Source

unicode-internal / lisp / cl-macs.el

Full commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
;;; cl-macs.el --- Common Lisp extensions for XEmacs Lisp (part four)

;; Copyright (C) 1993, 2003, 2004 Free Software Foundation, Inc.
;; Copyright (C) 2002, 2010 Ben Wing.

;; Author: Dave Gillespie <daveg@synaptics.com>
;; Version: 2.02
;; Keywords: extensions

;; This file is part of XEmacs.

;; XEmacs is free software: you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by the
;; Free Software Foundation, either version 3 of the License, or (at your
;; option) any later version.

;; XEmacs is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
;; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
;; for more details.

;; You should have received a copy of the GNU General Public License
;; along with XEmacs.  If not, see <http://www.gnu.org/licenses/>.

;;; Synched up with: FSF 21.3.

;;; Commentary:

;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; Bug reports, comments, and suggestions are welcome!

;; This file contains the portions of the Common Lisp extensions
;; package which should be autoloaded, but need only be present
;; if the compiler or interpreter is used---this file is not
;; necessary for executing compiled code.

;; See cl.el for Change Log.


;;; Code:

(defmacro cl-pop2 (place)
  (list 'prog1 (list 'car-safe (list 'cdr-safe place))
	(list 'setq place (list 'cdr (list 'cdr place)))))
(put 'cl-pop2 'edebug-form-spec 'edebug-sexps)

(defvar cl-optimize-safety)
(defvar cl-optimize-speed)

;;; Initialization.

(defvar cl-old-bc-file-form nil)

;;;###autoload
(defun cl-compile-time-init ()
  (run-hooks 'cl-hack-bytecomp-hook))


;;; Some predicates for analyzing Lisp forms.  These are used by various
;;; macro expanders to optimize the results in certain common cases.

(defconst cl-simple-funcs '(car cdr nth aref elt if and or + - 1+ 1- min max
			    car-safe cdr-safe progn prog1 prog2))
(defconst cl-safe-funcs '(* / % length memq list vector vectorp
			  < > <= >= = error))

;;; Check if no side effects, and executes quickly.
(defun cl-simple-expr-p (x &optional size)
  (or size (setq size 10))
  (if (and (consp x) (not (memq (car x) '(quote function function*))))
      (and (symbolp (car x))
	   (or (memq (car x) cl-simple-funcs)
	       (get (car x) 'side-effect-free))
	   (progn
	     (setq size (1- size))
	     (while (and (setq x (cdr x))
			 (setq size (cl-simple-expr-p (car x) size))))
	     (and (null x) (>= size 0) size)))
    (and (> size 0) (1- size))))

(defun cl-simple-exprs-p (xs)
  (while (and xs (cl-simple-expr-p (car xs)))
    (setq xs (cdr xs)))
  (not xs))

;;; Check if no side effects.
(defun cl-safe-expr-p (x)
  (or (not (and (consp x) (not (memq (car x)
                                     '(quote function function* lambda)))))
      (and (symbolp (car x))
	   (or (memq (car x) cl-simple-funcs)
	       (memq (car x) cl-safe-funcs)
	       (get (car x) 'side-effect-free))
	   (progn
	     (while (and (setq x (cdr x)) (cl-safe-expr-p (car x))))
	     (null x)))))

;;; Check if constant (i.e., no side effects or dependencies).
(defun cl-const-expr-p (x)
  (cond ((consp x)
	 (or (eq (car x) 'quote)
	     (and (memq (car x) '(function function*))
		  (or (symbolp (nth 1 x))
		      (and (eq (car-safe (nth 1 x)) 'lambda) 'func)))))
	((symbolp x) (and (memq x '(nil t)) t))
	(t t)))

(defun cl-const-exprs-p (xs)
  (while (and xs (cl-const-expr-p (car xs)))
    (setq xs (cdr xs)))
  (not xs))

(defun cl-const-expr-val (x &optional cl-not-constant)
  (let ((cl-const-expr-p (cl-const-expr-p x)))
    (cond ((eq cl-const-expr-p t) (if (consp x) (nth 1 x) x))
	  ((eq cl-const-expr-p 'func) (nth 1 x))
	  (cl-not-constant))))

(defun cl-expr-access-order (x v)
  (if (cl-const-expr-p x) v
    (if (consp x)
	(progn
	  (while (setq x (cdr x)) (setq v (cl-expr-access-order (car x) v)))
	  v)
      (if (eq x (car v)) (cdr v) '(t)))))

;;; Count number of times X refers to Y.  Return nil for 0 times.
(defun cl-expr-contains (x y)
  (cond ((equal y x) 1)
	((and (consp x) (not (memq (car-safe x) '(quote function function*))))
	 (let ((sum 0))
	   (while x
	     (setq sum (+ sum (or (cl-expr-contains (pop x) y) 0))))
	   (and (> sum 0) sum)))
	(t nil)))

(defun cl-expr-contains-any (x y)
  (while (and y (not (cl-expr-contains x (car y)))) (pop y))
  y)

;;; Check whether X may depend on any of the symbols in Y.
(defun cl-expr-depends-p (x y)
  (and (not (cl-const-expr-p x))
       (or (not (cl-safe-expr-p x)) (cl-expr-contains-any x y))))

;;; Symbols.

(defvar *gensym-counter*)

;; XEmacs change: gensym and gentemp have been moved to cl.el.


;;; Program structure.

;;;###autoload
(defmacro defun* (name arglist &optional docstring &rest body)
  "Define NAME as a function.
Like normal `defun', except ARGLIST allows full Common Lisp conventions,
and BODY is implicitly surrounded by (block NAME ...).

\"Full Common Lisp conventions\" means that:

-- In addition to &optional and &rest, the lambda-list keywords &key,
   &allow-other-keys, and &aux are allowed.

-- The format of the arguments to &optional is expanded: As well as simple
   variables, they can be lists of the form (VAR [INITFORM [SVAR]]); when
   no argument is available for VAR, INITFORM is evaluated (or nil, if
   INITFORM is omitted) and stored as VAR's value, and SVAR is bound to t.
   If an argument is available for VAR, and INITFORM is unused, SVAR is
   bound to nil.

-- &key specifies keyword arguments.  The format of each argument is
   VAR || ( { VAR || (KEYWORD VAR) } [INITFORM [SVAR]]).  

   If VAR is specified on its own, VAR is bound within BODY to the value
   supplied by the caller for the corresponding keyword; for example, &key
   my-value means callers write :my-value RUNTIME-EXPRESSION.

   If (VAR INITFORM) is specified, INITFORM is an expression evaluated at
   runtime to determine a default value for VAR.

   If (VAR INITFORM SVAR) is specified, SVAR is variable available within
   BODY that is non-nil if VAR was explicitly specified in the calling
   expression.

   If ((KEYWORD VAR)) is specified, KEYWORD is the keyword to be used by
   callers, and VAR is the corresponding variable binding within BODY.

   In calls to NAME, values for a given keyword may be supplied multiple
   times.  The first value is the only one used.

-- &allow-other-keys means that if other keyword arguments are given that are
   not specifically list in the arg list, they are allowed, rather than an
   error being signalled.  They can be retrieved with an &rest form.

-- &aux specifies extra bindings, exactly like a `let*' enclosing the body.
   The format of each binding is VAR || (VAR [INITFORM]) -- exactly like the
   format of `let'/`let*' bindings.
"
  (list* 'defun name (cdr (cl-transform-lambda (list* arglist docstring body)
                                               name))))

;;;###autoload
(defmacro defmacro* (name arglist &optional docstring &rest body)
  "Define NAME as a macro.
Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
and BODY is implicitly surrounded by (block NAME ...).

\"Full Common Lisp conventions\" means that:

-- The lambda-list keywords &optional, &rest, &key, &allow-other-keys, and
   &aux are allowed, as in `defun*'.

-- Three additional lambda-list keywords are allowed: &body, &whole, and
   &environment:

   &body is equivalent to &rest, but is intended to indicate that the
   following arguments are the body of some piece of code, and should be
   indented as such.

   &whole must come first; it is followed by a single variable that, at
   macro expansion time, reflects all the arguments supplied to the macro,
   as if it had been declared with a single &rest argument.

   &environment allows access to the macro environment at the time of
   expansion; it is most relevant when it's necessary to force macro expansion
   of the body of a form at the time of macro expansion of its top level.
   &environment is followed by variable name, and this variable will be bound
   to the value of the macro environment within BODY. See the ENVIRONMENT
   argument to `macroexpand'.

-- The macro arg list syntax allows for \"destructuring\" -- see also
   `destructuring-bind', which destructures exactly like `defmacro*', and
   `loop', which does a rather different way of destructuring.  Anywhere
   that a simple argument may appear, and (if following a lambda-list
   keyword) a list may not normally appear, an embedded lambda list can be
   substituted.  (The format of the embedded lambda list is exactly the
   same as for a top-level list except that &environment is not allowed.)
   When matching this lambda list against a caller-specified argument, that
   argument is treated as a list and normal lambda-list processing occurs,
   just as if the entire operation were happening at top level.
   Furthermore, any lambda list, embedded or top-level, can be dotted at its
   end, and this will cause matching with an appropriate dotted list given
   as an argument.

   See `loop' for practical examples of destructuring, but
   keep in mind that `loop' destructuring is somewhat different from macro
   destructuring in that

   (a) Macro destructuring has extra features in the various lambda-list
       keywords, allowing for special processing of a list other than just
       simple matching.
   (b) Macro destructuring is strict, in that an error is signalled if the
       actual structure does not match the expected structure.  On the
       other hand, loop destructuring is lax -- extra arguments in a list
       are ignored, not enough arguments cause the remaining parameters to
       receive a value of nil, etc.
"
  (list* 'defmacro name (cdr (cl-transform-lambda (list* arglist docstring body)
                                                  name))))

;;;###autoload
(defmacro function* (symbol-or-lambda)
  "Introduce a function.
Like normal `function', except that if argument is a lambda form, its
ARGLIST allows full Common Lisp conventions."
  `(function
    ,(if (eq (car-safe symbol-or-lambda) 'lambda)
         (cons 'lambda (cdr (cl-transform-lambda (cdr symbol-or-lambda)
                                                 'cl-none)))
       symbol-or-lambda)))

(defun cl-transform-function-property (func prop form)
  (cl-macroexpand-all
  `(put ',func ',prop #'(lambda ,@(cdr (cl-transform-lambda form func))))
  byte-compile-macro-environment))

(defconst lambda-list-keywords
  '(&optional &rest &key &allow-other-keys &aux &whole &body &environment))

(defvar bind-block) (defvar bind-defs) (defvar bind-enquote)
(defvar bind-lets) (defvar bind-forms)

;; npak@ispras.ru
(defun cl-upcase-arg (arg)
  ;; Changes all non-keyword symbols in `ARG' to symbols
  ;; with name in upper case.
  ;; ARG is either symbol or list of symbols or lists
  (cond ((symbolp arg)
	 ;; Do not upcase &optional, &key etc.
	 (if (memq arg lambda-list-keywords)
             arg
	   (make-symbol (upcase (symbol-name arg)))))
	((listp arg)
	 (let ((arg (copy-list arg)) junk)
	   ;; Clean the list
	   (let ((p (last arg))) (if (cdr p) (setcdr p (list '&rest (cdr p)))))
	   (if (setq junk (cadr (memq '&cl-defs arg)))
	       (setq arg (delete* '&cl-defs (delete* junk arg))))
	   (if (memq '&cl-quote arg)
	       (setq arg (delete* '&cl-quote arg)))
	   (mapcar 'cl-upcase-arg arg)))
	(t arg)))                         ; Maybe we are in initializer

;; npak@ispras.ru, modified by ben@666.com
;;;###autoload
(defun cl-function-arglist (arglist)
  "Returns string with printed representation of arguments list.
Supports Common Lisp lambda lists."
  (if (not (or (listp arglist) (symbolp arglist)))
      "Not available"
    (check-argument-type #'true-list-p arglist)
    (let ((print-gensym nil))
      (condition-case nil
	  (let ((args (cond ((null arglist) nil)
			    ((listp arglist) (cl-upcase-arg arglist))
			    ((symbolp arglist)
			     (cl-upcase-arg (list '&rest arglist)))
			    (t (wrong-type-argument 'listp arglist)))))
	    (if args (prin1-to-string args) "()"))
	(t "Not available")))))

(defun cl-transform-lambda (form bind-block)
  "Transform a lambda expression to support Common Lisp conventions.

