Source

PuTTY / sshdes.c

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
#include <assert.h>
#include "ssh.h"


/* des.c - implementation of DES
 */

/*
 * Description of DES
 * ------------------
 *
 * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
 * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
 * And S-boxes are indexed by six consecutive bits, not by the outer two
 * followed by the middle four.
 *
 * The DES encryption routine requires a 64-bit input, and a key schedule K
 * containing 16 48-bit elements.
 *
 *   First the input is permuted by the initial permutation IP.
 *   Then the input is split into 32-bit words L and R. (L is the MSW.)
 *   Next, 16 rounds. In each round:
 *     (L, R) <- (R, L xor f(R, K[i]))
 *   Then the pre-output words L and R are swapped.
 *   Then L and R are glued back together into a 64-bit word. (L is the MSW,
 *     again, but since we just swapped them, the MSW is the R that came out
 *     of the last round.)
 *   The 64-bit output block is permuted by the inverse of IP and returned.
 *
 * Decryption is identical except that the elements of K are used in the
 * opposite order. (This wouldn't work if that word swap didn't happen.)
 *
 * The function f, used in each round, accepts a 32-bit word R and a
 * 48-bit key block K. It produces a 32-bit output.
 *
 *   First R is expanded to 48 bits using the bit-selection function E.
 *   The resulting 48-bit block is XORed with the key block K to produce
 *     a 48-bit block X.
 *   This block X is split into eight groups of 6 bits. Each group of 6
 *     bits is then looked up in one of the eight S-boxes to convert
 *     it to 4 bits. These eight groups of 4 bits are glued back
 *     together to produce a 32-bit preoutput block.
 *   The preoutput block is permuted using the permutation P and returned.
 *
 * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
 * the approved input format for the key is a 64-bit word, eight of the
 * bits are discarded, so the actual quantity of key used is 56 bits.
 *
 *   First the input key is converted to two 28-bit words C and D using
 *     the bit-selection function PC1.
 *   Then 16 rounds of key setup occur. In each round, C and D are each
 *     rotated left by either 1 or 2 bits (depending on which round), and
 *     then converted into a key schedule element using the bit-selection
 *     function PC2.
 *
 * That's the actual algorithm. Now for the tedious details: all those
 * painful permutations and lookup tables.
 *
 * IP is a 64-to-64 bit permutation. Its output contains the following
 * bits of its input (listed in order MSB to LSB of output).
 *
 *    6 14 22 30 38 46 54 62  4 12 20 28 36 44 52 60
 *    2 10 18 26 34 42 50 58  0  8 16 24 32 40 48 56
 *    7 15 23 31 39 47 55 63  5 13 21 29 37 45 53 61
 *    3 11 19 27 35 43 51 59  1  9 17 25 33 41 49 57
 *
 * E is a 32-to-48 bit selection function. Its output contains the following
 * bits of its input (listed in order MSB to LSB of output).
 *
 *    0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
 *   16 15 14 13 12 11 12 11 10  9  8  7  8  7  6  5  4  3  4  3  2  1  0 31
 *
 * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
 * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
 * The S-boxes are listed below. The first S-box listed is applied to the
 * most significant six bits of the block X; the last one is applied to the
 * least significant.
 *
 *   14  0  4 15 13  7  1  4  2 14 15  2 11 13  8  1
 *    3 10 10  6  6 12 12 11  5  9  9  5  0  3  7  8
 *    4 15  1 12 14  8  8  2 13  4  6  9  2  1 11  7
 *   15  5 12 11  9  3  7 14  3 10 10  0  5  6  0 13
 *
 *   15  3  1 13  8  4 14  7  6 15 11  2  3  8  4 14
 *    9 12  7  0  2  1 13 10 12  6  0  9  5 11 10  5
 *    0 13 14  8  7 10 11  1 10  3  4 15 13  4  1  2
 *    5 11  8  6 12  7  6 12  9  0  3  5  2 14 15  9
 *
 *   10 13  0  7  9  0 14  9  6  3  3  4 15  6  5 10
 *    1  2 13  8 12  5  7 14 11 12  4 11  2 15  8  1
 *   13  1  6 10  4 13  9  0  8  6 15  9  3  8  0  7
 *   11  4  1 15  2 14 12  3  5 11 10  5 14  2  7 12
 *
 *    7 13 13  8 14 11  3  5  0  6  6 15  9  0 10  3
 *    1  4  2  7  8  2  5 12 11  1 12 10  4 14 15  9
 *   10  3  6 15  9  0  0  6 12 10 11  1  7 13 13  8
 *   15  9  1  4  3  5 14 11  5 12  2  7  8  2  4 14
 *
 *    2 14 12 11  4  2  1 12  7  4 10  7 11 13  6  1
 *    8  5  5  0  3 15 15 10 13  3  0  9 14  8  9  6
 *    4 11  2  8  1 12 11  7 10  1 13 14  7  2  8 13
 *   15  6  9 15 12  0  5  9  6 10  3  4  0  5 14  3
 *
 *   12 10  1 15 10  4 15  2  9  7  2 12  6  9  8  5
 *    0  6 13  1  3 13  4 14 14  0  7 11  5  3 11  8
 *    9  4 14  3 15  2  5 12  2  9  8  5 12 15  3 10
 *    7 11  0 14  4  1 10  7  1  6 13  0 11  8  6 13
 *
 *    4 13 11  0  2 11 14  7 15  4  0  9  8  1 13 10
 *    3 14 12  3  9  5  7 12  5  2 10 15  6  8  1  6
 *    1  6  4 11 11 13 13  8 12  1  3  4  7 10 14  7
 *   10  9 15  5  6  0  8 15  0 14  5  2  9  3  2 12
 *
 *   13  1  2 15  8 13  4  8  6 10 15  3 11  7  1  4
 *   10 12  9  5  3  6 14 11  5  0  0 14 12  9  7  2
 *    7  2 11  1  4 14  1  7  9  4 12 10 14  8  2 13
 *    0 15  6 12 10  9 13  0 15  3  3  5  5  6  8 11
 *
 * P is a 32-to-32 bit permutation. Its output contains the following
 * bits of its input (listed in order MSB to LSB of output).
 *
 *   16 25 12 11  3 20  4 15 31 17  9  6 27 14  1 22
 *   30 24  8 18  0  5 29 23 13 19  2 26 10 21 28  7
 *
 * PC1 is a 64-to-56 bit selection function. Its output is in two words,
 * C and D. The word C contains the following bits of its input (listed
 * in order MSB to LSB of output).
 *
 *    7 15 23 31 39 47 55 63  6 14 22 30 38 46
 *   54 62  5 13 21 29 37 45 53 61  4 12 20 28
 *
 * And the word D contains these bits.
 *
 *    1  9 17 25 33 41 49 57  2 10 18 26 34 42
 *   50 58  3 11 19 27 35 43 51 59 36 44 52 60
 *
 * PC2 is a 56-to-48 bit selection function. Its input is in two words,
 * C and D. These are treated as one 56-bit word (with C more significant,
 * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
 * 0 of the word are bits 27 to 0 of D). The output contains the following
 * bits of this 56-bit input word (listed in order MSB to LSB of output).
 *
 *   42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
 *   15  4 25 19  9  1 26 16  5 11 23  8 12  7 17  0 22  3 10 14  6 20 27 24
 */

