
oracle.com/javamagazine  ////////////////////////////////  November/December 2015

34

//java ee /

This series has attempted to demystify Contexts and
Dependency Injection (CDI). In the previous articles,

which appeared in the last three issues, I discussed what
strong typing really means in dependency injection, how to
use CDI to integrate third-party frameworks, and how to cre-
ate loose coupling with interceptors, decorators, and events.
This final article covers the integration of CDI with Java EE.

Java EE is an extension of the Java runtime. It provides a
managed environment in which containers provision compo-
nents with a certain number of services. These services can
be lifecycle management, security, validation, persistence,
or, of course, injection. Persistence and transactions are often
bundled together to develop the back end of an application.

On the web tier, Java EE comes with servlets, WebSockets
[See accompanying article. —Ed.], and JavaServer Faces (JSF),
which are related to the user interface. CDI, whose workings
I’ve explained in the last three articles, can bring the web tier
and service tier together to create a homogeneous and inte-
grated application.

Bringing the Web Tier and Service Tier Together
Java EE bundles several technologies that enable us to cre-
ate any kind of architecture, including web application, REST
interfaces, batch processing, asynchronous messaging, per-
sistence, and so on. As shown in Figure 1, all these applica-
tions can be organized in several tiers: presentation, busi-

ness logic, business model, or interoperating
with external services. Depending on our needs,
any kind of architecture is possible from state-
less to stateful, from flat layered to multitiered.
One problem, however, is that the web tier and
service tier each has its own paradigm, its own
language. Because of this, CDI is an important
resource to bring them together.
Java for the service tier. Except for the web cli-
ent (which uses HTML) and the database (which
uses Database Definition Language), most of Java
EE uses Java as its primary language, and, there-
fore, we find Java in most of the application tiers:

Integration with Java EE

Part 4

Contexts and Dependency Injection:
The New Java EE Toolbox

ANTONIO GONCALVES

Figure 1. Standard tiers of an application

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

35

//java ee /

Java Persistence API entities in the business model or a simple
bean on the business logic tier. We even use Java as part of our
presentation tier: JSF backing beans are written in Java.
EL for the presentation tier. When I say that Java is the pri-
mary language, that’s because JSF pages are written using
Facelets and Expression Language, or EL. EL provides an
important mechanism for enabling the presentation layer to
communicate with the application logic. It is used by both
JavaServer Faces technology and JavaServer Pages. It uses
the # symbol. Figure 2 shows that EL uses simple expressions
to dynamically access data from components—for example,
where the purchase order subtotal is displayed on the page or
the compute method is invoked when a button is clicked.
CDI to bind service and presentation tiers. To bind both Java
and Expression Language, CDI comes to the rescue with
a @Named annotation. As you can see in Figure 2, it basi-
cally gives a name to a CDI bean so the bean can be bound in
EL. So here, where PurchaseOrderBean is annotated with

@Named("po"), it means that
the bean can be bound in EL
with the name po.
CDI to manage state. CDI goes
further by managing the state
of a bean for us using scopes.
Let’s say that on the top right
corner of our web application,
we need to display the login of
the user. We want this informa-
tion to remain until the user’s
session ends. In such a case,
we just annotate the bean with
@SessionScoped and CDI will
manage the state by destroy-
ing the bean when the ses-
sion ends. On the other hand,
computing and displaying the

total of a purchase order should be done each time the page
is refreshed. Because the scope of the PurchaseOrderBean
must be shorter than the session, we can annotate it with
@RequestScoped. CDI will maintain the state of the bean
only on a per-request basis, which means that this bean is
stateless. With just a few annotations, CDI unifies the web
tier and service tier, eliminating glue code and letting the
developer think about the business problem. CDI defines a
uniform model for all our tiers bringing well-defined con-
texts, which is preserved across multiple requests in a user
interaction.

