
ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

40

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

The HotSpot Serviceability
Agent is a hidden treasure

present in the JDK that very
few people know about. The
Serviceability Agent (SA) is a set
of Java APIs and tools that can be
used to debug live Java processes
and core files (also called crash
dumps on Microsoft Windows).

SA can examine Java processes
or core files, which makes it suit-
able for debugging Java programs
as well as the Java HotSpot VM. It
is a snapshot debugger and lets
us look at the state of a frozen
Java process or a core file. When
SA is attached to a Java process,
it stops the process at that point
and we can explore the Java heap;
look at the threads that were run-
ning in the process at that point;
examine internal data structures
of the Java HotSpot VM; and look
at the loaded classes, compiled
code of methods, and so on.
The process resumes after SA is
detached from it.

SA Binaries
Before we go into the details
about the features and utilities
that SA offers, I would like to men-

tion SA binaries that are present in
the JDK. There are two SA binaries
that are shipped with the JDK:
■■ For Microsoft Windows:

sa-jdi.jar and jvm.dll
■■ For Oracle Solaris and Linux:

sa-jdi.jar and libsaproc.so
These binaries provide the SA

Java APIs and also include useful
debugging tools implemented
using these APIs.

JDK Versions with Complete
SA Binaries
The following JDK versions have
complete SA binaries:
■■ JDK 7 on all platforms
■■ 6u17+ on Oracle Solaris and

Linux
■■ 6u31+ on Microsoft Windows

Prior to these versions, SA was
not shipped with
the JDK on Microsoft
Windows, and only a
subset of SA classes
was shipped with JDKs
on Oracle Solaris and
Linux. The JDK ver-
sions above make the
complete set of SA
classes available on all
of these platforms.

Why Use SA?
Why use SA when we have native
debugging tools such as dbx,
GDB, WinDbg, and many others?

First, SA is a Java-based,
platform-independent tool, so it
can be used to debug Java pro-
cesses and cores on all the plat-
forms where Java is supported.
Additionally, debugging a Java
process or the Java HotSpot VM
with native debuggers is very
limiting, because although native
debuggers can help us examine
the native OS process state, they
cannot help us examine the Java
or the Java Virtual Machine (JVM)
state of the process.

For example, if I need to view
the objects in the Java heap,
native debuggers would show me

the raw hex numbers,
whereas SA has the
ability to interpret
those hex numbers
and present the
object view instead.
SA has knowledge
about the Java heap,
such as its boundar-
ies, objects in the Java
heap, loaded classes,

thread objects, and internal rep-
resentations of the Java HotSpot
VM. SA makes it very easy for us
to examine the Java-level details
and JVM-level details of the Java
process or core file.

SA Debugging Tools
There are two main SA debugging
tools implemented using SA APIs:
■■ HSDB, which is a GUI tool and

the main debugger
■■ CLHSDB, which is a command-

line variant of HSDB
HSDB: The GUI debugger. HSDB
facilitates examining Java pro-
cesses, core files, and also remote
Java processes. Let’s see how
we can launch and use it on a
Microsoft Windows machine.

First, we need to set some envi-
ronment variables. Set SA_JAVA to
the location of the Java executable
in the JDK/bin folder, for example:

On Microsoft Windows, the
PATH environment variable should
contain the location of the JVM
binary used by the target pro-

set SA_JAVA=
d:\java\jdk1.7.0_03\bin\java

HotSpot’s Hidden Treasure
The HotSpot Serviceability Agent’s powerful tools can debug live Java processes and core files.

POONAM BAJAJ
BIO

DETAILS, DETAILS

SA makes it very easy
to examine the
Java-level details
and JVM-level
details of a Java
process or core file.

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

41

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

cess or core and also the folder where
the Debugging Tools for Windows are
installed on the machine, for example:

Set the PATH environment variable
and then launch HSDB as follows:

On an Oracle Solaris or Linux
machine, we just need to set SA_JAVA

to the Java executable and then we can
launch HSDB as follows:

These launch commands bring up the
HSDB GUI tool, as shown in Figure 1.

Let’s take a quick look at some of the
very useful utilities available in this tool,

which are shown in Figure 2.
Figure 3 shows the Object Inspector,

which you can use to inspect Java objects.
Figure 4 shows how you can find

where a particular address lies in the
Java process.

Figure 5 shows the Object Histogram.
You can find the heap boundaries, as

shown in Figure 6.
CLHSDB: The command-line debugger.
CLHSDB is the command-line variant
of HSDB.

