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Where we are today 
•  Today software developers face systems with 

•  ~1 TFLOP of compute power per node 
•  32+ of cores, 100+ hardware threads 
•  Highly heterogeneous architectures (cores + specialized cores + 

accelerators/coprocessors) 
•  Deep memory hierarchies 
•  But wait there is more: They are distributed! 
•  Consequence is systemic load imbalance 

•  And we still ask the same question: How to harness these 
devices productively? 
•  SPMD produces choke points, wasted wait times 
•  We need to improve efficiency, power and reliability 



The missing parallelism 
•  Too difficult to find parallelism, to debug, 

maintain and get good performance for 
everyone 

•  Increasing gaps between the capabilities 
of today’s programming environments, 
the requirements of emerging 
applications, and the challenges of future 
parallel architectures 
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Decouple “System issues” from Algorithm 

•  Keep the algorithm simple 
•  Depict only the flow of data between tasks 
•  Distributed Dataflow Environment based on Dynamic 

Scheduling of (Micro) Tasks 
•  Programmability: layered approach 

•  Algorithm / Data Distribution 
•  Parallel applications without parallel programming 

•  Portability / Efficiency 
•  Use all available hardware; overlap data movements / 

computation 
•  Progress is still possible when imbalance arise 



Dataflow with Runtime scheduling 
•  Algorithms need help to unleash their power 

•  Hardware specificities: a runtime can provide 
portability, performance, scheduling heuristics, 
heterogeneity management, data movement, … 

•  Scalability: maximize parallelism extraction, but no 
centralized scheduling or entire DAG unpacking: 
dynamic and independent discovery of the relevant 
portions during the execution 

•  Jitter resilience: Do not support explicit 
communications, instead make them implicit and 
schedule to maximize overlap and load balance 

•  The need to express the algorithms differently 
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Divide-and-orchestrate 



Divide-and-orchestrate 
•  Leave the optimization of each 

level to specialized entities 
•  Compiler do marvels when the cost 

of memory accesses is known 
•  Think hierarchical super-scalar 

•  Compiler focus on problems that fit 
in the cache 

•  Humans focus on depicted the flow 
of data between tasks 

•  And a runtime orchestrate the flows 
to maximize the throughput of the 
architecture 
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The PaRSEC framework 
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Domain Specific Extensions 
•  DSEs ⇒   higher productivity for developers 

•  High-level data types & ops tailored to domain 
•  E.g., relations, matrices, triangles, … 

•  Portable and scalable specification of parallelism 
•  Automatically adjust data structures, mapping, and scheduling 

as systems scale up 
•  Toolkit of classical data distributions, etc 



PaRSEC toolchain 
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Serial Code to Dataflow 
Representation 
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Example: QR Factorization 

GEQRT

TSQRT

UNMQR

TSMQR

FOR k = 0 .. SIZE - 1

    A[k][k], T[k][k]  <-  GEQRT( A[k][k] )

    FOR m = k+1 .. SIZE - 1

        A[k][k]|Up, A[m][k], T[m][k]  <-
            TSQRT( A[k][k]|Up, A[m][k], T[m][k] )

    FOR n = k+1 .. SIZE - 1

        A[k][n] <- UNMQR( A[k][k]|Low, T[k][k], A[k][n] )

        FOR m = k+1 .. SIZE - 1

            A[k][n], A[m][n] <-
                TSMQR( A[m][k], T[m][k], A[k][n], A[m][n] )



Input Format – Quark/StarPU/MORSE 
for (k = 0; k < A.mt; k++) { 
  Insert_Task( zgeqrt,  A[k][k], INOUT,  
                        T[k][k], OUTPUT); 
  for (m = k+1; m < A.mt; m++) { 
    Insert_Task( ztsqrt,  A[k][k], INOUT | REGION_D|REGION_U, 
                          A[m][k], INOUT | LOCALITY, 
                          T[m][k], OUTPUT); 
  } 
  for (n = k+1; n < A.nt; n++) { 
    Insert_Task( zunmqr,  A[k][k], INPUT | REGION_L, 
                          T[k][k], INPUT, 
                          A[k][m], INOUT);  
    for (m = k+1; m < A.mt; m++) 
      Insert_Task( ztsmqr, A[k][n], INOUT, 
                           A[m][n], INOUT | LOCALITY, 
                           A[m][k], INPUT,  
                           T[m][k], INPUT); 
  } 
} 