Binding
Binding is the basic service for bringing together the web
tier and the service tier. If we want to reference a bean in
non-Java code that supports EL, such as a JSF page, we must
assign the bean an EL name. The EL name is specified using
the @Named built-in qualifier. Then we can easily use the
bean in any JSF page through an EL expression. EL was orig-

Figure 2. Using Expression Language

CDI takes the
concept of state
management much
further, applying it
to the entire appli-
cation, not just to the
HTTP layer. Plus, CDI
does this in a declarative
way: by using a single
annotation, the state of
the bean is managed by
the container.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

36

//java ee /

inally inspired by both ECMAScript and the XPath expres-
sion languages. It was introduced in Java EE to make it easy
for web page developers to access and manipulate Java in the
back end without having to use JavaScript.
Expression Language. EL has a very simple syntax. It uses the
hash symbol and curly brackets to identify an expression that
needs to be evaluated. These expressions can be more or less
complex (see Listing 1) and use arithmetic operators, lambda
expressions, and so forth.

Listing 1.
// Value Expressions
#{purchaseOrderBean.subtotal}
#{purchaseOrderBean.customer.name}

// Array Expressions
#{purchaseOrderBean.orders[2]}

// Method Expressions
#{purchaseOrderBean.compute}

// Parameterized Method Calls
#{purchaseOrderBean.compute('5')}

Value expressions are the most common because they
can read and write data. Here, our page would access the
subtotal attribute or the customer name attribute of the
PurchaseOrderBean. The syntax also allows access to items
in an array or list, using the square bracket notation and
specifying an index. As here, the expression returns the sec-
ond purchase order of the bean. Another useful feature of EL
is its support of method expressions. A method expression is
used to invoke a public method of a bean, which can return
a result. Here, the expression invokes the compute method
of the PurchaseOrderBean. Parameterized method calls can
use parameters. Here, the number 5 is passed as the com-
pute value.

JSF pages. Coming back to our presentation tier, EL is pres-
ent in JSF pages in different forms. In Listing 2, for example,
value expressions are used to display the subtotal or value-
added tax (VAT) rate of a purchase order. This binding is bidi-
rectional, meaning that these expressions can also change
the value of these attributes once the page is posted to the
server. Method expressions are handy when we need to per-
form an action when a button is clicked, such as comput-
ing the amount of the purchase order. In this case, clicking
the compute button will invoke the compute method of the
PurchaseOrderBean.

Listing 2.
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:body>
 <h:form>
 <h:outputLabel value="Subtotal:"/>
 <h:inputText
 value="#{purchaseOrderBean.subtotal}"/>
 <h:outputLabel value="VAT rate:"/>
 <h:inputText
 value="#{purchaseOrderBean.vatRate}"/>
 <h:commandLink value="Compute"
 action='#{purchaseOrderBean.compute}'/>
 </h:form>
</h:body>
</html>

CDI beans. The PurchaseOrderBean in Listing 3 has
subtotal and vatRate attributes, with getters and setters.
It also has a compute method that is in charge of computing
the total amount of the purchase order given a certain VAT
rate. There is nothing special except the @Named annotation
—without it, the bean would not have an EL name and,
therefore, could not be bound to the page.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

37

//java ee /

Listing 3.
@Named
public class PurchaseOrderBean {

 private Float subtotal = 0F;
 private Float vatRate = 5.5F;
 // …

 public String compute() {
 Float vat = subtotal * (vatRate / 100);
 Float discount =
 subtotal * (discountRate / 100);
 total = subtotal + vat – discount;
 return null;
 }
 // ...
}

@Named. The @Named annotation makes it possible to ref-
erence the bean from EL and, therefore, its attributes and
methods. We can let CDI choose a name for us by not speci-
fying an argument to the @Named annotation. The name
defaults to the unqualified class name, decapitalized—in this
case, purchaseOrderBean with a lowercase p. But we can
specify an argument to the @Named annotation to use a non-
default name. With @Named("order"), the expression needs
to be renamed accordingly.

