Source

ogre-ccs / CameraControlSystem / include / CCSFastDelegate.h

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
//						FastDelegate.h 
//	Efficient delegates in C++ that generate only two lines of asm code!
//  Documentation is found at http://www.codeproject.com/cpp/FastDelegate.asp
//
//						- Don Clugston, Mar 2004.
//		Major contributions were made by Jody Hagins.
// History:
// 24-Apr-04 1.0  * Submitted to CodeProject. 
// 28-Apr-04 1.1  * Prevent most unsafe uses of evil static function hack.
//				  * Improved syntax for horrible_cast (thanks Paul Bludov).
//				  * Tested on Metrowerks MWCC and Intel ICL (IA32)
//				  * Compiled, but not run, on Comeau C++ and Intel Itanium ICL.
//	27-Jun-04 1.2 * Now works on Borland C++ Builder 5.5
//				  * Now works on /clr "managed C++" code on VC7, VC7.1
//				  * Comeau C++ now compiles without warnings.
//				  * Prevent the virtual inheritance case from being used on 
//					  VC6 and earlier, which generate incorrect code.
//				  * Improved warning and error messages. Non-standard hacks
//					 now have compile-time checks to make them safer.
//				  * implicit_cast used instead of static_cast in many cases.
//				  * If calling a const member function, a const class pointer can be used.
//				  * MakeDelegate() global helper function added to simplify pass-by-value.
//				  * Added fastdelegate.clear()
// 16-Jul-04 1.2.1* Workaround for gcc bug (const member function pointers in templates)
// 30-Oct-04 1.3  * Support for (non-void) return values.
//				  * No more workarounds in client code!
//					 MSVC and Intel now use a clever hack invented by John Dlugosz:
//				     - The FASTDELEGATEDECLARE workaround is no longer necessary.
//					 - No more warning messages for VC6
//				  * Less use of macros. Error messages should be more comprehensible.
//				  * Added include guards
//				  * Added FastDelegate::empty() to test if invocation is safe (Thanks Neville Franks).
//				  * Now tested on VS 2005 Express Beta, PGI C++
// 24-Dec-04 1.4  * Added DelegateMemento, to allow collections of disparate delegates.
//                * <,>,<=,>= comparison operators to allow storage in ordered containers.
//				  * Substantial reduction of code size, especially the 'Closure' class.
//				  * Standardised all the compiler-specific workarounds.
//                * MFP conversion now works for CodePlay (but not yet supported in the full code).
//                * Now compiles without warnings on _any_ supported compiler, including BCC 5.5.1
//				  * New syntax: FastDelegate< int (char *, double) >. 
// 14-Feb-05 1.4.1* Now treats =0 as equivalent to .clear(), ==0 as equivalent to .empty(). (Thanks elfric).
//				  * Now tested on Intel ICL for AMD64, VS2005 Beta for AMD64 and Itanium.
// 30-Mar-05 1.5  * Safebool idiom: "if (dg)" is now equivalent to "if (!dg.empty())"
//				  * Fully supported by CodePlay VectorC
//                * Bugfix for Metrowerks: empty() was buggy because a valid MFP can be 0 on MWCC!
//                * More optimal assignment,== and != operators for static function pointers.

#ifndef FASTDELEGATE_H
#define FASTDELEGATE_H
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <memory.h> // to allow <,> comparisons

////////////////////////////////////////////////////////////////////////////////
//						Configuration options
//
////////////////////////////////////////////////////////////////////////////////

// Uncomment the following #define for optimally-sized delegates.
// In this case, the generated asm code is almost identical to the code you'd get
// if the compiler had native support for delegates.
// It will not work on systems where sizeof(dataptr) < sizeof(codeptr). 
// Thus, it will not work for DOS compilers using the medium model.
// It will also probably fail on some DSP systems.
#define FASTDELEGATE_USESTATICFUNCTIONHACK

// Uncomment the next line to allow function declarator syntax.
// It is automatically enabled for those compilers where it is known to work.
//#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

////////////////////////////////////////////////////////////////////////////////
//						Compiler identification for workarounds
//
////////////////////////////////////////////////////////////////////////////////

// Compiler identification. It's not easy to identify Visual C++ because
// many vendors fraudulently define Microsoft's identifiers.
#if defined(_MSC_VER) && !defined(__MWERKS__) && !defined(__VECTOR_C) && !defined(__ICL) && !defined(__BORLANDC__)
#define FASTDLGT_ISMSVC

#if (_MSC_VER <1300) // Many workarounds are required for VC6.
#define FASTDLGT_VC6
#pragma warning(disable:4786) // disable this ridiculous warning
#endif

#endif

// Does the compiler uses Microsoft's member function pointer structure?
// If so, it needs special treatment.
// Metrowerks CodeWarrior, Intel, and CodePlay fraudulently define Microsoft's 
// identifier, _MSC_VER. We need to filter Metrowerks out.
#if defined(_MSC_VER) && !defined(__MWERKS__)
#define FASTDLGT_MICROSOFT_MFP

#if !defined(__VECTOR_C)
// CodePlay doesn't have the __single/multi/virtual_inheritance keywords
#define FASTDLGT_HASINHERITANCE_KEYWORDS
#endif
#endif

// Does it allow function declarator syntax? The following compilers are known to work:
#if defined(FASTDLGT_ISMSVC) && (_MSC_VER >=1310) // VC 7.1
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif

// Gcc(2.95+), and versions of Digital Mars, Intel and Comeau in common use.
#if defined (__DMC__) || defined(__GNUC__) || defined(__ICL) || defined(__COMO__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif

// It works on Metrowerks MWCC 3.2.2. From boost.Config it should work on earlier ones too.
#if defined (__MWERKS__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif

#ifdef __GNUC__ // Workaround GCC bug #8271 
	// At present, GCC doesn't recognize constness of MFPs in templates
#define FASTDELEGATE_GCC_BUG_8271
#endif



////////////////////////////////////////////////////////////////////////////////
//						General tricks used in this code
//
// (a) Error messages are generated by typdefing an array of negative size to
//     generate compile-time errors.
// (b) Warning messages on MSVC are generated by declaring unused variables, and
//	    enabling the "variable XXX is never used" warning.
// (c) Unions are used in a few compiler-specific cases to perform illegal casts.
// (d) For Microsoft and Intel, when adjusting the 'this' pointer, it's cast to
//     (char *) first to ensure that the correct number of *bytes* are added.
//
////////////////////////////////////////////////////////////////////////////////
//						Helper templates
//
////////////////////////////////////////////////////////////////////////////////


namespace fastdelegate {
namespace detail {	// we'll hide the implementation details in a nested namespace.