/*
 * Implementation details
 * ----------------------
 * 
 * If you look at the code in this module, you'll find it looks
 * nothing _like_ the above algorithm. Here I explain the
 * differences...
 *
 * Key setup has not been heavily optimised here. We are not
 * concerned with key agility: we aren't codebreakers. We don't
 * mind a little delay (and it really is a little one; it may be a
 * factor of five or so slower than it could be but it's still not
 * an appreciable length of time) while setting up. The only tweaks
 * in the key setup are ones which change the format of the key
 * schedule to speed up the actual encryption. I'll describe those
 * below.
 *
 * The first and most obvious optimisation is the S-boxes. Since
 * each S-box always targets the same four bits in the final 32-bit
 * word, so the output from (for example) S-box 0 must always be
 * shifted left 28 bits, we can store the already-shifted outputs
 * in the lookup tables. This reduces lookup-and-shift to lookup,
 * so the S-box step is now just a question of ORing together eight
 * table lookups.
 *
 * The permutation P is just a bit order change; it's invariant
 * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
 * can apply P to every entry of the S-box tables and then we don't
 * have to do it in the code of f(). This yields a set of tables
 * which might be called SP-boxes.
 *
 * The bit-selection function E is our next target. Note that E is
 * immediately followed by the operation of splitting into 6-bit
 * chunks. Examining the 6-bit chunks coming out of E we notice
 * they're all contiguous within the word (speaking cyclically -
 * the end two wrap round); so we can extract those bit strings
 * individually rather than explicitly running E. This would yield
 * code such as
 *
 *     y |= SPboxes[0][ (rotl(R, 5) ^  top6bitsofK) & 0x3F ];
 *     t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
 *
 * and so on; and the key schedule preparation would have to
 * provide each 6-bit chunk separately.
 *
 * Really we'd like to XOR in the key schedule element before
 * looking up bit strings in R. This we can't do, naively, because
 * the 6-bit strings we want overlap. But look at the strings:
 *
 *       3322222222221111111111
 * bit   10987654321098765432109876543210
 * 
 * box0  XXXXX                          X
 * box1     XXXXXX
 * box2         XXXXXX
 * box3             XXXXXX
 * box4                 XXXXXX
 * box5                     XXXXXX
 * box6                         XXXXXX
 * box7  X                          XXXXX
 *
 * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
 * overlap with each other. Neither do the ones for boxes 1, 3, 5
 * and 7. So we could provide the key schedule in the form of two
 * words that we can separately XOR into R, and then every S-box
 * index is available as a (cyclically) contiguous 6-bit substring
 * of one or the other of the results.
 *
 * The comments in Eric Young's libdes implementation point out
 * that two of these bit strings require a rotation (rather than a
 * simple shift) to extract. It's unavoidable that at least _one_
 * must do; but we can actually run the whole inner algorithm (all
 * 16 rounds) rotated one bit to the left, so that what the `real'
 * DES description sees as L=0x80000001 we see as L=0x00000003.
 * This requires rotating all our SP-box entries one bit to the
 * left, and rotating each word of the key schedule elements one to
 * the left, and rotating L and R one bit left just after IP and
 * one bit right again just before FP. And in each round we convert
 * a rotate into a shift, so we've saved a few per cent.
 *
 * That's about it for the inner loop; the SP-box tables as listed
 * below are what I've described here (the original S value,
 * shifted to its final place in the input to P, run through P, and
 * then rotated one bit left). All that remains is to optimise the
 * initial permutation IP.
 *
 * IP is not an arbitrary permutation. It has the nice property
 * that if you take any bit number, write it in binary (6 bits),
 * permute those 6 bits and invert some of them, you get the final
 * position of that bit. Specifically, the bit whose initial
 * position is given (in binary) as fedcba ends up in position
 * AcbFED (where a capital letter denotes the inverse of a bit).
 *
 * We have the 64-bit data in two 32-bit words L and R, where bits
 * in L are those with f=1 and bits in R are those with f=0. We
 * note that we can do a simple transformation: suppose we exchange
 * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
 * the bit fedcba to be in position cedfba - we've `swapped' bits c
 * and f in the position of each bit!
 * 
 * Better still, this transformation is easy. In the example above,
 * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
 * are 0xF0F0F0F0. So we can do
 *
 *     difference = ((R >> 4) ^ L) & 0x0F0F0F0F
 *     R ^= (difference << 4)
 *     L ^= difference
 *
 * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
 * Also, we can invert the bit at the top just by exchanging L and
 * R. So in a few swaps and a few of these bit operations we can
 * do:
 * 
 * Initially the position of bit fedcba is     fedcba
 * Swap L with R to make it                    Fedcba
 * Perform bitswap( 4,0x0F0F0F0F) to make it   cedFba
 * Perform bitswap(16,0x0000FFFF) to make it   ecdFba
 * Swap L with R to make it                    EcdFba
 * Perform bitswap( 2,0x33333333) to make it   bcdFEa
 * Perform bitswap( 8,0x00FF00FF) to make it   dcbFEa
 * Swap L with R to make it                    DcbFEa
 * Perform bitswap( 1,0x55555555) to make it   acbFED
 * Swap L with R to make it                    AcbFED
 *
 * (In the actual code the four swaps are implicit: R and L are
 * simply used the other way round in the first, second and last
 * bitswap operations.)
 *
 * The final permutation is just the inverse of IP, so it can be
 * performed by a similar set of operations.
 */

