Source

IronPython.Zlib / src / zlib.net / Deflate.cs

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
// Copyright (c) 2006, ComponentAce
// http://www.componentace.com
// All rights reserved.

// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

// Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 
// Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 
// Neither the name of ComponentAce nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/*
Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in 
the documentation and/or other materials provided with the distribution.

3. The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This program is based on zlib-1.1.3, so all credit should go authors
* Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
* and contributors of zlib.
*/

using System;


namespace ComponentAce.Compression.Libs.ZLib
{

    /// <summary>
    /// Implementation of the Deflate compression algorithm.
    /// </summary>
    internal sealed class Deflate
    {

        #region Nested class

        /// <summary>
        /// Deflate algorithm configuration parameters class
        /// </summary>
        internal class Config
        {
            /// <summary>
            /// reduce lazy search above this match length
            /// </summary>
            internal int good_length;

            /// <summary>
            /// do not perform lazy search above this match length
            /// </summary>
            internal int max_lazy;

            /// <summary>
            /// quit search above this match length
            /// </summary>
            internal int nice_length;

            internal int max_chain;

            internal int func;
            
            /// <summary>
            /// Constructor which initializes class inner fields
            /// </summary>
            internal Config(int good_length, int max_lazy, int nice_length, int max_chain, int func)
            {
                this.good_length = good_length;
                this.max_lazy = max_lazy;
                this.nice_length = nice_length;
                this.max_chain = max_chain;
                this.func = func;
            }
        }

        #endregion

        #region Constants

        /// <summary>
        /// Maximum memory level
        /// </summary>
        private const int MAX_MEM_LEVEL = 9;

        /// <summary>
        /// Defalult compression method
        /// </summary>
        private const int Z_DEFAULT_COMPRESSION = -1;
        
        /// <summary>
        /// Default memory level
        /// </summary>
        private const int DEF_MEM_LEVEL = 8;

        //Compression methods
        private const int STORED = 0;
        private const int FAST = 1;
        private const int SLOW = 2;
        
        /// <summary>
        /// Deflate class congiration table
        /// </summary>
        private static Config[] config_table;

        /// <summary>
        /// block not completed, need more input or more output
        /// </summary>
        private const int NeedMore = 0;

        /// <summary>
        /// Block internalFlush performed
        /// </summary>
         private const int BlockDone = 1;

        /// <summary>
        /// Finish started, need only more output at next deflate
        /// </summary>
        private const int FinishStarted = 2;

        /// <summary>
        /// finish done, accept no more input or output
        /// </summary>
        private const int FinishDone = 3;

        /// <summary>
        /// preset dictionary flag in zlib header
        /// </summary>
        private const int PRESET_DICT = 0x20;

        /// <summary>
        /// The deflate compression method
        /// </summary>
        private const int Z_DEFLATED = 8;

        private const int STORED_BLOCK = 0;
        private const int STATIC_TREES = 1;
        private const int DYN_TREES = 2;

        /// <summary>
        /// The size of the buffer
        /// </summary>
        private const int Buf_size = 8 * 2;

        /// <summary>
        /// repeat previous bit length 3-6 times (2 bits of repeat count)
        /// </summary>
        private const int REP_3_6 = 16;

        /// <summary>
        /// repeat a zero length 3-10 times  (3 bits of repeat count)
        /// </summary>
        private const int REPZ_3_10 = 17;

        /// <summary>
        /// repeat a zero length 11-138 times  (7 bits of repeat count)
        /// </summary>
        private const int REPZ_11_138 = 18;

        private const int MIN_MATCH = 3;
        private const int MAX_MATCH = 258;
        private const int MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);

        private const int MAX_BITS = 15;
        private const int D_CODES = 30;
        private const int BL_CODES = 19;
        private const int LENGTH_CODES = 29;
        private const int LITERALS = 256;
        private const int L_CODES = (LITERALS + 1 + LENGTH_CODES);
        private const int HEAP_SIZE = (2 * L_CODES + 1);

        private const int END_BLOCK = 256;

        #endregion

        #region Properties

        /// <summary>
        /// Compression level
        /// </summary>
        public int level
        {
            get { return _level; }
            set { _level = value; }
        }

        /// <summary>
        /// Number of bytes in the pending buffer
        /// </summary>
        public int Pending
        {
            get { return pending; }
            set { pending = value; }
        }

        /// <summary>
        /// Output still pending
        /// </summary>
        public byte[] Pending_buf
        {
            get { return pending_buf; }
            set { pending_buf = value; }
        }

        /// <summary>
        /// Next pending byte to output to the stream
        /// </summary>
        public int Pending_out
        {
            get { return pending_out; }
            set { pending_out = value; }
        }

        /// <summary>
        /// suppress zlib header and adler32
        /// </summary>
        public int NoHeader
        {
            get { return noheader; }
            set { noheader = value; }
        }

        #endregion

        #region Fields

        /// <summary>
        /// Pointer back to this zlib stream
        /// </summary>
        private ZStream strm;

        /// <summary>
        /// As the name implies
        /// </summary>
        private DeflateState status;

        /// <summary>
        /// Output still pending
        /// </summary>
        private byte[] pending_buf;

        /// <summary>
        /// Size of Pending_buf
        /// </summary>
        private int pending_buf_size;

        /// <summary>
        /// Next pending byte to output to the stream
        /// </summary>
        private int pending_out;
        
        /// <summary>
        /// Number of bytes in the pending buffer
        /// </summary>
        private int pending;

        /// <summary>
        /// suppress zlib header and adler32
        /// </summary>
        private int noheader;

        /// <summary>
        /// // UNKNOWN, BINARY or ASCII
        /// </summary>
        private BlockType data_type;

        /// <summary>
        /// STORED (for zip only) or DEFLATED
        /// </summary>
        private byte method;

        /// <summary>
        /// Value of internalFlush parameter for previous deflate call
        /// </summary>
        private int last_flush;

        /// <summary>
        /// LZ77 Window size (32K by default)
        /// </summary>
        private int w_size; 

        /// <summary>
        /// log2(w_size)  (8..16)
        /// </summary>
        private int w_bits;

        /// <summary>
        /// w_size - 1
        /// </summary>
        private int w_mask;

        /// <summary>
        /// Sliding Window. Input bytes are ReadPos into the second half of the Window,
        /// and move to the first half later to keep a dictionary of at least wSize
        /// bytes. With this organization, matches are limited to a distance of
        /// wSize-MAX_MATCH bytes, but this ensures that IO is always
        /// performed with a length multiple of the block size. Also, it limits
        /// the Window size to 64K, which is quite useful on MSDOS.
        /// To do: use the user input buffer as sliding Window.
        /// </summary>
        private byte[] window;

        /// <summary>
        /// Actual size of Window: 2*wSize, except when the user input buffer is directly used as sliding Window.
        /// </summary>
        private int window_size;

        /// <summary>
        /// Link to older string with same hash index. To limit the size of this
        /// array to 64K, this link is maintained only for the last 32K strings.
        /// An index in this array is thus a Window index modulo 32K.
        /// </summary>
        private short[] prev;

        /// <summary>
        /// Heads of the hash chains or NIL.
        /// </summary>
        private short[] head;

        /// <summary>
        /// hash index of string to be inserted
        /// </summary>
        private int ins_h;

        /// <summary>
        /// number of elements in hash table
        /// </summary>
        private int hash_size;

        /// <summary>
        /// log2(hash_size)
        /// </summary>
        private int hash_bits;

        /// <summary>
        /// hash_size-1
        /// </summary>
        private int hash_mask;

        /// <summary>
        /// Number of bits by which ins_h must be shifted at each input
        /// step. It must be such that after MIN_MATCH steps, the oldest
        /// byte no longer takes part in the hash key, that is:
        /// hash_shift * MIN_MATCH >= hash_bits
        /// </summary>
        private int hash_shift;