//		implicit_cast< >
// I believe this was originally going to be in the C++ standard but 
// was left out by accident. It's even milder than static_cast.
// I use it instead of static_cast<> to emphasize that I'm not doing
// anything nasty. 
// Usage is identical to static_cast<>
template <class OutputClass, class InputClass>
inline OutputClass implicit_cast(InputClass input){
	return input;
}

//		horrible_cast< >
// This is truly evil. It completely subverts C++'s type system, allowing you 
// to cast from any class to any other class. Technically, using a union 
// to perform the cast is undefined behaviour (even in C). But we can see if
// it is OK by checking that the union is the same size as each of its members.
// horrible_cast<> should only be used for compiler-specific workarounds. 
// Usage is identical to reinterpret_cast<>.

// This union is declared outside the horrible_cast because BCC 5.5.1
// can't inline a function with a nested class, and gives a warning.
template <class OutputClass, class InputClass>
union horrible_union{
	OutputClass out;
	InputClass in;
};

template <class OutputClass, class InputClass>
inline OutputClass horrible_cast(const InputClass input){
	horrible_union<OutputClass, InputClass> u;
	// Cause a compile-time error if in, out and u are not the same size.
	// If the compile fails here, it means the compiler has peculiar
	// unions which would prevent the cast from working.
	typedef int ERROR_CantUseHorrible_cast[sizeof(InputClass)==sizeof(u) 
		&& sizeof(InputClass)==sizeof(OutputClass) ? 1 : -1];
	u.in = input;
	return u.out;
}

////////////////////////////////////////////////////////////////////////////////
//						Workarounds
//
////////////////////////////////////////////////////////////////////////////////

// Backwards compatibility: This macro used to be necessary in the virtual inheritance
// case for Intel and Microsoft. Now it just forward-declares the class.
#define FASTDELEGATEDECLARE(CLASSNAME)	class CLASSNAME;

// Prevent use of the static function hack with the DOS medium model.
#ifdef __MEDIUM__
#undef FASTDELEGATE_USESTATICFUNCTIONHACK
#endif

//			DefaultVoid - a workaround for 'void' templates in VC6.
//
//  (1) VC6 and earlier do not allow 'void' as a default template argument.
//  (2) They also doesn't allow you to return 'void' from a function.
//
// Workaround for (1): Declare a dummy type 'DefaultVoid' which we use
//   when we'd like to use 'void'. We convert it into 'void' and back
//   using the templates DefaultVoidToVoid<> and VoidToDefaultVoid<>.
// Workaround for (2): On VC6, the code for calling a void function is
//   identical to the code for calling a non-void function in which the
//   return value is never used, provided the return value is returned
//   in the EAX register, rather than on the stack. 
//   This is true for most fundamental types such as int, enum, void *.
//   Const void * is the safest option since it doesn't participate 
//   in any automatic conversions. But on a 16-bit compiler it might
//   cause extra code to be generated, so we disable it for all compilers
//   except for VC6 (and VC5).
#ifdef FASTDLGT_VC6
// VC6 workaround
typedef const void * DefaultVoid;
#else
// On any other compiler, just use a normal void.
typedef void DefaultVoid;
#endif

// Translate from 'DefaultVoid' to 'void'.
// Everything else is unchanged
template <class T>
struct DefaultVoidToVoid { typedef T type; };

template <>
struct DefaultVoidToVoid<DefaultVoid> {	typedef void type; };

// Translate from 'void' into 'DefaultVoid'
// Everything else is unchanged
template <class T>
struct VoidToDefaultVoid { typedef T type; };

template <>
struct VoidToDefaultVoid<void> { typedef DefaultVoid type; };



////////////////////////////////////////////////////////////////////////////////
//						Fast Delegates, part 1:
//
//		Conversion of member function pointer to a standard form
//
////////////////////////////////////////////////////////////////////////////////

// GenericClass is a fake class, ONLY used to provide a type.
// It is vitally important that it is never defined, so that the compiler doesn't
// think it can optimize the invocation. For example, Borland generates simpler
// code if it knows the class only uses single inheritance.

// Compilers using Microsoft's structure need to be treated as a special case.
#ifdef  FASTDLGT_MICROSOFT_MFP

#ifdef FASTDLGT_HASINHERITANCE_KEYWORDS
	// For Microsoft and Intel, we want to ensure that it's the most efficient type of MFP 
	// (4 bytes), even when the /vmg option is used. Declaring an empty class 
	// would give 16 byte pointers in this case....
	class __single_inheritance GenericClass;
#endif
	// ...but for Codeplay, an empty class *always* gives 4 byte pointers.
	// If compiled with the /clr option ("managed C++"), the JIT compiler thinks
	// it needs to load GenericClass before it can call any of its functions,
	// (compiles OK but crashes at runtime!), so we need to declare an 
	// empty class to make it happy.
	// Codeplay and VC4 can't cope with the unknown_inheritance case either.
	class GenericClass {};
#else
	class GenericClass;
#endif

// The size of a single inheritance member function pointer.
const int SINGLE_MEMFUNCPTR_SIZE = sizeof(void (GenericClass::*)());

//						SimplifyMemFunc< >::Convert()
//
//	A template function that converts an arbitrary member function pointer into the 
//	simplest possible form of member function pointer, using a supplied 'this' pointer.
//  According to the standard, this can be done legally with reinterpret_cast<>.
//	For (non-standard) compilers which use member function pointers which vary in size 
//  depending on the class, we need to use	knowledge of the internal structure of a 
//  member function pointer, as used by the compiler. Template specialization is used
//  to distinguish between the sizes. Because some compilers don't support partial 
//	template specialisation, I use full specialisation of a wrapper struct.

