# Commits

committed 7d73cc6

Notation corrected in Exercise 3 in poly.tex

• Participants
• Parent commits 853a72a
• Branches default

# File poly.tex

\begin{enumerate}

\item
-$p(x) = 5 x^3 + 6x^2 - 3 x + 4$ and $q(x) = x - 2$ in ${\mathbb Z}_7[x]$
+$a(x) = 5 x^3 + 6x^2 - 3 x + 4$ and $b(x) = x - 2$ in ${\mathbb Z}_7[x]$

\item
-$p(x) = 6 x^4 - 2 x^3 + x^2 - 3 x + 1$ and $q(x) = x^2 + x - 2$ in ${\mathbb Z}_7[x]$
+$a(x) = 6 x^4 - 2 x^3 + x^2 - 3 x + 1$ and $b(x) = x^2 + x - 2$ in ${\mathbb Z}_7[x]$

\item
-$p(x) = 4 x^5 - x^3 + x^2 + 4$ and $q(x) = x^3 - 2$ in ${\mathbb Z}_5[x]$
+$a(x) = 4 x^5 - x^3 + x^2 + 4$ and $b(x) = x^3 - 2$ in ${\mathbb Z}_5[x]$

\item
-$p(x) = x^5 + x^3 -x^2 - x$ and $q(x) = x^3 + x$ in ${\mathbb Z}_2[x]$
+$a(x) = x^5 + x^3 -x^2 - x$ and $b(x) = x^3 + x$ in ${\mathbb Z}_2[x]$

\end{enumerate}
+%$p$ and $q$ changed to $a$ and $b$.  Suggested by K. Kyle Wenholz.  TWJ 2/14/2012

\item
Find the greatest common divisor of each of the following pairs $p(x)$ and $q(x)$ of polynomials. If $d(x) = \gcd( p(x), q(x) )$, find two polynomials $a(x)$ and $b(x)$ such that $a(x) p(x) + b(x) q(x) = d(x)$.