        /// <summary>
        /// Window position at the beginning of the current output block. Gets negative when the Window is moved backwards.
        /// </summary>
        private int block_start;

        /// <summary>
        /// length of best match
        /// </summary>
        private int match_length;

        /// <summary>
        /// previous match
        /// </summary>
        private int prev_match;

        /// <summary>
        /// set if previous match exists
        /// </summary>
        private int match_available;

        /// <summary>
        /// start of string to insert
        /// </summary>
        private int strstart;

        /// <summary>
        /// start of matching string
        /// </summary>
        private int match_start;

        /// <summary>
        /// number of valid bytes ahead in Window
        /// </summary>
        private int lookahead;

        /// <summary>
        /// Length of the best match at previous step. Matches not greater than this
        /// are discarded. This is used in the lazy match evaluation.
        /// </summary>
        private int prev_length;

        /// <summary>
        /// To speed up deflation, hash chains are never searched beyond this
        /// length.  A higher limit improves compression ratio but degrades the speed.
        /// </summary>
        private int max_chain_length;

        /// <summary>
        /// Attempt to find a better match only when the current match is strictly
        /// smaller than this value. This mechanism is used only for compression
        /// levels >= 4.
        /// </summary>
        private int max_lazy_match;

        // Insert new strings in the hash table only if the match length is not
        // greater than this length. This saves time but degrades compression.
        // max_insert_length is used only for compression levels <= 3.

        /// <summary>
        /// compression level (1..9)
        /// </summary>
        private int _level;
        
        /// <summary>
        /// favor or force Huffman coding
        /// </summary>
        private CompressionStrategy strategy;
        
        /// <summary>
        /// Use a faster search when the previous match is longer than this
        /// </summary>
        private int good_match;

        /// <summary>
        /// Stop searching when current match exceeds this
        /// </summary>
        private int nice_match;

        /// <summary>
        /// literal and length tree
        /// </summary>
        private short[] dyn_ltree;

        /// <summary>
        /// distance tree
        /// </summary>
        private short[] dyn_dtree;
        
        /// <summary>
        ///  Huffman tree for bit lengths
        /// </summary>
        private short[] bl_tree;

        /// <summary>
        /// Desc for literal tree
        /// </summary>
        private Tree l_desc = new Tree();

        /// <summary>
        /// desc for distance tree
        /// </summary>
        private Tree d_desc = new Tree(); 

        /// <summary>
        /// desc for bit length tree
        /// </summary>
        private Tree bl_desc = new Tree();

        /// <summary>
        /// number of codes at each bit length for an optimal tree
        /// </summary>
        internal short[] bl_count = new short[MAX_BITS + 1];

        /// <summary>
        /// heap used to build the Huffman trees
        /// </summary>
        internal int[] heap = new int[2 * L_CODES + 1];

        /// <summary>
        /// number of elements in the heap
        /// </summary>
        internal int heap_len;

        /// <summary>
        /// element of largest frequency
        /// </summary>
        internal int heap_max;

        // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
        // The same heap array is used to build all trees.

        /// <summary>
        /// Depth of each subtree used as tie breaker for trees of equal frequency
        /// </summary>
        internal byte[] depth = new byte[2 * L_CODES + 1];

        /// <summary>
        /// index for literals or lengths
        /// </summary>
        internal int l_buf;

        ///<summary>
        /// Size of match buffer for literals/lengths.  There are 4 reasons for
        /// limiting lit_bufsize to 64K:
        ///   - frequencies can be kept in 16 bit counters
        ///   - if compression is not successful for the first block, all input
        ///     data is still in the Window so we can still emit a stored block even
        ///     when input comes from standard input.  (This can also be done for
        ///     all blocks if lit_bufsize is not greater than 32K.)
        ///   - if compression is not successful for a file smaller than 64K, we can
        ///     even emit a stored file instead of a stored block (saving 5 bytes).
        ///     This is applicable only for zip (not gzip or zlib).
        ///   - creating new Huffman trees less frequently may not provide fast
        ///     adaptation to changes in the input data statistics. (Take for
        ///     example a binary file with poorly compressible code followed by
        ///     a highly compressible string table.) Smaller buffer sizes give
        ///     fast adaptation but have of course the overhead of transmitting
        ///     trees more frequently.
        ///   - I can't count above 4
        ///</summary> 
        private int lit_bufsize;

        /// <summary>
        /// running index in l_buf
        /// </summary>
        private int last_lit;

        // Buffer for distances. To simplify the code, d_buf and l_buf have
        // the same number of elements. To use different lengths, an extra flag
        // array would be necessary.

        /// <summary>
        /// index of pendig_buf
        /// </summary>
        private int d_buf;

        /// <summary>
        /// bit length of current block with optimal trees
        /// </summary>
        internal int opt_len;

        /// <summary>
        /// bit length of current block with static trees
        /// </summary>
        internal int static_len;

        /// <summary>
        /// number of string matches in current block
        /// </summary>
        internal int matches;

        /// <summary>
        /// bit length of EOB code for last block
        /// </summary>
        internal int last_eob_len;

        /// <summary>
        /// Output buffer. bits are inserted starting at the bottom (least
        /// significant bits).
        /// </summary>
        private short bi_buf;

        /// <summary>
        /// Number of valid bits in bi_buf.  All bits above the last valid bit
        /// are always zero.
        /// </summary>
        private int bi_valid;

        #endregion

        #region Methods

        /// <summary>
        /// Default constructor
        /// </summary>
        internal Deflate()
        {
            dyn_ltree = new short[HEAP_SIZE * 2];
            dyn_dtree = new short[(2 * D_CODES + 1) * 2]; // distance tree
            bl_tree = new short[(2 * BL_CODES + 1) * 2]; // Huffman tree for bit lengths
        }

        /// <summary>
        /// Initialization
        /// </summary>
        private void lm_init()
        {
            window_size = 2 * w_size;

            Array.Clear(head, 0, hash_size);

            // Set the default configuration parameters:
            max_lazy_match = Deflate.config_table[level].max_lazy;
            good_match = Deflate.config_table[level].good_length;
            nice_match = Deflate.config_table[level].nice_length;
            max_chain_length = Deflate.config_table[level].max_chain;

            strstart = 0;
            block_start = 0;
            lookahead = 0;
            match_length = prev_length = MIN_MATCH - 1;
            match_available = 0;
            ins_h = 0;
        }

        /// <summary>
        /// Initialize the tree data structures for a new zlib stream.
        /// </summary>
        private void tr_init()
        {

            l_desc.DynTree = dyn_ltree;
            l_desc.StatDesc = StaticTree.static_l_desc;

            d_desc.DynTree = dyn_dtree;
            d_desc.StatDesc = StaticTree.static_d_desc;

            bl_desc.DynTree = bl_tree;
            bl_desc.StatDesc = StaticTree.static_bl_desc;

            bi_buf = 0;
            bi_valid = 0;
            last_eob_len = 8; // enough lookahead for inflate

            // Initialize the first block of the first file:
            init_block();
        }

        /// <summary>
        /// Initializes block
        /// </summary>
        private void init_block()
        {
            // Initialize the trees.
            for (int i = 0; i < L_CODES; i++)
                dyn_ltree[i * 2] = 0;
            for (int i = 0; i < D_CODES; i++)
                dyn_dtree[i * 2] = 0;
            for (int i = 0; i < BL_CODES; i++)
                bl_tree[i * 2] = 0;

            dyn_ltree[END_BLOCK * 2] = 1;
            opt_len = static_len = 0;
            last_lit = matches = 0;
        }