// general case -- don't know how to convert it. Force a compile failure
template <int N>
struct SimplifyMemFunc {
	template <class X, class XFuncType, class GenericMemFuncType>
	inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, 
		GenericMemFuncType &bound_func) { 
		// Unsupported member function type -- force a compile failure.
	    // (it's illegal to have a array with negative size).
		typedef char ERROR_Unsupported_member_function_pointer_on_this_compiler[N-100];
		return 0; 
	}
};

// For compilers where all member func ptrs are the same size, everything goes here.
// For non-standard compilers, only single_inheritance classes go here.
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE>  {	
	template <class X, class XFuncType, class GenericMemFuncType>
	inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, 
			GenericMemFuncType &bound_func) {
#if defined __DMC__  
		// Digital Mars doesn't allow you to cast between abitrary PMF's, 
		// even though the standard says you can. The 32-bit compiler lets you
		// static_cast through an int, but the DOS compiler doesn't.
		bound_func = horrible_cast<GenericMemFuncType>(function_to_bind);
#else 
        bound_func = reinterpret_cast<GenericMemFuncType>(function_to_bind);
#endif
        return reinterpret_cast<GenericClass *>(pthis);
	}
};

////////////////////////////////////////////////////////////////////////////////
//						Fast Delegates, part 1b:
//
//					Workarounds for Microsoft and Intel
//
////////////////////////////////////////////////////////////////////////////////


// Compilers with member function pointers which violate the standard (MSVC, Intel, Codeplay),
// need to be treated as a special case.
#ifdef FASTDLGT_MICROSOFT_MFP

// We use unions to perform horrible_casts. I would like to use #pragma pack(push, 1)
// at the start of each function for extra safety, but VC6 seems to ICE
// intermittently if you do this inside a template.

// __multiple_inheritance classes go here
// Nasty hack for Microsoft and Intel (IA32 and Itanium)
template<>
struct SimplifyMemFunc< SINGLE_MEMFUNCPTR_SIZE + sizeof(int) >  {
	template <class X, class XFuncType, class GenericMemFuncType>
	inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, 
		GenericMemFuncType &bound_func) { 
		// We need to use a horrible_cast to do this conversion.
		// In MSVC, a multiple inheritance member pointer is internally defined as:
        union {
			XFuncType func;
			struct {	 
				GenericMemFuncType funcaddress; // points to the actual member function
				int delta;	     // #BYTES to be added to the 'this' pointer
			}s;
        } u;
		// Check that the horrible_cast will work
		typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.s)? 1 : -1];
        u.func = function_to_bind;
		bound_func = u.s.funcaddress;
		return reinterpret_cast<GenericClass *>(reinterpret_cast<char *>(pthis) + u.s.delta); 
	}
};

// virtual inheritance is a real nuisance. It's inefficient and complicated.
// On MSVC and Intel, there isn't enough information in the pointer itself to
// enable conversion to a closure pointer. Earlier versions of this code didn't
// work for all cases, and generated a compile-time error instead.
// But a very clever hack invented by John M. Dlugosz solves this problem.
// My code is somewhat different to his: I have no asm code, and I make no 
// assumptions about the calling convention that is used.

// In VC++ and ICL, a virtual_inheritance member pointer 
// is internally defined as:
struct MicrosoftVirtualMFP {
	void (GenericClass::*codeptr)(); // points to the actual member function
	int delta;		// #bytes to be added to the 'this' pointer
	int vtable_index; // or 0 if no virtual inheritance
};
// The CRUCIAL feature of Microsoft/Intel MFPs which we exploit is that the
// m_codeptr member is *always* called, regardless of the values of the other
// members. (This is *not* true for other compilers, eg GCC, which obtain the
// function address from the vtable if a virtual function is being called).
// Dlugosz's trick is to make the codeptr point to a probe function which
// returns the 'this' pointer that was used.

// Define a generic class that uses virtual inheritance.
// It has a trival member function that returns the value of the 'this' pointer.
struct GenericVirtualClass : virtual public GenericClass
{
	typedef GenericVirtualClass * (GenericVirtualClass::*ProbePtrType)();
	GenericVirtualClass * GetThis() { return this; }
};

// __virtual_inheritance classes go here
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 2*sizeof(int) >
{

	template <class X, class XFuncType, class GenericMemFuncType>
	inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, 
		GenericMemFuncType &bound_func) {
		union {
			XFuncType func;
			GenericClass* (X::*ProbeFunc)();
			MicrosoftVirtualMFP s;
		} u;
		u.func = function_to_bind;
		bound_func = reinterpret_cast<GenericMemFuncType>(u.s.codeptr);
		union {
			GenericVirtualClass::ProbePtrType virtfunc;
			MicrosoftVirtualMFP s;
		} u2;
		// Check that the horrible_cast<>s will work
		typedef int ERROR_CantUsehorrible_cast[sizeof(function_to_bind)==sizeof(u.s)
			&& sizeof(function_to_bind)==sizeof(u.ProbeFunc)
			&& sizeof(u2.virtfunc)==sizeof(u2.s) ? 1 : -1];
   // Unfortunately, taking the address of a MF prevents it from being inlined, so 
   // this next line can't be completely optimised away by the compiler.
		u2.virtfunc = &GenericVirtualClass::GetThis;
		u.s.codeptr = u2.s.codeptr;
		return (pthis->*u.ProbeFunc)();
	}
};

#if (_MSC_VER <1300)

// Nasty hack for Microsoft Visual C++ 6.0
// unknown_inheritance classes go here
// There is a compiler bug in MSVC6 which generates incorrect code in this case!!
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3*sizeof(int) >
{
	template <class X, class XFuncType, class GenericMemFuncType>
	inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, 
		GenericMemFuncType &bound_func) {
		// There is an apalling but obscure compiler bug in MSVC6 and earlier:
		// vtable_index and 'vtordisp' are always set to 0 in the 
		// unknown_inheritance case!
		// This means that an incorrect function could be called!!!
		// Compiling with the /vmg option leads to potentially incorrect code.
		// This is probably the reason that the IDE has a user interface for specifying
		// the /vmg option, but it is disabled -  you can only specify /vmg on 
		// the command line. In VC1.5 and earlier, the compiler would ICE if it ever
		// encountered this situation.
		// It is OK to use the /vmg option if /vmm or /vms is specified.

