
ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2012

JA
VA

 T
EC

H

48

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

This article is the first article in
a two-part series about Java

HotSpot VM and just-in-time (JIT)
compilation.

Java HotSpot VM is the VM
that Oracle acquired with the Sun
acquisition, and it is the VM that
forms the basis of both the Java
Virtual Machine (JVM) and the
open source OpenJDK.
Like all VMs, Java
HotSpot VM’s role is
to provide an operat-
ing environment for
bytecode. In practice,
there are three major
functions that need to
be performed:
■■ Executing the

instructions and
computations that
are requested by
methods

■■ Locating, loading,
and verifying new types (that is,
class loading)

■■ Managing memory on behalf of
application code

The last two functions are huge
topics in their own right, so in this
article we will focus purely on the
execution of code.

JIT Compilation
Java HotSpot VM is a mixed-
mode VM, which means that it
starts off interpreting the byte-

code, but it can (on a
method-by-method
basis) compile code
into native machine
instructions for faster
execution.

By pass-
ing the switch
-XX:+PrintCompilation,
you can see entries in
the log file that show
each method as it is
compiled.

This compila-
tion takes place at

runtime—after the method has
already been run a number of
times. By waiting until the method
is actually being used, Java

HotSpot VM can make sophis-
ticated decisions about how to
optimize the code as it compiles
the code.

If you’re curious about
how much difference the JIT
makes, you can turn it off using
-Djava.compiler=none and then
look at the difference in your
benchmarks.

Java HotSpot VM is capable of
running in two separate modes:
client or server. You can choose
the mode by specifying the
-client or -server switch to the JVM
on startup. (This must be the
first switch provided on the
command line.) Each mode has
different situations in which it is
usually preferred. In this article,
we’ll be concerned only with the
server mode.

The major difference between
the two modes is that the server
mode makes more-aggressive
optimizations—based on
assumptions that might not
always hold. These optimiza-

tions are always protected with
a simple guard condition to
check whether the assumption
is correct. If, for any reason, an
assumption is not valid, Java
HotSpot VM reverts the opti-
mization and drops back to
interpreted mode. This behavior
means that Java HotSpot VM
will never do the wrong thing
due to an incorrect optimization
assumption; it always checks the
optimization first.

In server mode, by default,
Java HotSpot VM runs a
method in interpreted mode
10,000 times before compil-
ing it. You can adjust this value
by using the CompileThreshold
switch. For example, pass-
ing -XX:CompileThreshold=5000
causes Java HotSpot VM to run
methods only half as many times
before compiling.

It can be tempting for new users
to reduce the compile threshold
to a very low value. However, you
should resist this temptation,

BEN EVANS’ PHOTOGRAPH BY
JOHN BLYTHE

Part 1

Introduction to JIT Compilation
in Java HotSpot VM

BIO

BEN EVANS AND
PETER LAWREY

Use the PrintCompilation switch to observe the effects of Java HotSpot VM compiling
methods during runs.

BEST BET

Java HotSpot VM
works best when
it can accumulate
enough statistics
to make intelligent
decisions about
what to compile.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2012

JA
VA

 T
EC

H

49

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

because it can reduce performance by
spending time compiling methods that
the VM doesn’t run enough to recover
the cost of compilation.

Java HotSpot VM works best when
it can accumulate enough statistics to
make intelligent decisions about what
to compile. If you reduce the compile
threshold, Java HotSpot VM might spend
a lot of time compiling methods that are
not very relevant to the code paths that
are run the most. Some optimizations
are performed only when enough sta-
tistics have been collected, so the code
might not be as optimal as it could be if
you reduce the compile threshold.

On the other hand, many developers
want to achieve the better performance
of the compiled mode as soon as pos-
sible for their important methods.

One standard way of solving this prob-
lem is to have a warm-up harness that
exercises the code enough
to force compilation (by
sending test traffic into the
system) after the process has
started. For systems such as
order management or trad-
ing systems, it’s important
to make sure that the warm-
up harness doesn’t generate
real orders.