        ///<summary>
        /// Restore the heap property by moving down the tree starting at node k,
        /// exchanging a node with the smallest of its two sons if necessary, stopping
        /// when the heap property is re-established (each father smaller than its
        /// two sons).
        /// </summary>
        internal void pqdownheap(short[] tree, int k)
        {
            int v = heap[k];
            int j = k << 1; // left son of k
            while (j <= heap_len)
            {
                // Set j to the smallest of the two sons:
                if (j < heap_len && smaller(tree, heap[j + 1], heap[j], depth))
                {
                    j++;
                }
                // Exit if v is smaller than both sons
                if (smaller(tree, v, heap[j], depth))
                    break;

                // Exchange v with the smallest son
                heap[k] = heap[j]; k = j;
                // And continue down the tree, setting j to the left son of k
                j <<= 1;
            }
            heap[k] = v;
        }

        internal static bool smaller(short[] tree, int n, int m, byte[] depth)
        {
            return (tree[n * 2] < tree[m * 2] || (tree[n * 2] == tree[m * 2] && depth[n] <= depth[m]));
        }

        ///<summary>
        /// Scan a literal or distance tree to determine the frequencies of the codes
        /// in the bit length tree.
        /// </summary>
        private void scan_tree(short[] tree, int max_code)
        {
            int n; // iterates over all tree elements
            int prevlen = -1; // last emitted length
            int curlen; // length of current code
            int nextlen = tree[0 * 2 + 1]; // length of next code
            int count = 0; // repeat count of the current code
            int max_count = 7; // max repeat count
            int min_count = 4; // min repeat count

            if (nextlen == 0)
            {
                max_count = 138; min_count = 3;
            }
            tree[(max_code + 1) * 2 + 1] = (short)ZLibUtil.Identity(0xffff); // guard

            for (n = 0; n <= max_code; n++)
            {
                curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1];
                if (++count < max_count && curlen == nextlen)
                {
                    continue;
                }
                else if (count < min_count)
                {
                    bl_tree[curlen * 2] = (short)(bl_tree[curlen * 2] + count);
                }
                else if (curlen != 0)
                {
                    if (curlen != prevlen)
                        bl_tree[curlen * 2]++;
                    bl_tree[REP_3_6 * 2]++;
                }
                else if (count <= 10)
                {
                    bl_tree[REPZ_3_10 * 2]++;
                }
                else
                {
                    bl_tree[REPZ_11_138 * 2]++;
                }
                count = 0; prevlen = curlen;
                if (nextlen == 0)
                {
                    max_count = 138; min_count = 3;
                }
                else if (curlen == nextlen)
                {
                    max_count = 6; min_count = 3;
                }
                else
                {
                    max_count = 7; min_count = 4;
                }
            }
        }

        ///<summary>
        /// Construct the Huffman tree for the bit lengths and return the index in
        /// bl_order of the last bit length code to send.
        /// </summary>
        private int build_bl_tree()
        {
            int max_blindex; // index of last bit length code of non zero freq

            // Determine the bit length frequencies for literal and distance trees
            scan_tree(dyn_ltree, l_desc.MaxCode);
            scan_tree(dyn_dtree, d_desc.MaxCode);

            // Build the bit length tree:
            bl_desc.build_tree(this);
            // opt_len now includes the length of the tree representations, except
            // the lengths of the bit lengths codes and the 5+5+4 bits for the counts.

            // Determine the number of bit length codes to send. The pkzip format
            // requires that at least 4 bit length codes be sent. (appnote.txt says
            // 3 but the actual value used is 4.)
            for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--)
            {
                if (bl_tree[ZLibUtil.bl_order[max_blindex] * 2 + 1] != 0)
                    break;
            }
            // Update opt_len to include the bit length tree and counts
            opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;

            return max_blindex;
        }

        ///<summary>
        /// Send the header for a block using dynamic Huffman trees: the counts, the
        /// lengths of the bit length codes, the literal tree and the distance tree.
        /// IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
        /// </summary>
        private void send_all_trees(int lcodes, int dcodes, int blcodes)
        {
            int rank; // index in bl_order

            send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt
            send_bits(dcodes - 1, 5);
            send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt
            for (rank = 0; rank < blcodes; rank++)
            {
                send_bits(bl_tree[ZLibUtil.bl_order[rank] * 2 + 1], 3);
            }
            send_tree(dyn_ltree, lcodes - 1); // literal tree
            send_tree(dyn_dtree, dcodes - 1); // distance tree
        }

        ///<summary>
        /// Send a literal or distance tree in compressed form, using the codes in
        /// bl_tree.
        /// </summary>
        private void send_tree(short[] tree, int max_code)
        {
            int n; // iterates over all tree elements
            int prevlen = -1; // last emitted length
            int curlen; // length of current code
            int nextlen = tree[0 * 2 + 1]; // length of next code
            int count = 0; // repeat count of the current code
            int max_count = 7; // max repeat count
            int min_count = 4; // min repeat count

            if (nextlen == 0)
            {
                max_count = 138; min_count = 3;
            }

            for (n = 0; n <= max_code; n++)
            {
                curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1];
                if (++count < max_count && curlen == nextlen)
                {
                    continue;
                }
                else if (count < min_count)
                {
                    do
                    {
                        send_code(curlen, bl_tree);
                    }
                    while (--count != 0);
                }
                else if (curlen != 0)
                {
                    if (curlen != prevlen)
                    {
                        send_code(curlen, bl_tree); count--;
                    }
                    send_code(REP_3_6, bl_tree);
                    send_bits(count - 3, 2);
                }
                else if (count <= 10)
                {
                    send_code(REPZ_3_10, bl_tree);
                    send_bits(count - 3, 3);
                }
                else
                {
                    send_code(REPZ_11_138, bl_tree);
                    send_bits(count - 11, 7);
                }
                count = 0; prevlen = curlen;
                if (nextlen == 0)
                {
                    max_count = 138; min_count = 3;
                }
                else if (curlen == nextlen)
                {
                    max_count = 6; min_count = 3;
                }
                else
                {
                    max_count = 7; min_count = 4;
                }
            }
        }

        ///<summary>
        /// Output a byte on the stream.
        /// IN assertion: there is enough room in Pending_buf.
        /// </summary>
        private void put_byte(byte[] p, int start, int len)
        {
            Array.Copy(p, start, Pending_buf, pending, len);
            pending += len;
        }

        /// <summary>
        /// Adds a byte to the buffer
        /// </summary>
        private void put_byte(byte c)
        {
            Pending_buf[pending++] = c;
        }

        private void put_short(int w)
        {
            put_byte((byte)(w));
            put_byte((byte)(ZLibUtil.URShift(w, 8)));
        }

        private void putShortMSB(int b)
        {
            put_byte((byte)(b >> 8));
            put_byte((byte)(b));
        }

        private void send_code(int c, short[] tree)
        {
            send_bits((tree[c * 2] & 0xffff), (tree[c * 2 + 1] & 0xffff));
        }

        private void send_bits(int value_Renamed, int length)
        {
            int len = length;
            if (bi_valid > (int)Buf_size - len)
            {
                int val = value_Renamed;
                //      bi_buf |= (val << bi_valid);
                bi_buf = (short)((ushort)bi_buf | (ushort)(((val << bi_valid) & 0xffff)));
                put_short(bi_buf);
                bi_buf = (short)(ZLibUtil.URShift(val, (Buf_size - bi_valid)));
                bi_valid += len - Buf_size;
            }
            else
            {
                //      bi_buf |= (value) << bi_valid;
                bi_buf = (short)((ushort)bi_buf | (ushort)((((value_Renamed) << bi_valid) & 0xffff)));
                bi_valid += len;
            }
        }