		// Fortunately, the wrong function is only called in very obscure cases.
		// It only occurs when a derived class overrides a virtual function declared 
		// in a virtual base class, and the member function 
		// points to the *Derived* version of that function. The problem can be
		// completely averted in 100% of cases by using the *Base class* for the 
		// member fpointer. Ie, if you use the base class as an interface, you'll
		// stay out of trouble.
		// Occasionally, you might want to point directly to a derived class function
		// that isn't an override of a base class. In this case, both vtable_index 
		// and 'vtordisp' are zero, but a virtual_inheritance pointer will be generated.
		// We can generate correct code in this case. To prevent an incorrect call from
		// ever being made, on MSVC6 we generate a warning, and call a function to 
		// make the program crash instantly. 
		typedef char ERROR_VC6CompilerBug[-100];
		return 0; 
	}
};


#else 

// Nasty hack for Microsoft and Intel (IA32 and Itanium)
// unknown_inheritance classes go here 
// This is probably the ugliest bit of code I've ever written. Look at the casts!
// There is a compiler bug in MSVC6 which prevents it from using this code.
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3*sizeof(int) >
{
	template <class X, class XFuncType, class GenericMemFuncType>
	inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, 
			GenericMemFuncType &bound_func) {
		// The member function pointer is 16 bytes long. We can't use a normal cast, but
		// we can use a union to do the conversion.
		union {
			XFuncType func;
			// In VC++ and ICL, an unknown_inheritance member pointer 
			// is internally defined as:
			struct {
				GenericMemFuncType m_funcaddress; // points to the actual member function
				int delta;		// #bytes to be added to the 'this' pointer
				int vtordisp;		// #bytes to add to 'this' to find the vtable
				int vtable_index; // or 0 if no virtual inheritance
			} s;
		} u;
		// Check that the horrible_cast will work
		typedef int ERROR_CantUsehorrible_cast[sizeof(XFuncType)==sizeof(u.s)? 1 : -1];
		u.func = function_to_bind;
		bound_func = u.s.funcaddress;
		int virtual_delta = 0;
		if (u.s.vtable_index) { // Virtual inheritance is used
			// First, get to the vtable. 
			// It is 'vtordisp' bytes from the start of the class.
			const int * vtable = *reinterpret_cast<const int *const*>(
				reinterpret_cast<const char *>(pthis) + u.s.vtordisp );

			// 'vtable_index' tells us where in the table we should be looking.
			virtual_delta = u.s.vtordisp + *reinterpret_cast<const int *>( 
				reinterpret_cast<const char *>(vtable) + u.s.vtable_index);
		}
		// The int at 'virtual_delta' gives us the amount to add to 'this'.
        // Finally we can add the three components together. Phew!
        return reinterpret_cast<GenericClass *>(
			reinterpret_cast<char *>(pthis) + u.s.delta + virtual_delta);
	};
};
#endif // MSVC 7 and greater

#endif // MS/Intel hacks

}  // namespace detail

////////////////////////////////////////////////////////////////////////////////
//						Fast Delegates, part 2:
//
//	Define the delegate storage, and cope with static functions
//
////////////////////////////////////////////////////////////////////////////////

// DelegateMemento -- an opaque structure which can hold an arbitary delegate.
// It knows nothing about the calling convention or number of arguments used by
// the function pointed to.
// It supplies comparison operators so that it can be stored in STL collections.
// It cannot be set to anything other than null, nor invoked directly: 
//   it must be converted to a specific delegate.

// Implementation:
// There are two possible implementations: the Safe method and the Evil method.
//				DelegateMemento - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// A static function pointer is stored inside the class. 
// Here are the valid values:
// +-- Static pointer --+--pThis --+-- pMemFunc-+-- Meaning------+
// |   0				|  0       |   0        | Empty          |
// |   !=0              |(dontcare)|  Invoker   | Static function|
// |   0                |  !=0     |  !=0*      | Method call    |
// +--------------------+----------+------------+----------------+
//  * For Metrowerks, this can be 0. (first virtual function in a 
//       single_inheritance class).
// When stored stored inside a specific delegate, the 'dontcare' entries are replaced
// with a reference to the delegate itself. This complicates the = and == operators
// for the delegate class.

//				DelegateMemento - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is 
// possible to store the function pointer in the this pointer, using another 
// horrible_cast. In this case the DelegateMemento implementation is simple:
// +--pThis --+-- pMemFunc-+-- Meaning---------------------+
// |    0     |  0         | Empty                         |
// |  !=0     |  !=0*      | Static function or method call|
// +----------+------------+-------------------------------+
//  * For Metrowerks, this can be 0. (first virtual function in a 
//       single_inheritance class).
// Note that the Sun C++ and MSVC documentation explicitly state that they 
// support static_cast between void * and function pointers.

class DelegateMemento {
protected: 
	// the data is protected, not private, because many
	// compilers have problems with template friends.
	typedef void (detail::GenericClass::*GenericMemFuncType)(); // arbitrary MFP.
	detail::GenericClass *m_pthis;
	GenericMemFuncType m_pFunction;

#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
	typedef void (*GenericFuncPtr)(); // arbitrary code pointer
	GenericFuncPtr m_pStaticFunction;
#endif

public:
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
	DelegateMemento() : m_pthis(0), m_pFunction(0), m_pStaticFunction(0) {};
	void clear() {
		m_pthis=0; m_pFunction=0; m_pStaticFunction=0;
	}
#else
	DelegateMemento() : m_pthis(0), m_pFunction(0) {};
	void clear() {	m_pthis=0; m_pFunction=0;	}
#endif
public:
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
	inline bool IsEqual (const DelegateMemento &x) const{
	    // We have to cope with the static function pointers as a special case
		if (m_pFunction!=x.m_pFunction) return false;
		// the static function ptrs must either both be equal, or both be 0.
		if (m_pStaticFunction!=x.m_pStaticFunction) return false;
		if (m_pStaticFunction!=0) return m_pthis==x.m_pthis;
		else return true;
	}
#else // Evil Method
	inline bool IsEqual (const DelegateMemento &x) const{
		return m_pthis==x.m_pthis && m_pFunction==x.m_pFunction;
	}
#endif
	// Provide a strict weak ordering for DelegateMementos.
	inline bool IsLess(const DelegateMemento &right) const {
		// deal with static function pointers first
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
		if (m_pStaticFunction !=0 || right.m_pStaticFunction!=0) 
				return m_pStaticFunction < right.m_pStaticFunction;
#endif
		if (m_pthis !=right.m_pthis) return m_pthis < right.m_pthis;
	// There are no ordering operators for member function pointers, 
	// but we can fake one by comparing each byte. The resulting ordering is
	// arbitrary (and compiler-dependent), but it permits storage in ordered STL containers.
		return memcmp(&m_pFunction, &right.m_pFunction, sizeof(m_pFunction)) < 0;