FORM is the cdr of the lambda expression.  BIND-BLOCK is the implicit block
name that's added, typically the name of the associated function. It can be
the symbol `cl-none', to indicate no implicit block is needed.

The Common Lisp conventions described are those detailed in the `defun*' and
`defmacro*' docstrings.  This function returns a list with the first element
nil, to be ignored. The rest of the list represents a transformed lambda
expression, with any argument list parsing code necessary, and a surrounding
block."
  (let* ((args (car form)) (body (cdr form))
	 (bind-defs nil) (bind-enquote nil)
         (bind-lets nil) (bind-forms nil)
	 (header nil) (simple-args nil)
         (complex-arglist (cl-function-arglist args))
         (doc ""))
    (while (or (stringp (car body)) (eq (car-safe (car body)) 'interactive))
      (push (pop body) header))
    (setq args (if (listp args) (copy-list args) (list '&rest args)))
    (let ((p (last args))) (if (cdr p) (setcdr p (list '&rest (cdr p)))))
    (if (setq bind-defs (cadr (memq '&cl-defs args)))
	(setq args (delete* '&cl-defs (delete* bind-defs args))
	      bind-defs (cadr bind-defs)))
    (if (setq bind-enquote (memq '&cl-quote args))
	(setq args (delete* '&cl-quote args)))
    (if (memq '&whole args) (error "&whole not currently implemented"))
    (let* ((p (memq '&environment args)) (v (cadr p)))
      (if p (setq args (nconc (delete* (car p) (delete* v args))
                              `(&aux (,v byte-compile-macro-environment))))))
    (while (and args (symbolp (car args))
		(not (memq (car args) '(nil &rest &body &key &aux)))
		(not (and (eq (car args) '&optional)
			  (or bind-defs (consp (cadr args))))))
      (push (pop args) simple-args))
    (or (eq bind-block 'cl-none)
	(setq body (list (list* 'block bind-block body))))
    (setq simple-args (nreverse simple-args)
          header (nreverse header))
    (if (null args)
	(list* nil simple-args (nconc header body))
      (if (memq '&optional simple-args) (push '&optional args))
      (cl-do-arglist args nil (- (length simple-args)
				 (if (memq '&optional simple-args) 1 0)))
      (setq bind-lets (nreverse bind-lets))
      ;; This code originally needed to create the keywords itself, that
      ;; wasn't done by the Lisp reader; the first element of the result
      ;; list comprised code to do this. It's not used any more.
      (list* nil (prog1
                     (setq simple-args
                           (nconc simple-args
                                  (list '&rest (car (pop bind-lets)))))
                   ;; Add CL lambda list to documentation, if the CL lambda
                   ;; list differs from the non-CL lambda
                   ;; list. npak@ispras.ru
                   (unless (equal complex-arglist
                                  (cl-function-arglist simple-args))
                     (and (stringp (car header)) (setq doc (pop header)))
                     ;; Stick the arguments onto the end of the doc string
                     ;; in a way that will be recognized specially by
                     ;; `function-arglist'.
                     (push (concat doc "\n\narguments: " complex-arglist "\n")
                           header)))
	     ;; XEmacs change: we add usage information using Nickolay's
	     ;; approach above
	     (nconc header
		    (list (nconc (list 'let* bind-lets)
				 (nreverse bind-forms) body)))))))

(defun cl-do-arglist (args expr &optional num)   ; uses bind-*
  (if (nlistp args)
      (if (or (memq args lambda-list-keywords) (not (symbolp args)))
	  (error "Invalid argument name: %s" args)
	(push (list args expr) bind-lets))
    (setq args (copy-list args))
    (let ((p (last args))) (if (cdr p) (setcdr p (list '&rest (cdr p)))))
    (let ((p (memq '&body args))) (if p (setcar p '&rest)))
    (if (memq '&environment args) (error "&environment used incorrectly"))
    (let ((save-args args)
	  (restarg (memq '&rest args))
	  (safety (if (cl-compiling-file) cl-optimize-safety 3))
	  (keys nil)
	  (laterarg nil) (exactarg nil) minarg)
      (or num (setq num 0))
      (if (listp (cadr restarg))
	  (setq restarg (gensym "--rest--"))
	(setq restarg (cadr restarg)))
      (push (list restarg expr) bind-lets)
      (if (eq (car args) '&whole)
	  (push (list (cl-pop2 args) restarg) bind-lets))
      (let ((p args))
	(setq minarg restarg)
	(while (and p (not (memq (car p) lambda-list-keywords)))
	  (or (eq p args) (setq minarg (list 'cdr minarg)))
	  (setq p (cdr p)))
	(if (memq (car p) '(nil &aux))
	    (setq minarg (list 'eql (list 'length restarg)
			       (length (ldiff args p)))
		  exactarg (not (eq args p)))))
      (while (and args (not (memq (car args) lambda-list-keywords)))
	(let ((poparg (list (if (or (cdr args) (not exactarg)) 'pop 'car)
			    restarg)))
	  (cl-do-arglist
	   (pop args)
	   (if (or laterarg (= safety 0)) poparg
	     (list 'if minarg poparg
		   (list 'signal '(quote wrong-number-of-arguments)
			 (list 'list (and (not (eq bind-block 'cl-none))
					  (list 'quote bind-block))
			       (list 'length restarg)))))))
	(setq num (1+ num) laterarg t))
      (while (and (eq (car args) '&optional) (pop args))
	(while (and args (not (memq (car args) lambda-list-keywords)))
	  (let ((arg (pop args)))
	    (or (consp arg) (setq arg (list arg)))
	    (if (cddr arg) (cl-do-arglist (nth 2 arg) (list 'and restarg t)))
	    (let ((def (if (cdr arg) (nth 1 arg)
			 (or (car bind-defs)
			     (nth 1 (assq (car arg) bind-defs)))))
		  (poparg (list 'pop restarg)))
	      (and def bind-enquote (setq def (list 'quote def)))
	      (cl-do-arglist (car arg)
			     (if def (list 'if restarg poparg def) poparg))
	      (setq num (1+ num))))))
      (if (eq (car args) '&rest)
	  (let ((arg (cl-pop2 args)))
	    (if (consp arg) (cl-do-arglist arg restarg)))
	(or (eq (car args) '&key) (= safety 0) exactarg
	    (push (list 'if restarg
			   (list 'signal '(quote wrong-number-of-arguments)
				 (list 'list
				       (and (not (eq bind-block 'cl-none))
					    (list 'quote bind-block))
				       (list '+ num (list 'length restarg)))))
		     bind-forms)))
      (while (and (eq (car args) '&key) (pop args))
	(while (and args (not (memq (car args) lambda-list-keywords)))
	  (let ((arg (pop args)))
	    (or (consp arg) (setq arg (list arg)))
	    (let* ((karg (if (consp (car arg))
			     ;; It's possible to use non-keywords here, as
			     ;; in the KEYWORD-ARGUMENT-NAME-PACKAGE Common
			     ;; Lisp issue:
			     (caar arg)
			   ;; Use read instead of intern in case we ever
			   ;; actually get packages and keywords are no
			   ;; longer in obarray:
			   (read (concat ":" (symbol-name (car arg))))))
		   (varg (if (consp (car arg)) (cadar arg) (car arg)))
		   (def (if (cdr arg) (cadr arg)
			  (or (car bind-defs) (cadr (assq varg bind-defs)))))
		   (look (list 'memq (quote-maybe karg) restarg)))
	      (and def bind-enquote (setq def (list 'quote def)))
	      (if (cddr arg)
		  (let* ((temp (or (nth 2 arg) (gensym)))
			 (val (list 'car (list 'cdr temp))))
		    (cl-do-arglist temp look)
		    (cl-do-arglist varg
				   (list 'if temp
					 (list 'prog1 val (list 'setq temp t))
					 def)))
		(cl-do-arglist
		 varg
		 (list 'car
		       (list 'cdr
			     (if (null def)
				 look
			       (list 'or look
				     (if (eq (cl-const-expr-p def) t)
					 (list
					  'quote
					  (list nil (cl-const-expr-val def)))
				       (list 'list nil def))))))))
	      (push karg keys)))))
      (setq keys (nreverse keys))
      (or (and (eq (car args) '&allow-other-keys) (pop args))
	  (null keys) (= safety 0)
	  (let* ((var (gensym "--keys--"))
		 (allow '(:allow-other-keys))
		 (check (list
			 'while var
			 (list
			  'cond
			  (list (list 'memq (list 'car var)
				      (list 'quote (append keys allow)))
				(list 'setq var (list 'cdr (list 'cdr var))))
			  (list (list 'car
				      (list 'cdr
					    (list 'memq (car allow)
						  restarg)))
				(list 'setq var nil))
			  (list t
				(list
				 'error
                                 ''invalid-keyword-argument
				 (list 'car var)))))))
	    (push (list 'let (list (list var restarg)) check) bind-forms)))
      (while (and (eq (car args) '&aux) (pop args))
	(while (and args (not (memq (car args) lambda-list-keywords)))
	  (if (consp (car args))
	      (if (and bind-enquote (cadar args))
		  (cl-do-arglist (caar args)
				 (list 'quote (cadr (pop args))))
		(cl-do-arglist (caar args) (cadr (pop args))))
	    (cl-do-arglist (pop args) nil))))
      (if args (error "Malformed argument list %s" save-args)))))

(defun cl-arglist-args (args)
  (if (nlistp args) (list args)
    (let ((res nil) (kind nil) arg)
      (while (consp args)
	(setq arg (pop args))
	(if (memq arg lambda-list-keywords) (setq kind arg)
	  (if (eq arg '&cl-defs) (pop args)
	    (and (consp arg) kind (setq arg (car arg)))
	    (and (consp arg) (cdr arg) (eq kind '&key) (setq arg (cadr arg)))
	    (setq res (nconc res (cl-arglist-args arg))))))
      (nconc res (and args (list args))))))

;;;###autoload
(defmacro destructuring-bind (args expr &rest body)
  "Bind the arguments in ARGS to EXPR then eval BODY.
This is similar to `let' but it does \"destructuring\", in that it matches
the structure of ARGS to the structure of EXPR and binds corresponding
arguments in ARGS to their values in EXPR.  The format of ARGS, and the
way the destructuring works, is exactly like the destructuring that occurs
in `defmacro*'; see that for more information.