        ///<summary>
        /// Send one empty static block to give enough lookahead for inflate.
        /// This takes 10 bits, of which 7 may remain in the bit buffer.
        /// The current inflate code requires 9 bits of lookahead. If the
        /// last two codes for the previous block (real code plus EOB) were coded
        /// on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
        /// the last real code. In this case we send two empty static blocks instead
        /// of one. (There are no problems if the previous block is stored or fixed.)
        /// To simplify the code, we assume the worst case of last real code encoded
        /// on one bit only.
        /// </summary>
        private void _tr_align()
        {
            send_bits(STATIC_TREES << 1, 3);
            send_code(END_BLOCK, StaticTree.static_ltree);

            bi_flush();

            // Of the 10 bits for the empty block, we have already sent
            // (10 - bi_valid) bits. The lookahead for the last real code (before
            // the EOB of the previous block) was thus at least one plus the length
            // of the EOB plus what we have just sent of the empty static block.
            if (1 + last_eob_len + 10 - bi_valid < 9)
            {
                send_bits(STATIC_TREES << 1, 3);
                send_code(END_BLOCK, StaticTree.static_ltree);
                bi_flush();
            }
            last_eob_len = 7;
        }

        /// <summary>
        /// Save the match info and tally the frequency counts. Return true if
        /// the current block must be flushed.
        /// </summary>
        private bool _tr_tally(int dist, int lc)
        {

            Pending_buf[d_buf + last_lit * 2] = (byte)(ZLibUtil.URShift(dist, 8));
            Pending_buf[d_buf + last_lit * 2 + 1] = (byte)dist;

            Pending_buf[l_buf + last_lit] = (byte)lc; last_lit++;

            if (dist == 0)
            {
                // lc is the unmatched char
                dyn_ltree[lc * 2]++;
            }
            else
            {
                matches++;
                // Here, lc is the match length - MIN_MATCH
                dist--; // dist = match distance - 1
                dyn_ltree[(ZLibUtil._length_code[lc] + LITERALS + 1) * 2]++;
                dyn_dtree[Tree.d_code(dist) * 2]++;
            }

            if ((last_lit & 0x1fff) == 0 && level > 2)
            {
                // Compute an upper bound for the compressed length
                int out_length = last_lit * 8;
                int in_length = strstart - block_start;
                int dcode;
                for (dcode = 0; dcode < D_CODES; dcode++)
                {
                    out_length = (int)(out_length + (int)dyn_dtree[dcode * 2] * (5L + ZLibUtil.extra_dbits[dcode]));
                }
                out_length = ZLibUtil.URShift(out_length, 3);
                if ((matches < (last_lit / 2)) && out_length < in_length / 2)
                    return true;
            }

            return (last_lit == lit_bufsize - 1);
            // We avoid equality with lit_bufsize because of wraparound at 64K
            // on 16 bit machines and because stored blocks are restricted to
            // 64K-1 bytes.
        }

        ///<summary>
        /// Send the block data compressed using the given Huffman trees
        ///</summary>
        private void compress_block(short[] ltree, short[] dtree)
        {
            int dist; // distance of matched string
            int lc; // match length or unmatched char (if dist == 0)
            int lx = 0; // running index in l_buf
            int code; // the code to send
            int extra; // number of extra bits to send

            if (last_lit != 0)
            {
                do
                {
                    dist = ((Pending_buf[d_buf + lx * 2] << 8) & 0xff00) | (Pending_buf[d_buf + lx * 2 + 1] & 0xff);
                    lc = (Pending_buf[l_buf + lx]) & 0xff; lx++;

                    if (dist == 0)
                    {
                        send_code(lc, ltree); // send a literal byte
                    }
                    else
                    {
                        // Here, lc is the match length - MIN_MATCH
                        code = ZLibUtil._length_code[lc];

                        send_code(code + LITERALS + 1, ltree); // send the length code
                        extra = ZLibUtil.extra_lbits[code];
                        if (extra != 0)
                        {
                            lc -= ZLibUtil.base_length[code];
                            send_bits(lc, extra); // send the extra length bits
                        }
                        dist--; // dist is now the match distance - 1
                        code = Tree.d_code(dist);

                        send_code(code, dtree); // send the distance code
                        extra = ZLibUtil.extra_dbits[code];
                        if (extra != 0)
                        {
                            dist -= ZLibUtil.base_dist[code];
                            send_bits(dist, extra); // send the extra distance bits
                        }
                    } // literal or match pair ?

                    // Check that the overlay between Pending_buf and d_buf+l_buf is ok:
                }
                while (lx < last_lit);
            }

            send_code(END_BLOCK, ltree);
            last_eob_len = ltree[END_BLOCK * 2 + 1];
        }

        /// <summary>
        /// Set the data type to ASCII or BINARY, using a crude approximation:
        /// binary if more than 20% of the bytes are &lt;= 6 or &gt;= 128, ascii otherwise.
        /// IN assertion: the fields freq of dyn_ltree are set and the total of all
        /// frequencies does not exceed 64K (to fit in an int on 16 bit machines).
        /// </summary>
        private void set_data_type()
        {
            int n = 0;
            int ascii_freq = 0;
            int bin_freq = 0;
            while (n < 7)
            {
                bin_freq += dyn_ltree[n * 2]; n++;
            }
            while (n < 128)
            {
                ascii_freq += dyn_ltree[n * 2]; n++;
            }
            while (n < LITERALS)
            {
                bin_freq += dyn_ltree[n * 2]; n++;
            }
            data_type = (bin_freq > (ZLibUtil.URShift(ascii_freq, 2)) ? BlockType.Z_BINARY : BlockType.Z_ASCII);
        }

        /// <summary>
        /// Flush the bit buffer, keeping at most 7 bits in it.
        /// </summary>
        private void bi_flush()
        {
            if (bi_valid == 16)
            {
                put_short(bi_buf);
                bi_buf = 0;
                bi_valid = 0;
            }
            else if (bi_valid >= 8)
            {
                put_byte((byte)bi_buf);
                bi_buf = (short)(ZLibUtil.URShift(bi_buf, 8));
                bi_valid -= 8;
            }
        }

        /// <summary>
        /// Flush the bit buffer and align the output on a byte boundary
        /// </summary>
        private void bi_windup()
        {
            if (bi_valid > 8)
            {
                put_short(bi_buf);
            }
            else if (bi_valid > 0)
            {
                put_byte((byte)bi_buf);
            }
            bi_buf = 0;
            bi_valid = 0;
        }

        /// <summary>
        /// Copy a stored block, storing first the length and its
        /// one's complement if requested.
        /// </summary>
        private void copy_block(int buf, int len, bool header)
        {

            bi_windup(); // align on byte boundary
            last_eob_len = 8; // enough lookahead for inflate

            if (header)
            {
                put_short((short)len);
                put_short((short)~len);
            }

            put_byte(window, buf, len);
        }

        /// <summary>
        /// Flushes block
        /// </summary>
        private void flush_block_only(bool eof)
        {
            _tr_flush_block(block_start >= 0 ? block_start : -1, strstart - block_start, eof);
            block_start = strstart;
            strm.flush_pending();
        }

        /// <summary>
        /// Copy without compression as much as possible from the input stream, return
        /// the current block state.
        /// This function does not insert new strings in the dictionary since
        /// uncompressible data is probably not useful. This function is used
        /// only for the level=0 compression option.
        /// NOTE: this function should be optimized to avoid extra copying from
        /// Window to Pending_buf.
        /// </summary>
        private int deflate_stored(int flush)
        {
            // Stored blocks are limited to 0xffff bytes, Pending_buf is limited
            // to pending_buf_size, and each stored block has a 5 byte header:

            int max_block_size = 0xffff;
            int max_start;

            if (max_block_size > pending_buf_size - 5)
            {
                max_block_size = pending_buf_size - 5;
            }