typedef struct {
    word32 k0246[16], k1357[16];
    word32 iv0, iv1;
} DESContext;

#define rotl(x, c) ( (x << c) | (x >> (32-c)) )
#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)

static word32 bitsel(word32 * input, const int *bitnums, int size)
{
    word32 ret = 0;
    while (size--) {
	int bitpos = *bitnums++;
	ret <<= 1;
	if (bitpos >= 0)
	    ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
    }
    return ret;
}

static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)
{

    static const int PC1_Cbits[] = {
	7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
	54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
    };
    static const int PC1_Dbits[] = {
	1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
	50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
    };
    /*
     * The bit numbers in the two lists below don't correspond to
     * the ones in the above description of PC2, because in the
     * above description C and D are concatenated so `bit 28' means
     * bit 0 of C. In this implementation we're using the standard
     * `bitsel' function above and C is in the second word, so bit
     * 0 of C is addressed by writing `32' here.
     */
    static const int PC2_0246[] = {
	49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
	25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
    };
    static const int PC2_1357[] = {
	-1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
	-1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
    };
    static const int leftshifts[] =
	{ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };

    word32 C, D;
    word32 buf[2];
    int i;

    buf[0] = key_lsw;
    buf[1] = key_msw;

    C = bitsel(buf, PC1_Cbits, 28);
    D = bitsel(buf, PC1_Dbits, 28);

    for (i = 0; i < 16; i++) {
	C = rotl28(C, leftshifts[i]);
	D = rotl28(D, leftshifts[i]);
	buf[0] = D;
	buf[1] = C;
	sched->k0246[i] = bitsel(buf, PC2_0246, 32);
	sched->k1357[i] = bitsel(buf, PC2_1357, 32);
    }

    sched->iv0 = sched->iv1 = 0;
}

static const word32 SPboxes[8][64] = {
    {0x01010400, 0x00000000, 0x00010000, 0x01010404,
     0x01010004, 0x00010404, 0x00000004, 0x00010000,
     0x00000400, 0x01010400, 0x01010404, 0x00000400,
     0x01000404, 0x01010004, 0x01000000, 0x00000004,
     0x00000404, 0x01000400, 0x01000400, 0x00010400,
     0x00010400, 0x01010000, 0x01010000, 0x01000404,
     0x00010004, 0x01000004, 0x01000004, 0x00010004,
     0x00000000, 0x00000404, 0x00010404, 0x01000000,
     0x00010000, 0x01010404, 0x00000004, 0x01010000,
     0x01010400, 0x01000000, 0x01000000, 0x00000400,
     0x01010004, 0x00010000, 0x00010400, 0x01000004,
     0x00000400, 0x00000004, 0x01000404, 0x00010404,
     0x01010404, 0x00010004, 0x01010000, 0x01000404,
     0x01000004, 0x00000404, 0x00010404, 0x01010400,
     0x00000404, 0x01000400, 0x01000400, 0x00000000,
     0x00010004, 0x00010400, 0x00000000, 0x01010004L},

