Source

PuTTY / sshrsa.c

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
/*
 * RSA implementation for PuTTY.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "ssh.h"
#include "misc.h"

int makekey(unsigned char *data, int len, struct RSAKey *result,
	    unsigned char **keystr, int order)
{
    unsigned char *p = data;
    int i, n;

    if (len < 4)
	return -1;

    if (result) {
	result->bits = 0;
	for (i = 0; i < 4; i++)
	    result->bits = (result->bits << 8) + *p++;
    } else
	p += 4;

    len -= 4;

    /*
     * order=0 means exponent then modulus (the keys sent by the
     * server). order=1 means modulus then exponent (the keys
     * stored in a keyfile).
     */

    if (order == 0) {
	n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
	if (n < 0) return -1;
	p += n;
	len -= n;
    }

    n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
    if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
    if (result)
	result->bytes = n - 2;
    if (keystr)
	*keystr = p + 2;
    p += n;
    len -= n;

    if (order == 1) {
	n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
	if (n < 0) return -1;
	p += n;
	len -= n;
    }
    return p - data;
}

int makeprivate(unsigned char *data, int len, struct RSAKey *result)
{
    return ssh1_read_bignum(data, len, &result->private_exponent);
}

int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
{
    Bignum b1, b2;
    int i;
    unsigned char *p;

    if (key->bytes < length + 4)
	return 0;		       /* RSA key too short! */

    memmove(data + key->bytes - length, data, length);
    data[0] = 0;
    data[1] = 2;

    for (i = 2; i < key->bytes - length - 1; i++) {
	do {
	    data[i] = random_byte();
	} while (data[i] == 0);
    }
    data[key->bytes - length - 1] = 0;

    b1 = bignum_from_bytes(data, key->bytes);

    b2 = modpow(b1, key->exponent, key->modulus);

    p = data;
    for (i = key->bytes; i--;) {
	*p++ = bignum_byte(b2, i);
    }

    freebn(b1);
    freebn(b2);

    return 1;
}

static void sha512_mpint(SHA512_State * s, Bignum b)
{
    unsigned char lenbuf[4];
    int len;
    len = (bignum_bitcount(b) + 8) / 8;
    PUT_32BIT(lenbuf, len);
    SHA512_Bytes(s, lenbuf, 4);
    while (len-- > 0) {
	lenbuf[0] = bignum_byte(b, len);
	SHA512_Bytes(s, lenbuf, 1);
    }
    memset(lenbuf, 0, sizeof(lenbuf));
}

/*
 * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
 * distinct primes, and iqmp is the multiplicative inverse of q mod p.
 * Uses Chinese Remainder Theorem to speed computation up over the
 * obvious implementation of a single big modpow.
 */
Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
                  Bignum p, Bignum q, Bignum iqmp)
{
    Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;

    /*
     * Reduce the exponent mod phi(p) and phi(q), to save time when
     * exponentiating mod p and mod q respectively. Of course, since p
     * and q are prime, phi(p) == p-1 and similarly for q.
     */
    pm1 = copybn(p);
    decbn(pm1);
    qm1 = copybn(q);
    decbn(qm1);
    pexp = bigmod(exp, pm1);
    qexp = bigmod(exp, qm1);

    /*
     * Do the two modpows.
     */
    presult = modpow(base, pexp, p);
    qresult = modpow(base, qexp, q);

    /*
     * Recombine the results. We want a value which is congruent to
     * qresult mod q, and to presult mod p.
     *
     * We know that iqmp * q is congruent to 1 * mod p (by definition
     * of iqmp) and to 0 mod q (obviously). So we start with qresult
     * (which is congruent to qresult mod both primes), and add on
     * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
     * to presult mod p without affecting its value mod q.
     */
    if (bignum_cmp(presult, qresult) < 0) {
        /*
         * Can't subtract presult from qresult without first adding on
         * p.
         */
        Bignum tmp = presult;
        presult = bigadd(presult, p);
        freebn(tmp);
    }
    diff = bigsub(presult, qresult);
    multiplier = bigmul(iqmp, q);
    ret0 = bigmuladd(multiplier, diff, qresult);