            // Copy as much as possible from input to output:
            while (true)
            {
                // Fill the Window as much as possible:
                if (lookahead <= 1)
                {
                    fill_window();
                    if (lookahead == 0 && flush == (int)FlushStrategy.Z_NO_FLUSH)
                        return NeedMore;
                    if (lookahead == 0)
                        break; // internalFlush the current block
                }

                strstart += lookahead;
                lookahead = 0;

                // Emit a stored block if Pending_buf will be full:
                max_start = block_start + max_block_size;
                if (strstart == 0 || strstart >= max_start)
                {
                    // strstart == 0 is possible when wraparound on 16-bit machine
                    lookahead = (int)(strstart - max_start);
                    strstart = (int)max_start;

                    flush_block_only(false);
                    if (strm.avail_out == 0)
                        return NeedMore;
                }

                // Flush if we may have to slide, otherwise block_start may become
                // negative and the data will be gone:
                if (strstart - block_start >= w_size - MIN_LOOKAHEAD)
                {
                    flush_block_only(false);
                    if (strm.avail_out == 0)
                        return NeedMore;
                }
            }

            flush_block_only(flush == (int)FlushStrategy.Z_FINISH);
            if (strm.avail_out == 0)
                return (flush == (int)FlushStrategy.Z_FINISH) ? FinishStarted : NeedMore;

            return flush == (int)FlushStrategy.Z_FINISH ? FinishDone : BlockDone;
        }

        /// <summary>
        /// Send a stored block
        /// </summary>
        private void _tr_stored_block(int buf, int stored_len, bool eof)
        {
            send_bits((STORED_BLOCK << 1) + (eof ? 1 : 0), 3); // send block type
            copy_block(buf, stored_len, true); // with header
        }

        /// <summary>
        /// Determine the best encoding for the current block: dynamic trees, static
        /// trees or store, and output the encoded block to the zip file.
        /// </summary>
        private void _tr_flush_block(int buf, int stored_len, bool eof)
        {
            int opt_lenb, static_lenb; // opt_len and static_len in bytes
            int max_blindex = 0; // index of last bit length code of non zero freq

            // Build the Huffman trees unless a stored block is forced
            if (level > 0)
            {
                // Check if the file is ascii or binary
                if (data_type == BlockType.Z_UNKNOWN)
                    set_data_type();

                // Construct the literal and distance trees
                l_desc.build_tree(this);

                d_desc.build_tree(this);

                // At this point, opt_len and static_len are the total bit lengths of
                // the compressed block data, excluding the tree representations.

                // Build the bit length tree for the above two trees, and get the index
                // in bl_order of the last bit length code to send.
                max_blindex = build_bl_tree();

                // Determine the best encoding. Compute first the block length in bytes
                opt_lenb = ZLibUtil.URShift((opt_len + 3 + 7), 3);
                static_lenb = ZLibUtil.URShift((static_len + 3 + 7), 3);

                if (static_lenb <= opt_lenb)
                    opt_lenb = static_lenb;
            }
            else
            {
                opt_lenb = static_lenb = stored_len + 5; // force a stored block
            }

            if (stored_len + 4 <= opt_lenb && buf != -1)
            {
                // 4: two words for the lengths
                // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
                // Otherwise we can't have processed more than WSIZE input bytes since
                // the last block internalFlush, because compression would have been
                // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
                // transform a block into a stored block.
                _tr_stored_block(buf, stored_len, eof);
            }
            else if (static_lenb == opt_lenb)
            {
                send_bits((STATIC_TREES << 1) + (eof ? 1 : 0), 3);
                compress_block(StaticTree.static_ltree, StaticTree.static_dtree);
            }
            else
            {
                send_bits((DYN_TREES << 1) + (eof ? 1 : 0), 3);
                send_all_trees(l_desc.MaxCode + 1, d_desc.MaxCode + 1, max_blindex + 1);
                compress_block(dyn_ltree, dyn_dtree);
            }

            // The above check is made mod 2^32, for files larger than 512 MB
            // and uLong implemented on 32 bits.

            init_block();

            if (eof)
            {
                bi_windup();
            }
        }

        ///<summary>
        /// Fill the Window when the lookahead becomes insufficient.
        /// Updates strstart and lookahead.
        ///
        /// IN assertion: lookahead less than MIN_LOOKAHEAD
        /// OUT assertions: strstart less than or equal to window_size-MIN_LOOKAHEAD
        ///    At least one byte has been ReadPos, or _avail_in == 0; reads are
        ///    performed for at least two bytes (required for the zip translate_eol
        ///    option -- not supported here).
        /// </summary>
        private void fill_window()
        {
            int n, m;
            int p;
            int more; // Amount of free space at the End of the Window.

            do
            {
                more = (window_size - lookahead - strstart);

                // Deal with !@#$% 64K limit:
                if (more == 0 && strstart == 0 && lookahead == 0)
                {
                    more = w_size;
                }
                else if (more == -1)
                {
                    // Very unlikely, but possible on 16 bit machine if strstart == 0
                    // and lookahead == 1 (input done one byte at time)
                    more--;

                    // If the Window is almost full and there is insufficient lookahead,
                    // move the upper half to the lower one to make room in the upper half.
                }
                else if (strstart >= w_size + w_size - MIN_LOOKAHEAD)
                {
                    Array.Copy(window, w_size, window, 0, w_size);
                    match_start -= w_size;
                    strstart -= w_size; // we now have strstart >= MAX_DIST
                    block_start -= w_size;

                    // Slide the hash table (could be avoided with 32 bit values
                    // at the expense of memory usage). We slide even when level == 0
                    // to keep the hash table consistent if we switch back to level > 0
                    // later. (Using level 0 permanently is not an optimal usage of
                    // zlib, so we don't care about this pathological case.)

                    n = hash_size;
                    p = n;
                    do
                    {
                        m = (head[--p] & 0xffff);
                        head[p] = (short)(m >= w_size ? (m - w_size) : 0);
                        //head[p] = (m >= w_size?(short) (m - w_size):0);
                    }
                    while (--n != 0);

                    n = w_size;
                    p = n;
                    do
                    {
                        m = (prev[--p] & 0xffff);
                        prev[p] = (short)(m >= w_size ? (m - w_size) : 0);
                        //prev[p] = (m >= w_size?(short) (m - w_size):0);
                        // If n is not on any hash chain, prev[n] is garbage but
                        // its value will never be used.
                    }
                    while (--n != 0);
                    more += w_size;
                }

                if (strm.avail_in == 0)
                    return;

                // If there was no sliding:
                //    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
                //    more == window_size - lookahead - strstart
                // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
                // => more >= window_size - 2*WSIZE + 2
                // In the BIG_MEM or MMAP case (not yet supported),
                //   window_size == input_size + MIN_LOOKAHEAD  &&
                //   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
                // Otherwise, window_size == 2*WSIZE so more >= 2.
                // If there was sliding, more >= WSIZE. So in all cases, more >= 2.

                n = strm.read_buf(window, strstart + lookahead, more);
                lookahead += n;

                // Initialize the hash value now that we have some input:
                if (lookahead >= MIN_MATCH)
                {
                    ins_h = window[strstart] & 0xff;
                    ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask;
                }
                // If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
                // but this is not important since only literal bytes will be emitted.
            }
            while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0);
        }

        ///<summary>
        /// Compress as much as possible from the input stream, return the current
        /// block state.
        /// This function does not perform lazy evaluation of matches and inserts
        /// new strings in the dictionary only for unmatched strings or for short
        /// matches. It is used only for the fast compression options.
        /// </summary>
        private int deflate_fast(int flush)
        {
            //    short hash_head = 0; // head of the hash chain
            int hash_head = 0; // head of the hash chain
            bool bflush; // set if current block must be flushed

            while (true)
            {
                // Make sure that we always have enough lookahead, except
                // at the End of the input file. We need MAX_MATCH bytes
                // for the next match, plus MIN_MATCH bytes to insert the
                // string following the next match.
                if (lookahead < MIN_LOOKAHEAD)
                {
                    fill_window();
                    if (lookahead < MIN_LOOKAHEAD && flush == (int)FlushStrategy.Z_NO_FLUSH)
                    {
                        return NeedMore;
                    }
                    if (lookahead == 0)
                        break; // internalFlush the current block
                }