    {0x80108020, 0x80008000, 0x00008000, 0x00108020,
     0x00100000, 0x00000020, 0x80100020, 0x80008020,
     0x80000020, 0x80108020, 0x80108000, 0x80000000,
     0x80008000, 0x00100000, 0x00000020, 0x80100020,
     0x00108000, 0x00100020, 0x80008020, 0x00000000,
     0x80000000, 0x00008000, 0x00108020, 0x80100000,
     0x00100020, 0x80000020, 0x00000000, 0x00108000,
     0x00008020, 0x80108000, 0x80100000, 0x00008020,
     0x00000000, 0x00108020, 0x80100020, 0x00100000,
     0x80008020, 0x80100000, 0x80108000, 0x00008000,
     0x80100000, 0x80008000, 0x00000020, 0x80108020,
     0x00108020, 0x00000020, 0x00008000, 0x80000000,
     0x00008020, 0x80108000, 0x00100000, 0x80000020,
     0x00100020, 0x80008020, 0x80000020, 0x00100020,
     0x00108000, 0x00000000, 0x80008000, 0x00008020,
     0x80000000, 0x80100020, 0x80108020, 0x00108000L},

    {0x00000208, 0x08020200, 0x00000000, 0x08020008,
     0x08000200, 0x00000000, 0x00020208, 0x08000200,
     0x00020008, 0x08000008, 0x08000008, 0x00020000,
     0x08020208, 0x00020008, 0x08020000, 0x00000208,
     0x08000000, 0x00000008, 0x08020200, 0x00000200,
     0x00020200, 0x08020000, 0x08020008, 0x00020208,
     0x08000208, 0x00020200, 0x00020000, 0x08000208,
     0x00000008, 0x08020208, 0x00000200, 0x08000000,
     0x08020200, 0x08000000, 0x00020008, 0x00000208,
     0x00020000, 0x08020200, 0x08000200, 0x00000000,
     0x00000200, 0x00020008, 0x08020208, 0x08000200,
     0x08000008, 0x00000200, 0x00000000, 0x08020008,
     0x08000208, 0x00020000, 0x08000000, 0x08020208,
     0x00000008, 0x00020208, 0x00020200, 0x08000008,
     0x08020000, 0x08000208, 0x00000208, 0x08020000,
     0x00020208, 0x00000008, 0x08020008, 0x00020200L},

    {0x00802001, 0x00002081, 0x00002081, 0x00000080,
     0x00802080, 0x00800081, 0x00800001, 0x00002001,
     0x00000000, 0x00802000, 0x00802000, 0x00802081,
     0x00000081, 0x00000000, 0x00800080, 0x00800001,
     0x00000001, 0x00002000, 0x00800000, 0x00802001,
     0x00000080, 0x00800000, 0x00002001, 0x00002080,
     0x00800081, 0x00000001, 0x00002080, 0x00800080,
     0x00002000, 0x00802080, 0x00802081, 0x00000081,
     0x00800080, 0x00800001, 0x00802000, 0x00802081,
     0x00000081, 0x00000000, 0x00000000, 0x00802000,
     0x00002080, 0x00800080, 0x00800081, 0x00000001,
     0x00802001, 0x00002081, 0x00002081, 0x00000080,
     0x00802081, 0x00000081, 0x00000001, 0x00002000,
     0x00800001, 0x00002001, 0x00802080, 0x00800081,
     0x00002001, 0x00002080, 0x00800000, 0x00802001,
     0x00000080, 0x00800000, 0x00002000, 0x00802080L},

    {0x00000100, 0x02080100, 0x02080000, 0x42000100,
     0x00080000, 0x00000100, 0x40000000, 0x02080000,
     0x40080100, 0x00080000, 0x02000100, 0x40080100,
     0x42000100, 0x42080000, 0x00080100, 0x40000000,
     0x02000000, 0x40080000, 0x40080000, 0x00000000,
     0x40000100, 0x42080100, 0x42080100, 0x02000100,
     0x42080000, 0x40000100, 0x00000000, 0x42000000,
     0x02080100, 0x02000000, 0x42000000, 0x00080100,
     0x00080000, 0x42000100, 0x00000100, 0x02000000,
     0x40000000, 0x02080000, 0x42000100, 0x40080100,
     0x02000100, 0x40000000, 0x42080000, 0x02080100,
     0x40080100, 0x00000100, 0x02000000, 0x42080000,
     0x42080100, 0x00080100, 0x42000000, 0x42080100,
     0x02080000, 0x00000000, 0x40080000, 0x42000000,
     0x00080100, 0x02000100, 0x40000100, 0x00080000,
     0x00000000, 0x40080000, 0x02080100, 0x40000100L},

