1. Jacob Perkins
  2. nltk-trainer


nltk-trainer / nltk_trainer / classification / args.py

from nltk.classify import DecisionTreeClassifier, MaxentClassifier, NaiveBayesClassifier, megam
from nltk_trainer.classification.multi import AvgProbClassifier

classifier_choices = ['NaiveBayes', 'DecisionTree', 'Maxent'] + MaxentClassifier.ALGORITHMS

	from nltk.classify import scikitlearn
	from sklearn.pipeline import Pipeline
	from sklearn import linear_model, naive_bayes, neighbors, svm, tree
	classifiers = [
		#linear_model.SGDClassifier, # NOTE: this seems terrible, but could just be the options
		#naive_bayes.GaussianNB, # TODO: requires a dense matrix
		neighbors.KNeighborsClassifier, # TODO: options for nearest neighbors
		#tree.DecisionTreeClassifier, # TODO: requires a dense matrix
	sklearn_classifiers = {}
	for classifier in classifiers:
		sklearn_classifiers[classifier.__name__] = classifier
	classifier_choices.extend(sorted(['sklearn.%s' % c.__name__ for c in classifiers]))
except ImportError as exc:
	sklearn_classifiers = {}

def add_maxent_args(parser):
	maxent_group = parser.add_argument_group('Maxent Classifier',
		'These options only apply when a Maxent classifier is chosen.')
	maxent_group.add_argument('--max_iter', default=10, type=int,
		help='maximum number of training iterations, defaults to %(default)d')
	maxent_group.add_argument('--min_ll', default=0, type=float,
		help='stop classification when average log-likelihood is less than this, default is %(default)d')
	maxent_group.add_argument('--min_lldelta', default=0.1, type=float,
		help='''stop classification when the change in average log-likelihood is less than this.
	default is %(default)f''')

def add_decision_tree_args(parser):
	decisiontree_group = parser.add_argument_group('Decision Tree Classifier',
		'These options only apply when the DecisionTree classifier is chosen')
	decisiontree_group.add_argument('--entropy_cutoff', default=0.05, type=float,
		help='default is 0.05')
	decisiontree_group.add_argument('--depth_cutoff', default=100, type=int,
		help='default is 100')
	decisiontree_group.add_argument('--support_cutoff', default=10, type=int,
		help='default is 10')

sklearn_kwargs = {}

def add_sklearn_args(parser):
	if not sklearn_classifiers: return
	sklearn_group = parser.add_argument_group('sklearn Classifiers',
		'These options are common to many of the sklearn classification algorithms.')
	sklearn_group.add_argument('--alpha', type=float, default=1.0,
		help='smoothing parameter for naive bayes classifiers, default is %(default)s')
	sklearn_group.add_argument('--C', type=float, default=1.0,
		help='penalty parameter, default is %(default)s')
	sklearn_group.add_argument('--penalty', choices=['l1', 'l2'],
		default='l2', help='norm for penalization, default is %(default)s')
	sklearn_group.add_argument('--kernel', default='rbf',
		choices=['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'],
		help='kernel type for support vector machine classifiers, default is %(default)s')
	sklearn_kwargs['LogisticRegression'] = ['C','penalty']
	sklearn_kwargs['BernoulliNB'] = ['alpha']
	sklearn_kwargs['MultinomialNB'] = ['alpha']
	sklearn_kwargs['SVC'] = ['C', 'kernel']
	linear_svc_group = parser.add_argument_group('sklearn Linear Support Vector Machine Classifier',
		'These options only apply when a sklearn.LinearSVC classifier is chosen.')
	linear_svc_group.add_argument('--loss', choices=['l1', 'l2'],
		default='l2', help='loss function, default is %(default)s')
	sklearn_kwargs['LinearSVC'] = ['C', 'loss', 'penalty']
	nu_svc_group = parser.add_argument_group('sklearn Nu Support Vector Machine Classifier',
		'These options only apply when a sklearn.NuSVC classifier is chosen.')
	nu_svc_group.add_argument('--nu', type=float, default=0.5,
		help='upper bound on fraction of training errors & lower bound on fraction of support vectors, default is %(default)s')
	sklearn_kwargs['NuSVC'] = ['nu', 'kernel']

def make_sklearn_classifier(algo, args):
	name = algo.split('.', 1)[1]
	kwargs = {}
	for key in sklearn_kwargs.get(name, []):
		val = getattr(args, key)
		if val is not None: kwargs[key] = val
	if args.trace and kwargs:
		print 'training %s with %s' % (algo, kwargs)
	return sklearn_classifiers[name](**kwargs)

def make_classifier_builder(args):
	if isinstance(args.classifier, basestring):
		algos = [args.classifier]
		algos = args.classifier
	for algo in algos:
		if algo not in classifier_choices:
			raise ValueError('classifier %s is not supported' % algo)
	classifier_train_args = []
	for algo in algos:
		classifier_train_kwargs = {}
		if algo == 'DecisionTree':
			classifier_train = DecisionTreeClassifier.train
			classifier_train_kwargs['binary'] = False
			classifier_train_kwargs['entropy_cutoff'] = args.entropy_cutoff
			classifier_train_kwargs['depth_cutoff'] = args.depth_cutoff
			classifier_train_kwargs['support_cutoff'] = args.support_cutoff
			classifier_train_kwargs['verbose'] = args.trace
		elif algo == 'NaiveBayes':
			classifier_train = NaiveBayesClassifier.train
		elif algo.startswith('sklearn.'):
			# TODO: support many options for building an estimator pipeline
			estimator = Pipeline([('classifier', make_sklearn_classifier(algo, args))])
			# TODO: option for dtype
			classifier_train = scikitlearn.SklearnClassifier(estimator, dtype=bool).train
			if algo != 'Maxent':
				classifier_train_kwargs['algorithm'] = algo
				if algo == 'MEGAM':
			classifier_train = MaxentClassifier.train
			classifier_train_kwargs['max_iter'] = args.max_iter
			classifier_train_kwargs['min_ll'] = args.min_ll
			classifier_train_kwargs['min_lldelta'] = args.min_lldelta
			classifier_train_kwargs['trace'] = args.trace
		classifier_train_args.append((algo, classifier_train, classifier_train_kwargs))
	def trainf(train_feats):
		classifiers = []
		for algo, classifier_train, train_kwargs in classifier_train_args:
			if args.trace:
				print 'training %s classifier' % algo
			classifiers.append(classifier_train(train_feats, **train_kwargs))
		if len(classifiers) == 1:
			return classifiers[0]
			return AvgProbClassifier(classifiers)
	return trainf
	#return lambda(train_feats): classifier_train(train_feats, **classifier_train_kwargs)