                // Insert the string Window[strstart .. strstart+2] in the
                // dictionary, and set hash_head to the head of the hash chain:
                if (lookahead >= MIN_MATCH)
                {
                    ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;

                    //	prev[strstart&w_mask]=hash_head=head[ins_h];
                    hash_head = (head[ins_h] & 0xffff);
                    prev[strstart & w_mask] = head[ins_h];
                    head[ins_h] = (short)strstart;
                }

                // Find the longest match, discarding those <= prev_length.
                // At this point we have always match_length < MIN_MATCH

                if (hash_head != 0L && ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD)
                {
                    // To simplify the code, we prevent matches with the string
                    // of Window index 0 (in particular we have to avoid a match
                    // of the string with itself at the start of the input file).
                    if (strategy != CompressionStrategy.Z_HUFFMAN_ONLY)
                    {
                        match_length = longest_match(hash_head);
                    }
                    // longest_match() sets match_start
                }
                if (match_length >= MIN_MATCH)
                {
                    //        check_match(strstart, match_start, match_length);

                    bflush = _tr_tally(strstart - match_start, match_length - MIN_MATCH);

                    lookahead -= match_length;

                    // Insert new strings in the hash table only if the match length
                    // is not too large. This saves time but degrades compression.
                    if (match_length <= max_lazy_match && lookahead >= MIN_MATCH)
                    {
                        match_length--; // string at strstart already in hash table
                        do
                        {
                            strstart++;

                            ins_h = ((ins_h << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
                            //	    prev[strstart&w_mask]=hash_head=head[ins_h];
                            hash_head = (head[ins_h] & 0xffff);
                            prev[strstart & w_mask] = head[ins_h];
                            head[ins_h] = (short)strstart;

                            // strstart never exceeds WSIZE-MAX_MATCH, so there are
                            // always MIN_MATCH bytes ahead.
                        }
                        while (--match_length != 0);
                        strstart++;
                    }
                    else
                    {
                        strstart += match_length;
                        match_length = 0;
                        ins_h = window[strstart] & 0xff;

                        ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask;
                        // If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                        // matter since it will be recomputed at next deflate call.
                    }
                }
                else
                {
                    // No match, output a literal byte

                    bflush = _tr_tally(0, window[strstart] & 0xff);
                    lookahead--;
                    strstart++;
                }
                if (bflush)
                {

                    flush_block_only(false);
                    if (strm.avail_out == 0)
                        return NeedMore;
                }
            }

            flush_block_only(flush == (int)FlushStrategy.Z_FINISH);
            if (strm.avail_out == 0)
            {
                if (flush == (int)FlushStrategy.Z_FINISH)
                    return FinishStarted;
                else
                    return NeedMore;
            }
            return flush == (int)FlushStrategy.Z_FINISH ? FinishDone : BlockDone;
        }

        ///<summary>
        /// Same as above, but achieves better compression. We use a lazy
        /// evaluation for matches: a match is finally adopted only if there is
        /// no better match at the next Window position.
        ///</summary>
        private int deflate_slow(int flush)
        {
            //    short hash_head = 0;    // head of hash chain
            int hash_head = 0; // head of hash chain
            bool bflush; // set if current block must be flushed

            // Process the input block.
            while (true)
            {
                // Make sure that we always have enough lookahead, except
                // at the End of the input file. We need MAX_MATCH bytes
                // for the next match, plus MIN_MATCH bytes to insert the
                // string following the next match.

                if (lookahead < MIN_LOOKAHEAD)
                {
                    fill_window();
                    if (lookahead < MIN_LOOKAHEAD && flush == (int)FlushStrategy.Z_NO_FLUSH)
                    {
                        return NeedMore;
                    }
                    if (lookahead == 0)
                        break; // internalFlush the current block
                }

                // Insert the string Window[strstart .. strstart+2] in the
                // dictionary, and set hash_head to the head of the hash chain:

                if (lookahead >= MIN_MATCH)
                {
                    ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
                    //	prev[strstart&w_mask]=hash_head=head[ins_h];
                    hash_head = (head[ins_h] & 0xffff);
                    prev[strstart & w_mask] = head[ins_h];
                    head[ins_h] = (short)strstart;
                }

                // Find the longest match, discarding those <= prev_length.
                prev_length = match_length; prev_match = match_start;
                match_length = MIN_MATCH - 1;

                if (hash_head != 0 && prev_length < max_lazy_match && ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD)
                {
                    // To simplify the code, we prevent matches with the string
                    // of Window index 0 (in particular we have to avoid a match
                    // of the string with itself at the start of the input file).

                    if (strategy != CompressionStrategy.Z_HUFFMAN_ONLY)
                    {
                        match_length = longest_match(hash_head);
                    }
                    // longest_match() sets match_start

                    if (match_length <= 5 && (strategy == CompressionStrategy.Z_FILTERED || (match_length == MIN_MATCH && strstart - match_start > 4096)))
                    {

                        // If prev_match is also MIN_MATCH, match_start is garbage
                        // but we will ignore the current match anyway.
                        match_length = MIN_MATCH - 1;
                    }
                }

                // If there was a match at the previous step and the current
                // match is not better, output the previous match:
                if (prev_length >= MIN_MATCH && match_length <= prev_length)
                {
                    int max_insert = strstart + lookahead - MIN_MATCH;
                    // Do not insert strings in hash table beyond this.

                    //          check_match(strstart-1, prev_match, prev_length);

                    bflush = _tr_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH);

                    // Insert in hash table all strings up to the End of the match.
                    // strstart-1 and strstart are already inserted. If there is not
                    // enough lookahead, the last two strings are not inserted in
                    // the hash table.
                    lookahead -= (prev_length - 1);
                    prev_length -= 2;
                    do
                    {
                        if (++strstart <= max_insert)
                        {
                            ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
                            //prev[strstart&w_mask]=hash_head=head[ins_h];
                            hash_head = (head[ins_h] & 0xffff);
                            prev[strstart & w_mask] = head[ins_h];
                            head[ins_h] = (short)strstart;
                        }
                    }
                    while (--prev_length != 0);
                    match_available = 0;
                    match_length = MIN_MATCH - 1;
                    strstart++;

                    if (bflush)
                    {
                        flush_block_only(false);
                        if (strm.avail_out == 0)
                            return NeedMore;
                    }
                }
                else if (match_available != 0)
                {

                    // If there was no match at the previous position, output a
                    // single literal. If there was a match but the current match
                    // is longer, truncate the previous match to a single literal.

                    bflush = _tr_tally(0, window[strstart - 1] & 0xff);

                    if (bflush)
                    {
                        flush_block_only(false);
                    }
                    strstart++;
                    lookahead--;
                    if (strm.avail_out == 0)
                        return NeedMore;
                }
                else
                {
                    // There is no previous match to compare with, wait for
                    // the next step to decide.

                    match_available = 1;
                    strstart++;
                    lookahead--;
                }
            }

            if (match_available != 0)
            {
                bflush = _tr_tally(0, window[strstart - 1] & 0xff);
                match_available = 0;
            }
            flush_block_only(flush == (int)FlushStrategy.Z_FINISH);

            if (strm.avail_out == 0)
            {
                if (flush == (int)FlushStrategy.Z_FINISH)
                    return FinishStarted;
                else
                    return NeedMore;
            }

            return flush == (int)FlushStrategy.Z_FINISH ? FinishDone : BlockDone;
        }

        /// <summary>
        /// Finds the longest matching data part
        /// </summary>
        private int longest_match(int cur_match)
        {
            int chain_length = max_chain_length; // max hash chain length
            int scan = strstart; // current string
            int match; // matched string
            int len; // length of current match
            int best_len = prev_length; // best match length so far
            int limit = strstart > (w_size - MIN_LOOKAHEAD) ? strstart - (w_size - MIN_LOOKAHEAD) : 0;
            int nice_match = this.nice_match;

            // Stop when cur_match becomes <= limit. To simplify the code,
            // we prevent matches with the string of Window index 0.

            int wmask = w_mask;

            int strend = strstart + MAX_MATCH;
            byte scan_end1 = window[scan + best_len - 1];
            byte scan_end = window[scan + best_len];

            // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
            // It is easy to get rid of this optimization if necessary.