We need to set the same environ-
ment variables for CLHSDB as we did for
HSDB. Use the following command to
launch this tool on Microsoft Windows:

CLHSDB offers almost all the features
that the GUI version of the tool offers.

set PATH= d:\java\jdk1.7.0_03\bin\
server;d:\windbg;%PATH%

java -Dsun.jvm.hotspot.debugger.
useWindbgDebugger=true -classpath
d:\java\jdk1.7.0_03\lib\sa-jdi.jar
sun.jvm.hotspot.HSDB

java -Dsun.jvm.hotspot.debugger.
useProcDebugger=true -classpath
/java/jdk1.7.0/lib/sa-jdi.jar
sun.jvm.hotspot.HSDB

java -Dsun.jvm.hotspot.debugger.
useWindbgDebugger=true -classpath
d:\java\jdk1.7.0_03\lib\sa-jdi.jar
sun.jvm.hotspot.CLHSDB

Figure 1
Figure 3 Figure 5

Figure 6Figure 4Figure 2

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

42

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

For example, to examine any Java object,
use the inspect command, as shown in
Listing 1.

To look at heap boundaries, we can
use the universe command, as shown in
Listing 2.

Listing 3 and Listing 4 show the com-
plete list of commands available with
this tool.

Other Tools
There are some other very handy small
utilities bundled with SA. Let’s see how
to use them and how their output looks:
■■ FinalizerInfo prints details on the

finalizable objects, as shown in
Listing 5.

■■ HeapDumper dumps the heap in
HPROF format, as shown in Listing 6.

■■ PermStat prints the permanent gen-
eration statistics, as shown in Listing 7.

■■ PMap prints the process map of the
process (see Listing 8), much like the
Oracle Solaris pmap tool does.

■■ SOQL, the Structured Object Query
Language tool, is an SQL-like lan-
guage that we can use to query the
Java heap, as shown in Listing 9. JHat
also provides an interface for using
this language, and pretty good docu-
mentation on this language is also
available in JHat.

■■ JSDB, the JavaScript Debugger, pro-
vides a JavaScript interface to SA
(see Listing 10). It is a command-line
JavaScript shell based on Mozilla’s
Rhino JavaScript engine. More details
on this utility can be found in the open
source Java HotSpot VM repository in
the file hotspot/agent/doc/jsdb.html.

Let’s Get Our Hands Dirty
Let’s get a real feel for the SA tools and
debug a Java program crash using them.
I have a simple program of Java Native
Interface (JNI) code that writes to a byte
array beyond its size limit, which results
in overwriting and corrupting the object

that follows it in the Java heap. This
causes the program to crash when the
garbage collector tries to scan the heap.
See Listing 11.

The crash happened in
objArrayKlass::oop_follow_
contents(oopDesc*) at program counter

Download all listings in this issue as text

hsdb> inspect 0x23f50a20
instance of Oop for java/lang/Thread @ 0x23f50a20 @ 0x23f50a20 (size = 104)
_mark: 1
_metadata._klass: InstanceKlass for java/lang/Thread @ 0x38966700 Oop @
0x38966700
name: [C @ 0x23f50ac0 Oop for [C @ 0x23f50ac0
priority: 5
threadQ: null null
eetop: 4758528
single_step: false
daemon: false
stillborn: false
target: null null
group: Oop for java/lang/ThreadGroup @ 0x23f50840 Oop for java/lang/Thread-
Group @ 0x23f50840
contextClassLoader: Oop for sun/misc/Launcher$AppClassLoader @ 0x23f7b398 Oop
for sun/misc/Launcher$AppClassLoader @ 0x23f7b398
inheritedAccessControlContext: Oop for java/security/AccessControlContext @
0x23f50ad8 Oop for java/security/AccessControlContext @ 0x23f50ad8
threadLocals: Oop for java/lang/ThreadLocal$ThreadLocalMap @ 0x23f7c960 Oop
for java/lang/ThreadLocal$ThreadLocalMap @ 0x23f7c960
inheritableThreadLocals: null null
stackSize: 0
nativeParkEventPointer: 0
tid: 1
threadStatus: 5
parkBlocker: null null
blocker: null null
blockerLock: Oop for java/lang/Object @ 0x23f50ab8 Oop for java/lang/Object @
0x23f50ab8
uncaughtExceptionHandler: null nullCheck heap boundaries

LISTING 1 LISTING 2 LISTING 3 LISTING 4 LISTING 5 LISTING 6

GIVE BACK!
ADOPT A JSR

Find your JSR here

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

43

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

(PC) 0xfe5d2c17. See Listing 12, which
shows the stack trace of the crash from
the hs_err file.