    /*
     * Finally, reduce the result mod n.
     */
    ret = bigmod(ret0, mod);

    /*
     * Free all the intermediate results before returning.
     */
    freebn(pm1);
    freebn(qm1);
    freebn(pexp);
    freebn(qexp);
    freebn(presult);
    freebn(qresult);
    freebn(diff);
    freebn(multiplier);
    freebn(ret0);

    return ret;
}

/*
 * This function is a wrapper on modpow(). It has the same effect as
 * modpow(), but employs RSA blinding to protect against timing
 * attacks and also uses the Chinese Remainder Theorem (implemented
 * above, in crt_modpow()) to speed up the main operation.
 */
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
{
    Bignum random, random_encrypted, random_inverse;
    Bignum input_blinded, ret_blinded;
    Bignum ret;

    SHA512_State ss;
    unsigned char digest512[64];
    int digestused = lenof(digest512);
    int hashseq = 0;

    /*
     * Start by inventing a random number chosen uniformly from the
     * range 2..modulus-1. (We do this by preparing a random number
     * of the right length and retrying if it's greater than the
     * modulus, to prevent any potential Bleichenbacher-like
     * attacks making use of the uneven distribution within the
     * range that would arise from just reducing our number mod n.
     * There are timing implications to the potential retries, of
     * course, but all they tell you is the modulus, which you
     * already knew.)
     * 
     * To preserve determinism and avoid Pageant needing to share
     * the random number pool, we actually generate this `random'
     * number by hashing stuff with the private key.
     */
    while (1) {
	int bits, byte, bitsleft, v;
	random = copybn(key->modulus);
	/*
	 * Find the topmost set bit. (This function will return its
	 * index plus one.) Then we'll set all bits from that one
	 * downwards randomly.
	 */
	bits = bignum_bitcount(random);
	byte = 0;
	bitsleft = 0;
	while (bits--) {
	    if (bitsleft <= 0) {
		bitsleft = 8;
		/*
		 * Conceptually the following few lines are equivalent to
		 *    byte = random_byte();
		 */
		if (digestused >= lenof(digest512)) {
		    unsigned char seqbuf[4];
		    PUT_32BIT(seqbuf, hashseq);
		    SHA512_Init(&ss);
		    SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
		    SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
		    sha512_mpint(&ss, key->private_exponent);
		    SHA512_Final(&ss, digest512);
		    hashseq++;

		    /*
		     * Now hash that digest plus the signature
		     * input.
		     */
		    SHA512_Init(&ss);
		    SHA512_Bytes(&ss, digest512, sizeof(digest512));
		    sha512_mpint(&ss, input);
		    SHA512_Final(&ss, digest512);

		    digestused = 0;
		}
		byte = digest512[digestused++];
	    }
	    v = byte & 1;
	    byte >>= 1;
	    bitsleft--;
	    bignum_set_bit(random, bits, v);
	}

	/*
	 * Now check that this number is strictly greater than
	 * zero, and strictly less than modulus.
	 */
	if (bignum_cmp(random, Zero) <= 0 ||
	    bignum_cmp(random, key->modulus) >= 0) {
	    freebn(random);
	    continue;
	} else {
	    break;
	}
    }

    /*
     * RSA blinding relies on the fact that (xy)^d mod n is equal
     * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
     * y and y^d; then we multiply x by y, raise to the power d mod
     * n as usual, and divide by y^d to recover x^d. Thus an
     * attacker can't correlate the timing of the modpow with the
     * input, because they don't know anything about the number
     * that was input to the actual modpow.
     * 
     * The clever bit is that we don't have to do a huge modpow to
     * get y and y^d; we will use the number we just invented as
     * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
     * from it, which is much faster to do.
     */
    random_encrypted = crt_modpow(random, key->exponent,
                                  key->modulus, key->p, key->q, key->iqmp);
    random_inverse = modinv(random, key->modulus);
    input_blinded = modmul(input, random_encrypted, key->modulus);
    ret_blinded = crt_modpow(input_blinded, key->private_exponent,
                             key->modulus, key->p, key->q, key->iqmp);
    ret = modmul(ret_blinded, random_inverse, key->modulus);