	}
	// BUGFIX (Mar 2005):
	// We can't just compare m_pFunction because on Metrowerks,
	// m_pFunction can be zero even if the delegate is not empty!
	inline bool operator ! () const		// Is it bound to anything?
	{ return m_pthis==0 && m_pFunction==0; }
	inline bool empty() const		// Is it bound to anything?
	{ return m_pthis==0 && m_pFunction==0; }
public:
	DelegateMemento & operator = (const DelegateMemento &right)  {
		SetMementoFrom(right); 
		return *this;
	}
	inline bool operator <(const DelegateMemento &right) {
		return IsLess(right);
	}
	inline bool operator >(const DelegateMemento &right) {
		return right.IsLess(*this);
	}
	DelegateMemento (const DelegateMemento &right)  : 
		m_pthis(right.m_pthis), m_pFunction(right.m_pFunction)
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
		, m_pStaticFunction (right.m_pStaticFunction)
#endif
		{}
protected:
	void SetMementoFrom(const DelegateMemento &right)  {
		m_pFunction = right.m_pFunction;
		m_pthis = right.m_pthis;
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
		m_pStaticFunction = right.m_pStaticFunction;
#endif
	}
};


//						ClosurePtr<>
//
// A private wrapper class that adds function signatures to DelegateMemento.
// It's the class that does most of the actual work.
// The signatures are specified by:
// GenericMemFunc: must be a type of GenericClass member function pointer. 
// StaticFuncPtr:  must be a type of function pointer with the same signature 
//                 as GenericMemFunc.
// UnvoidStaticFuncPtr: is the same as StaticFuncPtr, except on VC6
//                 where it never returns void (returns DefaultVoid instead).

// An outer class, FastDelegateN<>, handles the invoking and creates the
// necessary typedefs.
// This class does everything else.

namespace detail {

template < class GenericMemFunc, class StaticFuncPtr, class UnvoidStaticFuncPtr>
class ClosurePtr : public DelegateMemento {
public:
	// These functions are for setting the delegate to a member function.

	// Here's the clever bit: we convert an arbitrary member function into a 
	// standard form. XMemFunc should be a member function of class X, but I can't 
	// enforce that here. It needs to be enforced by the wrapper class.
	template < class X, class XMemFunc >
	inline void bindmemfunc(X *pthis, XMemFunc function_to_bind ) {
		m_pthis = SimplifyMemFunc< sizeof(function_to_bind) >
			::Convert(pthis, function_to_bind, m_pFunction);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
		m_pStaticFunction = 0;
#endif
	}
	// For const member functions, we only need a const class pointer.
	// Since we know that the member function is const, it's safe to 
	// remove the const qualifier from the 'this' pointer with a const_cast.
	// VC6 has problems if we just overload 'bindmemfunc', so we give it a different name.
	template < class X, class XMemFunc>
	inline void bindconstmemfunc(const X *pthis, XMemFunc function_to_bind) {
		m_pthis= SimplifyMemFunc< sizeof(function_to_bind) >
			::Convert(const_cast<X*>(pthis), function_to_bind, m_pFunction);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
		m_pStaticFunction = 0;
#endif
	}
#ifdef FASTDELEGATE_GCC_BUG_8271	// At present, GCC doesn't recognize constness of MFPs in templates
	template < class X, class XMemFunc>
	inline void bindmemfunc(const X *pthis, XMemFunc function_to_bind) {
		bindconstmemfunc(pthis, function_to_bind);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
		m_pStaticFunction = 0;
#endif
	}
#endif
	// These functions are required for invoking the stored function
	inline GenericClass *GetClosureThis() const { return m_pthis; }
	inline GenericMemFunc GetClosureMemPtr() const { return reinterpret_cast<GenericMemFunc>(m_pFunction); }

// There are a few ways of dealing with static function pointers.
// There's a standard-compliant, but tricky method.
// There's also a straightforward hack, that won't work on DOS compilers using the
// medium memory model. It's so evil that I can't recommend it, but I've
// implemented it anyway because it produces very nice asm code.

#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)

//				ClosurePtr<> - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// I store the function pointer inside the class, and the delegate then
// points to itself. Whenever the delegate is copied, these self-references
// must be transformed, and this complicates the = and == operators.
public:
	// The next two functions are for operator ==, =, and the copy constructor.
	// We may need to convert the m_pthis pointers, so that
	// they remain as self-references.
	template< class DerivedClass >
	inline void CopyFrom (DerivedClass *pParent, const DelegateMemento &x) {
		SetMementoFrom(x);
		if (m_pStaticFunction!=0) {
			// transform self references...
			m_pthis=reinterpret_cast<GenericClass *>(pParent);
		}
	}
	// For static functions, the 'static_function_invoker' class in the parent 
	// will be called. The parent then needs to call GetStaticFunction() to find out 
	// the actual function to invoke.
	template < class DerivedClass, class ParentInvokerSig >
	inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker, 
				StaticFuncPtr function_to_bind ) {
		if (function_to_bind==0) { // cope with assignment to 0
			m_pFunction=0;
		} else { 
			bindmemfunc(pParent, static_function_invoker);
        }
		m_pStaticFunction=reinterpret_cast<GenericFuncPtr>(function_to_bind);
	}
	inline UnvoidStaticFuncPtr GetStaticFunction() const { 
		return reinterpret_cast<UnvoidStaticFuncPtr>(m_pStaticFunction); 
	}
#else

//				ClosurePtr<> - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is 
// possible to store the function pointer in the this pointer, using another 
// horrible_cast. Invocation isn't any faster, but it saves 4 bytes, and
// speeds up comparison and assignment. If C++ provided direct language support
// for delegates, they would produce asm code that was almost identical to this.
// Note that the Sun C++ and MSVC documentation explicitly state that they 
// support static_cast between void * and function pointers.

