
Profiling Tools
in PaRSEC

PaRSEC User Group Meeting

Profiling System

• Two main runtime components:
• Dependency Grapher produces a

DOT of the DAG of tasks.
• Cost is non-negligible (I/O at the

preamble and epilogue of each task)
• Profiling System keeps a track of the

execution
• Significant effort to keep that cost

down
• Modular design: goal is to allow power

users to inject their own
instrumentation if needed

• Provide interface to PAPI
• Each component produces one file

per rank
• A collection of user-level tools to

process the produced files

2

Application

PaRSEC Runtime

PaRSEC INStruments (PINS)
External Libraries (e.g. PAPI)

Dependency Grapher

Profiling System
PBF

DOT

HDF5 XML

profile2h5 dbp2xml dot
merger.pl

h5totrace …

DOT

DOT
DOT

DOT

PBF
PBF

PBF
PBF

PBF
PBF HDF5 DOT

paje

HDF5 DOT

Compile PaRSEC with Profiling

• Two options:
• PARSEC_PROF_TRACE

• Enables ‘profiling’: events
can be logged in a binary
format

• Can also use OTF2 format,
if libotf2 is available, but
functionality is reduced

• PARSEC_PROF_GRAPHER
• Enables dependency

graphing

• Dependencies:
• Python 2.7.15 or later and

cython 0.21.2 for most
profiling tools (optional,
but recommended)

• PAPI for the pins_papi MCA
module (optional)

parsec/build/fast-profiling > ../../configure \
--prefix=$HOME/parsec/install-dir/fast-profiling \
-DPARSEC_PROF_TRACE=ON \
-DPARSEC_PROF_TRACE_SYSTEM=“PaRSEC Binary Tracing

Format” \
-DPARSEC_PROF_GRAPHER=ON

[…]

-- Found Python: /nfs/apps/spack/opt/spack/linux-
centos7-x86_64/gcc-7.2.0/python-2.7.15-
aczt3ejnkaiikvwqqy7btuccpm2bpgnm/bin/python2.7 (found
version "2.7.15") found components: Interpreter
Development
-- Cython version 0.29.15 found
-- Found Cython: /nfs/apps/spack/opt/spack/linux-
centos7-x86_64/gcc-7.2.0/python-2.7.15-
aczt3ejnkaiikvwqqy7btuccpm2bpgnm/bin/cython (Required is
at least version "0.21.2")
-- -- Found Component ‘pins’
-- The PAPI Library is found at /spack/opt/spack/linux-
scientific7-x86_64/gcc-7.3.0/papi-5.6.0-
dybzvixufstomkhem7ayjmyjdpfprcsc/lib/libpapi.so
-- ---- Module ‘papi’ is ON
-- Profiling uses PaRSEC Binary Tracing Format

3

Run PaRSEC with profiling
• MCA parameter: profile_filename -- where to

store the PBF files.
• This is a template name, files will be named

<profile_filename>-<rank>.prof-<random>

• PaRSEC parameter: --dot [<filename>]
• This parameter is for PaRSEC, not for the app
• <filename> is also a template: the files will be

named <filename>-<rank>.dot

• Only one of them may be specified
• It is critical for performance that these files are as

local as possible (/tmp, scratch directories, etc…)
• By default, the tracing system uses trunc/mmap to

resize the events files, and this sometimes fails on NFS
directories. A compilation variable,
PARSEC_PROFILING_USE_MMAP can be undefined
in profiling.c if this prevents profiling to execute

• 3 MCA parameters exist to tune the profiling:
• profile_buffer_pages: how many pages per buffer

per thread are allocated
• profile_file_resize: increment at which event files

are resized (in number of buffers)
• profile_show_profiling_performance: displays

at the end of the execution the time spent in profiling
routines

> mpirun -map-by node -np 2 \
./tests/stencil/testing_stencil_1D \
-- --mca profile_filename\

/scratch/shared/herault/stencil

[****] TIME(s) 0.00158 : Stencil N= 8 NB= 4
M= 8 MB= 4 PxQ= 1 2 KPxKQ= 1 1 Iteration= 10
Radius= 1 Kernel_type= 0 Number_of_buffers= 2
cores= 20 : 0.001213 gflops