    freebn(ret_blinded);
    freebn(input_blinded);
    freebn(random_inverse);
    freebn(random_encrypted);
    freebn(random);

    return ret;
}

Bignum rsadecrypt(Bignum input, struct RSAKey *key)
{
    return rsa_privkey_op(input, key);
}

int rsastr_len(struct RSAKey *key)
{
    Bignum md, ex;
    int mdlen, exlen;

    md = key->modulus;
    ex = key->exponent;
    mdlen = (bignum_bitcount(md) + 15) / 16;
    exlen = (bignum_bitcount(ex) + 15) / 16;
    return 4 * (mdlen + exlen) + 20;
}

void rsastr_fmt(char *str, struct RSAKey *key)
{
    Bignum md, ex;
    int len = 0, i, nibbles;
    static const char hex[] = "0123456789abcdef";

    md = key->modulus;
    ex = key->exponent;

    len += sprintf(str + len, "0x");

    nibbles = (3 + bignum_bitcount(ex)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];

    len += sprintf(str + len, ",0x");

    nibbles = (3 + bignum_bitcount(md)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];

    str[len] = '\0';
}

/*
 * Generate a fingerprint string for the key. Compatible with the
 * OpenSSH fingerprint code.
 */
void rsa_fingerprint(char *str, int len, struct RSAKey *key)
{
    struct MD5Context md5c;
    unsigned char digest[16];
    char buffer[16 * 3 + 40];
    int numlen, slen, i;

    MD5Init(&md5c);
    numlen = ssh1_bignum_length(key->modulus) - 2;
    for (i = numlen; i--;) {
	unsigned char c = bignum_byte(key->modulus, i);
	MD5Update(&md5c, &c, 1);
    }
    numlen = ssh1_bignum_length(key->exponent) - 2;
    for (i = numlen; i--;) {
	unsigned char c = bignum_byte(key->exponent, i);
	MD5Update(&md5c, &c, 1);
    }
    MD5Final(digest, &md5c);

    sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
    for (i = 0; i < 16; i++)
	sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
		digest[i]);
    strncpy(str, buffer, len);
    str[len - 1] = '\0';
    slen = strlen(str);
    if (key->comment && slen < len - 1) {
	str[slen] = ' ';
	strncpy(str + slen + 1, key->comment, len - slen - 1);
	str[len - 1] = '\0';
    }
}

/*
 * Verify that the public data in an RSA key matches the private
 * data. We also check the private data itself: we ensure that p >
 * q and that iqmp really is the inverse of q mod p.
 */
int rsa_verify(struct RSAKey *key)
{
    Bignum n, ed, pm1, qm1;
    int cmp;

    /* n must equal pq. */
    n = bigmul(key->p, key->q);
    cmp = bignum_cmp(n, key->modulus);
    freebn(n);
    if (cmp != 0)
	return 0;

    /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
    pm1 = copybn(key->p);
    decbn(pm1);
    ed = modmul(key->exponent, key->private_exponent, pm1);
    cmp = bignum_cmp(ed, One);
    sfree(ed);
    if (cmp != 0)
	return 0;

    qm1 = copybn(key->q);
    decbn(qm1);
    ed = modmul(key->exponent, key->private_exponent, qm1);
    cmp = bignum_cmp(ed, One);
    sfree(ed);
    if (cmp != 0)
	return 0;

    /*
     * Ensure p > q.
     *
     * I have seen key blobs in the wild which were generated with
     * p < q, so instead of rejecting the key in this case we
     * should instead flip them round into the canonical order of
     * p > q. This also involves regenerating iqmp.
     */
    if (bignum_cmp(key->p, key->q) <= 0) {
	Bignum tmp = key->p;
	key->p = key->q;
	key->q = tmp;

	freebn(key->iqmp);
	key->iqmp = modinv(key->q, key->p);
    }

    /*
     * Ensure iqmp * q is congruent to 1, modulo p.
     */
    n = modmul(key->iqmp, key->q, key->p);
    cmp = bignum_cmp(n, One);
    sfree(n);
    if (cmp != 0)
	return 0;

    return 1;
}

/* Public key blob as used by Pageant: exponent before modulus. */
unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
{
    int length, pos;
    unsigned char *ret;

    length = (ssh1_bignum_length(key->modulus) +
	      ssh1_bignum_length(key->exponent) + 4);
    ret = snewn(length, unsigned char);