	template< class DerivedClass >
	inline void CopyFrom (DerivedClass *pParent, const DelegateMemento &right) {
		SetMementoFrom(right);
	}
	// For static functions, the 'static_function_invoker' class in the parent 
	// will be called. The parent then needs to call GetStaticFunction() to find out 
	// the actual function to invoke.
	// ******** EVIL, EVIL CODE! *******
	template < 	class DerivedClass, class ParentInvokerSig>
	inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker, 
				StaticFuncPtr function_to_bind) {
		if (function_to_bind==0) { // cope with assignment to 0
			m_pFunction=0;
		} else { 
		   // We'll be ignoring the 'this' pointer, but we need to make sure we pass
		   // a valid value to bindmemfunc().
			bindmemfunc(pParent, static_function_invoker);
        }

		// WARNING! Evil hack. We store the function in the 'this' pointer!
		// Ensure that there's a compilation failure if function pointers 
		// and data pointers have different sizes.
		// If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK.
		typedef int ERROR_CantUseEvilMethod[sizeof(GenericClass *)==sizeof(function_to_bind) ? 1 : -1];
		m_pthis = horrible_cast<GenericClass *>(function_to_bind);
		// MSVC, SunC++ and DMC accept the following (non-standard) code:
//		m_pthis = static_cast<GenericClass *>(static_cast<void *>(function_to_bind));
		// BCC32, Comeau and DMC accept this method. MSVC7.1 needs __int64 instead of long
//		m_pthis = reinterpret_cast<GenericClass *>(reinterpret_cast<long>(function_to_bind));
	}
	// ******** EVIL, EVIL CODE! *******
	// This function will be called with an invalid 'this' pointer!!
	// We're just returning the 'this' pointer, converted into
	// a function pointer!
	inline UnvoidStaticFuncPtr GetStaticFunction() const {
		// Ensure that there's a compilation failure if function pointers 
		// and data pointers have different sizes.
		// If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK.
		typedef int ERROR_CantUseEvilMethod[sizeof(UnvoidStaticFuncPtr)==sizeof(this) ? 1 : -1];
		return horrible_cast<UnvoidStaticFuncPtr>(this);
	}
#endif // !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)

	// Does the closure contain this static function?
	inline bool IsEqualToStaticFuncPtr(StaticFuncPtr funcptr){
		if (funcptr==0) return empty(); 
	// For the Evil method, if it doesn't actually contain a static function, this will return an arbitrary
	// value that is not equal to any valid function pointer.
		else return funcptr==reinterpret_cast<StaticFuncPtr>(GetStaticFunction());
	}
};


} // namespace detail

////////////////////////////////////////////////////////////////////////////////
//						Fast Delegates, part 3:
//
//				Wrapper classes to ensure type safety
//
////////////////////////////////////////////////////////////////////////////////


// Once we have the member function conversion templates, it's easy to make the
// wrapper classes. So that they will work with as many compilers as possible, 
// the classes are of the form
//   FastDelegate3<int, char *, double>
// They can cope with any combination of parameters. The max number of parameters
// allowed is 8, but it is trivial to increase this limit.
// Note that we need to treat const member functions seperately.
// All this class does is to enforce type safety, and invoke the delegate with
// the correct list of parameters.

// Because of the weird rule about the class of derived member function pointers,
// you sometimes need to apply a downcast to the 'this' pointer.
// This is the reason for the use of "implicit_cast<X*>(pthis)" in the code below. 
// If CDerivedClass is derived from CBaseClass, but doesn't override SimpleVirtualFunction,
// without this trick you'd need to write:
//		MyDelegate(static_cast<CBaseClass *>(&d), &CDerivedClass::SimpleVirtualFunction);
// but with the trick you can write
//		MyDelegate(&d, &CDerivedClass::SimpleVirtualFunction);

// RetType is the type the compiler uses in compiling the template. For VC6,
// it cannot be void. DesiredRetType is the real type which is returned from
// all of the functions. It can be void.

// Implicit conversion to "bool" is achieved using the safe_bool idiom,
// using member data pointers (MDP). This allows "if (dg)..." syntax
// Because some compilers (eg codeplay) don't have a unique value for a zero
// MDP, an extra padding member is added to the SafeBool struct.
// Some compilers (eg VC6) won't implicitly convert from 0 to an MDP, so
// in that case the static function constructor is not made explicit; this
// allows "if (dg==0) ..." to compile.

//N=0
template<class RetType=detail::DefaultVoid>
class FastDelegate0 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)();
	typedef RetType (*UnvoidStaticFunctionPtr)();
	typedef RetType (detail::GenericClass::*GenericMemFn)();
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate0 type;

	// Construction and comparison functions
	FastDelegate0() { clear(); }
	FastDelegate0(const FastDelegate0 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate0 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate0 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate0 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate0 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate0 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate0(Y *pthis, DesiredRetType (X::* function_to_bind)() ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)()) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate0(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate0(DesiredRetType (*function_to_bind)() ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)() ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)()) {
		m_Closure.bindstaticfunc(this, &FastDelegate0::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() () const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction() const {
	return (*(m_Closure.GetStaticFunction()))(); }
};

//N=1
template<class Param1, class RetType=detail::DefaultVoid>
class FastDelegate1 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate1 type;

	// Construction and comparison functions
	FastDelegate1() { clear(); }
	FastDelegate1(const FastDelegate1 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate1 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate1 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate1 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate1 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate1 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate1(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate1(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate1(DesiredRetType (*function_to_bind)(Param1 p1) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1)) {
		m_Closure.bindstaticfunc(this, &FastDelegate1::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1) const {
	return (*(m_Closure.GetStaticFunction()))(p1); }
};

//N=2
template<class Param1, class Param2, class RetType=detail::DefaultVoid>
class FastDelegate2 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate2 type;

	// Construction and comparison functions
	FastDelegate2() { clear(); }
	FastDelegate2(const FastDelegate2 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate2 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate2 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate2 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate2 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate2 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate2(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate2(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate2(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) {
		m_Closure.bindstaticfunc(this, &FastDelegate2::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2); }
};

//N=3
template<class Param1, class Param2, class Param3, class RetType=detail::DefaultVoid>
class FastDelegate3 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate3 type;

	// Construction and comparison functions
	FastDelegate3() { clear(); }
	FastDelegate3(const FastDelegate3 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate3 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate3 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate3 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate3 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate3 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate3(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate3(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate3(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) {
		m_Closure.bindstaticfunc(this, &FastDelegate3::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2, Param3 p3) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2, p3); }
};