            // Do not waste too much time if we already have a good match:
            if (prev_length >= good_match)
            {
                chain_length >>= 2;
            }

            // Do not look for matches beyond the End of the input. This is necessary
            // to make deflate deterministic.
            if (nice_match > lookahead)
                nice_match = lookahead;

            do
            {
                match = cur_match;

                // Skip to next match if the match length cannot increase
                // or if the match length is less than 2:
                if (window[match + best_len] != scan_end || window[match + best_len - 1] != scan_end1 || window[match] != window[scan] || window[++match] != window[scan + 1])
                    continue;

                // The check at best_len-1 can be removed because it will be made
                // again later. (This heuristic is not always a win.)
                // It is not necessary to compare scan[2] and match[2] since they
                // are always equal when the other bytes match, given that
                // the hash keys are equal and that HASH_BITS >= 8.
                scan += 2; match++;

                // We check for insufficient lookahead only every 8th comparison;
                // the 256th check will be made at strstart+258.
                do
                {
                }
                while (window[++scan] == window[++match] && window[++scan] == window[++match] && window[++scan] == window[++match] && window[++scan] == window[++match] && window[++scan] == window[++match] && window[++scan] == window[++match] && window[++scan] == window[++match] && window[++scan] == window[++match] && scan < strend);

                len = MAX_MATCH - (int)(strend - scan);
                scan = strend - MAX_MATCH;

                if (len > best_len)
                {
                    match_start = cur_match;
                    best_len = len;
                    if (len >= nice_match)
                        break;
                    scan_end1 = window[scan + best_len - 1];
                    scan_end = window[scan + best_len];
                }
            }
            while ((cur_match = (prev[cur_match & wmask] & 0xffff)) > limit && --chain_length != 0);

            if (best_len <= lookahead)
                return best_len;
            return lookahead;
        }

        /// <summary>
        /// Deflate algorithm initialization
        /// </summary>
        /// <param name="strm">ZStream object</param>
        /// <param name="level">Compression level</param>
        /// <param name="bits">Window bits</param>
        /// <returns>A result code</returns>
        internal int deflateInit(ZStream strm, int level, int bits)
        {
            return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, CompressionStrategy.Z_DEFAULT_STRATEGY);
        }

        /// <summary>
        /// Initializes deflate algorithm
        /// </summary>
        /// <param name="strm">ZStream object</param>
        /// <param name="level">Compression level</param>
        /// <returns>Operation result result code</returns>
        internal int deflateInit(ZStream strm, int level)
        {
            return deflateInit(strm, level, ZLibUtil.MAX_WBITS);
        }

        /// <summary>
        /// Deflate algorithm initialization
        /// </summary>
        /// <param name="strm">ZStream object</param>
        /// <param name="level">Compression level</param>
        /// <param name="method">Compression method</param>
        /// <param name="windowBits">Window bits</param>
        /// <param name="memLevel">Memory level</param>
        /// <param name="strategy">Compression strategy</param>
        /// <returns>Operation result code</returns>
        internal int deflateInit2(ZStream strm, int level, int method, int windowBits, int memLevel, CompressionStrategy strategy)
        {
            int noheader = 0;

            strm.msg = null;

            if (level == Z_DEFAULT_COMPRESSION)
                level = 6;

            if (windowBits < 0)
            {
                // undocumented feature: suppress zlib header
                noheader = 1;
                windowBits = -windowBits;
            }

            if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > CompressionStrategy.Z_HUFFMAN_ONLY)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }

            strm.dstate = (Deflate)this;

            this.NoHeader = noheader;
            w_bits = windowBits;
            w_size = 1 << w_bits;
            w_mask = w_size - 1;

            hash_bits = memLevel + 7;
            hash_size = 1 << hash_bits;
            hash_mask = hash_size - 1;
            hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH);

            window = new byte[w_size * 2];
            prev = new short[w_size];
            head = new short[hash_size];

            lit_bufsize = 1 << (memLevel + 6); // 16K elements by default

            // We overlay Pending_buf and d_buf+l_buf. This works since the average
            // output size for (length,distance) codes is <= 24 bits.
            Pending_buf = new byte[lit_bufsize * 4];
            pending_buf_size = lit_bufsize * 4;

            d_buf = lit_bufsize;
            l_buf = (1 + 2) * lit_bufsize;

            this.level = level;

            this.strategy = strategy;
            this.method = (byte)method;

            return deflateReset(strm);
        }

        /// <summary>
        /// Resets the current state of deflate object
        /// </summary>
        internal int deflateReset(ZStream strm)
        {
            strm.total_in = strm.total_out = 0;
            strm.msg = null; //
            strm.Data_type = BlockType.Z_UNKNOWN;

            pending = 0;
            Pending_out = 0;

            if (NoHeader < 0)
            {
                NoHeader = 0; // was set to -1 by deflate(..., Z_FINISH);
            }
            status = (NoHeader != 0) ? DeflateState.BUSY_STATE : DeflateState.INIT_STATE;

            strm.adler = Adler32.GetAdler32Checksum(0, null, 0, 0);

            last_flush = (int)FlushStrategy.Z_NO_FLUSH;

            tr_init();
            lm_init();
            return (int)ZLibResultCode.Z_OK;
        }

        /// <summary>
        /// Finish compression with deflate algorithm
        /// </summary>
        internal int deflateEnd()
        {
            if (status != DeflateState.INIT_STATE && status != DeflateState.BUSY_STATE && status != DeflateState.FINISH_STATE)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }
            // Deallocate in reverse order of allocations:
            Pending_buf = null;
            head = null;
            prev = null;
            window = null;

            return status == DeflateState.BUSY_STATE ? (int)ZLibResultCode.Z_DATA_ERROR : (int)ZLibResultCode.Z_OK;
        }

        /// <summary>
        /// Sets deflate algorithm parameters
        /// </summary>
        internal int deflateParams(ZStream strm, int level, CompressionStrategy strategy)
        {
            int err = (int)ZLibResultCode.Z_OK;

            if (level == Z_DEFAULT_COMPRESSION)
            {
                level = 6;
            }
            if (level < 0 || level > 9 || strategy < 0 || strategy > CompressionStrategy.Z_HUFFMAN_ONLY)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }

            if (config_table[this._level].func != config_table[level].func && strm.total_in != 0)
            {
                // Flush the last buffer:
                err = strm.deflate(FlushStrategy.Z_PARTIAL_FLUSH);
            }

            if (this._level != level)
            {
                this._level = level;
                max_lazy_match = config_table[this._level].max_lazy;
                good_match = config_table[this._level].good_length;
                nice_match = config_table[this._level].nice_length;
                max_chain_length = config_table[this._level].max_chain;
            }
            this.strategy = strategy;
            return err;
        }