    PUT_32BIT(ret, bignum_bitcount(key->modulus));
    pos = 4;
    pos += ssh1_write_bignum(ret + pos, key->exponent);
    pos += ssh1_write_bignum(ret + pos, key->modulus);

    *len = length;
    return ret;
}

/* Given a public blob, determine its length. */
int rsa_public_blob_len(void *data, int maxlen)
{
    unsigned char *p = (unsigned char *)data;
    int n;

    if (maxlen < 4)
	return -1;
    p += 4;			       /* length word */
    maxlen -= 4;

    n = ssh1_read_bignum(p, maxlen, NULL);    /* exponent */
    if (n < 0)
	return -1;
    p += n;

    n = ssh1_read_bignum(p, maxlen, NULL);    /* modulus */
    if (n < 0)
	return -1;
    p += n;

    return p - (unsigned char *)data;
}

void freersakey(struct RSAKey *key)
{
    if (key->modulus)
	freebn(key->modulus);
    if (key->exponent)
	freebn(key->exponent);
    if (key->private_exponent)
	freebn(key->private_exponent);
    if (key->p)
	freebn(key->p);
    if (key->q)
	freebn(key->q);
    if (key->iqmp)
	freebn(key->iqmp);
    if (key->comment)
	sfree(key->comment);
}

/* ----------------------------------------------------------------------
 * Implementation of the ssh-rsa signing key type. 
 */

static void getstring(char **data, int *datalen, char **p, int *length)
{
    *p = NULL;
    if (*datalen < 4)
	return;
    *length = GET_32BIT(*data);
    *datalen -= 4;
    *data += 4;
    if (*datalen < *length)
	return;
    *p = *data;
    *data += *length;
    *datalen -= *length;
}
static Bignum getmp(char **data, int *datalen)
{
    char *p;
    int length;
    Bignum b;

    getstring(data, datalen, &p, &length);
    if (!p)
	return NULL;
    b = bignum_from_bytes((unsigned char *)p, length);
    return b;
}

static void *rsa2_newkey(char *data, int len)
{
    char *p;
    int slen;
    struct RSAKey *rsa;

    rsa = snew(struct RSAKey);
    if (!rsa)
	return NULL;
    getstring(&data, &len, &p, &slen);

    if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
	sfree(rsa);
	return NULL;
    }
    rsa->exponent = getmp(&data, &len);
    rsa->modulus = getmp(&data, &len);
    rsa->private_exponent = NULL;
    rsa->p = rsa->q = rsa->iqmp = NULL;
    rsa->comment = NULL;

    return rsa;
}

static void rsa2_freekey(void *key)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    freersakey(rsa);
    sfree(rsa);
}

static char *rsa2_fmtkey(void *key)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    char *p;
    int len;

    len = rsastr_len(rsa);
    p = snewn(len, char);
    rsastr_fmt(p, rsa);
    return p;
}

static unsigned char *rsa2_public_blob(void *key, int *len)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    int elen, mlen, bloblen;
    int i;
    unsigned char *blob, *p;

    elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
    mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;

    /*
     * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
     * (three length fields, 12+7=19).
     */
    bloblen = 19 + elen + mlen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, 7);
    p += 4;
    memcpy(p, "ssh-rsa", 7);
    p += 7;
    PUT_32BIT(p, elen);
    p += 4;
    for (i = elen; i--;)
	*p++ = bignum_byte(rsa->exponent, i);
    PUT_32BIT(p, mlen);
    p += 4;
    for (i = mlen; i--;)
	*p++ = bignum_byte(rsa->modulus, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}

static unsigned char *rsa2_private_blob(void *key, int *len)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    int dlen, plen, qlen, ulen, bloblen;
    int i;
    unsigned char *blob, *p;

    dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
    plen = (bignum_bitcount(rsa->p) + 8) / 8;
    qlen = (bignum_bitcount(rsa->q) + 8) / 8;
    ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;

