//java architect /

POONAM

HotSpot’s Hidden Treasure

The HotSpot Serviceability Agent’s powerful tools can debug live Java processes and core files.

he HotSpot Serviceability

Agentis a hidden treasure
presentin the DK that very
few people know about. The
Serviceability Agent (SA) is a set
of Java APIs and tools that can be
used to debug live Java processes
and core files (also called crash
dumps on Microsoft Windows).

SA can examine Java processes
or core files, which makes it suit-
able for debugging Java programs
as well as the Java HotSpot VM. It
is a snapshot debugger and lets
us look at the state of a frozen
Java process or a core file. When
SAis attached to a Java process,
it stops the process at that point
and we can explore the Java heap;
look at the threads that were run-
ningin the process at that point;
examine internal data structures
of the Java HotSpot VM; and look
at the loaded classes, compiled
code of methods, and so on.

The process resumes after SA is
detached fromit.

SA Binaries

Before we go into the details
about the features and utilities
that SA offers, I would like to men-

I 1111117777711111117777777777777 JULY/AUGUST 2012

tion SA binaries that are presentin

the]DK. There are two SA binaries

that are shipped with the JDK:

= For Microsoft Windows:
sa-jdi.jar and jvm.dll

= For Oracle Solaris and Linux:
sa-jdi.jar and libsaproc.so
These binaries provide the SA

Java APIs and also include useful

debugging tools implemented

using these APIs.

JDK Versions with Complete

SA Binaries

The following DK versions have

complete SA binaries:

= JDK 7 on all platforms

= 6ul7+ on Oracle Solaris and
Linux

= 6u3l+ on Microsoft Windows
Prior to these versions, SA was

not shipped with

the]DK on Microsoft

Windows, and only a

Why Use SA?

Why use SA when we have native
debugging tools such as dbx,
GDB, WinDbg, and many others?

First, SAis a Java-based,
platform-independent tool, so it
can be used to debug Java pro-
cesses and cores on all the plat-
forms where Java is supported.
Additionally, debugging aJava
process or the Java HotSpot VM
with native debuggers is very
limiting, because although native
debuggers can help us examine
the native OS process state, they
cannot help us examine the Java
or the Java Virtual Machine (JVM)
state of the process.

For example, if I need to view
the objects in the Java heap,
native debuggers would show me
the raw hex numbers,
whereas SA has the
ability tointerpret

subset of SA classes
was shipped with]DKs
on Oracle Solaris and
Linux. The]DK ver-
sions above make the
complete set of SA
classes available on all
of these platforms.

SAmakes it very easy
to examine the
Java-level details
and JVM-level
details of a Java
process or core file.

those hex numbers
and present the
object view instead.
SA has knowledge
about the Java heap,
such as its boundar-
ies, objectsin the Java
heap, loaded classes,

thread objects, and internal rep-
resentations of the Java HotSpot
VM. SA makes it very easy for us

to examine the Java-level details
and JVM-level details of the Java
process or core file.

SA Debugging Tools

There are two main SA debugging

tools implemented using SA APIs:

= HSDB, which is a GUI tool and
the main debugger

= CLHSDB, whichis a command-
line variant of HSDB

HSDB: The GUI debugger. HSDB

facilitates examining Java pro-

cesses, core files, and also remote

Java processes. Let's see how

we can launch and useitona

Microsoft Windows machine.
First, we need to set some envi-

ronment variables. Set SA_]JAVA to

the location of the Java executable

in the]DK/bin folder, for example:

set SA_]JAVA=
d:\java\jdkl.7.0_03\bin\java

On Microsoft Windows, the
PATH environment variable should
contain the location of the JVM
binary used by the target pro-

40

ORACLE.COM/JAVAMAGAZINE

//java architect /

cess or core and also the folder where
the Debugging Tools for Windows are

installed on the machine, for example:

set PATH= d:\java\jdk1.7.0_03\bin\
server;d:\windbg;%PATH%

Set the PATH environment variable
and then launch HSDB as follows:

java -Dsun.jvm.hotspot.debugger.
useWindbgDebugger=true -classpath
d:\java\jdkl.7.0_03\lib\sa-jdi.jar

to the Java executable and then we can
launch HSDB as follows:

java -Dsun.jvm.hotspot.debugger.
useProcDebugger=true -classpath
/java/jdk1.7.0/lib/sa-jdi.jar
sun.jvm.hotspot.HSDB

These launch commands bring up the

HSDB GUI tool, as shown in Figure 1.
Let's take a quick look at some of the

which are shown in Figure 2.
Figure 3 shows the Object Inspector,

which you can use to inspect Java objects.