        /// <summary>
        /// Sets deflate dictionary
        /// </summary>
        internal int deflateSetDictionary(ZStream strm, byte[] dictionary, int dictLength)
        {
            int length = dictLength;
            int index = 0;

            if (dictionary == null || status != DeflateState.INIT_STATE)
                return (int)ZLibResultCode.Z_STREAM_ERROR;

            strm.adler = Adler32.GetAdler32Checksum(strm.adler, dictionary, 0, dictLength);

            if (length < MIN_MATCH)
                return (int)ZLibResultCode.Z_OK;
            if (length > w_size - MIN_LOOKAHEAD)
            {
                length = w_size - MIN_LOOKAHEAD;
                index = dictLength - length; // use the tail of the dictionary
            }
            Array.Copy(dictionary, index, window, 0, length);
            strstart = length;
            block_start = length;

            // Insert all strings in the hash table (except for the last two bytes).
            // s->lookahead stays null, so s->ins_h will be recomputed at the next
            // call of fill_window.

            ins_h = window[0] & 0xff;
            ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask;

            for (int n = 0; n <= length - MIN_MATCH; n++)
            {
                ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
                prev[n & w_mask] = head[ins_h];
                head[ins_h] = (short)n;
            }
            return (int)ZLibResultCode.Z_OK;
        }

        /// <summary>
        /// Performs data compression with the deflate algorithm
        /// </summary>
        internal int deflate(ZStream strm, FlushStrategy f)
        {
            int old_flush;

            int internalFlush = (int)f;

            if (internalFlush > (int)FlushStrategy.Z_FINISH || internalFlush < 0)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }

            if (strm.next_out == null || (strm.next_in == null && strm.avail_in != 0) || (status == DeflateState.FINISH_STATE && internalFlush != (int)FlushStrategy.Z_FINISH))
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_STREAM_ERROR)];
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }
            if (strm.avail_out == 0)
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_BUF_ERROR)];
                return (int)ZLibResultCode.Z_DATA_ERROR;
            }

            this.strm = strm; // just in case
            old_flush = last_flush;
            last_flush = internalFlush;

            // Write the zlib header
            if (status == DeflateState.INIT_STATE)
            {
                int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8;
                int level_flags = ((level - 1) & 0xff) >> 1;

                if (level_flags > 3)
                    level_flags = 3;
                header |= (level_flags << 6);
                if (strstart != 0)
                    header |= PRESET_DICT;
                header += 31 - (header % 31);

                status = DeflateState.BUSY_STATE;
                putShortMSB(header);


                // Save the adler32 of the preset dictionary:
                if (strstart != 0)
                {
                    putShortMSB((int)(ZLibUtil.URShift(strm.adler, 16)));
                    putShortMSB((int)(strm.adler & 0xffff));
                }
                strm.adler = Adler32.GetAdler32Checksum(0, null, 0, 0);
            }

            // Flush as much pending output as possible
            if (pending != 0)
            {
                strm.flush_pending();
                if (strm.avail_out == 0)
                {
                    //System.out.println("  _avail_out==0");
                    // Since _avail_out is 0, deflate will be called again with
                    // more output space, but possibly with both pending and
                    // _avail_in equal to zero. There won't be anything to do,
                    // but this is not an error situation so make sure we
                    // return OK instead of BUF_ERROR at next call of deflate:
                    last_flush = -1;
                    return (int)ZLibResultCode.Z_OK;
                }

                // Make sure there is something to do and avoid duplicate consecutive
                // flushes. For repeated and useless calls with Z_FINISH, we keep
                // returning (int)ZLibResultCode.Z_STREAM_END instead of Z_BUFF_ERROR.
            }
            else if (strm.avail_in == 0 && internalFlush <= old_flush && internalFlush != (int)FlushStrategy.Z_FINISH)
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_BUF_ERROR)];
                return (int)ZLibResultCode.Z_DATA_ERROR;
            }

            // User must not provide more input after the first FINISH:
            if (status == DeflateState.FINISH_STATE && strm.avail_in != 0)
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_BUF_ERROR)];
				return (int)ZLibResultCode.Z_DATA_ERROR;
			}
			
			// Start a new block or continue the current one.
			if (strm.avail_in != 0 || lookahead != 0 || (internalFlush != (int)FlushStrategy.Z_NO_FLUSH && status != DeflateState.FINISH_STATE))
			{
				int bstate = - 1;
				switch (config_table[level].func)
				{
					
					case STORED: 
						bstate = deflate_stored(internalFlush);
						break;
					
					case FAST: 
						bstate = deflate_fast(internalFlush);
						break;
					
					case SLOW: 
						bstate = deflate_slow(internalFlush);
						break;
					
					default: 
						break;
					
				}
				
				if (bstate == FinishStarted || bstate == FinishDone)
				{
					status = DeflateState.FINISH_STATE;
				}
				if (bstate == NeedMore || bstate == FinishStarted)
				{
					if (strm.avail_out == 0)
					{
						last_flush = -1; // avoid BUF_ERROR next call, see above
					}
					return (int)ZLibResultCode.Z_OK;
					// If internalFlush != Z_NO_FLUSH && _avail_out == 0, the next call
					// of deflate should use the same internalFlush parameter to make sure
					// that the internalFlush is complete. So we don't have to output an
					// empty block here, this will be done at next call. This also
					// ensures that for a very small output buffer, we emit at most
					// one empty block.
				}
				
				if (bstate == BlockDone)
				{
					if (internalFlush == (int)FlushStrategy.Z_PARTIAL_FLUSH)
					{
						_tr_align();
					}
					else
					{
						// FULL_FLUSH or SYNC_FLUSH
						_tr_stored_block(0, 0, false);
						// For a full internalFlush, this empty block will be recognized
						// as a special marker by inflate_sync().
                        if (internalFlush == (int)FlushStrategy.Z_FULL_FLUSH)
						{
							for (int i = 0; i < hash_size; i++)
							// forget history
								head[i] = 0;
						}
					}
					strm.flush_pending();
					if (strm.avail_out == 0)
					{
						last_flush = -1; // avoid BUF_ERROR at next call, see above
						return (int)ZLibResultCode.Z_OK;
					}
				}
			}
			
			if (internalFlush != (int)FlushStrategy.Z_FINISH)
				return (int)ZLibResultCode.Z_OK;
			if (NoHeader != 0)
				return (int)ZLibResultCode.Z_STREAM_END;
			
			// Write the zlib trailer (adler32)
			putShortMSB((int) (ZLibUtil.URShift(strm.adler, 16)));
			putShortMSB((int) (strm.adler & 0xffff));
			strm.flush_pending();
			
			// If _avail_out is zero, the application will call deflate again
			// to internalFlush the rest.
			NoHeader = - 1; // WritePos the trailer only once!
            return pending != 0 ? (int)ZLibResultCode.Z_OK : (int)ZLibResultCode.Z_STREAM_END;
        }

        #endregion

        /// <summary>
        /// Static constructor initializes config_table
        /// </summary>
        static Deflate()
        {
            {
                config_table = new Config[10];
                // good  lazy  nice  chain
                config_table[0] = new Config(0, 0, 0, 0, STORED);
                config_table[1] = new Config(4, 4, 8, 4, FAST);
                config_table[2] = new Config(4, 5, 16, 8, FAST);
                config_table[3] = new Config(4, 6, 32, 32, FAST);

                config_table[4] = new Config(4, 4, 16, 16, SLOW);
                config_table[5] = new Config(8, 16, 32, 32, SLOW);
                config_table[6] = new Config(8, 16, 128, 128, SLOW);
                config_table[7] = new Config(8, 32, 128, 256, SLOW);
                config_table[8] = new Config(32, 128, 258, 1024, SLOW);
                config_table[9] = new Config(32, 258, 258, 4096, SLOW);
            }
        }
	}
}