Java HotSpot VM pro-
vides a number of switches
to increase the amount of
information logged about JIT
compilation. The most com-
mon is PrintCompilation—
which we already met—but
there are several others.

We’re going to use PrintCompilation to
observe the effects of Java HotSpot VM
compiling methods during runs. First,
however, we need to say a few words
about the System.nanoTime() method
for timing.

Timer Methods
Java gives us access to two main
time values: currentTimeMillis() and
nanoTime(). The former corresponds
fairly closely to the time that we observe
in the physical world (so-called wall
clock time). Its resolution is enough for
most purposes but not for low-latency
applications.

The higher-resolution alternative is
the nanosecond timer. This timer mea-
sures time in incredibly short intervals.
One nanosecond is the time it takes
light to move about 20 centimeters in a
fiber-optic cable. By contrast, light takes

around 27.5 milliseconds to
travel between London and
New York through fiber-
optic cables.

Due to the very high
resolution of nanosecond
time stamps, uncertainty is
inherent in them. Careful
handling is required when
working with them.

currentTimeMillis(),
for example, is usually
synchronized between
machines reasonably well,
and it can be used to mea-
sure network latencies, but
nanoTime() is not useful
between machines.

To put some of the
above theory into prac-
tice, we’re going to look
at a very simple (but
extremely powerful) JIT
compilation technique.

Method Inlining
One of the key optimiza-
tions the JIT compiler
(but not javac) does is
method inlining: copying
the body of methods into
the methods that call
them and eliminating
the call. This functional-
ity can be important,
because the cost of call-
ing into a trivial method
can be expensive com-
pared to the work done
in it.

The JIT compiler is able
to progressively inline—
that is, start by inlining
simple methods and
then move on to larger
and larger blocks of code
as other optimizations
become possible.

The example shown
in Listing 1, Listing 1A, and Listing 1B is a
simple test harness that compares the
performance of using a field directly or
via a getter/setter method.

Getters and setters are simple meth-
ods that are much more expensive if
they are not inlined, because the call is
more expensive than the field access—a
prime candidate for inlining.

If you run the test harness using
java -cp . -XX:PrintCompilation Main, you
can see the difference in performance
(see Listing 2).

What does all this mean? The first
column in Listing 2 is the number of
milliseconds since the program started.
The second column is the method ID
(for compiled methods) or the itera-

JVM
Convergence

Oracle engineers are currently
working to merge Java HotSpot
VM and Oracle JRockit into a
converged offering that leverages

the best features of each. Oracle plans to contribute the
results of the combined Java HotSpot and Oracle JRockit
Java Virtual Machines (JVMs) into OpenJDK. Here are the
key points:
■■ Oracle JRockit and HotSpot will be merged into a single

JVM, incorporating the best features from both.
■■ The converged JVM will be based on HotSpot code, with

features from Oracle JRockit included.
■■ The result will be contributed incrementally to OpenJDK.
■■ Some existing value-adds, such as those in Oracle

JRockit Mission Control, will remain proprietary (and
licensed commercially).

■■ Oracle will continue to distribute free JDK and JRE
binaries, which include some closed source items.

■■ The JVM convergence will be a multiyear process.
For more details about the JVM merge, read “Oracle’s

JVM Strategy” by Henrik Ståhl, senior director of product
management for the Java Platform Group at Oracle. To learn
more about HotSpot, visit the OpenJDK HotSpot page. You
can see a complete list of JDK Enhancement Proposals,
including on the converged JVM, at the JEP Index. To follow
development and reviews of the merged JVM, you can join
the hotspot-dev@openjdk.java.net mailing list.

—Tori Wieldt

GET READY, GET SET

Getters and
setters are
simple methods
that are much more
expensive if they are
not inlined, because
the call is more
expensive than the
field access—a
prime candidate
for inlining.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://blogs.oracle.com/henrik/entry/oracles_jvm_strategy
https://blogs.oracle.com/henrik/entry/oracles_jvm_strategy
http://openjdk.java.net/groups/hotspot
http://openjdk.java.net/jeps/0
http://mail.openjdk.java.net/mailman/listinfo/hotspot-dev

ORACLE.COM/JAVAMAGAZINE  //   MAY/JUNE 2012

JA
VA

 T
EC

H

50

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

tion count (for the number of iterations
performed so far).
Note: The String and UTF_8 classes are
not used directly by the test, but com-
pilation output still appears for them
because they’re used by the platform.

