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Instructions for using the RACE segmentation framework 

Step-by-step protocol, troubleshooting guide and RACE video tutorial 

We provide text and video materials that explain and demonstrate how the RACE cell 

segmentation framework can be applied to new image data, including a detailed step-by-step 

protocol (Box 1), a troubleshooting guide (Box 2) and a RACE video tutorial 

(https://bitbucket.org/jstegmaier/race/downloads/RACE_VideoTutorial.zip). 

 

Building the framework from the sources 

The C++ implementation of the RACE segmentation algorithm is available from 

http://www.bitbucket.org/jstegmaier/race/. We take advantage of the CMake build tool to 

generate project files for various operating systems that make it easy to work with the compiler 

of your choice (http://www.cmake.org/). This tool is used to configure the Insight Toolkit (ITK) 

libraries and to generate the related project files for both ITK and the segmentation executable 

itself. ITK is freely available for download from http://www.itk.org/. Moreover, the Qt libraries 

are required and can be obtained from http://qt-project.org/ (specifically, the QtCore and 

QtWidgets modules are required). Detailed installation instructions for ITK and Qt are provided 

on the respective webpages. For development and software testing, we used CMake v3.0.0, ITK 

v4.3 and Qt v5.2 under Windows 7 Professional 64-bit using Microsoft Visual Studio 2012 and 

its associated C++ compiler. The software has also been successfully compiled and tested under 

Windows 8.1, Ubuntu 12.04 LTS, 14.04 LTS, Scientific Linux 5, 6 and Mac OS X 10.9.3. 

 

Notes: 

 For processing TIFF files larger than 4GB it is necessary to have a BigTIFF-compatible 

libtiff version installed and to enable the ITK CMake flag ITK_USE_64BIT_IDS 

during ITK makefile generation (see http://bigtiff.org/). Furthermore, the flag 

ITK_USE_REVIEW needs to be enabled. 

 For processing large images, ITK and Qt libraries and executables need to be compiled as 64-

bit versions. 

 When observing errors related to missing Qt headers or libraries, check if the header and 

library paths have been properly set by CMake. Otherwise, add “QTDIR/include/”, 

“QTDIR/include/QtCore/” to the header search path and “QTDIR/lib/”, 

“QTDIR/bin/” to the library search path. Furthermore, confirm that “qtmain.lib” and 

“Qt5Core.lib” are listed as additional dependencies in the Visual Studio project linker 

settings. 

 On Windows systems, we recommend installing ITK at most two sub-folders away from the 

system root. Otherwise path name length limits of the file system may be exceeded. 

 For faster compilation of ITK the following options can be disabled: BUILD_EXAMPLES, 

BUILD_DOCUMENTATION, BUILD_SHARED_LIBS and BUILD_TESTING. 
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 If you would like to use the GPU-accelerated version of the pipeline, the CUDA Toolkit is 

needed as well (https://developer.nvidia.com/cuda-toolkit). 

  

Compiling the sources 

After installation and compilation of all prerequisites, it should be possible to compile the 

application. This can be done with the CMake build tool and a compiler of your choice using the 

CMakeLists.txt located in the folder PROJECTROOT/Project/CMakeQt5. Therefore, 

the source path of CMake has to be set to PROJECTROOT/Project/CMakeQt5/ and the 

build path has to be set e.g. to PROJECTROOT/Project/Buildx64/ (folder names are 

denoted relative to the installation directory). If ITK, Qt or CUDA are not found automatically, 

make sure to redirect CMake to the paths the respective libraries are located at. After successful 

Makefile generation using CMake it should be possible to compile the segmentation algorithm, 

e.g. using the make command within a Unix terminal or building the generated Visual Studio 

project files. 

 

Application example 

Once code generation is complete and the executable has been successfully built, the program 

can be started via the Unix terminal application with the call ./XPIWIT < input.txt or in 

the Windows command prompt using XPIWIT.exe < input.txt, where input.txt is a 

text file that determines (1) the input and output parameters for the executable, (2) an XML 

pipeline to process and (3) additional parameters. Note that the executable itself is called without 

parameters but all inputs are piped either directly or using a file. The application expects 

information about the following input parameters in the input.txt text file: 

 
--output PROJECTROOT/Example/Results/ 

--input 0, PROJECTROOT/Example/Data/Membrane/Drosophila_c=00_t=0010.tif, 3, float 

--input 1, PROJECTROOT/Example/Data/Nuclei/Drosophila_c=02_t=0010.tif, 3, float 

--xml PROJECTROOT/Example/membraneSegmentationDrosophilaMS.xml 

--seed 0 

--lockfile off 

--subfolder filterid, filtername 

--outputformat imagename, filtername 

--end 

 

The most important parameters are the output path (line 1), the input paths (lines 2 and 3) and the 

path of the XML file (line 4). Always use “/” as a folder separator instead of “\”, even on 