Binding with Producers and Alternatives
As we’ve just seen, the @Named annotation allows the binding
between an expression and a bean. Coupled with a producer,
anything can then be referenced in EL. For example, we pro-
duce an integer, we name it, and it can then be referenced
in an expression. Alternatives can also be used to switch the
implementation not only in Java, but also in EL.
Naming a producer. To illustrate named producers and alter-
natives, let’s take a NumberProducer class, the role of

which is to produce numbers (see Listing 4). It has vatRate
and discountRate attributes, both of type Float. The
idea is to produce these attributes so they can be man-
aged by CDI and injected somewhere else. As you know by
now, this code could be ambiguous because both attributes
have the same data type, Float. To differentiate them, we
use a @VAT qualifier on one, and a @Discount qualifier on
the other. Now, if we want to access the VAT rate directly
on a JSF page, we just annotate the produced attribute with
@Named. By default the EL name is vatRate, so the JSF page
just references the vatRate directly, without having to pre-
fix the name of the class: NumberProducer (<h:inputText
value="#{vatRate}"/>). Remember that @Named uses a
default name that we can override. For example, instead of
vatRate we can change the name to vat and reference it in
this expression: (<h:inputText value="#{vat}"/>).

Listing 4.
public class NumberProducer {

 @Produces
 @VAT
 @Named("vat")
 private Float vatRate = 5.5F;

 @Produces
 @Discount
 @Named("discount")
 private Float discountRate = 2.25f;
}

Alternative producer. Now, let’s say we have a different use
case. VAT rate and discount rate need to change depending
on external configuration. For example, the VAT rate is 5.5
percent in certain countries and 19.6 percent in others, or the
discount rate is usually 2.25 percent, but for Christmas it is
set to 4.75 percent. This is the typical use case where alterna-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

38

//java ee /

tives can be used. First, we still need to produce, qualify, and
name both the VAT and discount rate attributes (see Listing 5).
Then we add an @Alternative annotation. As you can see,
CDI is very expressive. Each annotation has its own meaning,
and we can read the code very easily. Then it’s just a matter of
enabling or disabling the alternatives in beans.xml.

Listing 5.
public class NumberProducer {

 @Produces @VAT @Named("vat")
 private Float vatRate = 5.5F;

 @Produces
 @VAT @Named("vat") @Alternative
 private Float vatRateAlt = 19.6F;

 @Produces @Discount @Named("discount")
 private Float discountRate = 2.25f;

 @Produces
 @Discount @Named("discount") @Alternative
 private Float discountRateAlt = 4.75f;
}

State Management
We’re all used to the concept of an HTTP session and an
HTTP request. These are two examples of the broader prob-
lem of managing state that is associated with a particular
context, while ensuring that all needed cleanup occurs when
the context ends—for example, when the HTTP session
ends, it needs to be cleaned up. Traditionally, this state man-
agement has been implemented manually, by getting and
setting servlet session and request attributes. CDI takes the
concept of state management much further, applying it to
the entire application, not just to the HTTP layer. Plus, CDI
does this in a declarative way: by using a single annotation,
the state of the bean is managed by the container. No more

memory leaks when the application fails to clean up ses-
sion attributes; the CDI container does it automatically.
CDI extends the context model defined by the Servlet
specification—application, session, request—to another
context: a conversation. It then applies the context to the
entire business logic, not just to the web tier.
Built-in scope. Before looking at some code, let’s first exam-
ine the four built-in CDI scopes shown in Figure 3. Let’s say
we have an application that has a lifespan of several months.
We boot the server and leave it up and running for a few
months before we shut it down. In this case, the application
scope lasts for a very long time. One user logs in and remains
logged in for a few minutes. The session scope spans from
the moment he logs in until the moment he logs out. A sec-
ond user logs in but her session stays active for a bit longer.
Each session is independent and belongs to a single user, and
the lifespan can be totally different. In the meantime, both
users click at their own pace. Each click creates a request
that is handled on the server. The last scope is the conversa-
tion and is slightly different because it can span for as long
as needed. It’s just a matter of beginning a conversation,
which can span several requests, and ending it. Each user
will have his or her own conversation. Each of these scopes

Figure 3. The four built-in CDI scopes

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

39

//java ee /

is represented by an annotation.
Application scope. For example, let’s say the application needs
a global cache—a simple one, with just a map of key-value
objects and a few methods to add data to the cache, get a
value depending on the key, and remove a cache entry. We
want this cache to be shared across all users’ interactions
within the application. For that, we just annotate the bean
with @ApplicationScoped (see Listing 6). This cache will be
automatically created by the CDI container when it is needed,
and automatically destroyed when the context in which it
was created ends. That is when the server is shut down. If we
want this cache to be referenced directly from a JSF page, just
add a @Named annotation.