Figure 4 shows how you can find
where a particular address lies in the
Java process.

We need to set the same environ-

ment variables for CLHSDB as we did for

HSDB. Use the following command to

launch this tool on Microsoft Windows:

Figure 5 shows the Object Histogram.

You can find the heap boundaries, as
shown in Figure 6.

CLHSDB: The command-line debugger.

CLHSDB is the command-line variant

java -Dsun.jvm.hotspot.debugger.
useWindbgDebugger=true -classpath
d:\java\jdkl.7.0_03\lib\sa-jdi.jar
sun.jvm.hotspot.CLHSDB

CLHSDB offers almost all the features

very useful utilities available in this tool, of HSDB.

that the GUI version of the tool offers.

sun.]vm.hotspot.HSDB || HSDR - katspat Deougger — —— - E_'_'_—‘E-'g |£| HSDB - HotSpot Debugger = & —— — Fm
e Inols VWindows i | e Tools Wedows
3 3 oA £.p] Object Histogram o [H
On an Oracle Solaris or Linux P oS ————
h_ . d = Dap o javatangTivaas & o060 » 5
[SO e ! |
machine, we just need to set SA_JAVA G5 et = — —
o [T _miskitada i INELBRCHKIGES M jaa e/ T el) DuS DSET 0 2.218.298 29,180 ," Conatklathodkiass &=
o 2] namea: 48 (o IS 0ach 2,341,033, 29,190 ° Wathodkiass
D vy 5 1411672 2.270* ConslaniPosiklass
HSDE =) fresankd: sk 1,123, 160 2 370" Instancekiassklass
L) - mww e — - - _I.E = S a85.072 2.270:" ConstantFociCacheklass
| Tools Windows | BT L 845,712 14,368 Byte]]
prr— | L el oassan 11 szolchar]
0} taemon: taiae 260,256 2.329java tang Claas
ipsn Mot Spod core s | [stiizom: kise 267,240
ORI de] JeTver_ [targat nuil :_-"_'4:H56
e ineh | o (29 praus: Dap 1o EvadangTieasoup § DCSIBD 744,608 3,507 Ahor]
Ext & 25 contadClas sl aader ¢ el AL den SherBALOCl o el o o1 g (o) a0 504 BROL 3707 Gystem ObjAray
=i o 23] inharieshcos s ContnaiConend. Jup i s cumsicoens ConkaiConked 71800l 14,1931 42" DbjArayklassklass
n-.l_j Fuimaik |_-.--|- ucpl:_._a_-.-.um;rn-uﬂ st Thesc i ocaibl s {8 Ta IR coan 13,378, 321 java larg Objacy]
) nbarkash Theadl ocals: ml 3,008; 47 jawa ang reflact Fleld
[} stwcisiza: 0 2,837 118 java ubl HashiateeSEniny
[} naksaFanEveniPainier 2 GAA i." TrpeArayklassklass
[RETR 2232 6 jaa lang String]
™) mreadstati: & _1.6807 12 jawa ull HashiableSEning] R
[} parkBiacier nuil 1,820, _ 38 sun it locale LocalaOsjsciCache SCaoneEniry
™) tioscsoar: resl 1,504 18 java.ull HashWapEEnid
= 3 binckerLack: Dep lor avatangied § B2 N50asE 1,320 11" KassKlass 3
[Ha 12321 T7 |ava tang StringEulidar
") unca ghEscsstonHander el Ba! 20 5un Uil locale BassLocaiehe =
. oMb LA s
Figure 1
: Figure 3 Figure 5
|4 | HSDE - HatSpat Debugger & S - lEili_l- g g
[v] vomoow | 5 eI
| Class Browsos [e Thimacls oy | |£| H5DB - Hot5pot Debugger = S — - — I{“ﬂ'lm |£| H5DB - Hot5pot Debugger = S — - — I{“ﬂ'l
¥ - Sl - S —— - S —— — -
Lode Vi 1 1
Wmdows e
Compute Revarse Firs ot L 1 | fn TJooks Eim Tocis WWedows
[k e dm % Thissd IO Aiea Thrasd Hame | | D Find Boinias n‘ n‘ D Heap Parameters n‘ n‘
Find Disjact by Query il Meltach Lishanar
g Sipnal Dispakher difress: 1n2350az)]]] eap Paramelers
D Poler g Finalizer s DRZHM0320 In now generaon eden [3M0000 0 2a%a0, (i243a0000) space capacty = 4971984, Gen 00 eden (2 IS0000,002 26530 Mi243a0000) Space capacty = 4521904, 8540337 162071014 used |
Find e in Hoap : ,f!P_'l:'iMHi_l‘lﬂi" E4#IIT1A29T1014 usead ol from (024330000, 024 230000, 02 4L 20000 5pade capacly = 524288, 0.0 rsed L
T e o e (24320000, 028350000 (24 420000) space capacly = 524280, 0.0 wsed b [DAZ4420000 0n24420000,0:24450000) 5pacE Capacty = 524285, 0.0 usedimocations: 0
i Prea(b 24430000 De24420000, (284 20000) space capacily = 524288, 0.0 used
Inspecing Bien 1 obd [Cocd94a0000, 0xada0000 0SS0 000) space capacity = 11208858, 0.0 wsednvwocabons: 0
Wertiistp ‘Whemaai
HWoapar Cocte [umg penm [0 L 700, 0x34650000) space capadily = 12582912, 0.7954915354 34 used o space
[0aEXS0000, D3 3GETO0, (e 34BS0000) I Z5R2912, 0. 795491 536458113 i
st Hinlogram PO 3TRSO000, D33 02e 40 e 3B250000) space capadily = 10485760, 451 129150380625 uaad, rw BEA0E
Show Sysiom Properies RE3GRS 0000, 3IRMET b8 (u3SS0000) space capacity = 12582912, 54 37T6A300374345 usedimmcations: 0
Sy VM Vistmion
Show XX Naga
L I !
Figure 2 Figure 4 Figure 6