•  Sequential C code  
•  Annotated through 

some specific syntax 
•  Insert_Task 
•  INOUT, OUTPUT, INPUT 
•  REGION_L, REGION_U, 

REGION_D, … 
•  LOCALITY 



Dataflow Analysis 

•  data flow analysis 
•  Example on task DGEQRT of 

QR 
•  Polyhedral Analysis through 

Omega Test 
•  Compute algebraic 

expressions for: 
•  Source and destination 

tasks 
•  Necessary conditions for 

that data flow to exist 

FOR k = 0 .. SIZE - 1

    A[k][k], T[k][k]  <-  GEQRT( A[k][k] )

    FOR m = k+1 .. SIZE - 1

        A[k][k]|Up, A[m][k], T[m][k]  <-
            TSQRT( A[k][k]|Up, A[m][k], T[m][k] )

    FOR n = k+1 .. SIZE - 1

        A[k][n] <- UNMQR( A[k][k]|Low, T[k][k], A[k][n] )

        FOR m = k+1 .. SIZE - 1

            A[k][n], A[m][n] <-
                TSMQR( A[m][k], T[m][k], A[k][n], A[m][n] )
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Intermediate Representation:  
Job Data Flow 

GEQRT

TSQRT

UNMQR

TSMQR

Control flow is eliminated, therefore maximum parallelism is possible 

GEQRT(k) 
 /* Execution space */ 
 k = 0..( MT < NT ) ? MT-1 : NT-1 ) 
 /* Locality */ 
 : A(k, k) 
 RW    A <- (k == 0)    ? A(k, k)  
                        : A1 TSMQR(k-1, k, k) 
         -> (k < NT-1)  ? A UNMQR(k, k+1 .. NT-1)  [type = LOWER] 
         -> (k < MT-1)  ? A1 TSQRT(k, k+1)         [type = UPPER] 
         -> (k == MT-1) ? A(k, k)                  [type = UPPER] 
 WRITE T <- T(k, k) 
         -> T(k, k) 
         -> (k <  NT-1) ? T UNMQR(k, k+1 .. NT-1) 
 /* Priority */ 
 ;(NT-k)*(NT-k)*(NT-k) 
 
BODY 
   zgeqrt( A, T ) 
END 



Dataflow Representation 
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Example: Reduction Operation 
•  Reduction: apply a user defined 

operator on each data and store 
the result in a single location. 
(Suppose the operator is associative 
and commutative) 

Issue: Non-affine loops lead to non-polyhedral array accessing 

for(s = 1; s < N/2; s = 2*s) 
  for(i = 0; i < N-s; i += s) 
    operator(V[i], V[i+s]) 



Example: Reduction Operation 
reduce(l, p) 
: V(p) 
l = 1 .. depth+1 
p = 0 .. (MT / (1<<l)) 
 
RW   A <- (1 == l) ? V(2*p)  
                   : A reduce( l-1, 2*p ) 
       -> ((depth+1) == l) ? V(0) 
       -> (0 == (p%2))? A reduce(l+1, p/2)  
                      : B reduce(l+1, p/2) 
READ B <- ((p*(1<<l) + (1<<(l-1))) > MT) ? V(0) 
       <- (1 == l) ? V(2*p+1) 
       <- (1 != l) ? A reduce( l-1, p*2+1 ) 
BODY 
  operator(A, B); 
END 

Solution: Hand-writing of the data 
dependency using the intermediate 
Data Flow representation 



Data/Task Distribution 
•  Flexible data distribution 

•  Decoupled from the algorithm 
•  Expressed as a user-defined 

function 
•  Only limitation: must evaluate 

uniformly across all nodes 
•  Common distributions provided in 

DSEs 
•  1D cyclic, 2D cyclic, etc. 
•  Symbol Matrix for sparse direct 

solvers 
Serial
Code

DAGuE
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
libraries

MPI

CUDA
pthreads

PLASMA
     MAGMA

Application code &
Codelets

DAGuE Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer



Parallel Runtime 
Algorithm is now expressed as a DAG (potentially Parameterized) 