Listing 6.
@Named
@ApplicationScoped
public class Cache implements Serializable {

 private Map<Object,Object> cache =
 new HashMap<>();

 public void addToCache(
 Object key, Object value) {
 // ...
 }
 public Object getFromCache (Object key) {
 // ...
 }
 public void removeFromCache (Object key) {
 // ...
 }
}

Session scope. Application-scope beans live during the appli-
cation and are shared to all users. Session-scoped beans live
during the time of the HTTP session and belong only to the
current user. This scope is useful, for example, for model-

ing a shopping cart (see Listing 7). Each user has his own list
of items and, while he’s logged in, he can add items to the
shopping cart and check out at the end. This instance of the
shopping cart will be automatically created for the first time
when the session is created and automatically destroyed
when the session ends. The instance is bound to the user
session and is shared by all requests that execute in the con-
text of that session. Again, use @Named if invocation from EL
is needed.

Listing 7.
@Named
@SessionScoped
public class ShoppingCart
 implements Serializable {

 private List<Item> cartItems =
 new ArrayList<>();

 public String addItemToCart() {
 // ...
 }
 public String checkout() {
 // ...
 }
}

Request scope. Until now, all the scopes we’ve covered handle
state. For stateless applications, we can use the HTTP request
and request scope beans. These beans usually model services
(see Listing 8), or controllers, that have no state—for exam-
ple, creating a book, retrieving all the book cover images, or
getting a list of books depending on a category. Usually they
have an @Named annotation because they are invoked when a
button or a link on a page is clicked. An object that is defined
as @RequestScoped is created once for every request and
does not have to be serializable.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

40

//java ee /

Listing 8.
@Named
@RequestScoped
public class BookService {

 public Book persist(Book book) {
 // ...
 }
 public List<String> findAllImages() {
 // ...
 }
 public List<Book> findByCategory(
 long categoryId) {
 // ...
 }
}

Conversation scope. The last built-in scope is the conversation
scope. The conversation scope is a bit like the session scope
in that it holds the state associated with a user and spans
multiple requests to the server. However, unlike the ses-
sion scope, the conversation scope is demarcated explicitly
by the application. Let’s say we have several web pages that
form a wizard, to allow a customer to create a profile (see
Listing 9). For controlling the lifecycle of a conversation, CDI
gives us a Conversation API that may be obtained by injec-
tion. So, when a user starts to create a profile, a conversation
is started by calling the begin method. The user can then go
from page to page, go back to the previous page, go to the
next page, and so on, until the conversation ends. As you can
see, the conversation scope is the only one that needs explicit
demarcation. All the other scoped beans are cleaned up by
the CDI container; conversations need to be explicitly started
and ended or they time out.

Listing 9.
@Named
@ConversationScoped

public class CustomerWizard implements
 Serializable {

 @Inject
 private Conversation conversation;

 private Customer customer =
 new Customer();

 public void initProfile () {
 conversation.begin();
 // ...
 }
 public void endProfile () {
 // ...
 conversation.end();
 }
}