//N=4
template<class Param1, class Param2, class Param3, class Param4, class RetType=detail::DefaultVoid>
class FastDelegate4 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate4 type;

	// Construction and comparison functions
	FastDelegate4() { clear(); }
	FastDelegate4(const FastDelegate4 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate4 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate4 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate4 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate4 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate4 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate4(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate4(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate4(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
		m_Closure.bindstaticfunc(this, &FastDelegate4::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4); }
};

//N=5
template<class Param1, class Param2, class Param3, class Param4, class Param5, class RetType=detail::DefaultVoid>
class FastDelegate5 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate5 type;

	// Construction and comparison functions
	FastDelegate5() { clear(); }
	FastDelegate5(const FastDelegate5 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate5 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate5 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate5 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate5 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate5 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate5(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate5(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate5(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) {
		m_Closure.bindstaticfunc(this, &FastDelegate5::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5); }
};

//N=6
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType=detail::DefaultVoid>
class FastDelegate6 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate6 type;

	// Construction and comparison functions
	FastDelegate6() { clear(); }
	FastDelegate6(const FastDelegate6 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate6 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate6 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate6 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate6 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate6 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate6(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate6(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate6(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) {
		m_Closure.bindstaticfunc(this, &FastDelegate6::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6); }
};

//N=7
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType=detail::DefaultVoid>
class FastDelegate7 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate7 type;

	// Construction and comparison functions
	FastDelegate7() { clear(); }
	FastDelegate7(const FastDelegate7 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate7 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate7 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate7 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate7 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate7 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate7(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate7(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate7(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) {
		m_Closure.bindstaticfunc(this, &FastDelegate7::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7); }
};

//N=8
template<class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType=detail::DefaultVoid>
class FastDelegate8 {
private:
	typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
	typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8);
	typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8);
	typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8);
	typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr, UnvoidStaticFunctionPtr> ClosureType;
	ClosureType m_Closure;
public:
	// Typedefs to aid generic programming
	typedef FastDelegate8 type;

	// Construction and comparison functions
	FastDelegate8() { clear(); }
	FastDelegate8(const FastDelegate8 &x) {
		m_Closure.CopyFrom(this, x.m_Closure); }
	void operator = (const FastDelegate8 &x)  {
		m_Closure.CopyFrom(this, x.m_Closure); }
	bool operator ==(const FastDelegate8 &x) const {
		return m_Closure.IsEqual(x.m_Closure);	}
	bool operator !=(const FastDelegate8 &x) const {
		return !m_Closure.IsEqual(x.m_Closure); }
	bool operator <(const FastDelegate8 &x) const {
		return m_Closure.IsLess(x.m_Closure);	}
	bool operator >(const FastDelegate8 &x) const {
		return x.m_Closure.IsLess(m_Closure);	}
	// Binding to non-const member functions
	template < class X, class Y >
	FastDelegate8(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind); }
	template < class X, class Y >
	inline void bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
		m_Closure.bindmemfunc(detail::implicit_cast<X*>(pthis), function_to_bind);	}
	// Binding to const member functions.
	template < class X, class Y >
	FastDelegate8(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X*>(pthis), function_to_bind);	}
	template < class X, class Y >
	inline void bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) {
		m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis), function_to_bind);	}
	// Static functions. We convert them into a member function call.
	// This constructor also provides implicit conversion
	FastDelegate8(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) {
		bind(function_to_bind);	}
	// for efficiency, prevent creation of a temporary
	void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) {
		bind(function_to_bind);	}
	inline void bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
		m_Closure.bindstaticfunc(this, &FastDelegate8::InvokeStaticFunction, 
			function_to_bind); }
	// Invoke the delegate
	RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const {
	return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7, p8); }
	// Implicit conversion to "bool" using the safe_bool idiom
private:
	typedef struct SafeBoolStruct {
		int a_data_pointer_to_this_is_0_on_buggy_compilers;
		StaticFunctionPtr m_nonzero;
	} UselessTypedef;
    typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
	operator unspecified_bool_type() const {
        return empty()? 0: &SafeBoolStruct::m_nonzero;
    }
	// necessary to allow ==0 to work despite the safe_bool idiom
	inline bool operator==(StaticFunctionPtr funcptr) {
		return m_Closure.IsEqualToStaticFuncPtr(funcptr);	}
	inline bool operator!=(StaticFunctionPtr funcptr) { 
		return !m_Closure.IsEqualToStaticFuncPtr(funcptr);    }
	inline bool operator ! () const	{	// Is it bound to anything?
			return !m_Closure; }
	inline bool empty() const	{
			return !m_Closure; }
	void clear() { m_Closure.clear();}
	// Conversion to and from the DelegateMemento storage class
	const DelegateMemento & GetMemento() { return m_Closure; }
	void SetMemento(const DelegateMemento &any) { m_Closure.CopyFrom(this, any); }

private:	// Invoker for static functions
	RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const {
	return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7, p8); }
};


////////////////////////////////////////////////////////////////////////////////
//						Fast Delegates, part 4:
// 
//				FastDelegate<> class (Original author: Jody Hagins)
//	Allows boost::function style syntax like:
//			FastDelegate< double (int, long) >
// instead of:
//			FastDelegate2< int, long, double >
//
////////////////////////////////////////////////////////////////////////////////

#ifdef FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

// Declare FastDelegate as a class template.  It will be specialized
// later for all number of arguments.
template <typename Signature>
class FastDelegate;