•  DAG too large to be generated 
ahead of time 

•  Generate it dynamically 
•  Merge parameterized 

DAGs with dynamically 
generated DAGs 

•  HPC is about distributed 
heterogeneous resources 

•  Have to get involved in 
message passing 

•  Distributed management 
of the scheduling 

•  Dynamically deal with 
heterogeneity 



Runtime DAG scheduling 
•  Every process has the symbolic DAG 

representation 
•  Only the (node local) frontier of the 

DAG is considered 
•  Distributed Scheduling based on 

remote completion notifications 
•  Background remote data transfer 

automatic with overlap 
•  NUMA / Cache aware Scheduling 

•  Work Stealing and sharing based on 
memory hierarchies 
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Scheduling Heuristics in PaRSEC 
•  Manages parallelism & locality 

•  Achieve efficient execution (performance, power, …) 
•  Handles specifics of HW system (hyper-threading, NUMA, …) 

•  Per-object capabilities 
•  Read-only or write-only, output data, private, relaxed coherence 
•  engine tracks data usage, and targets to improve data reuse 
•  NUMA aware hierarchical bounded buffers to implement work stealing 

•  Users hints: expressions for distance to critical path 
•  Insertion in waiting queue abides to priority, but work stealing can alter this 

ordering due to locality 
•  Communications heuristics 

•  Communications inherits priority of destination task 
•  Algorithm defined scheduling 



What’s next? 
Now we have a runtime and some algorithms 



Auto-tuning 
•  Multi-level tuning 

•  Tune the kernels based 
on local architecture 

•  Then tune the algorithm 
•  Depends on the 

network, type and 
number of cores 

•  For a fixed size matrix 
increasing the task 
duration (or the tile 
size) decrease 
parallelism 

•  For best performance: 
auto-tune per system 
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81 dual Intel Xeon L5420@2.5GHz  
(2x4 cores/node) è 648 cores 
MX 10Gbs, Intel MKL, Scalapack 
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DSBP 

81 dual Intel Xeon L5420@2.5GHz  
(2x4 cores/node) è 648 cores 
MX 10Gbs, Intel MKL, Scalapack 
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Scalability in Distributed Memory 
•  Parameterized 

Task Graph 
representation 

•  Independent 
distributed 
scheduling 

•  Scalable  0
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HPL or LU with Partial Pivoting 
Inria Bordeaux, UTK 
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Figure 6.1: Performance of LU decomposition with PTG

is a mathematical library for parallel distributed memory machines using the LA-
PACK library. For that, we used the Netlib1 version. ScaLAPACK was run by
assigning one process MPI per core.

We implemented Task flow 3 for panel factorization and Task flow 5 for swap-
ping operations in update. We used a 2D block cyclic distribution for matrix. The
size of tile used was 200 for DAGuE and 120 for ScaLAPACK and has been chosen
to get the best asymptotic performance. The matrices where generated randomly
with the same side for all measurements.

For each measurement, we do five iterations of the execution, we do not take
in count the maximal and minimal values obtained. We display the average of the
three other values. In most of the tests, we obtain a low standard deviation (less
than 1 Gflop/s).

The results obtained are encouraging because our implementation outperform
the ScaLAPACK implementation and reached 75% of the GEMM peak. How-
ever, the incremental pivoting algorithm which enables more parallelism and less
synchronization in the panel factorization still provide better performance.

1
http://www.netlib.org/
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•  Why LU is different? 2 reasons: 
•  The panel is expressed using dataflow, 

generating many tiny tasks 
•  Provides very poor performance 

•  The DAG depends on the content of the 
data 

•  The strict dataflow model we imposed 
on this exercise prevents message 
agregation 

•  Our implementation is not message 
optimal 

•  Explore all cases with as less tasks as 
possible 



Hierarchical QR 
ENS Lyon, Inria Bordeaux, UTK, UCD 

•  How to compose trees to get 
the best pipeline? 