An alternative means of destructuring is using the `loop' macro. `loop'
gives practical examples of destructuring.  `defmacro*' describes the
differences between loop and macro-style destructuring.

You can rewrite a call to (destructuring-bind ARGS EXPR &rest BODY) using
`loop', approximately like this:

  (loop for ARGS = EXPR
    return (progn BODY))

I say \"approximately\" because the destructuring works in a somewhat
different fashion, although for most reasonably simple constructs the
results will be the same."
  (let ((bind-block 'cl-none) bind-lets bind-forms bind-defs)
    (cl-do-arglist (or args '(&aux)) expr)
    (nconc (list 'let* (nreverse bind-lets)) (nreverse bind-forms) body)))

;;; The `eval-when' form.

(defvar cl-not-toplevel nil)

;;;###autoload
(defmacro eval-when (when &rest body)
  "Control when BODY is evaluated.
If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.

arguments: ((&rest WHEN) &body BODY)"
  (if (and (fboundp 'cl-compiling-file) (cl-compiling-file)
	   (not cl-not-toplevel) (not (boundp 'for-effect)))  ; horrible kludge
      (let ((comp (or (memq 'compile when) (memq :compile-toplevel when)))
	    (cl-not-toplevel t))
	(if (or (memq 'load when) (memq :load-toplevel when))
	    (if comp (cons 'progn (mapcar 'cl-compile-time-too body))
	      (list* 'if nil nil body))
	  (progn (if comp (eval (cons 'progn body))) nil)))
    (and (or (memq 'eval when) (memq :execute when))
	 (cons 'progn body))))

(defun cl-compile-time-too (form)
  (or (and (symbolp (car-safe form)) (get (car-safe form) 'byte-hunk-handler))
      (setq form (macroexpand
		  form (cons '(eval-when) byte-compile-macro-environment))))
  (cond ((eq (car-safe form) 'progn)
	 (cons 'progn (mapcar 'cl-compile-time-too (cdr form))))
	((eq (car-safe form) 'eval-when)
	 (let ((when (nth 1 form)))
	   (if (or (memq 'eval when) (memq :execute when))
	       (list* 'eval-when (cons 'compile when) (cddr form))
	     form)))
	(t (eval form) form)))

;;; Conditional control structures.

;;;###autoload
(defmacro case (expr &rest clauses)
  "Evals EXPR, chooses from CLAUSES on that value.
Each clause looks like (KEYLIST BODY...).  EXPR is evaluated and compared
against each key in each KEYLIST; the corresponding BODY is evaluated.
If no clause succeeds, case returns nil.  A single atom may be used in
place of a KEYLIST of one atom.  A KEYLIST of `t' or `otherwise' is
allowed only in the final clause, and matches if no other keys match.
Key values are compared by `eql'."
  (let* ((temp (if (cl-simple-expr-p expr 3) expr (gensym)))
	 (head-list nil)
	 (last-clause (car (last clauses)))
	 (body (cons
		'cond
		(mapcar
		 #'(lambda (c)
		     (cons (cond ((memq (car c) '(t otherwise))
				  ;; XEmacs addition: check for last clause
				  (or (eq c last-clause)
				      (error
				       "`%s' is allowed only as the last case clause"
				       (car c)))
				  t)
				 ((eq (car c) 'ecase-error-flag)
				  (list 'error "ecase failed: %s, %s"
					temp (list 'quote (reverse head-list))))
				 ((listp (car c))
				  (setq head-list (append (car c) head-list))
				  (list 'member* temp (list 'quote (car c))))
				 (t
				  (if (memq (car c) head-list)
				      (error "Duplicate key in case: %s"
					     (car c)))
				  (push (car c) head-list)
				  (list 'eql temp (list 'quote (car c)))))
			   (or (cdr c) '(nil))))
		 clauses))))
    (if (eq temp expr) body
      (list 'let (list (list temp expr)) body))))

;; #### CL standard also requires `ccase', which signals a continuable
;; error (`cerror' in XEmacs).  However, I don't think it buys us
;; anything to introduce it, as there is probably much more CL stuff
;; missing, and the feature is not essential.  --hniksic

;;;###autoload
(defmacro ecase (expr &rest clauses)
  "Like `case', but error if no case fits.
`otherwise'-clauses are not allowed."
  ;; XEmacs addition: disallow t and otherwise
  (let ((disallowed (or (assq t clauses)
			(assq 'otherwise clauses))))
    (if disallowed
	(error "`%s' is not allowed in ecase" (car disallowed))))
  (list* 'case expr (append clauses '((ecase-error-flag)))))

;;;###autoload
(defmacro typecase (expr &rest clauses)
  "Evals EXPR, chooses from CLAUSES on that value.
Each clause looks like (TYPE BODY...).  EXPR is evaluated and, if it
satisfies TYPE, the corresponding BODY is evaluated.  If no clause succeeds,
typecase returns nil.  A TYPE of `t' or `otherwise' is allowed only in the
final clause, and matches if no other keys match."
  (let* ((temp (if (cl-simple-expr-p expr 3) expr (gensym)))
	 (type-list nil)
	 (body (cons
		'cond
		(mapcar
		 #'(lambda (c)
		     (cons (cond ((eq (car c) 'otherwise) t)
				 ((eq (car c) 'ecase-error-flag)
				  (list 'error "etypecase failed: %s, %s"
					temp (list 'quote (reverse type-list))))
				 (t
				  (push (car c) type-list)
				  (cl-make-type-test temp (car c))))
			   (or (cdr c) '(nil))))
		 clauses))))
    (if (eq temp expr) body
      (list 'let (list (list temp expr)) body))))

;;;###autoload
(defmacro etypecase (expr &rest clauses)
  "Like `typecase', but error if no case fits.
`otherwise'-clauses are not allowed."
  (list* 'typecase expr (append clauses '((ecase-error-flag)))))


;;; Blocks and exits.
(defvar cl-active-block-names nil)

;;;###autoload
(defmacro block (name &rest body)
  "Define a lexically-scoped block named NAME.
NAME may be any symbol.  Code inside the BODY forms can call `return-from'
to jump prematurely out of the block.  This differs from `catch' and `throw'
in two respects:  First, the NAME is an unevaluated symbol rather than a
quoted symbol or other form; and second, NAME is lexically rather than
dynamically scoped:  Only references to it within BODY will work.  These
references may appear inside macro expansions and in lambda expressions, but
not inside other functions called from BODY."
  (let ((cl-active-block-names (acons name (copy-symbol name)
				      cl-active-block-names))
	(body (cons 'progn body)))
    ;; Tell the byte-compiler this is a block, not a normal catch call, and
    ;; as such it can eliminate it if that's appropriate:
    (put (cdar cl-active-block-names) 'cl-block-name name)
    `(catch ',(cdar cl-active-block-names)
      ;; Can't use &environment, since #'block is used in
      ;; #'cl-transform-lambda.
      ,(cl-macroexpand-all body byte-compile-macro-environment))))

;;;###autoload
(defmacro return (&optional result)
  "Return from the block named nil.
This is equivalent to `(return-from nil RESULT)'."
  `(return-from nil ,result))

;;;###autoload
(defmacro return-from (name &optional result)
  "Return from the block named NAME.
This jumps out to the innermost enclosing `(block NAME ...)' form,
returning RESULT from that form (or nil if RESULT is omitted).
This is compatible with Common Lisp, but note that `defun' and
`defmacro' do not create implicit blocks as they do in Common Lisp."
  `(throw ',(or (cdr (assq name cl-active-block-names))
                ;; Tell the byte-compiler the original name of the block,
                ;; leave any warning to it.
                (let ((copy-symbol (copy-symbol name)))
                  (put copy-symbol 'cl-block-name name)
                  copy-symbol))
           ,result))

;;; The "loop" macro.

(defvar args) (defvar loop-accum-var) (defvar loop-accum-vars)
(defvar loop-bindings) (defvar loop-body) (defvar loop-destr-temps)
(defvar loop-finally) (defvar loop-finish-flag) (defvar loop-first-flag)
(defvar loop-initially) (defvar loop-map-form) (defvar loop-name)
(defvar loop-result) (defvar loop-result-explicit)
(defvar loop-result-var) (defvar loop-steps) (defvar loop-symbol-macs)

;;;###autoload
(defmacro loop (&rest clauses)
  "The Common Lisp `loop' macro.

The loop macro consists of a series of clauses, which do things like
iterate variables, set conditions for exiting the loop, accumulating values
to be returned as the return value of the loop, and executing arbitrary
blocks of code.  Each clause is processed in turn, and the loop executes its
body repeatedly until an exit condition is hit.

It's important to understand that loop clauses such as `for' and `while',
which look like loop-establishing constructs, don't actually *establish* a
loop\; the looping is established by the `loop' clause itself, which will
repeatedly process its body until told to stop.  `while' merely establishes
a condition which, when true, causes the loop to finish, and `for' sets a
variable to different values on each iteration (e.g. successive elements of
a list) and sets an exit condition when there are no more values.  This
means, for example, that if two `for' clauses appear, you don't get two
nested loops, but instead two variables that are stepped in parallel, and
two exit conditions, either of which, if triggered, will cause the loop to
end.  Similarly for a loop with a `for' and a `while' clause.  For example:

\(loop
  for x in list
  while x
  do ...)

In each successive iteration, X is set to the next element of the list.  If
there are no more elements, or if any element is nil (the `while' clause),
the loop exits.  Otherwise, the block of code following `do' is executed.)

This example also shows that some clauses establish variable bindings --
essentially like a `let' binding -- and that following clauses can
reference these variables.  Furthermore, the entire loop is surrounded by a
block named nil (unless the `named' clause is given), so you can return
from the loop using the macro `return'. (The other way to exit the loop is
through the macro `loop-finish'.  The difference is that some loop clauses
establish or accumulate a value to be returned, and `loop-finish' returns
this. `return', however, can only return an explicitly-specified value.
NOTE CAREFULLY: There is a loop clause called `return' as well as a
standard Lisp macro called `return'.  Normally they work similarly\; but if
you give the loop a name with `named', you will need to use the macro
`return-from'.)