On the second line in Listing 2, you
can see that both tests are very slow.
This is because the first run of the code
includes the time to load each class. The
next line is much faster even though no
code tested is compiled at this stage.

Also note the following:
■■ At 1,000 and 5,000 iterations, direct

access to the fields is faster than
via getter/setter methods because
the getter and setter have not been
inlined or even optimized. Even so,
both are pretty fast.

■■ By 9,000 iterations, the getter is
optimized (because it is called twice
per loop), which gives a slight overall
improvement to performance.

■■ By 10,000 iterations, the setter has
been optimized. The extra time spent
including the optimized code means
the code briefly runs slower.

■■ Finally, both test classes are optimized:
■■ DFACaller uses direct access to the

fields, and GetSetCaller uses the
getter and setter. This is the point at
which the getter and setter are not
just optimized; they are also inlined.

■■ You can see that in the next
iterations, the test times are still
not optimal.

■■ After 13,000 iterations, the perfor-
mance for each is as good as the final,
much longer test. We’ve reached
steady-state performance.

The important thing to note is that
the steady-state performance for
accessing fields directly or using get-
ters and setters is basically the same
because the methods have (finally) been
inlined into GetSetCaller, meaning the
callable code in viaGetSet is doing exactly
the same work as the code in directCall
(which accesses the fields directly).

The JIT compilation is performed in
the background, and exactly when each
optimization is available for execution
varies from machine to machine and,
somewhat, from run to run.

Conclusion
In this article, we’ve shown you the very
tip of the JIT compilation iceberg. In par-
ticular, we haven’t addressed some very
important aspects of how to write good
benchmarks and how to use statistics to
ensure that the dynamic nature of the
platform isn’t fooling you.

The benchmark used here is very sim-
ple, and it isn’t suitable for a real bench-
mark. In Part 2, we plan to show you how
to handle a more realistic benchmark
and also delve deeper into the code that
the JIT compiler produces when it com-
piles your code. </article>

LEARN MORE
•	 Java HotSpot VM

•	 Just-in-time compilation

public class Main {

 private static double timeTestRun(String desc, int runs, Callable<Double> callable)
throws Exception {
 long start = System.nanoTime();
 callable.call();
 long time = System.nanoTime() - start;
 return (double) time / runs;
 }

 // Housekeeping method to provide nice uptime values for us
 private static long uptime() {
 return ManagementFactory.getRuntimeMXBean().getUptime() + 15;
 // fudge factor
 }

 public static void main(String... args) throws Exception {
 int iterations = 0;
 for (int i : new int[]{ 100, 1000, 5000, 9000, 10000, 11000, 13000, 20000,
100000}) {
 final int runs = i - iterations;
 iterations += runs;

 // NOTE: We return double (sum of values) from our test cases to
 // prevent aggressive JIT compilation from eliminating the loop in
 // unrealistic ways
 Callable<Double> directCall = new DFACaller(runs);
 Callable<Double> viaGetSet = new GetSetCaller(runs);

 double time1 = timeTestRun("public fields", runs, directCall);
 double time2 = timeTestRun("getter/setter fields", runs, viaGetSet);

 System.out.printf("%7d %,7d\t\tfield access=%.1f ns, getter/setter=%.1f ns%n",
uptime(), iterations, time1, time2);
 // added to improve readability of the output
 Thread.sleep(100);
 }
 }
}

LISTING 1 LISTING 1A LISTING 1B LISTING 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://en.wikipedia.org/wiki/Just-in-time_compilation
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-codeOnly.zip
abinstoc
Typewritten Text

abinstoc
Typewritten Text
Press to download source code