I 1111117777711111117777777777777 JULY/AUGUST 2012

{ ABOUT US } JAVATECH {JAVAINACTION” COMMUNITY }

//java architect /

For example, to examine any Java object,
use the inspect command, as shown in
Listing 1.

To look at heap boundaries, we can
use the universe command, as shown in
Listing 2.

Listing 3 and Listing 4 show the com-
plete list of commands available with
this tool.

Other Tools
There are some other very handy small
utilities bundled with SA. Let's see how
to use them and how their output looks:
= FinalizerInfo prints details on the
finalizable objects, as shown in
Listing 5.
HeapDumper dumps the heap in
HPROF format, as shown in Listing 6.
PermStat prints the permanent gen-
eration statistics, as shown in Listing 7.
PMap prints the process map of the
process (see Listing 8), much like the
Oracle Solaris pmap tool does.
SOQL, the Structured Object Query
Language tool, is an SQL-like lan-
guage that we can use to query the
Java heap, as shown in Listing 9. JHat
also provides an interface for using
this language, and pretty good docu-
mentation on this language is also
available in JHat.
=]SDB, the JavaScript Debugger, pro-
vides a JavaScript interface to SA
(see Listing 10). It is a command-line
JavaScript shell based on Mozilla's
Rhino JavaScript engine. More details
on this utility can be found in the open
source Java HotSpot VM repository in

the file hotspot/agent/doc/jsdb.html.