Another extremely useful feature of loops is called \"destructuring\".  If,
in place of VAR, a list (possibly dotted, possibly a tree of arbitrary
complexity) is given, the value to be assigned is assumed to have a similar
structure to the list given, and variables in the list will be matched up
with corresponding elements in the structure.  For example:

\(loop
  for (x y) in '((foo 1) (bar 2) (baz 3))
  do (puthash x y some-hash-table))

will add three elements to a hash table, mapping foo -> 1, bar -> 2, and
baz -> 3.  As other examples, you can conveniently process alists using

\(loop for (x . y) in alist do ...)

and plists using

\(loop for (x y) on plist by #'cddr do ...)

Destructuring is forgiving in that mismatches in the number of elements on
either size will be handled gracefully, either by ignoring or initializing
to nil.  Destructuring is extremely powerful, and is probably the single
most useful feature of `loop'.

Other useful features of loops are iterating over hash-tables, collecting values into lists, and being able to modify lists in-place as you iterate over them.  As an example of the first two,

\(loop for x being the hash-key in table using (hash-value y)
  collect (cons x y))

converts hash-table TABLE to an alist. (What `collect' actually does is
push its value onto the end of an internal list and establish this list as
the default return value of the loop.  See below for more information.)

An example of in-place modification is

\(setq foo '(1 3 5))
\(loop for x in-ref foo do
  (setf x (* x x)))

after which foo will contain '(1 9 25).

If you don't understand how a particular loop clause works, create an
example and use `macroexpand-sexp' to expand the macro.

Valid clauses are:

\(NOTE: Keywords in lowercase\; slashes separate different possibilities
for keywords, some of which are synonymous\; brackets indicate optional
parts of the clause.  In all of the clauses with `being', the word `being',
the words `each' or `the', and the difference between singular and plural
keywords are all just syntactic sugar.  Stylistically, you should write
either `being each foo' or `being the foos'.)

  for VAR from/upfrom/downfrom NUM1 to/upto/downto/above/below NUM2 [by NUMSTEP]
    Step VAR across numbers.  `upfrom', `upto', and `below' explicitly
    indicate upward stepping\; `downfrom', `downto', and `above' explicitly
    indicate downward stepping. (If none of these is given, the default is
    upward.) `to', `upto', and `downto' cause stepping to include NUM2 as
    the last iteration, while `above' and `below' stop just before reaching
    NUM2.  `by' can be given to indicate a stepping increment other than 1.

  for VAR in LIST [by FUNC]
    Step VAR over elements of a LIST.  FUNC specifies how to get successive
    sublists and defaults to `cdr'.

  for VAR on LIST [by FUNC]
    Step VAR over tails of a LIST.  FUNC specifies how to get successive
    sublists and defaults to `cdr'.

  for VAR in-ref LIST [by FUNC]
    Step VAR over elements of a LIST, like `for ... in', except the VAR is
    bound using `symbol-macrolet' instead of `let'.  In essence, VAR is set
    to a \"reference\" to the list element instead of the element itself\;
    this us, you can destructively modify the list using `setf' on VAR, and
    any changes to the list will \"magically\" reflect themselves in
    subsequent uses of VAR.

  for VAR = INIT [then EXPR]
    Set VAR on each iteration of the loop.  If only INIT is given, use it
    on each iteration.  Otherwise, use INIT on the first iteration and EXPR
    on subsequent ones.

  for VAR across/across-ref ARRAY
    Step VAR across a sequence other than a list (string, vector, bit
    vector).  If `across-ref' is given, VAR is bound using
    `symbol-macrolet' instead of `let' -- see above.

  for VAR being each/the element/elements in/of/in-ref/of-ref SEQUENCE [using (index INDEX-VAR)]
    Step VAR across any sequence.  A variable can be specified with a
    `using' phrase to receive the index, starting at 0.  If `in-ref' or
    `of-ref' is given, VAR is bound using `symbol-macrolet' instead of
    `let' -- see above.

  for VAR being each/the hash-key/hash-keys/hash-value/hash-values in/of HASH-TABLE [using (hash-value/hash-key OTHER-VAR)]

  for VAR being each/the hash-key/hash-keys/hash-value/hash-values in/of HASH-TABLE [using (hash-value/hash-key OTHER-VAR)]
    Map VAR over a hash table.  The various keywords are synonymous except
    those that distinguish between keys and values.  The `using' phrase is
    optional and allows both key and value to be bound.

  for VAR being each/the symbol/present-symbol/external-symbol/symbols/present-symbols/external-symbols in/of OBARRAY
    Map VAR over the symbols in an obarray.  All symbol keywords are
    currently synonymous.

  for VAR being each/the extent/extents [in/of BUFFER-OR-STRING] [from POS] [to POS]
    Map VAR over the extents in a buffer or string, defaulting to the
    current buffer, the beginning and the end, respectively.

  for VAR being each/the interval/intervals [in/of BUFFER-OR-STRING] [property PROPERTY] [from POS] [to POS]
    Map VAR over the intervals without property change in a buffer or
    string, defaulting to the current buffer, the beginning and the end,
    respectively.  If PROPERTY is given, iteration occurs using
    `next-single-property-change'\; otherwise, using
    `next-property-change'.

  for VAR being each/the window/windows [in/of FRAME]
    Step VAR over the windows in FRAME, defaulting to the selected frame.

  for VAR being each/the frame/frames
    Step VAR over all frames.

  for VAR being each/the buffer/buffers [by FUNC]
    Step VAR over all buffers.  This is actually equivalent to
    `for VAR in (buffer-list) [by FUNC]'.

  for VAR being each/the key-code/key-codes/key-seq/key-seqs/key-binding/key-bindings in KEYMAP [using (key-code/key-codes/key-seq/key-seqs/key-binding/key-bindings OTHER-VAR)]
    Map VAR over the entries in a keymap.  Keyword `key-seq' causes
    recursive mapping over prefix keymaps occurring in the keymap, with VAR
    getting the built-up sequence (a vector).  Otherwise, mapping does not
    occur recursively.  `key-code' and `key-seq' refer to what is bound
    (second argument of `define-key'), and `key-binding' what it's bound to
    (third argument of `define-key').

  as VAR ...
    `as' is a synonym for `for'.

  and VAR ...
    `and' clauses have the same syntax as `for' clauses except that the
    variables in the clause are bound in parallel with a preceding
    `and'/`for' clause instead of in series.

  with VAR = INIT
    Set VAR to INIT once, before doing any iterations.

  repeat NUM
    Exit the loop if more than NUM iterations have occurred.

  while COND
    Exit the loop if COND isn't true.

  until COND
    Exit the loop if COND is true.

  collect EXPR [into VAR]
    Push EXPR onto the end of a list of values -- stored either in VAR or a
    temporary variable that will be returned as the return value of the
    loop if it terminates through an exit condition or a call to
    `loop-finish'.

  append EXPR [into VAR]
    Append EXPR (a list) onto the end of a list of values, like `collect'.

  nconc EXPR [into VAR]
    Nconc EXPR (a list) onto the end of a list of values, like `collect'.

  concat EXPR [into VAR]
    Concatenate EXPR (a string) onto the end of a string of values, like
    `collect'.

  vconcat EXPR [into VAR]
    Concatenate EXPR (a vector) onto the end of a vector of values, like
    `collect'.

  bvconcat EXPR [into VAR]
    Concatenate EXPR (a bit vector) onto the end of a bit vector of values,
    like `collect'.

  sum EXPR [into VAR]
    Add EXPR to a value, like `collect'.

  count EXPR [into VAR]
    If EXPR is true, increment a value by 1, like `collect'.

  maximize EXPR [into VAR]
    IF EXPR is greater than a value, replace the value with EXPR, like
    `collect'.

  minimize EXPR [into VAR]
    IF EXPR is less than a value, replace the value with EXPR, like
    `collect'.

  always COND
    If COND is true, continue the loop and set the loop return value (the
    same value that's manipulated by `collect' and friends and is returned
    by a normal loop exit or an exit using `loop-finish') to t\; otherwise,
    exit the loop and return nil.  The effect is to determine and return
    whether a condition is true \"always\" (all iterations of the loop).

  never COND
    If COND is false, continue the loop and set the loop return value (like
    `always') to t\; otherwise, exit the loop and return nil.  The effect
    is to determine and return whether a condition is \"never\" true (all
    iterations of the loop).

  thereis COND
    If COND is true, exit the loop and return COND.

  if/when COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...]
    If COND is true, execute the directly following clause(s)\; otherwise,
    execute the clauses following `else'.

  unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...]
    If COND is false, execute the directly following clause(s)\; otherwise, execute the clauses following `else'.

  do EXPRS...
    Execute the expressions (any Lisp forms).

  initially EXPRS...
    Execute EXPR once, before doing any iterations, and after values have
    been set using `with'.

  finally EXPRS...
    Execute EXPR once, directly before the loop terminates.  This will not
    be executed if the loop terminates prematurely as a result of `always',
    `never', `thereis', or `return'.

  return EXPR
    Exit from the loop and return EXPR.

  finally return EXPR
    Specify the value to be returned when the loop exits. (Unlike `return',
    this doesn't cause the loop to immediately exit\; it will exit whenever
    it normally would have.) This takes precedence over a return value
    specified with `collect' and friends or `always' and friends.

  named NAME
    Specify the name for block surrounding the loop, in place of nil.
    (See `block'.)
"
  (if (notany #'symbolp (set-difference clauses '(nil t)))
      (list 'block nil (list* 'while t clauses))
    (let ((loop-name nil)	(loop-bindings nil)
	  (loop-body nil)	(loop-steps nil)
	  (loop-result nil)	(loop-result-explicit nil)
	  (loop-result-var nil) (loop-finish-flag nil)
	  (loop-accum-var nil)	(loop-accum-vars nil)
	  (loop-initially nil)	(loop-finally nil)
	  (loop-map-form nil)   (loop-first-flag nil)
	  (loop-destr-temps nil) (loop-symbol-macs nil)
          (args (append clauses '(cl-end-loop))))
      (while (not (eq (car args) 'cl-end-loop)) (cl-parse-loop-clause))
      (if loop-finish-flag
	  (push (list (list loop-finish-flag t)) loop-bindings))
      (if loop-first-flag
	  (progn (push (list (list loop-first-flag t)) loop-bindings)
		 (push (list 'setq loop-first-flag nil) loop-steps)))
      (let* ((epilogue (nconc (nreverse loop-finally)
			      (list (or loop-result-explicit loop-result))))
	     (ands (cl-loop-build-ands (nreverse loop-body)))
	     (while-body (nconc (cadr ands) (nreverse loop-steps)))
	     (body (append
		    (nreverse loop-initially)
		    (list (if loop-map-form
			      (list 'block '--cl-finish--
				    (subst
				     (if (eq (car ands) t) while-body
				       (cons (list 'or (car ands)
						   '(return-from --cl-finish--
						      nil))
					     while-body))
				     '--cl-map loop-map-form))
			    (list* 'while (car ands) while-body)))
		    (if loop-finish-flag
			(if (equal epilogue '(nil))
			    ;; XEmacs change: When epilogue is nil and
			    ;; loop-finish-flag exists, you get a byte-compiler
			    ;; warning using the original (commented-out)
			    ;; code below.  So instead we create a form that
			    ;; gives the same result but uses loop-finish-flag.
			    ;; --ben
			    ;(list loop-result-var)
			    (list (list 'if loop-finish-flag
					loop-result-var loop-result-var))
			  (list (list 'if loop-finish-flag
				      (cons 'progn epilogue) loop-result-var)))
		      epilogue))))
	(if loop-result-var (push (list loop-result-var) loop-bindings))
	(while loop-bindings
	  (if (cdar loop-bindings)
	      (setq body (list (cl-loop-let (pop loop-bindings) body t)))
	    (let ((lets nil))
	      (while (and loop-bindings
			  (not (cdar loop-bindings)))
		(push (car (pop loop-bindings)) lets))
	      (setq body (list (cl-loop-let lets body nil))))))
	(if loop-symbol-macs
	    (setq body (list (list* 'symbol-macrolet loop-symbol-macs body))))
	(list* 'block loop-name body)))))