//N=0
// Specialization to allow use of
// FastDelegate< R (  ) >
// instead of 
// FastDelegate0 < R >
template<typename R>
class FastDelegate< R (  ) >
  // Inherit from FastDelegate0 so that it can be treated just like a FastDelegate0
  : public FastDelegate0 < R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate0 < R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)(  ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)(  ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)(  ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=1
// Specialization to allow use of
// FastDelegate< R ( Param1 ) >
// instead of 
// FastDelegate1 < Param1, R >
template<typename R, class Param1>
class FastDelegate< R ( Param1 ) >
  // Inherit from FastDelegate1 so that it can be treated just like a FastDelegate1
  : public FastDelegate1 < Param1, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate1 < Param1, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=2
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2 ) >
// instead of 
// FastDelegate2 < Param1, Param2, R >
template<typename R, class Param1, class Param2>
class FastDelegate< R ( Param1, Param2 ) >
  // Inherit from FastDelegate2 so that it can be treated just like a FastDelegate2
  : public FastDelegate2 < Param1, Param2, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate2 < Param1, Param2, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=3
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3 ) >
// instead of 
// FastDelegate3 < Param1, Param2, Param3, R >
template<typename R, class Param1, class Param2, class Param3>
class FastDelegate< R ( Param1, Param2, Param3 ) >
  // Inherit from FastDelegate3 so that it can be treated just like a FastDelegate3
  : public FastDelegate3 < Param1, Param2, Param3, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate3 < Param1, Param2, Param3, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=4
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4 ) >
// instead of 
// FastDelegate4 < Param1, Param2, Param3, Param4, R >
template<typename R, class Param1, class Param2, class Param3, class Param4>
class FastDelegate< R ( Param1, Param2, Param3, Param4 ) >
  // Inherit from FastDelegate4 so that it can be treated just like a FastDelegate4
  : public FastDelegate4 < Param1, Param2, Param3, Param4, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate4 < Param1, Param2, Param3, Param4, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=5
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) >
// instead of 
// FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) >
  // Inherit from FastDelegate5 so that it can be treated just like a FastDelegate5
  : public FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=6
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) >
// instead of 
// FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) >
  // Inherit from FastDelegate6 so that it can be treated just like a FastDelegate6
  : public FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=7
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >
// instead of 
// FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >
  // Inherit from FastDelegate7 so that it can be treated just like a FastDelegate7
  : public FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};

//N=8
// Specialization to allow use of
// FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >
// instead of 
// FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R >
template<typename R, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8>
class FastDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8 ) >
  // Inherit from FastDelegate8 so that it can be treated just like a FastDelegate8
  : public FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R >
{
public:
  // Make using the base type a bit easier via typedef.
  typedef FastDelegate8 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, R > BaseType;

  // Allow users access to the specific type of this delegate.
  typedef FastDelegate SelfType;

  // Mimic the base class constructors.
  FastDelegate() : BaseType() { }

  template < class X, class Y >
  FastDelegate(Y * pthis, 
    R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ))
    : BaseType(pthis, function_to_bind)  { }

  template < class X, class Y >
  FastDelegate(const Y *pthis,
      R (X::* function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ) const)
    : BaseType(pthis, function_to_bind)
  {  }

  FastDelegate(R (*function_to_bind)( Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8 ))
    : BaseType(function_to_bind)  { }
  void operator = (const BaseType &x)  {	  
		*static_cast<BaseType*>(this) = x; }
};


#endif //FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX

////////////////////////////////////////////////////////////////////////////////
//						Fast Delegates, part 5:
//
//				MakeDelegate() helper function
//
//			MakeDelegate(&x, &X::func) returns a fastdelegate of the type
//			necessary for calling x.func() with the correct number of arguments.
//			This makes it possible to eliminate many typedefs from user code.
//
////////////////////////////////////////////////////////////////////////////////

// Also declare overloads of a MakeDelegate() global function to 
// reduce the need for typedefs.
// We need seperate overloads for const and non-const member functions.
// Also, because of the weird rule about the class of derived member function pointers,
// implicit downcasts may need to be applied later to the 'this' pointer.
// That's why two classes (X and Y) appear in the definitions. Y must be implicitly
// castable to X.

// Workaround for VC6. VC6 needs void return types converted into DefaultVoid.
// GCC 3.2 and later won't compile this unless it's preceded by 'typename',
// but VC6 doesn't allow 'typename' in this context.
// So, I have to use a macro.

#ifdef FASTDLGT_VC6
#define FASTDLGT_RETTYPE detail::VoidToDefaultVoid<RetType>::type
#else 
#define FASTDLGT_RETTYPE RetType
#endif

//N=0
template <class X, class Y, class RetType>
FastDelegate0<FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)()) { 
	return FastDelegate0<FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class RetType>
FastDelegate0<FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)() const) { 
	return FastDelegate0<FASTDLGT_RETTYPE>(x, func);
}

//N=1
template <class X, class Y, class Param1, class RetType>
FastDelegate1<Param1, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1)) { 
	return FastDelegate1<Param1, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class RetType>
FastDelegate1<Param1, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1) const) { 
	return FastDelegate1<Param1, FASTDLGT_RETTYPE>(x, func);
}

//N=2
template <class X, class Y, class Param1, class Param2, class RetType>
FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2)) { 
	return FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class RetType>
FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2) const) { 
	return FastDelegate2<Param1, Param2, FASTDLGT_RETTYPE>(x, func);
}

//N=3
template <class X, class Y, class Param1, class Param2, class Param3, class RetType>
FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3)) { 
	return FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class RetType>
FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3) const) { 
	return FastDelegate3<Param1, Param2, Param3, FASTDLGT_RETTYPE>(x, func);
}

//N=4
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class RetType>
FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { 
	return FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class RetType>
FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) { 
	return FastDelegate4<Param1, Param2, Param3, Param4, FASTDLGT_RETTYPE>(x, func);
}

//N=5
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class RetType>
FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { 
	return FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class RetType>
FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) { 
	return FastDelegate5<Param1, Param2, Param3, Param4, Param5, FASTDLGT_RETTYPE>(x, func);
}

//N=6
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType>
FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { 
	return FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class RetType>
FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) { 
	return FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, FASTDLGT_RETTYPE>(x, func);
}

//N=7
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType>
FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { 
	return FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class RetType>
FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) { 
	return FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6, Param7, FASTDLGT_RETTYPE>(x, func);
}

//N=8
template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType>
FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { 
	return FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE>(x, func);
}

template <class X, class Y, class Param1, class Param2, class Param3, class Param4, class Param5, class Param6, class Param7, class Param8, class RetType>
FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE> MakeDelegate(Y* x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) { 
	return FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6, Param7, Param8, FASTDLGT_RETTYPE>(x, func);
}


 // clean up after ourselves...
#undef FASTDLGT_RETTYPE

} // namespace fastdelegate

#endif // !defined(FASTDELEGATE_H)