    /*
     * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
     * sum of lengths.
     */
    bloblen = 16 + dlen + plen + qlen + ulen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, dlen);
    p += 4;
    for (i = dlen; i--;)
	*p++ = bignum_byte(rsa->private_exponent, i);
    PUT_32BIT(p, plen);
    p += 4;
    for (i = plen; i--;)
	*p++ = bignum_byte(rsa->p, i);
    PUT_32BIT(p, qlen);
    p += 4;
    for (i = qlen; i--;)
	*p++ = bignum_byte(rsa->q, i);
    PUT_32BIT(p, ulen);
    p += 4;
    for (i = ulen; i--;)
	*p++ = bignum_byte(rsa->iqmp, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}

static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
			    unsigned char *priv_blob, int priv_len)
{
    struct RSAKey *rsa;
    char *pb = (char *) priv_blob;

    rsa = rsa2_newkey((char *) pub_blob, pub_len);
    rsa->private_exponent = getmp(&pb, &priv_len);
    rsa->p = getmp(&pb, &priv_len);
    rsa->q = getmp(&pb, &priv_len);
    rsa->iqmp = getmp(&pb, &priv_len);

    if (!rsa_verify(rsa)) {
	rsa2_freekey(rsa);
	return NULL;
    }

    return rsa;
}

static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
{
    char **b = (char **) blob;
    struct RSAKey *rsa;

    rsa = snew(struct RSAKey);
    if (!rsa)
	return NULL;
    rsa->comment = NULL;

    rsa->modulus = getmp(b, len);
    rsa->exponent = getmp(b, len);
    rsa->private_exponent = getmp(b, len);
    rsa->iqmp = getmp(b, len);
    rsa->p = getmp(b, len);
    rsa->q = getmp(b, len);

    if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
	!rsa->iqmp || !rsa->p || !rsa->q) {
	sfree(rsa->modulus);
	sfree(rsa->exponent);
	sfree(rsa->private_exponent);
	sfree(rsa->iqmp);
	sfree(rsa->p);
	sfree(rsa->q);
	sfree(rsa);
	return NULL;
    }

    return rsa;
}

static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    int bloblen, i;

    bloblen =
	ssh2_bignum_length(rsa->modulus) +
	ssh2_bignum_length(rsa->exponent) +
	ssh2_bignum_length(rsa->private_exponent) +
	ssh2_bignum_length(rsa->iqmp) +
	ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);

    if (bloblen > len)
	return bloblen;

    bloblen = 0;
#define ENC(x) \
    PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
    for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
    ENC(rsa->modulus);
    ENC(rsa->exponent);
    ENC(rsa->private_exponent);
    ENC(rsa->iqmp);
    ENC(rsa->p);
    ENC(rsa->q);

    return bloblen;
}

static int rsa2_pubkey_bits(void *blob, int len)
{
    struct RSAKey *rsa;
    int ret;

    rsa = rsa2_newkey((char *) blob, len);
    ret = bignum_bitcount(rsa->modulus);
    rsa2_freekey(rsa);

    return ret;
}

static char *rsa2_fingerprint(void *key)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    struct MD5Context md5c;
    unsigned char digest[16], lenbuf[4];
    char buffer[16 * 3 + 40];
    char *ret;
    int numlen, i;

    MD5Init(&md5c);
    MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);

#define ADD_BIGNUM(bignum) \
    numlen = (bignum_bitcount(bignum)+8)/8; \
    PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
    for (i = numlen; i-- ;) { \
        unsigned char c = bignum_byte(bignum, i); \
        MD5Update(&md5c, &c, 1); \
    }
    ADD_BIGNUM(rsa->exponent);
    ADD_BIGNUM(rsa->modulus);
#undef ADD_BIGNUM

    MD5Final(digest, &md5c);

    sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
    for (i = 0; i < 16; i++)
	sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
		digest[i]);
    ret = snewn(strlen(buffer) + 1, char);
    if (ret)
	strcpy(ret, buffer);
    return ret;
}