P’ LISTINGT LISTING 2~ LISTING 3~ LISTING 4 LISTING 3 LISTING 6

hsdb> inspect Ox23f50a20

instance of Oop forjava/lang/Thread @ Ox23f50a20 @ Ox23f50a20 (size = 104)

_mark: 1

_metadata._klass: InstanceKlass forjava/lang/Thread @ 0x38966700 Oop @

0x38966700

name: [C @ 0x23f50acO Oop for [C @ Ox23f50acO

priority: 5
threadQ: null null
eetop: 4758528
single_step: false
daemon: false
stillborn: false
target: null null

group: Oop forjava/lang/ThreadGroup @ 0x23f50840 Oop forjava/lang/Thread-

Group @ 0x23f50840

contextClassLoader: Oop for sun/misc/Launcher$AppClassLoader @ 0x23f7b398 Oop
for sun/misc/Launcher$SAppClassLoader @ 0x23f7b398
inheritedAccessControlContext: Oop for java/security/AccessControlContext @
Ox23f50ad8 Oop for java/security/AccessControlContext @ Ox23f50ad8
threadLocals: Oop forjava/lang/ThreadLocal$SThreadLocalMap @ 0x23f7c960 Oop
forjava/lang/ThreadLocal$SThreadLocalMap @ 0x23f7c960

inheritableThreadLocals: null null
stackSize: O
nativeParkEventPointer: O

tid: 1

threadStatus: 5

parkBlocker: null null

blocker: null null

blockerLock: Oop forjava/lang/Object @ Ox23f50ab8 Oop forjava/lang/Object @

Ox23f50ab8

uncaughtExceptionHandler: null nullCheck heap boundaries

i Download all listings in this issue as text

Let's Get Our Hands Dirty
Let's get a real feel for the SA tools and

debug a]Java program crash using them.

I have a simple program of Java Native

Interface (JNI) code that writes to a byte
array beyond its size limit, which results
in overwriting and corrupting the object

ORACLE.COM/JAVAMAGAZINE /77771111111177777111111117777111177777777 JULY/AUGUST 2012

that follows it in the Java heap. This
causes the program to crash when the

garbage collector tries to scan the heap.

See Listing 11.

The crash happened in
objArrayKlass::oop _follow_
contents(oopDesc*) at program counter

(—/)
-
—

Javar

GIVE BACK!
ADOPT A JSR

N\/ 2

-our JSR here

2

//java architect /

[@ Latisne o BE6
Elle 1 Windows
[] eapaam Core Fils
Path to core file: RS IO o romen
Path o Java executables . -0 7 obinssua Browsa .
Enter the full path names ko the core file from a sotSpet process and the
Fwym mamcuisbie from whech B come. The tatter is Sypioaly locsted in the
CISRE dractory under (he direciony jraliry=an homathe_threatds
a4 Cancel
Figure 7
[+] || HSDE - HotSpot Debugger

Eile Tools Wmdows

o o @

[} Code Viewer
niter PC or methodGopiklassOop Address: e 2o

Disassembly @0xfeSd2c0d

L Eruce] ey, <10 2338
43 Jmp CefeSdicda

Figure 8

(PC) Oxfe5d2c17. See Listing 12, which
shows the stack trace of the crash from
the hs_errfile.

With the crash, a core file got gener-
ated. Let's open this core with HSDB (see
Figure 7), dig out some information from
it, and try to find the cause of this crash.

Figure 8 shows the disassembly of the
code that was being executed around PC
Oxfe5d2c17 when the crash happened.

The instructions shown in Figure 8
indicate that the process crashed when
trying to access the value at address
eax+100. From the hs_err file, we can

|| HSDB - HatSpot Detwugger

Eile Tools Wmdows

[Find Po#nter

Figure 9

7] |- HSDE - HotSpeot Debugger
Eile Tools Windows

[Find Address in Heap
didrass to search torxee 61 76
mareh progress:

Figure 10
|| HSDE - HotSpot Debugger =8
Elle Tooks Wndows |
[inspectar a o H
Proviows Oop Address | C++ Expressbon: S ieal -

= (8 6 GarShiE e
X e

ks
AL
,

TypaArralass for [B 5 Dedal O7TLE

Lompul® Liveness

Figure 11

see the contents of the registers and
what the value of the EAX register was:

EAX=0x6e4f6176, EBX=0xc50a083c,
ECX=0x614a2e2e, EDX=0xO0000006
ESP=0xfbc7e360, EBP=0xfbc7e398,
ESI=0xc5036ef0, EDI=0xO0000000
EIP=0Oxfe5d2cl7, EFLAGS=0x00010202

What was at 0x6e4f6176, and why
did the crash happen while reading the
value at this address? HSDB helps us see
that, as shown in Figure 9.