(defun cl-parse-loop-clause ()   ; uses args, loop-*
  (let ((word (pop args))
	(hash-types '(hash-key hash-keys hash-value hash-values))
	(key-types '(key-code key-codes key-seq key-seqs
		     key-binding key-bindings)))
    (cond

     ((null args)
      (error "Malformed `loop' macro"))

     ((eq word 'named)
      (setq loop-name (pop args)))

     ((eq word 'initially)
      (if (memq (car args) '(do doing)) (pop args))
      (or (consp (car args)) (error "Syntax error on `initially' clause"))
      (while (consp (car args))
	(push (pop args) loop-initially)))

     ((eq word 'finally)
      (if (eq (car args) 'return)
	  (setq loop-result-explicit (or (cl-pop2 args) '(quote nil)))
	(if (memq (car args) '(do doing)) (pop args))
	(or (consp (car args)) (error "Syntax error on `finally' clause"))
	(if (and (eq (caar args) 'return) (null loop-name))
	    (setq loop-result-explicit (or (nth 1 (pop args)) '(quote nil)))
	  (while (consp (car args))
	    (push (pop args) loop-finally)))))

     ((memq word '(for as))
      (let ((loop-for-bindings nil) (loop-for-sets nil) (loop-for-steps nil)
	    (ands nil))
	(while
	    (let ((var (or (pop args) (gensym))))
	      (setq word (pop args))
	      (if (eq word 'being) (setq word (pop args)))
	      (if (memq word '(the each)) (setq word (pop args)))
	      (if (memq word '(buffer buffers))
		  (setq word 'in args (cons '(buffer-list) args)))
	      (cond

	       ((memq word '(from downfrom upfrom to downto upto
			     above below by))
		(push word args)
		(if (memq (car args) '(downto above))
		    (error "Must specify `from' value for downward loop"))
		(let* ((down (or (eq (car args) 'downfrom)
				 (memq (caddr args) '(downto above))))
		       (excl (or (memq (car args) '(above below))
				 (memq (caddr args) '(above below))))
		       (start (and (memq (car args) '(from upfrom downfrom))
				   (cl-pop2 args)))
		       (end (and (memq (car args)
				       '(to upto downto above below))
				 (cl-pop2 args)))
		       (step (and (eq (car args) 'by) (cl-pop2 args)))
		       (end-var (and (not (cl-const-expr-p end)) (gensym)))
		       (step-var (and (not (cl-const-expr-p step))
				      (gensym))))
		  (and step (numberp step) (<= step 0)
		       (error "Loop `by' value is not positive: %s" step))
		  (push (list var (or start 0)) loop-for-bindings)
		  (if end-var (push (list end-var end) loop-for-bindings))
		  (if step-var (push (list step-var step)
					loop-for-bindings))
		  (if end
		      (push (list
				(if down (if excl '> '>=) (if excl '< '<=))
				var (or end-var end)) loop-body))
		  (push (list var (list (if down '- '+) var
					   (or step-var step 1)))
			   loop-for-steps)))

	       ((memq word '(in in-ref on))
		(let* ((on (eq word 'on))
		       (temp (if (and on (symbolp var)) var (gensym))))
		  (push (list temp (pop args)) loop-for-bindings)
		  (push (list 'consp temp) loop-body)
		  (if (eq word 'in-ref)
		      (push (list var (list 'car temp)) loop-symbol-macs)
		    (or (eq temp var)
			(progn
			  (push (list var nil) loop-for-bindings)
			  (push (list var (if on temp (list 'car temp)))
				   loop-for-sets))))
		  (push (list temp
				 (if (eq (car args) 'by)
				     (let ((step (cl-pop2 args)))
				       (if (and (memq (car-safe step)
						      '(quote function
							      function*))
						(symbolp (nth 1 step)))
					   (list (nth 1 step) temp)
					 (list 'funcall step temp)))
				   (list 'cdr temp)))
			   loop-for-steps)))

	       ((eq word '=)
		(let* ((start (pop args))
		       (then (if (eq (car args) 'then) (cl-pop2 args) start)))
		  (push (list var nil) loop-for-bindings)
		  (if (or ands (eq (car args) 'and))
		      (progn
			(push (list var
				       (list 'if
					     (or loop-first-flag
						 (setq loop-first-flag
						       (gensym)))
					     start var))
				 loop-for-sets)
			(push (list var then) loop-for-steps))
		    (push (list var
				   (if (eq start then) start
				     (list 'if
					   (or loop-first-flag
					       (setq loop-first-flag (gensym)))
					   start then)))
			     loop-for-sets))))

	       ((memq word '(across across-ref))
		(let ((temp-vec (gensym)) (temp-idx (gensym)))
		  (push (list temp-vec (pop args)) loop-for-bindings)
		  (push (list temp-idx -1) loop-for-bindings)
		  (push (list '< (list 'setq temp-idx (list '1+ temp-idx))
				 (list 'length temp-vec)) loop-body)
		  (if (eq word 'across-ref)
		      (push (list var (list 'aref temp-vec temp-idx))
			       loop-symbol-macs)
		    (push (list var nil) loop-for-bindings)
		    (push (list var (list 'aref temp-vec temp-idx))
			     loop-for-sets))))

	       ((memq word '(element elements))
		(let ((ref (or (memq (car args) '(in-ref of-ref))
			       (and (not (memq (car args) '(in of)))
				    (error "Expected `of'"))))
		      (seq (cl-pop2 args))
		      (temp-seq (gensym))
		      (temp-idx (if (eq (car args) 'using)
				    (if (and (eql (length (cadr args)) 2)
					     (eq (caadr args) 'index))
					(cadr (cl-pop2 args))
				      (error "Bad `using' clause"))
				  (gensym))))
		  (push (list temp-seq seq) loop-for-bindings)
		  (push (list temp-idx 0) loop-for-bindings)
		  (if ref
		      (let ((temp-len (gensym)))
			(push (list temp-len (list 'length temp-seq))
				 loop-for-bindings)
			(push (list var (list 'elt temp-seq temp-idx))
				 loop-symbol-macs)
			(push (list '< temp-idx temp-len) loop-body))
		    (push (list var nil) loop-for-bindings)
		    (push (list 'and temp-seq
				   (list 'or (list 'consp temp-seq)
					 (list '< temp-idx
					       (list 'length temp-seq))))
			     loop-body)
		    (push (list var (list 'if (list 'consp temp-seq)
					     (list 'pop temp-seq)
					     (list 'aref temp-seq temp-idx)))
			     loop-for-sets))
		  (push (list temp-idx (list '1+ temp-idx))
			   loop-for-steps)))

	       ((memq word hash-types)
		(or (memq (car args) '(in of)) (error "Expected `of'"))
		(let* ((table (cl-pop2 args))
		       (other (if (eq (car args) 'using)
				  (if (and (eql (length (cadr args)) 2)
					   (memq (caadr args) hash-types)
					   (not (eq (caadr args) word)))
				      (cadr (cl-pop2 args))
				    (error "Bad `using' clause"))
				(gensym))))
		  (if (memq word '(hash-value hash-values))
		      (setq var (prog1 other (setq other var))))
		  (setq loop-map-form
			(list 'maphash (list 'function
					     (list* 'lambda (list var other)
						    '--cl-map)) table))))

	       ((memq word '(symbol present-symbol external-symbol
			     symbols present-symbols external-symbols))
		(let ((ob (and (memq (car args) '(in of)) (cl-pop2 args))))
		  (setq loop-map-form
			(list 'mapatoms (list 'function
					      (list* 'lambda (list var)
						     '--cl-map)) ob))))

	       ((memq word '(overlay overlays extent extents))
		(let ((buf nil) (from nil) (to nil))
		  (while (memq (car args) '(in of from to))
		    (cond ((eq (car args) 'from) (setq from (cl-pop2 args)))
			  ((eq (car args) 'to) (setq to (cl-pop2 args)))
			  (t (setq buf (cl-pop2 args)))))
		  (setq loop-map-form
			(list 'map-extents
			      (list 'function (list 'lambda (list var (gensym))
						    '(progn . --cl-map) nil))
			      buf from to))))

	       ((memq word '(interval intervals))
		(let ((buf nil) (prop nil) (from nil) (to nil)
		      (var1 (gensym)) (var2 (gensym)))
		  (while (memq (car args) '(in of property from to))
		    (cond ((eq (car args) 'from) (setq from (cl-pop2 args)))
			  ((eq (car args) 'to) (setq to (cl-pop2 args)))
			  ((eq (car args) 'property)
			   (setq prop (cl-pop2 args)))
			  (t (setq buf (cl-pop2 args)))))
		  (if (and (consp var) (symbolp (car var)) (symbolp (cdr var)))
		      (setq var1 (car var) var2 (cdr var))
		    (push (list var (list 'cons var1 var2)) loop-for-sets))
		  (setq loop-map-form
			(list 'cl-map-intervals
			      (list 'function (list 'lambda (list var1 var2)
						    '(progn . --cl-map)))
			      buf prop from to))))

	       ((memq word key-types)
		(or (memq (car args) '(in of)) (error "Expected `of'"))
		(let* ((map (cl-pop2 args))
		       other-word
		       (other (if (eq (car args) 'using)
				  (if (and (eql (length (cadr args)) 2)
					   (memq (setq other-word (caadr args))
						 key-types)
					   (not (eq (caadr args) word)))
				      (cadr (cl-pop2 args))
				    (error "Bad `using' clause"))
			       (gensym))))
		  ;; XEmacs addition: track other-word
		  (when (memq word '(key-binding key-bindings))
		    (setq var (prog1 other (setq other var)))
		    (and other-word (setq word other-word)))
		  (setq loop-map-form
			(list (if (memq word '(key-seq key-seqs))
				  'cl-map-keymap-recursively 'map-keymap)
			      (list 'function (list* 'lambda (list var other)
						     '--cl-map)) map))))