/*
 * This is the magic ASN.1/DER prefix that goes in the decoded
 * signature, between the string of FFs and the actual SHA hash
 * value. The meaning of it is:
 * 
 * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
 * 
 * 30 21 -- a constructed SEQUENCE of length 0x21
 *    30 09 -- a constructed sub-SEQUENCE of length 9
 *       06 05 -- an object identifier, length 5
 *          2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
 *                            (the 1,3 comes from 0x2B = 43 = 40*1+3)
 *       05 00 -- NULL
 *    04 14 -- a primitive OCTET STRING of length 0x14
 *       [0x14 bytes of hash data follows]
 * 
 * The object id in the middle there is listed as `id-sha1' in
 * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
 * ASN module for PKCS #1) and its expanded form is as follows:
 * 
 * id-sha1                OBJECT IDENTIFIER ::= {
 *    iso(1) identified-organization(3) oiw(14) secsig(3)
 *    algorithms(2) 26 }
 */
static const unsigned char asn1_weird_stuff[] = {
    0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
    0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
};

#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )

static int rsa2_verifysig(void *key, char *sig, int siglen,
			  char *data, int datalen)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    Bignum in, out;
    char *p;
    int slen;
    int bytes, i, j, ret;
    unsigned char hash[20];

    getstring(&sig, &siglen, &p, &slen);
    if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
	return 0;
    }
    in = getmp(&sig, &siglen);
    out = modpow(in, rsa->exponent, rsa->modulus);
    freebn(in);

    ret = 1;

    bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
    /* Top (partial) byte should be zero. */
    if (bignum_byte(out, bytes - 1) != 0)
	ret = 0;
    /* First whole byte should be 1. */
    if (bignum_byte(out, bytes - 2) != 1)
	ret = 0;
    /* Most of the rest should be FF. */
    for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
	if (bignum_byte(out, i) != 0xFF)
	    ret = 0;
    }
    /* Then we expect to see the asn1_weird_stuff. */
    for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
	if (bignum_byte(out, i) != asn1_weird_stuff[j])
	    ret = 0;
    }
    /* Finally, we expect to see the SHA-1 hash of the signed data. */
    SHA_Simple(data, datalen, hash);
    for (i = 19, j = 0; i >= 0; i--, j++) {
	if (bignum_byte(out, i) != hash[j])
	    ret = 0;
    }
    freebn(out);

    return ret;
}

static unsigned char *rsa2_sign(void *key, char *data, int datalen,
				int *siglen)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    unsigned char *bytes;
    int nbytes;
    unsigned char hash[20];
    Bignum in, out;
    int i, j;

    SHA_Simple(data, datalen, hash);

    nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
    assert(1 <= nbytes - 20 - ASN1_LEN);
    bytes = snewn(nbytes, unsigned char);

    bytes[0] = 1;
    for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
	bytes[i] = 0xFF;
    for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
	bytes[i] = asn1_weird_stuff[j];
    for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
	bytes[i] = hash[j];

    in = bignum_from_bytes(bytes, nbytes);
    sfree(bytes);

    out = rsa_privkey_op(in, rsa);
    freebn(in);

    nbytes = (bignum_bitcount(out) + 7) / 8;
    bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
    PUT_32BIT(bytes, 7);
    memcpy(bytes + 4, "ssh-rsa", 7);
    PUT_32BIT(bytes + 4 + 7, nbytes);
    for (i = 0; i < nbytes; i++)
	bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
    freebn(out);

    *siglen = 4 + 7 + 4 + nbytes;
    return bytes;
}

const struct ssh_signkey ssh_rsa = {
    rsa2_newkey,
    rsa2_freekey,
    rsa2_fmtkey,
    rsa2_public_blob,
    rsa2_private_blob,
    rsa2_createkey,
    rsa2_openssh_createkey,
    rsa2_openssh_fmtkey,
    rsa2_pubkey_bits,
    rsa2_fingerprint,
    rsa2_verifysig,
    rsa2_sign,
    "ssh-rsa",
    "rsa2"
};

void *ssh_rsakex_newkey(char *data, int len)
{
    return rsa2_newkey(data, len);
}