    {0x20000010, 0x20400000, 0x00004000, 0x20404010,
     0x20400000, 0x00000010, 0x20404010, 0x00400000,
     0x20004000, 0x00404010, 0x00400000, 0x20000010,
     0x00400010, 0x20004000, 0x20000000, 0x00004010,
     0x00000000, 0x00400010, 0x20004010, 0x00004000,
     0x00404000, 0x20004010, 0x00000010, 0x20400010,
     0x20400010, 0x00000000, 0x00404010, 0x20404000,
     0x00004010, 0x00404000, 0x20404000, 0x20000000,
     0x20004000, 0x00000010, 0x20400010, 0x00404000,
     0x20404010, 0x00400000, 0x00004010, 0x20000010,
     0x00400000, 0x20004000, 0x20000000, 0x00004010,
     0x20000010, 0x20404010, 0x00404000, 0x20400000,
     0x00404010, 0x20404000, 0x00000000, 0x20400010,
     0x00000010, 0x00004000, 0x20400000, 0x00404010,
     0x00004000, 0x00400010, 0x20004010, 0x00000000,
     0x20404000, 0x20000000, 0x00400010, 0x20004010L},

    {0x00200000, 0x04200002, 0x04000802, 0x00000000,
     0x00000800, 0x04000802, 0x00200802, 0x04200800,
     0x04200802, 0x00200000, 0x00000000, 0x04000002,
     0x00000002, 0x04000000, 0x04200002, 0x00000802,
     0x04000800, 0x00200802, 0x00200002, 0x04000800,
     0x04000002, 0x04200000, 0x04200800, 0x00200002,
     0x04200000, 0x00000800, 0x00000802, 0x04200802,
     0x00200800, 0x00000002, 0x04000000, 0x00200800,
     0x04000000, 0x00200800, 0x00200000, 0x04000802,
     0x04000802, 0x04200002, 0x04200002, 0x00000002,
     0x00200002, 0x04000000, 0x04000800, 0x00200000,
     0x04200800, 0x00000802, 0x00200802, 0x04200800,
     0x00000802, 0x04000002, 0x04200802, 0x04200000,
     0x00200800, 0x00000000, 0x00000002, 0x04200802,
     0x00000000, 0x00200802, 0x04200000, 0x00000800,
     0x04000002, 0x04000800, 0x00000800, 0x00200002L},

    {0x10001040, 0x00001000, 0x00040000, 0x10041040,
     0x10000000, 0x10001040, 0x00000040, 0x10000000,
     0x00040040, 0x10040000, 0x10041040, 0x00041000,
     0x10041000, 0x00041040, 0x00001000, 0x00000040,
     0x10040000, 0x10000040, 0x10001000, 0x00001040,
     0x00041000, 0x00040040, 0x10040040, 0x10041000,
     0x00001040, 0x00000000, 0x00000000, 0x10040040,
     0x10000040, 0x10001000, 0x00041040, 0x00040000,
     0x00041040, 0x00040000, 0x10041000, 0x00001000,
     0x00000040, 0x10040040, 0x00001000, 0x00041040,
     0x10001000, 0x00000040, 0x10000040, 0x10040000,
     0x10040040, 0x10000000, 0x00040000, 0x10001040,
     0x00000000, 0x10041040, 0x00040040, 0x10000040,
     0x10040000, 0x10001000, 0x10001040, 0x00000000,
     0x10041040, 0x00041000, 0x00041000, 0x00001040,
     0x00001040, 0x00040040, 0x10000000, 0x10041000L}
};

#define f(R, K0246, K1357) (\
    s0246 = R ^ K0246, \
    s1357 = R ^ K1357, \
    s0246 = rotl(s0246, 28), \
    SPboxes[0] [(s0246 >> 24) & 0x3F] | \
    SPboxes[1] [(s1357 >> 24) & 0x3F] | \
    SPboxes[2] [(s0246 >> 16) & 0x3F] | \
    SPboxes[3] [(s1357 >> 16) & 0x3F] | \
    SPboxes[4] [(s0246 >>  8) & 0x3F] | \
    SPboxes[5] [(s1357 >>  8) & 0x3F] | \
    SPboxes[6] [(s0246      ) & 0x3F] | \
    SPboxes[7] [(s1357      ) & 0x3F])

#define bitswap(L, R, n, mask) (\
    swap = mask & ( (R >> n) ^ L ), \
    R ^= swap << n, \
    L ^= swap)

/* Initial permutation */
#define IP(L, R) (\
    bitswap(R, L,  4, 0x0F0F0F0F), \
    bitswap(R, L, 16, 0x0000FFFF), \
    bitswap(L, R,  2, 0x33333333), \
    bitswap(L, R,  8, 0x00FF00FF), \
    bitswap(R, L,  1, 0x55555555))

/* Final permutation */
#define FP(L, R) (\
    bitswap(R, L,  1, 0x55555555), \
    bitswap(L, R,  8, 0x00FF00FF), \
    bitswap(L, R,  2, 0x33333333), \
    bitswap(R, L, 16, 0x0000FFFF), \
    bitswap(R, L,  4, 0x0F0F0F0F))

static void des_encipher(word32 * output, word32 L, word32 R,
			 DESContext * sched)
{
    word32 swap, s0246, s1357;

    IP(L, R);

    L = rotl(L, 1);
    R = rotl(R, 1);