With the crash, a core file got gener-
ated. Let’s open this core with HSDB (see
Figure 7), dig out some information from
it, and try to find the cause of this crash.

Figure 8 shows the disassembly of the
code that was being executed around PC
0xfe5d2c17 when the crash happened.

The instructions shown in Figure 8
indicate that the process crashed when
trying to access the value at address
eax+100. From the hs_err file, we can

see the contents of the registers and
what the value of the EAX register was:

What was at 0x6e4f6176, and why
did the crash happen while reading the
value at this address? HSDB helps us see
that, as shown in Figure 9.

The address does not lie in the Java
heap. Using the Find Address in Heap
option, we can find the locations in the
Java heap from which this particular

address is referenced (see Figure 10).
Examine these found locations in the

Object Inspector to see if these are part
of any object, as shown in Figure 11.

All the found addresses bring up the
byte array object at 0xc5036ea0 in the
Object Inspector, which means the
object at 0xc5036ea0 is the closest valid

EAX=0x6e4f6176, EBX=0xc50a083c,
ECX=0x614a2e2e, EDX=0x00000006
ESP=0xfbc7e360, EBP=0xfbc7e398,
ESI=0xc5036ef0, EDI=0x00000000
EIP=0xfe5d2c17, EFLAGS=0x00010202

Figure 8

Figure 9

Figure 10

Figure 7

Figure 11

Download all listings in this issue as text

java -Dsun.jvm.hotspot.debugger.useWindbgDebugger=true -classpath d:\java\
jdk1.7.0_03\lib\sa-jdi.jar sun.jvm.hotspot.tools.PermStat 5684
Attaching to process ID 5684, please wait...
Debugger attached successfully.
Client compiler detected.
JVM version is 22.1-b02
10713 intern Strings occupying 802608 bytes.
finding class loader instances ..
done.
computing per loader stat ..done.
please wait.. computing liveness..done.
class_loader classes bytes parent_loader alive? type

<bootstrap> 342 1539808 null live <internal>
0x23f7b398 3 28016 0x23f762e0 live sun/misc/Launcher$AppClassLoader
@0x38a0e9c0
0x23f762e0 0 0 null live sun/misc/Launcher$ExtClassLoader@0x389
eb420

total = 3 345 1567824 N/A alive=3, dead=0 N/A

LISTING 7 LISTING 8 LISTING 9 LISTING 10 LISTING 11 LISTING 12

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

44

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

object just before these locations. If we
look carefully, these locations actually
go beyond the limits of the byte array
object, which should end at 0xc5036eb0,
and from address 0xc5036eb0, the
next object should have started. See
the raw contents at memory location
0xc5036ea0 in Figure 12.

We can look at the raw contents as
characters in the dbx debugger. See
Listing 13, which clearly shows that the
object at 0xc5036ea0 has a byte stream
that goes beyond its size limit of three
elements and overwrites the object

starting at 0xc5036eb0.
This gives us a big clue. Now, we can

easily search in the code where the bytes
“Hello Java.Hello Java. . .” are being writ-
ten, and find the buggy part of the code
that overflows a byte array. Listing 14
shows the faulty lines that I had in my JNI
code. Wow! This was so easy.

Summary
As in the example above, we in the JVM
Sustaining Engineering Group at Oracle
use the Serviceability Agent on a daily
basis to debug crashes, hangs, and other
kinds of problems that occur with the
Java HotSpot VM. SA is a pretty useful
and powerful debugging tool that can
also help you learn the internals of the
Java HotSpot VM. I hope this article pro-
vided good insight into this tool. Enjoy
debugging with SA! </article>

LEARN MORE
•	SA-Plugin for VisualVM

Figure 12

(dbx) x 0xc5036ea0/100c
0xc5036ea0: '\001' '\0' '\0' '\0' '\030' '\0177' '\020' '£' '\003' '\0' '\0' '\0'
'H' 'e' 'l' 'l'
0xc5036eb0: 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a' 'v'
0xc5036ec0: 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e' 'l'
0xc5036ed0: '\003' '\0' '\0' '\0' 'a' 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a'
0xc5036ee0: 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e'
0xc5036ef0: 'l' 'l' 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J'
0xc5036f00: 'a' 'v' 'a' '.'

LISTING 13 LISTING 14

Download all listings in this issue as text

YOUR
LOCAL JAVA
USER GROUP
NEEDS YOU

Find your JUG here