	       ((memq word '(frame frames screen screens))
		(let ((temp (gensym)))
		  (push (list var  '(selected-frame))
			   loop-for-bindings)
		  (push (list temp nil) loop-for-bindings)
		  (push (list 'prog1 (list 'not (list 'eq var temp))
				 (list 'or temp (list 'setq temp var)))
			   loop-body)
		  (push (list var (list 'next-frame var))
			   loop-for-steps)))

	       ((memq word '(window windows))
		(let ((scr (and (memq (car args) '(in of)) (cl-pop2 args)))
		      (temp (gensym)))
		  (push (list var (if scr
					 (list 'frame-selected-window scr)
				       '(selected-window)))
			   loop-for-bindings)
		  (push (list temp nil) loop-for-bindings)
		  (push (list 'prog1 (list 'not (list 'eq var temp))
				 (list 'or temp (list 'setq temp var)))
			   loop-body)
		  (push (list var (list 'next-window var)) loop-for-steps)))

	       (t
		(let ((handler (and (symbolp word)
				    (get word 'cl-loop-for-handler))))
		  (if handler
		      (funcall handler var)
		    (error "Expected a `for' preposition, found %s" word)))))
	      (eq (car args) 'and))
	  (setq ands t)
	  (pop args))
	(if (and ands loop-for-bindings)
	    (push (nreverse loop-for-bindings) loop-bindings)
	  (setq loop-bindings (nconc (mapcar 'list loop-for-bindings)
				     loop-bindings)))
	(if loop-for-sets
	    (push (list 'progn
			   (cl-loop-let (nreverse loop-for-sets) 'setq ands)
			   t) loop-body))
	(if loop-for-steps
	    (push (cons (if ands 'psetq 'setq)
			   (apply 'append (nreverse loop-for-steps)))
		     loop-steps))))

     ((eq word 'repeat)
      (let ((temp (gensym)))
	(push (list (list temp (pop args))) loop-bindings)
	(push (list '>= (list 'setq temp (list '1- temp)) 0) loop-body)))

     ((memq word '(collect collecting))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum nil 'nreverse)))
	(if (eq var loop-accum-var)
	    (push (list 'progn (list 'push what var) t) loop-body)
	  (push (list 'progn
			 (list 'setq var (list 'nconc var (list 'list what)))
			 t) loop-body))))

     ((memq word '(nconc nconcing append appending))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum nil 'nreverse)))
	(push (list 'progn
		       (list 'setq var
			     (if (eq var loop-accum-var)
				 (list 'nconc
				       (list (if (memq word '(nconc nconcing))
						 'nreverse 'reverse)
					     what)
				       var)
			       (list (if (memq word '(nconc nconcing))
					 'nconc 'append)
				     var what))) t) loop-body)))

     ((memq word '(concat concating))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum "")))
	(push (list 'progn (list 'callf 'concat var what) t) loop-body)))

     ((memq word '(vconcat vconcating))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum [])))
	(push (list 'progn (list 'callf 'vconcat var what) t) loop-body)))

     ;; XEmacs addition: handle bit-vectors
     ((memq word '(bvconcat bvconcating))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum #*)))
	(push (list 'progn (list 'callf 'bvconcat var what) t) loop-body)))

     ((memq word '(sum summing))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum 0)))
	(push (list 'progn (list 'incf var what) t) loop-body)))

     ((memq word '(count counting))
      (let ((what (pop args))
	    (var (cl-loop-handle-accum 0)))
	(push (list 'progn (list 'if what (list 'incf var)) t) loop-body)))

     ((memq word '(minimize minimizing maximize maximizing))
      (let* ((what (pop args))
	     (temp (if (cl-simple-expr-p what) what (gensym)))
	     (var (cl-loop-handle-accum nil))
	     (func (intern (substring (symbol-name word) 0 3)))
	     (set (list 'setq var (list 'if var (list func var temp) temp))))
	(push (list 'progn (if (eq temp what) set
				(list 'let (list (list temp what)) set))
		       t) loop-body)))

     ((eq word 'with)
      (let ((bindings nil))
	(while (progn (push (list (pop args)
				     (and (eq (car args) '=) (cl-pop2 args)))
			       bindings)
		      (eq (car args) 'and))
	  (pop args))
	(push (nreverse bindings) loop-bindings)))

     ((eq word 'while)
      (push (pop args) loop-body))

     ((eq word 'until)
      (push (list 'not (pop args)) loop-body))

     ((eq word 'always)
      (or loop-finish-flag (setq loop-finish-flag (gensym)))
      (push (list 'setq loop-finish-flag (pop args)) loop-body)
      (setq loop-result t))

     ((eq word 'never)
      (or loop-finish-flag (setq loop-finish-flag (gensym)))
      (push (list 'setq loop-finish-flag (list 'not (pop args)))
	       loop-body)
      (setq loop-result t))

     ((eq word 'thereis)
      (or loop-finish-flag (setq loop-finish-flag (gensym)))
      (or loop-result-var (setq loop-result-var (gensym)))
      (push (list 'setq loop-finish-flag
		     (list 'not (list 'setq loop-result-var (pop args))))
	       loop-body))

     ((memq word '(if when unless))
      (let* ((cond (pop args))
	     (then (let ((loop-body nil))
		     (cl-parse-loop-clause)
		     (cl-loop-build-ands (nreverse loop-body))))
	     (else (let ((loop-body nil))
		     (if (eq (car args) 'else)
			 (progn (pop args) (cl-parse-loop-clause)))
		     (cl-loop-build-ands (nreverse loop-body))))
	     (simple (and (eq (car then) t) (eq (car else) t))))
	(if (eq (car args) 'end) (pop args))
	(if (eq word 'unless) (setq then (prog1 else (setq else then))))
	(let ((form (cons (if simple (cons 'progn (nth 1 then)) (nth 2 then))
			  (if simple (nth 1 else) (list (nth 2 else))))))
	  (if (cl-expr-contains form 'it)
	      (let ((temp (gensym)))
		(push (list temp) loop-bindings)
		(setq form (list* 'if (list 'setq temp cond)
				  (subst temp 'it form))))
	    (setq form (list* 'if cond form)))
	  (push (if simple (list 'progn form t) form) loop-body))))

     ((memq word '(do doing))
      (let ((body nil))
	(or (consp (car args)) (error "Syntax error on `do' clause"))
	(while (consp (car args)) (push (pop args) body))
	(push (cons 'progn (nreverse (cons t body))) loop-body)))

     ((eq word 'return)
      (or loop-finish-flag (setq loop-finish-flag (gensym)))
      (or loop-result-var (setq loop-result-var (gensym)))
      (push (list 'setq loop-result-var (pop args)
		     loop-finish-flag nil) loop-body))

     (t
      (let ((handler (and (symbolp word) (get word 'cl-loop-handler))))
	(or handler (error "Expected a loop keyword, found %s" word))
	(funcall handler))))
    (if (eq (car args) 'and)
	(progn (pop args) (cl-parse-loop-clause)))))

(defun cl-loop-let (specs body par)   ; uses loop-*
  (let ((p specs) (temps nil) (new nil))
    (while (and p (or (symbolp (car-safe (car p))) (null (cadar p))))
      (setq p (cdr p)))
    (and par p
	 (progn
	   (setq par nil p specs)
	   (while p
	     (or (cl-const-expr-p (cadar p))
		 (let ((temp (gensym)))
		   (push (list temp (cadar p)) temps)
		   (setcar (cdar p) temp)))
	     (setq p (cdr p)))))
    (while specs
      (if (and (consp (car specs)) (listp (caar specs)))
	  (let* ((spec (caar specs)) (nspecs nil)
		 (expr (cadr (pop specs)))
		 (temp (cdr (or (assq spec loop-destr-temps)
				(car (push (cons spec (or (last spec 0)
							     (gensym)))
					      loop-destr-temps))))))
	    (push (list temp expr) new)
	    (while (consp spec)
	      (push (list (pop spec)
			     (and expr (list (if spec 'pop 'car) temp)))
		       nspecs))
	    (setq specs (nconc (nreverse nspecs) specs)))
	(push (pop specs) new)))
    (if (eq body 'setq)
	(let ((set (cons (if par 'psetq 'setq) (apply 'nconc (nreverse new)))))
	  (if temps (list 'let* (nreverse temps) set) set))
      (list* (if par 'let 'let*)
	     (nconc (nreverse temps) (nreverse new)) body))))

(defun cl-loop-handle-accum (def &optional func)   ; uses args, loop-*
  (if (eq (car args) 'into)
      (let ((var (cl-pop2 args)))
	(or (memq var loop-accum-vars)
	    (progn (push (list (list var def)) loop-bindings)
		   (push var loop-accum-vars)))
	var)
    (or loop-accum-var
	(progn
	  (push (list (list (setq loop-accum-var (gensym)) def))
		   loop-bindings)
	  (setq loop-result (if func (list func loop-accum-var)
			      loop-accum-var))
	  loop-accum-var))))

(defun cl-loop-build-ands (clauses)
  (let ((ands nil)
	(body nil))
    (while clauses
      (if (and (eq (car-safe (car clauses)) 'progn)
	       (eq (car (last (car clauses))) t))
	  (if (cdr clauses)
	      (setq clauses (cons (nconc (butlast (car clauses))
					 (if (eq (car-safe (cadr clauses))
						 'progn)
					     (cdadr clauses)
					   (list (cadr clauses))))
				  (cddr clauses)))
	    (setq body (cdr (butlast (pop clauses)))))
	(push (pop clauses) ands)))
    (setq ands (or (nreverse ands) (list t)))
    (list (if (cdr ands) (cons 'and ands) (car ands))
	  body
	  (let ((full (if body
			  (append ands (list (cons 'progn (append body '(t)))))
			ands)))
	    (if (cdr full) (cons 'and full) (car full))))))


;;; Other iteration control structures.