Windows systems. The remaining parameters can be left unchanged. The Example folder 

contains three small 3D data sets showing labeled nuclei and membranes in a Drosophila 

embryo. Input files for the compiled executable as well as XML pipeline files for segmentation  

and for GPU version are also provided. Make sure to adjust the absolute paths within the input 

files according to the specific location on your disk. If program execution was successful, the 

specified output folder should contain a log file including processing time, parameters and 
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pipeline components as well as the resulting image data. All parameters can be adjusted in the 

file PROJECTROOT/Example/membraneSegmentationDrosophila*.xml using a 

simple text editor. A comprehensive list with available filter options as well as the description of 

parameters can be requested with the call XPIWIT.exe --filterlist myfilters.xml 

on Windows and ./XPIWIT --filterlist myfilters.xml on Unix-based systems, 

respectively. 



Box 1 | Step-by-step protocol for the RACE cell segmentation framework 

 

Note: We provide a video tutorial that illustrates the steps described in this protocol using SiMView 

example image data from an early Drosophila embryo (https://bitbucket.org/jstegmaier/race/downloads). 

 

Step Description 

A) Download 

and install 

precompiled 

RACE 

software 

package 

In order to use the RACE segmentation framework please select one of the supplementary software 

packages for the operating system of your choice and download the package from 

https://bitbucket.org/jstegmaier/race/. Extract the archive to your local hard drive and start the 

graphical user interface (GUI) by double-clicking “RACEGUI.exe” (Windows) or by starting the shell 

script “./RACEGUI.sh” from the terminal (Mac OS X and Ubuntu). These files are located in the sub-

folder “Bin”. Note: Ensure that the path to the executable does not contain spaces or special 

characters. 

B) Specify 

input data 

To process your image data, simply drag and drop a valid single-channel 3D TIFF image stack 

containing fluorescently labeled cell membranes onto the GUI’s first field “Membrane input 

(File/Folder)”. Example image data from an early Drosophila embryo are included in the sub-folder 

“Data” in the provided binary packages. If you additionally acquired image data of fluorescently 

labeled cell nuclei and would like to use these data for seed detection, drag and drop the corresponding 

file onto the second field “Nuclei/Seed input (File/Folder)”. 

C) Specify 

output folder 

In order to define the output folder used to store RACE processing results, drag and drop the desired 

output folder onto the third field “Output (Folder)”. This result folder has to exist prior to RACE 

execution and write permission to this folder are required. Note: Make sure that neither input nor 

output paths contain any spaces or special characters. 

D) Alternative 

seeding options 

 

(optional) 

The GUI also allows using seed points derived from an external tracking algorithm such as TGMM 

(Amat et al., 2014) or manually corrected seed points stored in a CATMAID database (Saalfeld et al., 

2009). Use the buttons Import TGMM Seeds or Import CATMAID Seeds if you would like to import 

seed points from either TGMM or CATMAID projects, respectively. RACEGUI automatically 

converts the seed points to a valid CSV seed file that can be used for seeding in RACE. Alternatively, 

you can also use your own seed points stored in a CSV-based format using the “;”-delimiter. In this 

format, each row contains information about one seed point: the first column provides the unique 

identifier of the seed point and columns 3-5 provide the seed location in image pixel coordinates. If 

you have such a CSV file, simply drag and drop it onto the second field “Nuclei/Seed input 

(File/Folder)” instead of a nucleus image and set the seeding mode to “CSV”. 

E) Select 

RACE 

implementation 

Choose the version of the RACE algorithm you would like to use by selecting the seeding type 

(Membrane, Nuclei or CSV) and possible acceleration options (ITK (default), NScale, CUDA or 

NScale+CUDA). Note that a CUDA-enabled device is required for the GPU-accelerated (CUDA) 

version of RACE. 

F) Tune RACE 

parameters for 

optimal 

segmentation 

quality 

Several parameters in the cell segmentation pipeline need to be set correctly to ensure that the 

algorithm produces optimal results. Most of the framework’s parameters represent the microscope’s 

optical configuration or can be directly derived from basic prior knowledge about the investigated 

biological model system. The image-dependent intensity thresholds can be visually determined, e.g. by 

using Fiji (Schindelin et al., 2012). For debugging and parameter adjustment, it is advisable to write 

images produced by intermediate processing steps to disk and tune parameters step-by-step in the order 

outlined below. In the following paragraphs we describe each of the parameters and include strategies 

for determining their optimal settings. All parameters are adjustable through the XML configuration 

files (Box 2). 