    L ^= f(R, sched->k0246[0], sched->k1357[0]);
    R ^= f(L, sched->k0246[1], sched->k1357[1]);
    L ^= f(R, sched->k0246[2], sched->k1357[2]);
    R ^= f(L, sched->k0246[3], sched->k1357[3]);
    L ^= f(R, sched->k0246[4], sched->k1357[4]);
    R ^= f(L, sched->k0246[5], sched->k1357[5]);
    L ^= f(R, sched->k0246[6], sched->k1357[6]);
    R ^= f(L, sched->k0246[7], sched->k1357[7]);
    L ^= f(R, sched->k0246[8], sched->k1357[8]);
    R ^= f(L, sched->k0246[9], sched->k1357[9]);
    L ^= f(R, sched->k0246[10], sched->k1357[10]);
    R ^= f(L, sched->k0246[11], sched->k1357[11]);
    L ^= f(R, sched->k0246[12], sched->k1357[12]);
    R ^= f(L, sched->k0246[13], sched->k1357[13]);
    L ^= f(R, sched->k0246[14], sched->k1357[14]);
    R ^= f(L, sched->k0246[15], sched->k1357[15]);

    L = rotl(L, 31);
    R = rotl(R, 31);

    swap = L;
    L = R;
    R = swap;

    FP(L, R);

    output[0] = L;
    output[1] = R;
}

static void des_decipher(word32 * output, word32 L, word32 R,
			 DESContext * sched)
{
    word32 swap, s0246, s1357;

    IP(L, R);

    L = rotl(L, 1);
    R = rotl(R, 1);

    L ^= f(R, sched->k0246[15], sched->k1357[15]);
    R ^= f(L, sched->k0246[14], sched->k1357[14]);
    L ^= f(R, sched->k0246[13], sched->k1357[13]);
    R ^= f(L, sched->k0246[12], sched->k1357[12]);
    L ^= f(R, sched->k0246[11], sched->k1357[11]);
    R ^= f(L, sched->k0246[10], sched->k1357[10]);
    L ^= f(R, sched->k0246[9], sched->k1357[9]);
    R ^= f(L, sched->k0246[8], sched->k1357[8]);
    L ^= f(R, sched->k0246[7], sched->k1357[7]);
    R ^= f(L, sched->k0246[6], sched->k1357[6]);
    L ^= f(R, sched->k0246[5], sched->k1357[5]);
    R ^= f(L, sched->k0246[4], sched->k1357[4]);
    L ^= f(R, sched->k0246[3], sched->k1357[3]);
    R ^= f(L, sched->k0246[2], sched->k1357[2]);
    L ^= f(R, sched->k0246[1], sched->k1357[1]);
    R ^= f(L, sched->k0246[0], sched->k1357[0]);

    L = rotl(L, 31);
    R = rotl(R, 31);

    swap = L;
    L = R;
    R = swap;

    FP(L, R);

    output[0] = L;
    output[1] = R;
}

static void des_cbc_encrypt(unsigned char *blk,
			    unsigned int len, DESContext * sched)
{
    word32 out[2], iv0, iv1;
    unsigned int i;

    assert((len & 7) == 0);

    iv0 = sched->iv0;
    iv1 = sched->iv1;
    for (i = 0; i < len; i += 8) {
	iv0 ^= GET_32BIT_MSB_FIRST(blk);
	iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);
	des_encipher(out, iv0, iv1, sched);
	iv0 = out[0];
	iv1 = out[1];
	PUT_32BIT_MSB_FIRST(blk, iv0);
	PUT_32BIT_MSB_FIRST(blk + 4, iv1);
	blk += 8;
    }
    sched->iv0 = iv0;
    sched->iv1 = iv1;
}

static void des_cbc_decrypt(unsigned char *blk,
			    unsigned int len, DESContext * sched)
{
    word32 out[2], iv0, iv1, xL, xR;
    unsigned int i;

    assert((len & 7) == 0);

    iv0 = sched->iv0;
    iv1 = sched->iv1;
    for (i = 0; i < len; i += 8) {
	xL = GET_32BIT_MSB_FIRST(blk);
	xR = GET_32BIT_MSB_FIRST(blk + 4);
	des_decipher(out, xL, xR, sched);
	iv0 ^= out[0];
	iv1 ^= out[1];
	PUT_32BIT_MSB_FIRST(blk, iv0);
	PUT_32BIT_MSB_FIRST(blk + 4, iv1);
	blk += 8;
	iv0 = xL;
	iv1 = xR;
    }
    sched->iv0 = iv0;
    sched->iv1 = iv1;
}

static void des_3cbc_encrypt(unsigned char *blk,
			     unsigned int len, DESContext * scheds)
{
    des_cbc_encrypt(blk, len, &scheds[0]);
    des_cbc_decrypt(blk, len, &scheds[1]);
    des_cbc_encrypt(blk, len, &scheds[2]);
}

static void des_cbc3_encrypt(unsigned char *blk,
			     unsigned int len, DESContext * scheds)
{
    word32 out[2], iv0, iv1;
    unsigned int i;

    assert((len & 7) == 0);

