ching Chang from the Department of Computer Science at
Virginia Tech, for granting access to their platform.

Cores Library Cholesky QR

128 ScaLAPACK 192000 672000
DPLASMA 128000 540000

256 ScaLAPACK 240000 816000
DPLASMA 96000 540000

512 ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Figure 13. Total amount of energy (joule) used for each test based on the
number of cores

REFERENCES

[1] MPI-2: Extensions to the message passing interface standard.
http://www.mpi-forum.org/ (1997)

[2] Agullo, E., Hadri, B., Ltaief, H., Dongarra, J.: Comparative
study of one-sided factorizations with multiple software pack-
ages on multi-core hardware. SC ’09: Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis pp. 1–12 (2009)

[3] Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel,
J.W., Dongarra, J.J., Croz, J.D., Greenbaum, A., Hammarling,
S., McKenney, A., Sorensen, D.C.: LAPACK User’s Guide,
3rd edn. Society for Industrial and Applied Mathematics,
Philadelphia (1999)

[4] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar,
A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief,
H., Luszczek, P., YarKhan, A., Dongarra, J.: Flexible Devel-
opment of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA. In: the 12th IEEE
International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-11). ACM, Anchorage,
AK, USA (2011)

[5] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T.,
Lem arinier, P., Dongarra, J.: DAGuE: A generic dis-
tributed DAG engine for high performance computing.
Tech. Rep. 231, LAPACK Working Note (2010). URL
http://www.netlib.org/lapack/lawnspdf/lawn231.pdf

[6] Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Don-
garra, J.: DAGuE: A generic distributed DAG engine for high
performance computing (2011)

[7] Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of
parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing 35(1), 38–53 (2009)

[8] Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrou-
chov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.:
ScaLAPACK, a portable linear algebra library for distributed
memory computers-design issues and performance. Computer
Physics Communications 97(1-2), 1–15 (1996)

[9] Cosnard, M., Jeannot, E.: Compact DAG representation and
its dynamic scheduling. Journal of Parallel and Distributed
Computing 58, 487–514 (1999)

[10] Dongarra, J., Beckman, P.: The International Exascale Soft-
ware Roadmap. International Journal of High Performance
Computer Applications 25(1) (2011)

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 11. Power Profiles of the Cholesky Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 12. Power Profiles of the QR Factorization.

smaller number of cores. The engine could then decide to
turn off or lower the frequencies of the cores using Dynamic
Voltage Frequency Scaling [16], a commonly used technique
with which it is possible to achieve reduction of energy
consumption.

ACKNOWLEDGMENT

The authors would like to thank Kirk Cameron and Hung-
Ching Chang from the Department of Computer Science at
Virginia Tech, for granting access to their platform.

Cores Library Cholesky QR

128 ScaLAPACK 192000 672000
DPLASMA 128000 540000

256 ScaLAPACK 240000 816000
DPLASMA 96000 540000

512 ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Figure 13. Total amount of energy (joule) used for each test based on the
number of cores

REFERENCES

[1] MPI-2: Extensions to the message passing interface standard.
http://www.mpi-forum.org/ (1997)

[2] Agullo, E., Hadri, B., Ltaief, H., Dongarra, J.: Comparative
study of one-sided factorizations with multiple software pack-
ages on multi-core hardware. SC ’09: Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis pp. 1–12 (2009)

[3] Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel,
J.W., Dongarra, J.J., Croz, J.D., Greenbaum, A., Hammarling,
S., McKenney, A., Sorensen, D.C.: LAPACK User’s Guide,
3rd edn. Society for Industrial and Applied Mathematics,
Philadelphia (1999)

[4] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar,
A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief,
H., Luszczek, P., YarKhan, A., Dongarra, J.: Flexible Devel-
opment of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA. In: the 12th IEEE
International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-11). ACM, Anchorage,
AK, USA (2011)

[5] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T.,
Lem arinier, P., Dongarra, J.: DAGuE: A generic dis-
tributed DAG engine for high performance computing.
Tech. Rep. 231, LAPACK Working Note (2010). URL
http://www.netlib.org/lapack/lawnspdf/lawn231.pdf

[6] Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Don-
garra, J.: DAGuE: A generic distributed DAG engine for high
performance computing (2011)

[7] Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of
parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing 35(1), 38–53 (2009)

[8] Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrou-
chov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.:
ScaLAPACK, a portable linear algebra library for distributed
memory computers-design issues and performance. Computer
Physics Communications 97(1-2), 1–15 (1996)

[9] Cosnard, M., Jeannot, E.: Compact DAG representation and
its dynamic scheduling. Journal of Parallel and Distributed
Computing 58, 487–514 (1999)

[10] Dongarra, J., Beckman, P.: The International Exascale Soft-
ware Roadmap. International Journal of High Performance
Computer Applications 25(1) (2011)

SystemG: Virginia Tech Energy Monitored cluster (ib40g, intel, 8cores/node)

Analysis Tools

Hermitian Band Diagonal; 16x16 tiles

Conclusion
•  Programming must be made easy(ier)

•  Portability: inherently take advantage of all hardware capabilities
•  Efficiency: deliver the best performance on several families of

algorithms
•  Computer scientists were spoiled by MPI

•  Now let’s think about our users
•  Let different people focus on different problems

•  Application developers on their algorithms
•  System developers on system issues
•  Compilers on whatever they can

The end

Resilience
•  The fault propagate in the system

based on the data dependencies
•  However, if the original data can be

recovered, the execution complete
without user interaction

•  Automatic recovery made simple

Composition
•  An algorithm is a series of operations

with data dependencies
•  A sequential composition limit the

parallelism due to strict
synchronizations
•  Following the flow of data we can loosen the

synchronizations and transform them in data
dependencies

Composition
•  An algorithm is a series of operations

with data dependencies
•  A sequential composition limit the

parallelism due to strict
synchronizations
•  Following the flow of data we can loosen the

synchronizations and transform them in data
dependencies

Composition
•  An algorithm is a series of operations

with data dependencies
•  A sequential composition limit the

parallelism due to strict
synchronizations
•  Following the flow of data we can loosen the

synchronizations and transform them in data
dependencies

Other Systems

P
aR

S
EC

S
M

P
ss

S
tarP

U

C
harm

+

+

FLA
M

E

Q
U

A
R

K

Tblas

P
TG

Scheduling
Distr.

(1/core)
Repl

(1/node)
Repl

(1/node)
Distr.

(Actors)
w/

SuperMatrix
Repl

(1/node)
Centr. Centr.

Language
Internal

or Seq. w/
Affine Loops

Seq.
w/

add_task

Seq.
w/

add_task

Msg-
Driven
Objects

Internal
(LA DSL)

Seq.
w/

add_task

Seq.
w/

add_task
Internal

Accelerator GPU GPU GPU GPU GPU

Availability Public Public Public Public Public Public Not Avail. Not Avail.

Early stage: ParalleX
Non-academic: Swarm, MadLINQ, CnC

All projects support Distributed and Shared Memory
(QUARK with QUARKd; FLAME with Elemental)

History: Beginnings of Data Flow
•  “Design of a separable transition-diagram compiler”,

M.E. Conway, Comm. ACM, 1963
•  Coroutines, flow of data between process

•  J.B. Dennis, 60’s
•  Data Flow representation of programs
•  Reasoning about parallelism, equivalence of programs, …

•  “The semantics of a simple language for parallel
programming”, G. Kahn
•  Kahn Networks