Box 1 | Step-by-step protocol for the RACE cell segmentation framework (continued) 

 

Step Description 

G) Configure 

microscope- 

and 

specimen-

dependent 

parameters 

(1) The image sampling ratio, i.e. the ratio of axial vs. lateral voxel size in the image data, is directly 

defined by the volume acquisition settings and the microscope’s detection system. For instance, if the 

lateral voxel size is 0.4 µm and the axial voxel size is 2.0 µm, enter a value of 5. 

(2) The minimum value of the radius range for iterative morphological closing (MinRadius, MaxRadius) 

should usually be set to 1 and the maximum value should be set to the minimum cell radius. For most 

data sets used in this work we used radii r ϵ {1, 2, 3, 4}. 

(3) The minimum seed size (MinSeedArea) and maximum 2D segment size (MaxSegmentArea) 

parameters can be used to exclude small seeds comprising only a few pixels and large 2D background 

segments, respectively. Furthermore, the cell volume boundary (MinVolume, MaxVolume) guides 

decisions of the fusion heuristic based on prior information about minimum and maximum cell volumes 

expected for the given specimen. To take advantage of this feature, simply measure a few representative 

cell volumes at the lower and the upper end of the spectrum and adjust volume constraints accordingly. 

Note: MinVolume and MaxVolume are only considered if the optional parameter SSH Fusion Heuristic is 

turned on. 

H) Configure 

intensity-

dependent 

parameters 

 

(1) For optimal performance of the membrane-based and the nucleus-based seed detection, the respective 

binary threshold (MS, NS) and H-maxima level have to be adjusted such that the detected seeds are 

sufficiently well separated (see also RACE video tutorial). The threshold should be set such that 

individual cells are clearly distinguishable. The H-maxima of the squared Euclidean distance map are 

used to split erroneously connected cells. 

(2) To optimize the balance of over- vs. under-segmentation of the slice-based segmentation in low-

contrast regions, the morphological watershed level has to be properly adjusted. All local minima below 

the specified level will be ignored, i.e. the level should be set slightly below the minimum intensity of 

membrane structures that need to be split by a watershed in the membrane-enhanced, iteratively-closed 

membrane image (see also RACE video tutorial). This is a core parameter of the algorithm and typically 

varies from sample to sample since it relates to absolute intensity levels. 

I) Configure 

optional 

parameters 

 

(optional) 

The remaining parameters and optional fusion heuristics can be tweaked and further optimized, but the 

default values should generally produce reasonable results. While searching for optimal parameter 

settings it is helpful to use random labels for final segmentation and write intermediate results to disk in 

order to investigate the effect of parameter changes. We also recommend using relatively small image 

regions in this process, such that updated segmentation results are obtained almost instantaneously. The 

most important optional parameters are: 

(1) The parameters for Hessian-based membrane enhancement (HessianToObjectnessFilter) control the 

regularization scale of the Hessian calculation (σ), the weight of the Frobenius norm of the Hessian (γ) 

and the influence of the ratio of the two largest eigenvalues (β). We used σ = 2.0, γ = 0.1 and β = 1.0 for 

all experiments presented in this study. 

(2) The 2D median radius depends on the noise level of the images. A fixed 5x5 kernel size produced 

good results across all data sets examined in this study.  

(3) The standard deviation σ of the LoG filter used for the nucleus-based seed detection can be directly 

determined from the equation r = sqrt(2) · σ, where r is the nucleus radius in pixels (Lowe, 2004). 

Note: Parameters 1-3 usually do not need to be changed and are thus not exposed in the GUI. However, 

they can be adjusted in the XML template files as described in Box 2. 

J) Execute 

RACE using 

the current 

settings 

After all parameters have been set, click on the Run button to start processing. The progress is displayed 

in the command line window. If you would like to adjust parameters after inspecting the results of a 

processing run, simply apply changes as needed and run the application again to obtain new results. 

Finally, use button Open Result Folder to view the final results or button Quit to close the application. 



Box 2 | Troubleshooting tips 

 

Problem/Question Solution 

What is the best 

fluorescent marker 

strategy for my 

application? 

We designed the RACE framework to allow multiple fluorescent marker choices for seed-based 

fusion of 2D cell segments to complete 3D cell shapes. RACE is capable of automatically 

extracting seeds either directly from the image data of the cell membrane marker (using an 

inverted version of the enhanced cell membrane image), but it can optionally also take advantage 

of a cell nucleus marker. If image data of cell nuclei are available, we usually recommend using 

this information for seed-based fusion, as the sparseness and blob-like appearance of cell nuclei 

generally simplifies correct cell identification and localization. For “hollow” specimens with 

strong auto-fluorescence contribution from interior regions, such as early-stage Drosophila 

embryos with auto-fluorescent yolk, a seeding approach based on cell nucleus markers helps 

eliminate false positive detections in background regions and directly increases the precision of 

the algorithm. However, images of cell nuclei should only be acquired and used for seed detection 

if the imaging speed of the microscope is sufficiently high. Specifically, cell movements during 

sequential two-color imaging need to be small enough to ensure that segmented nuclei correctly 

and unambiguously match the spatial domain occupied by the corresponding cell in the membrane 

channel. Moreover, the nuclei seed detection algorithm can only produce high-quality seeds if 

spatial resolution and image quality allow for a clear distinction between individual nuclei. This 

requirement was not fulfilled in our mouse data set, which exhibits very densely packed cell 

nuclei and for which it was therefore advantageous to extract seed points from the membrane 

images instead. 