•  Flat, Binary, Fibonacci,  
Greedy, … 

•  Study on critical path lengths 
•  Surprisingly Flat trees are 

better for communications on 
square cases: 

•  Less communications 
•  Good pipeline 



Sparse Direct Solvers 
Inria Bordeaux, UTK 

•  Based on PaStiX solver 
•  Super-nodal method as in SuperLU 
•  Exploits an elimination tree => DAG 

•  LU, LLt & LDLt factorizations for 
shared memory with  
DAGuE/PaRSEC and StarPU 

•  GPU panel and update kernels 
•  Based on blocked representation 

•  Problems: 
•  Around 40 times more tasks than an 

equivalent dense factorization 
•  Average task size can be very small 

(20x20) 
•  Sizes are not regular 

Name N NNZA Fill ratio OPC Type Factorization Source
MHD 485,597 12,359,369 61.20 9.84e+12 Real LU University of Minnesota
Audi 943,695 39,297,771 31.28 5.23e+12 Real LLT PARASOL Collection
10M 10,423737 89,072,871 75.66 1.72e+14 Complex LDLT French CEA-Cesta
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original scheduler on Audi and MHD test matrices. A good
scalability was obtained using all three approaches. On these
two test cases, generic schedulers behaved quite well, and
obtained the performances similar to the fine-tuned PASTIX
scheduler. On a small number of processors, we could even
obtain better results using the generic schedulers. DAGUE lost
some performance when more than a socket (12 cores) was
used, but recovered as soon as the computation spawned over
more than 2 sockets. The DAGUE scheduler seemed to not
be able to extract any performance gain between 12 and 24
cores.

With the 10 Millions test matrix (Fig. 7), the finely-tuned
scheduler of PASTIX outperformed the generic runtimes.
Specifically, STARPU showed its limitation as the number of
threads increased, while DAGUE maintained a good scalabil-
ity. This can be explained by the fact that STARPU does not
take data locality into account.

B. Experiments with GPUs

Fig. 8 and 9 show the results of using one and two GPUs.
For these experiments, we did not use all 48 available cores
for computation as one core was dedicated to each GPU.
The CUDA kernel gave good acceleration on both single
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and double precision. The factorization time was reduced
significantly using the first GPU when the number of cores
was small. The speedups of up to 5 was obtained using one
GPU. However, the second GPU was relevant only with a
small number of cores (less than 4 threads in single precision
(Fig. 8), and less than 12 threads in double precision (Fig. 9)).
With one GPU, once the cores on a socket (12 core on
Romulus, and 6 on Mirage) were fully utilized, the GPU had
no effect on the factorization time.

We also conducted additional GPU experiments using a
compute node of the Mirage machine from INRIA - Bordeaux.
Mirage nodes are composed of 2 Hexa-core (Westmere Intel
Xeon X5650), with 36GB of RAM. The results on Mirage
(Fig. 10) were similar to the ones on Romulus.

V. CONCLUSION

In this paper, we examined the potential benefits of using
generic runtime systems, DAGUE and STARPU, in a parallel
sparse direct solver PASTIX. The experimental results using
up to 48 cores and two NVIDIA Tesla GPUs demonstrated the
potential of this approach to design a sparse direct solver on
heterogeneous manycore architectures with accelerators using
a uniform interface.
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two test cases, generic schedulers behaved quite well, and
obtained the performances similar to the fine-tuned PASTIX
scheduler. On a small number of processors, we could even
obtain better results using the generic schedulers. DAGUE lost
some performance when more than a socket (12 cores) was
used, but recovered as soon as the computation spawned over
more than 2 sockets. The DAGUE scheduler seemed to not
be able to extract any performance gain between 12 and 24
cores.

With the 10 Millions test matrix (Fig. 7), the finely-tuned
scheduler of PASTIX outperformed the generic runtimes.
Specifically, STARPU showed its limitation as the number of
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and double precision. The factorization time was reduced
significantly using the first GPU when the number of cores
was small. The speedups of up to 5 was obtained using one
GPU. However, the second GPU was relevant only with a
small number of cores (less than 4 threads in single precision
(Fig. 8), and less than 12 threads in double precision (Fig. 9)).
With one GPU, once the cores on a socket (12 core on
Romulus, and 6 on Mirage) were fully utilized, the GPU had
no effect on the factorization time.