    iv0 = scheds->iv0;
    iv1 = scheds->iv1;
    for (i = 0; i < len; i += 8) {
	iv0 ^= GET_32BIT_MSB_FIRST(blk);
	iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);
	des_encipher(out, iv0, iv1, &scheds[0]);
	des_decipher(out, out[0], out[1], &scheds[1]);
	des_encipher(out, out[0], out[1], &scheds[2]);
	iv0 = out[0];
	iv1 = out[1];
	PUT_32BIT_MSB_FIRST(blk, iv0);
	PUT_32BIT_MSB_FIRST(blk + 4, iv1);
	blk += 8;
    }
    scheds->iv0 = iv0;
    scheds->iv1 = iv1;
}

static void des_3cbc_decrypt(unsigned char *blk,
			     unsigned int len, DESContext * scheds)
{
    des_cbc_decrypt(blk, len, &scheds[2]);
    des_cbc_encrypt(blk, len, &scheds[1]);
    des_cbc_decrypt(blk, len, &scheds[0]);
}

static void des_cbc3_decrypt(unsigned char *blk,
			     unsigned int len, DESContext * scheds)
{
    word32 out[2], iv0, iv1, xL, xR;
    unsigned int i;

    assert((len & 7) == 0);

    iv0 = scheds->iv0;
    iv1 = scheds->iv1;
    for (i = 0; i < len; i += 8) {
	xL = GET_32BIT_MSB_FIRST(blk);
	xR = GET_32BIT_MSB_FIRST(blk + 4);
	des_decipher(out, xL, xR, &scheds[2]);
	des_encipher(out, out[0], out[1], &scheds[1]);
	des_decipher(out, out[0], out[1], &scheds[0]);
	iv0 ^= out[0];
	iv1 ^= out[1];
	PUT_32BIT_MSB_FIRST(blk, iv0);
	PUT_32BIT_MSB_FIRST(blk + 4, iv1);
	blk += 8;
	iv0 = xL;
	iv1 = xR;
    }
    scheds->iv0 = iv0;
    scheds->iv1 = iv1;
}

static void des_sdctr3(unsigned char *blk,
			     unsigned int len, DESContext * scheds)
{
    word32 b[2], iv0, iv1, tmp;
    unsigned int i;

    assert((len & 7) == 0);

    iv0 = scheds->iv0;
    iv1 = scheds->iv1;
    for (i = 0; i < len; i += 8) {
	des_encipher(b, iv0, iv1, &scheds[0]);
	des_decipher(b, b[0], b[1], &scheds[1]);
	des_encipher(b, b[0], b[1], &scheds[2]);
	tmp = GET_32BIT_MSB_FIRST(blk);
	PUT_32BIT_MSB_FIRST(blk, tmp ^ b[0]);
	blk += 4;
	tmp = GET_32BIT_MSB_FIRST(blk);
	PUT_32BIT_MSB_FIRST(blk, tmp ^ b[1]);
	blk += 4;
	if ((iv1 = (iv1 + 1) & 0xffffffff) == 0)
	    iv0 = (iv0 + 1) & 0xffffffff;
    }
    scheds->iv0 = iv0;
    scheds->iv1 = iv1;
}

static void *des3_make_context(void)
{
    return snewn(3, DESContext);
}

static void *des3_ssh1_make_context(void)
{
    /* Need 3 keys for each direction, in SSH-1 */
    return snewn(6, DESContext);
}

static void *des_make_context(void)
{
    return snew(DESContext);
}

static void *des_ssh1_make_context(void)
{
    /* Need one key for each direction, in SSH-1 */
    return snewn(2, DESContext);
}

static void des3_free_context(void *handle)   /* used for both 3DES and DES */
{
    sfree(handle);
}

static void des3_key(void *handle, unsigned char *key)
{
    DESContext *keys = (DESContext *) handle;
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
		  GET_32BIT_MSB_FIRST(key + 12), &keys[1]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
		  GET_32BIT_MSB_FIRST(key + 20), &keys[2]);
}

static void des3_iv(void *handle, unsigned char *key)
{
    DESContext *keys = (DESContext *) handle;
    keys[0].iv0 = GET_32BIT_MSB_FIRST(key);
    keys[0].iv1 = GET_32BIT_MSB_FIRST(key + 4);
}

static void des_key(void *handle, unsigned char *key)
{
    DESContext *keys = (DESContext *) handle;
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &keys[0]);
}

static void des3_sesskey(void *handle, unsigned char *key)
{
    DESContext *keys = (DESContext *) handle;
    des3_key(keys, key);
    des3_key(keys+3, key);
}

static void des3_encrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_3cbc_encrypt(blk, len, keys);
}

static void des3_decrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_3cbc_decrypt(blk, len, keys+3);
}

static void des3_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_cbc3_encrypt(blk, len, keys);
}

static void des3_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_cbc3_decrypt(blk, len, keys);
}

static void des3_ssh2_sdctr(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_sdctr3(blk, len, keys);
}

static void des_ssh2_encrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_cbc_encrypt(blk, len, keys);
}

static void des_ssh2_decrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_cbc_decrypt(blk, len, keys);
}