How can I improve 

the seed quality to 

optimize 

segmentation 

results? 

Since seed quality directly influences cell shape segmentation quality, we developed several 

automated mechanisms for eliminating or counteracting erroneous seeding and also implemented 

infrastructure supporting manual data curation. In order to efficiently suppress false-positive seed 

points, we introduced quality filters for rejecting small seeds and preventing redundant seeding. In 

many cases, the use of an additional nucleus channel image can substantially improve seeding 

quality (see above). For applications that require completely error-free results, we furthermore 

provide an interface based on CATMAID (Saalfeld et al., 2009) that allows rapid manual 

correction of remaining seed errors. 

Morphological 

closing seems to be 

a bottleneck. Can 

this be improved? 

Processing time may increase significantly if the maximum radius is set to an unnecessarily large 

value, due to the large 3D neighborhood used for the morphological operations. Optionally, the 

closing operation can also be restricted to 2D masks. If cell sizes are relatively homogeneous, 

using only the maximum radius might also be sufficient to reduce processing time. 

How can I reduce 

over-segmentation 

errors? 

Similar to MARS and EDGE4D, we implemented two segment fusion heuristics that can partially 

compensate for over-segmentation errors resulting from incorrect seeds. These heuristics are 

based on morphological criteria, specific estimates of the physiological range of cell sizes, and can 

be quickly evaluated by manual inspection of a small number of representative cells. Although 

very effective when cell sizes are relatively uniform across the specimen, these heuristics can fail 

when cell shapes and cell volumes vary substantially. An example of such a case is the mouse 

embryo data set included in our performance analysis. In future releases of RACE, fusion 

heuristics could be further improved for data sets with very diverse cell morphologies by 

including more general features, such as intensity profiles, or classification-based approaches. 

I would like to 

perform a large job 

on a computer 

cluster. 

We decoupled the RACE processing module from its graphical user interface (GUI), which makes 

it straightforward to execute and parametrize RACE in a headless mode suitable for computer 

clusters. We also provide platform-independent project files and the RACE source code, which 

allows recompilation of RACE if a specific desired target operating system is not covered by the 

executables included in our software repository. 



Box 2 | Troubleshooting tips (continued) 

 

 

Problem/Question Solution 

Is it possible to 

reduce the memory 

footprint of RACE? 

Even with the algorithmic optimizations already incorporated in the RACE framework, memory 

requirements can in principle still become a bottleneck when analyzing extremely large image 

volumes. Therefore, we further optimized memory requirements in the GPU-accelerated version 

of our pipeline and achieved a 9-fold improvement over the CPU-optimized implementation of 

RACE. In addition, our GPU-accelerated implementation greatly speeds up some of the most 

computation-intensive operations performed by RACE. We therefore generally recommend using 

the GPU-accelerated implementation of RACE if a conventional CUDA-enabled graphics card is 

available. 

My output path does 

not contain image 

data after 

processing is 

finished. 

Please follow these steps to investigate possible sources of this problem: 

(1) Make sure that the name of the path RACE has been extracted to does not contain any spaces 

or special characters. 

(2) Make sure that you have write permissions for the output folder you selected and that this 

folder already exists prior to executing RACE. 

(3) Existing results in the output folder will simply be overwritten. Thus, to preserve previous 

processing results, make sure to select a different output folder or move your temporary results to 

a different location if you wish to keep them. 

I would like to 

access one of the 

non-standard 

parameters of the 

RACE algorithm. 

If you wish to modify parameters that are not directly accessible via the GUI, you can edit the 

XML template files provided in the folder “PROJECTROOT/Bin/templates/”. Simply open and 

edit one of the “*Template.xml” files with a text editor of your choice and adjust parameters as 

needed. In addition, we provide RACE project files for XPIWIT, a new software tool that enables 

easy graphical adjustment of all RACE parameters and furthermore facilitates customization of 

the pipeline, if needed.  

How do I adapt or 

recompile RACE? 

We provide executables for Windows, Mac OS X and Ubuntu. If the operating system of your 

choice is not among these or if you need to customize specific parts of the pipeline, you can 

simply compile our framework from the provided sources as detailed above. The modular design 

of the RACE framework furthermore facilitates replacing, optimizing or customizing individual 

software components if required for specific applications. 