Dependent scope. All the scopes we’ve just seen are con-
textual scopes. This means their lifecycle is managed by
the container, and any injected references to the beans are
also contextually aware. The CDI container ensures that
the objects are created and injected at the correct time, as
determined by the scope that is specified for these objects.
The dependent scope is not a contextual scope and is actu-
ally called a pseudo-scope. Dependent scope is the default
CDI bean scope. If a bean does not declare a specific scope,
it will be injected as a dependent-scoped bean. This means
that it will have the same scope as the bean where it’s being
injected. For example in Listing 10, if a request-scoped ser-
vice (BookService) injects a dependent IsbnGenerator,
then the injected IsbnGenerator will be request scoped.
An instance of a dependent bean is strictly dependent on
some other object. IsbnGenerator is instantiated when
BookService is created and destroyed when BookService
is destroyed. We can always use the @Dependent annotation,
but we don’t have to, because it is the default scope.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

oracle.com/javamagazine  ////////////////////////////////  November/December 2015

41

//java ee /

Listing 10.
@Dependent
public class IsbnGenerator {
 public String generateNumber() {
 return "13-84356-" +
 Math.abs(new Random().nextInt());
 }
}

@RequestScoped
public class BookService {

 @Inject
 private IsbnGenerator generator;
 // ...
}

Conclusion
In this article, we’ve examined how to bring the web tier
and service tier together thanks to binding with the @Named
annotation and state management with scopes. When using
CDI, there is no distinction between presentation tier com-
ponents and business logic components. Both can be scoped,
injected, or referenced in EL. We can layer our application
according to whatever architecture we need rather than being
forced to bend our application logic into a technical layering.
And if the architecture layering is too flat, nothing stops us
from creating an equivalent layered architecture using CDI. It
is possible to write Java EE applications where everything is a
CDI bean. </article>

Learn More
•	CDI specification

•	Beginning Java EE 7

•	PluralSight course on CDI 1.1

•	Weld CDI reference implementation

JavaOne, the annual monster shindig for Java developers, was held this
year in San Francisco, California, in late October. This year, more than
9,000 developers participated in almost 500 sessions, with the average
attendee participating in 14 sessions.

The overarching themes at this year’s conference were Java’s 20th
anniversary and its expanding presence in two areas: the cloud and
the Internet of Things (IoT).

Notable among new cloud services unveiled at the show was a new
one from Oracle named Java SE Cloud Service, which incorporates Java
and a suite of development tools including Git, Maven, and Hudson—
all aimed at moving programming to the cloud.

Java’s ability to scale down to small devices was the focus of the
IoT track. This theme was repeated in the Java Lounge in the vendor
exhibit area, where attendees could use soldering irons and other tools
to build devices using the Raspberry Pi, a small, hobbyist-oriented
technology that has become wildly popular in the last few years. The
Saturday before the show, JavaOne4Kids, a technical convention for
children, hosted 450 attendees who learned how to program robots
using Java.

An annual fixture of JavaOne is the Duke’s Choice Awards, which
recognize particularly meritorious Java projects or community mem-
bers. The winners this year included AsciidocFX (a document creation
tool), Byte Buddy (a library for generating and manipulating bytecodes,
discussed in detail on page 19), OmniFaces (a library for web applica-
tions), and KumuluzEE (a microservices-enabling technology).

Oracle videotaped most of the sessions and made them available
online at no cost. This carefully curated and categorized list provides
an excellent way to see videos of the sessions you might have missed.

The next JavaOne conference will be held September 18–22, 2016, in
San Francisco. For a listing of other conferences and events, see the
Events section in this issue.

Wrap-up and Review
JavaOne 2015:

//javaone recap /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://cdi-spec.org/
http://www.amazon.com/gp/product/143024626X/
http://www.pluralsight.com/author/antonio-goncalves?utm_medium=affiliate&utm_source=1013700
http://weld.cdi-spec.org/
https://cloud.oracle.com/javase
https://www.oracle.com/corporate/pressrelease/dukes-award-102815.html
https://javaone-2015.zeef.com/anghel.leonard

Antonio
Goncalves is a
senior developer
specializing in
Java/Java EE.
He has written
books cover-
ing Java EE 5,
Java EE 6, and
Java EE 7. A
Java Champion
who founded the
Paris JUG and
Devoxx France,
Goncalves is
an independent
JCP member on
various JSRs and
also does Java
EE training for
PluralSight.