The address does not lie in the Java
heap. Using the Find Address in Heap
option, we can find the locations in the
Java heap from which this particular

ORACLE.COM/AJAVAMAGAZINE /77771111111177777111111117777777177777777 JULY/AUGUST 2012

P LISTING7 ™ LISTING 8 LISTINGO _~ LISTING 10~ LISTING 11~ LISTING 12

java -Dsun.jvm.hotspot.debugger.useWindbgDebugger=true -classpath d:\java\
jdk1.7.0_03\lib\sa-jdi.jar sun.jym.hotspot.tools.PermStat 5684
Attaching to process ID 5684, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 22.1-b02

10713 intern Strings occupying 802608 bytes.

finding class loader instances ..

done.

computing per loader stat ..done.

please wait.. computing liveness........c.coceevveereeneeniecnenenen done.
class_loader classes bytes parent_loader alive? type

<bootstrap> 342 1539808 null live <internal>

0x23f7b398 3 28016 Ox23f762e0 live sun/misc/LauncherSAppClassLoader
@0x38a0e9c0

Ox23f762e0 O O null live sun/misc/LauncherSExtClassLoader@0x389
eb420

total =3 345 1567824 N/A alive=3,dead=0 N/A

’ Download all listings in this issue as text

address is referenced (see Figure 10).

Examine these found locations in the
Object Inspector to see if these are part
of any object, as shown in Figure 11.

All the found addresses bring up the
byte array object at 0xc5036ea0 in the ’
Object Inspector, which means the <~
object at 0xc5036ea0 is the closest valid i
4

//java architect /

P LISTINGIS LisTnNG14

(dbx) x Oxc5036ea0/100c¢

Oxc5036ea0: '\001''\0''\0''\0''\030''\0177' '\020" '™I' '\003''\0''\0''\0O'

H e T

Oxc5036eb0: 'o''''J''a''v''a' ' 'H'e"'I'"""'0"" "' "a" V'
Oxc5036ecO: 'a''''H'e''I''''0""'""])"'a''v''a" " 'H" 'e" I
O0xc5036ed0: '\003''\0''\0''\0'"a"'v''a"""'"H""e""I''l'"'0""*]" &'
Oxc5036ee0: 'v''a'"''H'e"'I''''0"""J""a''v''a' " 'H" ‘e’
Oxc5036ef0: ‘I''[''o"" "] 'a"'v''a' " 'H 'e"'I'""I""0" " '

Oxc5036f00: 'a''v''a'’.

Download all listings in this issue as text

[+] . HSDE - HotSpot Debugger =15

| File Tools Windows

Memnry Viewesr o H
Address: (036020)

Figure 12

object just before these locations. If we
look carefully, these locations actually
go beyond the limits of the byte array
object, which should end at 0xc5036eb0,
and from address 0xc5036eb0, the

next object should have started. See

the raw contents at memory location
0xc5036ea0 in Figure 12.

We can look at the raw contents as
characters in the dbx debugger. See
Listing 13, which clearly shows that the
object at 0xc5036ea0 has a byte stream
that goes beyond its size limit of three
elements and overwrites the object

starting at Oxc5036eb0.

This gives us a big clue. Now, we can
easily search in the code where the bytes
“Hello Java.Hello Java. . ." are being writ-
ten, and find the buggy part of the code
that overflows a byte array. Listing 14
shows the faulty lines that T had in my JNI
code. Wow! This was so easy.

Summary

As in the example above, we in the JVM
Sustaining Engineering Group at Oracle
use the Serviceability Agent on a daily
basis to debug crashes, hangs, and other
kinds of problems that occur with the
Java HotSpot VM. SA is a pretty useful
and powerful debugging tool that can
also help you learn the internals of the
Java HotSpot VM. I hope this article pro-
vided good insight into this tool. Enjoy
debugging with SA! </article>

LEARN MORE
+ SA-Plugin for VisualVM

I 1111117777711111117777777777777 JULY/AUGUST 2012

)
[
8

Javar

YOUR
LOCAL JAVA
USER GROUP
NEEDS YOU

44