;;;###autoload
(defmacro do (steps endtest &rest body)
  "The Common Lisp `do' loop.
Format is: (do ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
  (cl-expand-do-loop steps endtest body nil))

;;;###autoload
(defmacro do* (steps endtest &rest body)
  "The Common Lisp `do*' loop.
Format is: (do* ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
  (cl-expand-do-loop steps endtest body t))

(defun cl-expand-do-loop (steps endtest body star)
  (list 'block nil
	(list* (if star 'let* 'let)
	       (mapcar #'(lambda (c) (if (consp c) (list (car c) (nth 1 c)) c))
		       steps)
	       (list* 'while (list 'not (car endtest))
		      (append body
			      (let ((sets (mapcan
					   #'(lambda (c)
					       (and (consp c) (cdr (cdr c))
						    (list
						     (list (car c) (nth 2 c)))))
					   steps)))
				(and sets
				     (list (cons (if (or star (not (cdr sets)))
						     'setq 'psetq)
						 (apply 'append sets)))))))
	       (or (cdr endtest) '(nil)))))

;;;###autoload
(defmacro* dolist ((var list &optional result) &body body)
  "Loop over a list.
Evaluate BODY with VAR bound to each `car' from LIST, in turn.
Then evaluate RESULT to get return value, default nil."
  (let ((gensym (gensym)))
    `(block nil
      (let ((,gensym ,list) ,var)
        (while ,gensym
          (setq ,var (car ,gensym))
          ,@body
          (setq ,gensym (cdr ,gensym)))
        ,@(if result `((setq ,var nil) ,result))))))

;;;###autoload
(defmacro* dotimes ((var count &optional result) &body body)
  "Loop a certain number of times.
Evaluate BODY with VAR bound to successive integers from 0, inclusive,
to COUNT, exclusive.  Then evaluate RESULT to get return value, default
nil."
  (let* ((limit (if (cl-const-expr-p count) count (gensym)))
         (bind (if (cl-const-expr-p count) nil `((,limit ,count)))))
    `(block nil
      (let ((,var 0) ,@bind)
        (while (< ,var ,limit)
          ,@body
          (setq ,var (1+ ,var)))
        ,@(if result (list result))))))

;;;###autoload
(defmacro* do-symbols ((var &optional obarray result) &rest body)
  "Loop over all interned symbols.
Evaluate BODY with VAR bound to each interned symbol, or to each symbol
from OBARRAY."
  `(block nil
    (mapatoms #'(lambda (,var) ,@body) ,@(and obarray (list obarray)))
    ,@(if result `((let (,var) ,result)))))

;;;###autoload
(defmacro do-all-symbols (spec &rest body)
  (list* 'do-symbols (list (car spec) nil (cadr spec)) body))


;;; Assignments.

;;;###autoload
(defmacro psetq (&rest args)
  "(psetq SYM VAL SYM VAL ...): set SYMs to the values VALs in parallel.
This is like `setq', except that all VAL forms are evaluated (in order)
before assigning any symbols SYM to the corresponding values."
  (cons 'psetf args))


;;; Binding control structures.

;;;###autoload
(defmacro progv (symbols values &rest body)
  "Bind SYMBOLS to VALUES dynamically in BODY.
The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
Each SYMBOL in the first list is bound to the corresponding VALUE in the
second list (or made unbound if VALUES is shorter than SYMBOLS); then the
BODY forms are executed and their result is returned.  This is much like
a `let' form, except that the list of symbols can be computed at run-time."
  (list 'let '((cl-progv-save nil))
	(list 'unwind-protect
	      (list* 'progn (list 'cl-progv-before symbols values) body)
	      '(cl-progv-after))))

;;;###autoload
(defmacro* macrolet ((&rest macros) &body form &environment env)
  "Make temporary macro definitions.
This is like `flet', but for macros instead of functions."
  (cl-macroexpand-all (cons 'progn form)
                      (nconc
                       (loop
                         for (name . details)
                         in macros
                         collect
                         (list* name 'lambda (cdr (cl-transform-lambda details
                                                                       name))))
                       env)))

;;;###autoload
(defmacro* symbol-macrolet ((&rest symbol-macros) &body form &environment env)
  "Make temporary symbol macro definitions.
Elements in SYMBOL-MACROS look like (NAME EXPANSION).
Within the body FORMs, a reference to NAME is replaced with its EXPANSION,
and (setq NAME ...) acts like (setf EXPANSION ...)."
  (cl-macroexpand-all (cons 'progn form)
                      (nconc (loop
			       for (name expansion) in symbol-macros
			       do (check-type name symbol)
			       collect (list (eq-hash name) expansion))
			     env)))

(defvar cl-closure-vars nil)
;;;###autoload
(defmacro* lexical-let (bindings &rest body &environment env)
  "Like `let', but lexically scoped.
The main visible difference is that lambdas inside BODY will create
lexical closures as in Common Lisp."
  (let* ((cl-closure-vars cl-closure-vars)
	 (vars (mapcar #'(lambda (x)
			   (or (consp x) (setq x (list x)))
			   (push (gensym (concat "--" (symbol-name (car x))
						 "--" ))
				 cl-closure-vars)
			   (set (car cl-closure-vars) [bad-lexical-ref])
			   (list (car x) (cadr x) (car cl-closure-vars)))
		       bindings))
	 (ebody
	  (cl-macroexpand-all
	   (cons 'progn body)
	   (nconc (mapcar #'(lambda (x)
			      (list (eq-hash (car x))
				    (list 'symbol-value (caddr x))
				    t))
			  vars)
		  (list '(defun . cl-defun-expander))
		  env))))
    (if (not (get (car (last cl-closure-vars)) 'used))
	(list 'let (mapcar #'(lambda (x) (list (caddr x) (cadr x))) vars)
	      (sublis (mapcar #'(lambda (x)
				  (cons (caddr x) (list 'quote (caddr x))))
			      vars)
		      ebody))
      (list 'let (mapcar #'(lambda (x)
			     (list (caddr x)
				   (list 'make-symbol
					 (format "--%s--" (car x)))))
			 vars)
	    (apply 'append '(setf)
		   (mapcar #'(lambda (x)
			       (list (list 'symbol-value (caddr x)) (cadr x)))
			   vars))
	    ebody))))

;;;###autoload
(defmacro lexical-let* (bindings &rest body)
  "Like `let*', but lexically scoped.
The main visible difference is that lambdas inside BODY will create
lexical closures as in Common Lisp."
  (if (null bindings) (cons 'progn body)
    (setq bindings (reverse bindings))
    (while bindings
      (setq body (list (list* 'lexical-let (list (pop bindings)) body))))
    (car body)))

(defun cl-defun-expander (func &rest rest)
  (list 'progn
	(list 'defalias (list 'quote func)
	      (list 'function (cons 'lambda rest)))
	(list 'quote func)))

;;; Multiple values. We support full Common Lisp conventions here.

;;;###autoload
(defmacro multiple-value-bind (syms form &rest body)
  "Collect and bind multiple return values.

If FORM returns multiple values, each symbol in SYMS is bound to one of
them, in order, and BODY is executed.  If FORM returns fewer multiple values
than there are SYMS, remaining SYMS are bound to nil.  If FORM does
not return multiple values, it is treated as returning one multiple value.

Returns the value given by the last element of BODY."
  (if (null syms)
      `(progn ,form ,@body)
    (if (eql 1 (length syms))
        ;; Code written to deal with other "implementations" of multiple
        ;; values may have a one-element SYMS.
        `(let ((,(car syms) ,form))
          ,@body)
      (let ((temp (gensym)))
        `(let* ((,temp (multiple-value-list-internal 0 ,(length syms) ,form))
                ,@(loop 
                    for var in syms
                    collect `(,var (prog1 (car ,temp)
                                     (setq ,temp (cdr ,temp))))))
          ,@body)))))

;;;###autoload
(defmacro multiple-value-setq (syms form)
  "Collect and set multiple values.

FORM should normally return multiple values; the first N values are stored
in the symbols in SYMS in turn.  If FORM returns fewer than N values, the
remaining symbols have their values set to nil.  FORM not returning multiple
values is treated as FORM returning one multiple value, with other elements
of SYMS initialized to nil.

Returns the first of the multiple values given by FORM."
  (if (null syms)
      ;; Never return multiple values from multiple-value-setq:
      (and form `(values ,form))
    (if (eql 1 (length syms))
        `(setq ,(car syms) ,form)
      (let ((temp (gensym)))
        `(let* ((,temp (multiple-value-list-internal 0 ,(length syms) ,form)))
           (setq ,@(loop
                     for sym in syms
                     nconc `(,sym (car-safe ,temp)
                             ,temp (cdr-safe ,temp))))
           ,(car syms))))))

;;;###autoload
(defmacro multiple-value-list (form)
  "Evaluate FORM and return a list of the multiple values it returned."
  `(multiple-value-list-internal 0 multiple-values-limit ,form))

;;;###autoload
(defmacro nth-value (n form)
  "Evaluate FORM and return the Nth multiple value it returned."
  (if (integerp n)
      `(car (multiple-value-list-internal ,n ,(1+ n) ,form))
    (let ((temp (gensym)))
      `(let ((,temp ,n))
        (car (multiple-value-list-internal ,temp (1+ ,temp) ,form))))))

;;; Declarations.

;;;###autoload
(defmacro locally (&rest body) (cons 'progn body))

(defvar cl-proclaim-history t)    ; for future compilers
(defvar cl-declare-stack t)       ; for future compilers

(defun cl-do-proclaim (spec hist)
  (and hist (listp cl-proclaim-history) (push spec cl-proclaim-history))
  (cond ((eq (car-safe spec) 'special)
	 (if (boundp 'byte-compile-bound-variables)
	     (setq byte-compile-bound-variables
		   (append
		    ;; XEmacs change
		    (mapcar #'(lambda (v) (cons v byte-compile-global-bit))
			    (cdr spec))
		    byte-compile-bound-variables))))

	((eq (car-safe spec) 'inline)
         (while (setq spec (cdr spec))
           (let* ((assq (cdr (assq (car spec)
                                   byte-compile-macro-environment)))
                  (symbol (if (and (consp assq)
                                   (eq (nth 1 (nth 1 assq))
                                       'byte-compile-labels-args))
                              ;; It's a label, and we're using the labels
                              ;; implementation in bytecomp.el. Tell the
                              ;; compiler to inline it, don't mark the
                              ;; symbol to be inlined globally.
                              (nth 1 (nth 1 (nth 3 assq)))
                            (car spec))))
             (or (memq (get symbol 'byte-optimizer)
                       '(nil byte-compile-inline-expand))
                 (error
                  "%s already has a byte-optimizer, can't make it inline"
                  symbol))
             (put symbol 'byte-optimizer 'byte-compile-inline-expand))))
	((eq (car-safe spec) 'notinline)
	 (while (setq spec (cdr spec))
           (let* ((assq (cdr (assq (car spec)
                                   byte-compile-macro-environment)))
                  (symbol (if (and (consp assq)
                                   (eq (nth 1 (nth 1 assq))
                                       'byte-compile-labels-args))
                              ;; It's a label, and we're using the labels
                              ;; implementation in bytecomp.el. Tell the
                              ;; compiler not to inline it, don't mark the
                              ;; symbol to be notinline globally.
                              (nth 1 (nth 1 (nth 3 assq)))
                            (car spec))))
             (if (eq (get symbol 'byte-optimizer)
                     'byte-compile-inline-expand)
                 (put symbol 'byte-optimizer nil)))))
	((eq (car-safe spec) 'optimize)
	 (let ((speed (assq (nth 1 (assq 'speed (cdr spec)))
			    '((0 . nil) (1 . t) (2 . t) (3 . t))))
	       (safety (assq (nth 1 (assq 'safety (cdr spec)))
			     '((0 . t) (1 . t) (2 . t) (3 . nil)))))
	   (when speed
	     (setq cl-optimize-speed (car speed)
		   byte-optimize (cdr speed)))
	   (when safety
	     (setq cl-optimize-safety (car safety)
		   byte-compile-delete-errors (cdr safety)))))

	((and (eq (car-safe spec) 'warn) (boundp 'byte-compile-warnings))
	 (if (eq byte-compile-warnings t)
	     ;; XEmacs change
	     (setq byte-compile-warnings byte-compile-default-warnings))
	 (while (setq spec (cdr spec))
	   (if (consp (car spec))
	       (if (eq (cadar spec) 0)
		   (setq byte-compile-warnings
			 (delete* (caar spec) byte-compile-warnings))
		 (setq byte-compile-warnings
		       (adjoin (caar spec) byte-compile-warnings)))))))
  nil)

;;; Process any proclamations made before cl-macs was loaded.
(defvar cl-proclaims-deferred)
(let ((p (reverse cl-proclaims-deferred)))
  (while p (cl-do-proclaim (pop p) t))
  (setq cl-proclaims-deferred nil))

;;; Generalized variables.