> ls /scratch/shared/herault/

stencil-1.prof-Hx6eWl stencil-0.prof-Hx6eWl

> mpirun -map-by node -np 2 \
./tests/stencil/testing_stencil_1D \
-- --dot /scratch/shared/herault/stencil

W@00000 /!\ DEBUG LEVEL WILL PROBABLY REDUCE THE
PERFORMANCE OF THIS RUN /!\.
[****] TIME(s) 0.00745 : Stencil N= 8 NB= 4
M= 8 MB= 4 PxQ= 1 2 KPxKQ= 1 1 Iteration= 10
Radius= 1 Kernel_type= 0 Number_of_buffers= 2
cores= 20 : 0.000258 gflops

> ls /scratch/shared/herault/

stencil-0.dot stencil-0.prof-Hx6eWl
stencil-1.dot stencil-1.prof-Hx6eWl

4

Implementation

• Trace collection is per-stream
• 1 Computing thread in PaRSEC =

1 Profile Stream
• Comm. Thread has 3 Profile

Streams (task notification,
payload send, payload receive)
• CUDA devices create one stream

per CUDA stream
• Most tracing operations on

streams are independent: no
atomics.
• Each stream appends events of

variable sizes on its own even
buffer

• Buffer management - MMAP
• 1 additional thread is created to

resize the backend file, and pre-
allocate 1 buffer / stream in
advance in that file
• goal is to minimize wait time to

acquire a new buffer
• cost is a file size that is

overestimated, and I/O in parallel
with computation

• this thread holds 99% of its time in
blocking FS calls or idle on
semaphores

• Buffer management – append to
file
• Buffer allocation is centralized
• buffers are dumped on file one after

the other, in a serial manner

5

User API

• Most calls are done by the runtime
system, without requiring anything
from the user:
• trace of internal events (memory

allocations, notifications, memory
transfers)

• trace of inter-process messages
• DSLs also automatically decorate

their code with tracing calls
• trace of start and end of task

execution
• High-level programs can (optionally)

add information to the trace

• On any rank:
• void profiling_save_dinfo(

const char *key,
double value);

• void profiling_save_iinfo(
const char *key,
int value);

• void
profiling_save_uint64info(
const char *key,
uint64_t value);

• void profiling_save_sinfo(
const char *key,
const char *svalue);

• NB: if two ranks define the same key,
the HDF5 will only show one of the
values

6

PaRSEC INStrumentation (PINS)

• In addition to the profiling system, the runtime has hooks placed at many
critical steps of a task lifecycle:
• first time a task is discovered
• every time one of its input flow becomes ready
• when the task becomes ready to execute
• when it prepares its input data
• when it starts (possibly multiple times) executing, every time it returns from the

execution
• when it is released

• Each of these places can become a logged event using the PINS system
• PINS MCA components can then decorate each event with more

information.
• Example: PINS PAPI module:
--mca mca_pins papi --mca pins_papi 1 --mca pins_papi_event “S*:C*:PAPI_L1_DCM”

7

Tools

• Some tools are binary
executables
• parsec-dbp2xml, parsec-dbp2mem,

parsec-dbpinfo, …
• Others are Python scripts

• profile2h5, h5totrace, …
• Some are Perl scripts

• parsec-dotmerger
• Although it is possible to use

them within the build/source
directories, the easies way to use
them is to install and load the
environment provided in the bin/
subdirectory after install in
bash.env or csv.env

> make –j 20 install
> export PARSEC_ROOT=[…]
> . $PARSEC_ROOT/bin/bash.env
> which parsec-ptgpp
[…]/bin/parsec-ptgpp