We also conducted additional GPU experiments using a
compute node of the Mirage machine from INRIA - Bordeaux.
Mirage nodes are composed of 2 Hexa-core (Westmere Intel
Xeon X5650), with 36GB of RAM. The results on Mirage
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V. CONCLUSION

In this paper, we examined the potential benefits of using
generic runtime systems, DAGUE and STARPU, in a parallel
sparse direct solver PASTIX. The experimental results using
up to 48 cores and two NVIDIA Tesla GPUs demonstrated the
potential of this approach to design a sparse direct solver on
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Heterogeneity Support 
•  A BODY is a task on a specific device (codelet) 
•  Currently the system supports CUDA and cores 
•  A CUDA device is considered as one additional 

memory level 
•  Data locality and data versioning define the 

transfers to and from the GPU/Co-processors 

/* POTRF Lower case */ 
GEMM(k, m, n) 
 
// Execution space 
k = 0   .. MT-3 
m = k+2 .. MT-1 
n = k+1 .. m-1 
 
// Parallel partitioning 
: A(m, n) 
 
// Parameters 
READ  A <- C TRSM(m, k) 
READ  B <- C TRSM(n, k) 
RW    C <- (k == 0)   ? A(m, n)      : C GEMM(k-1, m, n) 
        -> (n == k+1) ? C TRSM(m, n) : C GEMM(k+1, m, n) 
 
BODY [CPU, CUDA, MIC, *] 



•  Single node 
•  4xTesla (C1060)  
•  16 cores (AMD opteron) 

•  Multi GPU – 
single node 

•  Multi GPU - distributed 
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Scalability 

•  12 nodes 
•  12xFermi (C2070)  
•  8 cores/node (Intel core2) 
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Energy efficiency 

•  Energy used depending on the number of cores 
•  Up to 62% more energy efficient while using a 

high performance tuned scheduling 
•  Power efficient scheduling 

Total energy consumption 
QR factorization (256 cores) 

Work in progress with Hatem Ltaief 
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Figure 11. Power Profiles of the Cholesky Factorization.
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Figure 12. Power Profiles of the QR Factorization.

smaller number of cores. The engine could then decide to
turn off or lower the frequencies of the cores using Dynamic
Voltage Frequency Scaling [16], a commonly used technique
with which it is possible to achieve reduction of energy
consumption.
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# Cores Library Cholesky QR

128 ScaLAPACK 192000 672000
DPLASMA 128000 540000

256 ScaLAPACK 240000 816000
DPLASMA 96000 540000

512 ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Figure 13. Total amount of energy (joule) used for each test based on the
number of cores
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Hermitian Band Diagonal; 16x16 tiles 



Conclusion 
•  Programming must be made easy(ier) 

•  Portability: inherently take advantage of all hardware capabilities 
•  Efficiency: deliver the best performance on several families of 

algorithms 
•  Computer scientists were spoiled by MPI 

•  Now let’s think about our users 
•  Let different people focus on different problems 

•  Application developers on their algorithms 
•  System developers on system issues 
•  Compilers on whatever they can 



The end 



Resilience 
•  The fault propagate in the system 

based on the data dependencies 
•  However, if the original data can be 

recovered, the execution complete 
without user interaction 

•  Automatic recovery made simple 



Composition 
•  An algorithm is a series of operations 

with data dependencies 
•  A sequential composition limit the 

parallelism due to strict 
synchronizations 
•  Following the flow of data we can loosen the 

synchronizations and transform them in data 
dependencies 
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Other Systems 
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Scheduling 
Distr. 

(1/core) 
Repl  

(1/node) 
Repl  

(1/node) 
Distr. 

(Actors) 
w/ 

SuperMatrix 
Repl  

(1/node) 
Centr. Centr. 

Language 
Internal   

or Seq. w/ 
Affine Loops 

Seq. 
w/ 

add_task 

Seq. 
w/ 

add_task 

Msg-
Driven 
Objects 

Internal 
(LA DSL) 

Seq.  
w/ 

add_task 

Seq. 
w/ 

add_task 
Internal 

Accelerator GPU GPU GPU GPU GPU 

Availability Public Public Public Public Public Public Not Avail. Not Avail. 

Early stage: ParalleX 
Non-academic: Swarm, MadLINQ, CnC 

All projects support Distributed and Shared Memory 
(QUARK with QUARKd; FLAME with Elemental) 



History: Beginnings of Data Flow 
•  “Design of a separable transition-diagram compiler”, 

M.E. Conway, Comm. ACM, 1963 
•  Coroutines, flow of data between process 

•  J.B. Dennis, 60’s 
•  Data Flow representation of programs 
•  Reasoning about parallelism, equivalence of  programs, … 

•  “The semantics of a simple language for parallel 
programming”, G. Kahn 
•  Kahn Networks 