void des3_decrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
{
    DESContext ourkeys[3];
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
		  GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
    des_3cbc_decrypt(blk, len, ourkeys);
    memset(ourkeys, 0, sizeof(ourkeys));
}

void des3_encrypt_pubkey(unsigned char *key, unsigned char *blk, int len)
{
    DESContext ourkeys[3];
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
		  GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
    des_3cbc_encrypt(blk, len, ourkeys);
    memset(ourkeys, 0, sizeof(ourkeys));
}

void des3_decrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
			      unsigned char *blk, int len)
{
    DESContext ourkeys[3];
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
		  GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
		  GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
    ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
    ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
    des_cbc3_decrypt(blk, len, ourkeys);
    memset(ourkeys, 0, sizeof(ourkeys));
}

void des3_encrypt_pubkey_ossh(unsigned char *key, unsigned char *iv,
			      unsigned char *blk, int len)
{
    DESContext ourkeys[3];
    des_key_setup(GET_32BIT_MSB_FIRST(key),
		  GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
		  GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
    des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
		  GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
    ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
    ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
    des_cbc3_encrypt(blk, len, ourkeys);
    memset(ourkeys, 0, sizeof(ourkeys));
}

static void des_keysetup_xdmauth(unsigned char *keydata, DESContext *dc)
{
    unsigned char key[8];
    int i, nbits, j;
    unsigned int bits;

    bits = 0;
    nbits = 0;
    j = 0;
    for (i = 0; i < 8; i++) {
	if (nbits < 7) {
	    bits = (bits << 8) | keydata[j];
	    nbits += 8;
	    j++;
	}
	key[i] = (bits >> (nbits - 7)) << 1;
	bits &= ~(0x7F << (nbits - 7));
	nbits -= 7;
    }

    des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key + 4), dc);
}

void des_encrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)
{
    DESContext dc;
    des_keysetup_xdmauth(keydata, &dc);
    des_cbc_encrypt(blk, 24, &dc);
}

void des_decrypt_xdmauth(unsigned char *keydata, unsigned char *blk, int len)
{
    DESContext dc;
    des_keysetup_xdmauth(keydata, &dc);
    des_cbc_decrypt(blk, 24, &dc);
}

static const struct ssh2_cipher ssh_3des_ssh2 = {
    des3_make_context, des3_free_context, des3_iv, des3_key,
    des3_ssh2_encrypt_blk, des3_ssh2_decrypt_blk,
    "3des-cbc",
    8, 168, SSH_CIPHER_IS_CBC, "triple-DES CBC"
};

static const struct ssh2_cipher ssh_3des_ssh2_ctr = {
    des3_make_context, des3_free_context, des3_iv, des3_key,
    des3_ssh2_sdctr, des3_ssh2_sdctr,
    "3des-ctr",
    8, 168, 0, "triple-DES SDCTR"
};

/*
 * Single DES in SSH-2. "des-cbc" is marked as HISTORIC in
 * RFC 4250, referring to
 * FIPS-46-3.  ("Single DES (i.e., DES) will be permitted 
 * for legacy systems only.") , but ssh.com support it and 
 * apparently aren't the only people to do so, so we sigh 
 * and implement it anyway.
 */
static const struct ssh2_cipher ssh_des_ssh2 = {
    des_make_context, des3_free_context, des3_iv, des_key,
    des_ssh2_encrypt_blk, des_ssh2_decrypt_blk,
    "des-cbc",
    8, 56, SSH_CIPHER_IS_CBC, "single-DES CBC"
};

static const struct ssh2_cipher ssh_des_sshcom_ssh2 = {
    des_make_context, des3_free_context, des3_iv, des_key,
    des_ssh2_encrypt_blk, des_ssh2_decrypt_blk,
    "des-cbc@ssh.com",
    8, 56, SSH_CIPHER_IS_CBC, "single-DES CBC"
};

static const struct ssh2_cipher *const des3_list[] = {
    &ssh_3des_ssh2_ctr,
    &ssh_3des_ssh2
};

const struct ssh2_ciphers ssh2_3des = {
    sizeof(des3_list) / sizeof(*des3_list),
    des3_list
};

static const struct ssh2_cipher *const des_list[] = {
    &ssh_des_ssh2,
    &ssh_des_sshcom_ssh2
};

const struct ssh2_ciphers ssh2_des = {
    sizeof(des_list) / sizeof(*des_list),
    des_list
};

const struct ssh_cipher ssh_3des = {
    des3_ssh1_make_context, des3_free_context, des3_sesskey,
    des3_encrypt_blk, des3_decrypt_blk,
    8, "triple-DES inner-CBC"
};

static void des_sesskey(void *handle, unsigned char *key)
{
    DESContext *keys = (DESContext *) handle;
    des_key(keys, key);
    des_key(keys+1, key);
}

static void des_encrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_cbc_encrypt(blk, len, keys);
}

static void des_decrypt_blk(void *handle, unsigned char *blk, int len)
{
    DESContext *keys = (DESContext *) handle;
    des_cbc_decrypt(blk, len, keys+1);
}

const struct ssh_cipher ssh_des = {
    des_ssh1_make_context, des3_free_context, des_sesskey,
    des_encrypt_blk, des_decrypt_blk,
    8, "single-DES CBC"
};
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.