8

<0/0/18> APPLY_L(1, 0)<0> <0/0/17> APPLY_DIAG(0)<0> <0/0/0> task(0, 0)<0>

<0/0/2> task(1, 0)<0>

A=>A0

<1/0/17> task(1, 1)<0>

A=>AL

<0/0/17> task(2, 0)<0>

A=>A0

<1/0/18> task(2, 1)<0>

A=>AL

<0/0/4> task(3, 0)<0>

A=>A0

<1/0/18> task(3, 1)<0>

A=>AL

<0/0/3> task(4, 0)<0>

A=>A0

<1/0/7> task(4, 1)<0>

A=>AL

<0/0/15> task(5, 0)<0>

A=>A0

<1/0/18> task(5, 1)<0>

A=>AL

<0/0/15> task(6, 0)<0>

A=>A0

<1/0/9> task(6, 1)<0>

A=>AL

<0/0/0> task(7, 0)<0>

A=>A0

<1/0/9> task(7, 1)<0>

A=>AL

<0/0/19> task(8, 0)<0>

A=>A0

<1/0/0> task(8, 1)<0>

A=>AL

<0/0/0> task(9, 0)<0>

A=>A0

<1/0/13> task(9, 1)<0>

A=>AL

<0/0/0> task(10, 0)<0>

A=>A0

<1/0/3> task(10, 1)<0>

A=>AL

<1/0/0> APPLY_U(0, 1)<0> <1/0/18> APPLY_DIAG(1)<0><1/0/17> task(0, 1)<0>

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

A=>AR A=>A0

Tool: parsec-dotmerger

• Takes a set of per-node DOT files,
and merges them in one DOT file
• DOT is the format used by

graphviz
(https://www.graphviz.org/) to
visualize graphs (in our case the
DAG of tasks)
• parsec-dotmerger has options to

• Select what nodes or edges to
ignore

• Select the content, form and color of
nodes and edges

• See parsec-dotmerger –h for a full
list of options

> $PARSEC_ROOT/bin/parsec-dotmerger \
/scratch/shared/herault/stencil-0.dot \
/scratch/shared/herault/stencil-1.dot > \

stencil.dot

> dot –Tpdf –o stencil.pdf stencil.dot

9

https://www.graphviz.org/

Tool: profile2h5
• The binary profiling format is needs to be assembled

into a portable file.
• parsec-dbp2xml provides only rudimentary

information (tasks start and end dates)
• the recommended approach is to convert the parsec

binary format files into pandas dataframes stored in
an HDF5 file

• This is the role of profile2h5
• Note: profile2h5 will check if a target hdf5 file already

exists. If it exists, it will not re-generate it
• i.e. if you want to re-generate an hdf5 from a new profile

with the same name, you need to move or delete the
existing hdf5 file.

• profile2h5 depends on pandas, with pytables for
HDF5 support. Minimal versions are:
• pandas: 0.24.2
• numpy: 1.16.6
• tables: 3.5.1

• All these tools can be installed in the user directory
using pip

> cd /scratch/shared/herault/

> profile2h5 stencil-*.prof-Hx6eWl
Processing ['stencil-0.prof-Hx6eWl',
'stencil-1.prof-Hx6eWl']

Generated: stencil-ap-Hx6eWl.h5

> file stencil-ap-Hx6eWl.h5
stencil-ap-Hx6eWl.h5: Hierarchical Data
Format (version 5) data

10

HDF5 Profiling files

• Hierarchy of pandas DataFrame
• Most data is in events
• Meta-data is in information, nodes,

streams, and
event_names/event_types

• information holds a key-value store
that is application-specific

• event_names/event_types are key-
value stores to identify the events

• nodes and streams are DataFrames
to identify the processes and the
streams in each process
• Streams are profiling streams: there

might be more than one per thread
(e.g. 3 for the comm. thread, one per
CUDA stream, etc..)

/ errors

event_attributes

event_convertors

event_names

event_types

events

information

nodes

streams

11

HDF5 Profiling: /nodes

• Basic information about the
nodes
• id is the value used in other

DataFrames for node_id
• HWLOC-XML is a dump of the hwloc

topology loaded on the node, if
hwloc is available.

• sched is the scheduler loaded at init
time

• nb_cores is the number of
computing threads (including the
main thread) used by this run

• MEMORY_USAGE and
MEMORY_USAGE_list hold some
statistics of mempool memory
usage internal of PaRSEC (data
repositories and tasks contexts)

12
/nodes CMDLINE

DEVICE_MODULES

DIMENSION

GIT_BRANCH

GIT_HASH

HWLOC-XML

MEMORY_USAGE

MEMORY_USAGE_list

cwd

error

exe

exe_abspath

filename

hostname

id

nb_cores

nb_vps

sched

HDF5 Profiling: /streams

• begin/end/duration: times related to
the stream (in unit of the realtime
timer of the machine that did the
run, usually nanoseconds)

• boundto: binding information (core).
Displayed as a float. NaN for non-
binding

• description: human-readable
information about the stream

• node_id/th_id/vp_id: the identifiers
of the node/thread/virtual process
that hosts this stream

• stream_id: the identifier used in
other DataFrames to relate to this
stream

13

/streams begin

end

duration

boundto

description

node_id

stream_id

th_id

vp_id

HDF5 Profiling: /information

• Key/Value store: used by the
application to store meta-
information
• For the stencil example, here

is the information stored by
the application. They overlap
some information stored in
the DataFrame /nodes.
• This is purely user-defined.

