Remote proc resource manager
overview

Arnaud Pouliquen/Loic Pallardy

‘ ’ I life.augmented



Proposed Terminology

To understand Resource Management mechanism, we need to
be aligned on terminology. Here is a proposal:

- Peripheral resource: A peripheral which can be assigned and
controlled by a core without conflict with other cores:

—Peripheral can be isolated for a core (Hw semaphore, isolation, software
resource manager...)

- System resource: central SoC resource required to operate
the remote processor subsystem or a peripheral, shared by all

cores and controlled by the master.

» Resources which are commons : gpios, regulators, clocks, resets...
» Resources which share common registers banks (platform dependent)



System resource for coprocessor
management

- Remote proc platform driver is
In charge of the system
resources needed to operate the
remote processor subsystem.

» Clocks

* Power

» Reset

» Memories access

* Rely on Linux frameworks that
manages the system resources
for Linux core.




System resource for Peripheral
resources

- System resources also
used to operate peripheral.

= If not configured, peripheral is
not functional.

 Peripheral resource can
be assigned:
« To the master Linux core.
» To the remote core.




Requirements Sum-up
5]
- A Peripheral resource can be assigned to a master or slave core 5

on remote processor firmware start.

—Static assignment.

- A Peripheral resource can be assigned or reassigned during
remote processor runtime
—=Dynamic assignment based on RPMsg.

- System resources must be handled by Master core as common for
all cores.
= To manage concurrent access and global configuration (for instance clock tree)

- System resources associated to a peripheral can be updated (for
instance clock rate update).

- Power management strategy can be implemented.
1S7]

lite.augmented



Why static assignment mmr

—Solution proposed in current version of RPROC SRM.

* Pro.

» Needed for subsystem without IPC ( no shared memory, or remote processor with limited
memory).

* No Latency constraints induced by IPC messaging.

» Remote processor has not to be aware how to configure the system resource (as a Linux
driver).

 Stop, crash and suspend management is simplified.

- Cons.
* No check of the availability.

» No reconfiguration possible during runtime.

=T solution based on RPMsg is complementary and address these
cons points. ST Plan it to implement services on top of rproc_srm.

Lys

lite.augmented



ST solution: DT overview

* One SRM core node similar to a “device
bus” for a remote processor:

. . ) soc {
« List peripheral resources associated. i2C1: i2c@F0010000 {
. compatible = "st,i2c";
To be gxtendgd to gdd RPMsg channel for clocks = <&rce. clk 12C1 K>:
dynamic configuration. pinctrl-0 = <i2c1_pins_a>;
status = “disabled";
] }
* One or several SRM devices that slave_proc?_gsooo?oqm
. compatible = “st, slave_rproc”;
represent(s) peripheral resource reg = <0x30000000 0x10000>,
: resets = <&rcc_rst>;
assigned to the remote processor. e T el e [
- Generic platform devices for basic system clocks = <&rec_clk RPROC_K>;
clock-names = “slave_core0_clk";
resources. system_resources {

compatible = "rproc-srm-core";

- Specific platform devices for SoC specificities. otatus = ‘okay"

» The peripheral is identified by the node name

and/or physical address. 12C1:i2c@F0010000 {

compatible = "rproc-srm-dev";
clocks = <&rcc_clk 12C1_K>;
pinctrl-0 = <i2c1_pins_a>;

« Core assignment switching can be down
by Bind/unbind (or overlay?). ~ status = "okay";

"’ ) b5

lite.augmented




Alternative 1: define all system resources in

remoteproc node -

* Pro
« Simple to implement.

soc {
i2C1: i2c@F0010000 {
compatible = "st, i2c";

- Cons clocks = <&rcc_clk [2C1_K>;
. pinctrl-0 = <i2c1_pins_a>;
* No link between the system resources and status = “disabled":

a peripheral to facilitate reconfiguration. }
slave_proc0@30000000 {

» Peripheral get /release. compatible = “st, slave_rproc”;

» Peripheral suspend/resume. reg = <0x30000000 0x10000>,
Remot r r must kn th tem resets = <&rcc_rst>;
—Nemote processor mus owinhe syste reset-names = "slave_core0_rst";
resources. clocks = <&rcc_clk 12C1_K>;
e inctrl-0 = <i2c1_pins_a>;
» How to handle specific platform system ) g s

resources? b

Lys

lite.augmented



Alternative 2: phandle to peripheral node pam

* Pro
 Only one node common for both core. s0c {
- Reference to Linux core declaration to He :égfn%;?b?;(iof’s‘z i{2c"'
check availability for the remote processor. clocks = <&rcc_clk 12C1_K>:
pinctrl-0 = <i2c1_pins_a>;
status = “disabled";
- Cons }
. . slave_proc0@30000000 {
» Design imposes that system resources are compatible = “st, slave_rproc”;
same for both cores to operate the o :
. sysiem_resources
perlpheral. compatible = "rproc-srm-core";
« Does it make sense to associate a driver to res =<&'201>_201
. . . res-name = « | »
a device with « disabled » status? )
* How to handle specific platform system ) b
resources? :

Lys

lite.augmented



System resource manager oyerview:
static configuration only

Legend

Rproc SRM

4
i application
Main processor ! Coprocessor
I

Kernel space

Rproc_srm_dev
can be generic or
platform dependent

rproc_srm_dev

Configure systems
resources for the
remoteproc peripheral X

|
|
|
|
rproc_srm_core i
|
|
|
|

Hardware

Lys

lite.augmented



System resource manager qvervigw:
static + dynamic configuration

Legend

Rproc SRM

ermel space
rpmsg/virtio

rproc_srm_dev

rproc_srm_core

A

A channel is created to
implement services for
runtime system resource
re-configuration

Configure systems
resources for the

|
remoteproc peripheral X i
I

Hardware

Lys

lite.augmented

application