void ssh_rsakex_freekey(void *key)
{
    rsa2_freekey(key);
}

int ssh_rsakex_klen(void *key)
{
    struct RSAKey *rsa = (struct RSAKey *) key;

    return bignum_bitcount(rsa->modulus);
}

static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,
		      void *vdata, int datalen)
{
    unsigned char *data = (unsigned char *)vdata;
    unsigned count = 0;

    while (datalen > 0) {
        int i, max = (datalen > h->hlen ? h->hlen : datalen);
        void *s;
        unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN];

	assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
        PUT_32BIT(counter, count);
        s = h->init();
        h->bytes(s, seed, seedlen);
        h->bytes(s, counter, 4);
        h->final(s, hash);
        count++;

        for (i = 0; i < max; i++)
            data[i] ^= hash[i];

        data += max;
        datalen -= max;
    }
}

void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,
                        unsigned char *out, int outlen,
                        void *key)
{
    Bignum b1, b2;
    struct RSAKey *rsa = (struct RSAKey *) key;
    int k, i;
    char *p;
    const int HLEN = h->hlen;

    /*
     * Here we encrypt using RSAES-OAEP. Essentially this means:
     * 
     *  - we have a SHA-based `mask generation function' which
     *    creates a pseudo-random stream of mask data
     *    deterministically from an input chunk of data.
     * 
     *  - we have a random chunk of data called a seed.
     * 
     *  - we use the seed to generate a mask which we XOR with our
     *    plaintext.
     * 
     *  - then we use _the masked plaintext_ to generate a mask
     *    which we XOR with the seed.
     * 
     *  - then we concatenate the masked seed and the masked
     *    plaintext, and RSA-encrypt that lot.
     * 
     * The result is that the data input to the encryption function
     * is random-looking and (hopefully) contains no exploitable
     * structure such as PKCS1-v1_5 does.
     * 
     * For a precise specification, see RFC 3447, section 7.1.1.
     * Some of the variable names below are derived from that, so
     * it'd probably help to read it anyway.
     */

    /* k denotes the length in octets of the RSA modulus. */
    k = (7 + bignum_bitcount(rsa->modulus)) / 8;

    /* The length of the input data must be at most k - 2hLen - 2. */
    assert(inlen > 0 && inlen <= k - 2*HLEN - 2);

    /* The length of the output data wants to be precisely k. */
    assert(outlen == k);

    /*
     * Now perform EME-OAEP encoding. First set up all the unmasked
     * output data.
     */
    /* Leading byte zero. */
    out[0] = 0;
    /* At position 1, the seed: HLEN bytes of random data. */
    for (i = 0; i < HLEN; i++)
        out[i + 1] = random_byte();
    /* At position 1+HLEN, the data block DB, consisting of: */
    /* The hash of the label (we only support an empty label here) */
    h->final(h->init(), out + HLEN + 1);
    /* A bunch of zero octets */
    memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
    /* A single 1 octet, followed by the input message data. */
    out[outlen - inlen - 1] = 1;
    memcpy(out + outlen - inlen, in, inlen);

    /*
     * Now use the seed data to mask the block DB.
     */
    oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);

    /*
     * And now use the masked DB to mask the seed itself.
     */
    oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);

    /*
     * Now `out' contains precisely the data we want to
     * RSA-encrypt.
     */
    b1 = bignum_from_bytes(out, outlen);
    b2 = modpow(b1, rsa->exponent, rsa->modulus);
    p = (char *)out;
    for (i = outlen; i--;) {
	*p++ = bignum_byte(b2, i);
    }
    freebn(b1);
    freebn(b2);

    /*
     * And we're done.
     */
}

static const struct ssh_kex ssh_rsa_kex_sha1 = {
    "rsa1024-sha1", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha1
};

static const struct ssh_kex ssh_rsa_kex_sha256 = {
    "rsa2048-sha256", NULL, KEXTYPE_RSA, NULL, NULL, 0, 0, &ssh_sha256
};

static const struct ssh_kex *const rsa_kex_list[] = {
    &ssh_rsa_kex_sha256,
    &ssh_rsa_kex_sha1
};

const struct ssh_kexes ssh_rsa_kex = {
    sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
    rsa_kex_list
};