14

/information CMDLINE

DEVICE_MODULES

DIMENSION

GIT_BRANCH

GIT_HASH

cwd

error

exe

exe_abspath

last_error

nb_cores

nb_nodes

nb_vps

sched

worldsize

HDF5 Profiling: /event_types

• /event_types: key-value
store that maps event
names (string) to event type
(number)
• /event_names: key-value

store that maps event types
(number) to event names
(string)

15

/event_types N/A

TASK_MEMORY

Device delegate

cuda

movein

moveout

prefetch

cuda_mem_alloc

cuda_mem_use

MPI_ACTIVATE

...

/event_names 0

1

2

3

4

5

6

7

8

...

HDF5 Profiling: /events
• Large DataFrame holding all ‘events’
• Rows in this dataframe are a pair of event: an

event.begin and an event.end.
• Each event pair happens on a given stream

(stream_id), on a given node (node_id), and has a
unique type, a begin time and an end time.

• Some events are related to a given taskpool (e.g.
execution of a task) (taskpool_id)

• Other events are related to a data (e.g. a GPU memory
transfer) and have a data_collection_unique_key and
a data_collection_data_id.

• Some events are network-related (e.g.
communication) and have a source (src), a destination
(dst), and sometimes a task identifier (did – type
identifier of the task/tid – task identifier in this type).

• Each event type may define additional columns in this
table, and the values in these columns make sense
only for these event types.

16

/events begin

end

stream_id

node_id

type

taskpool_id

data_collection_unique_key

data_colection_data_id

data_collection_padding

src

dst

did

tid

... [taskpool-specific]

HDF5 Profiling: example.
>>> import pandas as pd

>>> import numpy as np
>>> t=pd.HDFStore(‘stencil-ap-Hx6eWl.h5’)

>>> t.events.taskpool_id.unique()

array([2, -1], dtype=object)
>>> m = t.events[t.events.taskpool_id == 2]

>>> m['duration'] = m['end']-m['begin']
>>> m['duration'] = m['duration'].astype(np.int)

>>> m[['duration','type']].groupby(['type']).describe()

duration
count mean std min 25% 50% 75% max

type
15 22.0 780.590909 297.918758 269.0 624.5 724.0 980.0 1373.0

>>> t.event_names[15]

'task'

17

HDF5 Profiling: example.
>>> c=t.events[((t.events.type >= t.event_types[‘MPI_ACTIVATE’]) &

(t.events.type <= t.event_types[‘MPI_DATA_PLD_RCV’]))]

>>> c['duration']=c['end'].astype(np.int)-c['begin'].astype(np.int)

>>> c[['duration','node_id']].groupby('node_id').describe()

duration

count mean std min 25% 50% 75% max

node_id

0 16.0 1.070306e+04 1.199261e+04 1461.0 2082.25 2739.0 16566.50 33097.0

1 16.0 1.587329e+06 3.404030e+06 1308.0 1914.75 4253.0 8713.75 8449498.0

18

Tool: h5totrace
• Converts an

HDF5 profiling
database into a
PAJE trace
(http://paje.sou
rceforge.net/)

• Can be
visualized with
Paje (old), or
Vite (still in
dev.):
http://vite.gforg
e.inria.fr/

• See h5totrace –
help for list of
options

19

--counter: some events (e.g. memory allocation events) are better represented as a line that accumulates values than a
block. This option allows to select which event names are considered counters
--ignore-type / --ignore-stream: allows to trim the trace to make it easier to process or visualize
--list: just list the event types in the HDF5 (useful for –ignore-type)
--dot / --dot-DAG : optional, can take the DOT information to add arrows between tasks to represent the DAG of
dependencies on top of the Gantt diagram
--COMM: represents communications between nodes with arrows

http://paje.sourceforge.net/
http://vite.gforge.inria.fr/

Ad-hoc visualizations
20