;;;###autoload
(defmacro define-setf-method (name arglist &rest body)
  "Define a `setf' method.
This method shows how to handle `setf's to places of the form (NAME ARGLIST...).
The argument forms are bound according to ARGLIST, as if NAME were
going to be expanded as a macro, then the BODY forms are executed and must
return a list of five elements: a temporary-variables list, a value-forms
list, a store-variables list (of length one), a store-form, and an access-
form.  See `defsetf' for a simpler way to define most setf-methods."
  (append '(eval-when (compile load eval))
	  (if (stringp (car body))
	      (list (list 'put (list 'quote name) '(quote setf-documentation)
			  (pop body))))
	  (list (cl-transform-function-property
		 name 'setf-method (cons arglist body)))))
(defalias 'define-setf-expander 'define-setf-method)

;;;###autoload
(defmacro defsetf (func arg1 &rest args)
  "(defsetf NAME FUNC): define a `setf' method.
This macro is an easy-to-use substitute for `define-setf-method' that works
well for simple place forms.  In the simple `defsetf' form, `setf's of
the form (setf (NAME ARGS...) VAL) are transformed to function or macro
calls of the form (FUNC ARGS... VAL).  Example: (defsetf aref aset).
Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
Here, the above `setf' call is expanded by binding the argument forms ARGS
according to ARGLIST, binding the value form VAL to STORE, then executing
BODY, which must return a Lisp form that does the necessary `setf' operation.
Actually, ARGLIST and STORE may be bound to temporary variables which are
introduced automatically to preserve proper execution order of the arguments.
Example: (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))."
  (if (listp arg1)
      (let* ((largs nil) (largsr nil)
	     (temps nil) (tempsr nil)
	     (restarg nil) (rest-temps nil)
	     (store-var (car (prog1 (car args) (setq args (cdr args)))))
	     (store-temp (intern (format "--%s--temp--" store-var)))
	     (lets1 nil) (lets2 nil)
	     (docstr nil) (p arg1))
	(if (stringp (car args))
	    (setq docstr (prog1 (car args) (setq args (cdr args)))))
	(while (and p (not (eq (car p) '&aux)))
	  (if (eq (car p) '&rest)
	      (setq p (cdr p) restarg (car p))
	    (or (memq (car p) '(&optional &key &allow-other-keys))
		(setq largs (cons (if (consp (car p)) (car (car p)) (car p))
				  largs)
		      temps (cons (intern (format "--%s--temp--" (car largs)))
				  temps))))
	  (setq p (cdr p)))
	(setq largs (nreverse largs) temps (nreverse temps))
	(if restarg
	    (setq largsr (append largs (list restarg))
		  rest-temps (intern (format "--%s--temp--" restarg))
		  tempsr (append temps (list rest-temps)))
	  (setq largsr largs tempsr temps))
	(let ((p1 largs) (p2 temps))
	  (while p1
	    (setq lets1 (cons (list (car p2)
				    (list 'gensym (format "--%s--" (car p1))))
			      lets1)
		  lets2 (cons (list (car p1) (car p2)) lets2)
		  p1 (cdr p1) p2 (cdr p2))))
	(if restarg (setq lets2 (cons (list restarg rest-temps) lets2)))
	(append (list 'define-setf-method func arg1)
		(and docstr (list docstr))
		(list
		 (list 'let*
		       (nreverse
			(cons (list store-temp
				    (list 'gensym (format "--%s--" store-var)))
			      (if restarg
				  (append
				   (list
				    (list rest-temps
					  (list 'mapcar '(quote gensym)
						restarg)))
				   lets1)
				lets1)))
		       (list 'list  ; 'values
			     (cons (if restarg 'list* 'list) tempsr)
			     (cons (if restarg 'list* 'list) largsr)
			     (list 'list store-temp)
			     (cons 'let*
				   (cons (nreverse
					  (cons (list store-var store-temp)
						lets2))
					 args))
			     (cons (if restarg 'list* 'list)
				   (cons (list 'quote func) tempsr)))))))
    (list 'defsetf func '(&rest args) '(store)
	  (let ((call (list 'cons (list 'quote arg1)
			    '(append args (list store)))))
	    (if (car args)
		(list 'list '(quote progn) call 'store)
	      call)))))

;;; Some standard place types from Common Lisp.
(eval-when-compile (defvar ignored-arg)) ; XEmacs: warning suppression
(defsetf aref aset)
(defsetf car setcar)
(defsetf cdr setcdr)
(defsetf caar (x) (val) (list 'setcar (list 'car x) val))
(defsetf cadr (x) (val) (list 'setcar (list 'cdr x) val))
(defsetf cdar (x) (val) (list 'setcdr (list 'car x) val))
(defsetf cddr (x) (val) (list 'setcdr (list 'cdr x) val))
(defsetf elt (seq n) (store)
  (list 'if (list 'listp seq) (list 'setcar (list 'nthcdr n seq) store)
	(list 'aset seq n store)))
;; XEmacs change: ignore the optional DEFAULT arguments
(defsetf get (x y &optional ignored-arg) (store) (list 'put x y store))
(defsetf get* (x y &optional ignored-arg) (store) (list 'put x y store))
(defsetf gethash (x h &optional ignored-arg) (store) (list 'puthash x store h))
(defsetf nth (n x) (store) (list 'setcar (list 'nthcdr n x) store))
(defsetf subseq (seq start &optional end) (new)
  (list 'progn (list 'replace seq new :start1 start :end1 end) new))
(defsetf symbol-function fset)
(defsetf symbol-plist setplist)
(defsetf symbol-value set)

;;; Various car/cdr aliases.  Note that `cadr' is handled specially.
(defsetf first setcar)
(defsetf second (x) (store) (list 'setcar (list 'cdr x) store))
(defsetf third (x) (store) (list 'setcar (list 'cddr x) store))
(defsetf fourth (x) (store) (list 'setcar (list 'cdddr x) store))
(defsetf fifth (x) (store) (list 'setcar (list 'nthcdr 4 x) store))
(defsetf sixth (x) (store) (list 'setcar (list 'nthcdr 5 x) store))
(defsetf seventh (x) (store) (list 'setcar (list 'nthcdr 6 x) store))
(defsetf eighth (x) (store) (list 'setcar (list 'nthcdr 7 x) store))
(defsetf ninth (x) (store) (list 'setcar (list 'nthcdr 8 x) store))
(defsetf tenth (x) (store) (list 'setcar (list 'nthcdr 9 x) store))
(defsetf rest setcdr)

;;; Some more Emacs-related place types.
(defsetf buffer-file-name set-visited-file-name t)
;; XEmacs change: we do not need to wrap this in with-current-buffer
(defsetf buffer-modified-p set-buffer-modified-p t)
(defsetf buffer-name rename-buffer t)
(defsetf buffer-string () (store)
  (list 'progn '(erase-buffer) (list 'insert store)))
(defsetf buffer-substring cl-set-buffer-substring)
(defsetf current-buffer set-buffer)
(defsetf current-case-table set-case-table)
(defsetf current-column move-to-column t)
(defsetf current-global-map use-global-map t)
(defsetf current-input-mode () (store)
  (list 'progn (list 'apply 'set-input-mode store) store))
(defsetf current-local-map use-local-map t)
(defsetf current-window-configuration set-window-configuration t)
(defsetf default-file-modes set-default-file-modes t)
(defsetf default-value set-default)
(defsetf documentation-property put)
;;(defsetf extent-data set-extent-data)
(defsetf extent-face set-extent-face)
(defsetf extent-priority set-extent-priority)
;; XEmacs addition
(defsetf extent-property (x y &optional ignored-arg) (arg)
  (list 'set-extent-property x y arg))
(defsetf extent-end-position (ext) (store)
  `(progn (set-extent-endpoints ,ext (extent-start-position ,ext) ,store)
	  ,store))
(defsetf extent-start-position (ext) (store)
  `(progn (set-extent-endpoints ,ext ,store (extent-end-position ,ext))
	  ,store))
(defsetf face-foreground (f &optional s) (x) (list 'set-face-foreground f x s))
(defsetf face-foreback (f &optional s) (x) (list 'set-face-foreback f x s))
(defsetf face-background (f &optional s) (x) (list 'set-face-background f x s))
(defsetf face-background-pixmap (f &optional s) (x)
  (list 'set-face-background-pixmap f x s))
(defsetf face-background-placement (f &optional s) (x)
  (list 'set-face-background-placement f x s))
(defsetf face-font (f &optional s) (x) (list 'set-face-font f x s))
(defsetf face-underline-p (f &optional s) (x)
  (list 'set-face-underline-p f x s))
(defsetf face-shrink-p (f &optional s) (x)
  (list 'set-face-shrink-p f x s))
(defsetf file-modes set-file-modes t)
(defsetf frame-height (&optional f) (v)
  `(progn (set-frame-height ,f ,v) ,v))
(defsetf frame-parameters modify-frame-parameters t)
(defsetf frame-visible-p cl-set-frame-visible-p)
(defsetf frame-width (&optional f) (v)
  `(progn (set-frame-width ,f ,v) ,v))
;; XEmacs change: frame-properties instead of frame-parameters
(defsetf frame-properties (&optional f) (p)
  `(progn (set-frame-properties ,f ,p) ,p))
(defsetf frame-property (f p &optional ignored-arg) (v)
  `(progn (set-frame-property ,f ,v) ,p))
;; XEmacs addition
(defsetf current-frame-configuration set-frame-configuration)

;; XEmacs: new stuff
;; Consoles
(defsetf selected-console select-console t)
(defsetf selected-device select-device t)
(defsetf device-baud-rate (&optional d) (v)
  `(set-device-baud-rate ,d ,v))
;; This setf method is a bad idea, because set-specifier *adds* a
;; specification, rather than just setting it.  The net effect is that
;; it makes specifier-instance return VAL, but other things don't work
;; as expected -- letf, to name one.
;(defsetf specifier-instance (spec &optional dom def nof) (val)
;  `(set-specifier ,spec ,val ,dom))

(defsetf get-char-table (char table) (store)
  `(put-char-table ,char ,store ,table))

;; Annotations
(defsetf annotation-glyph set-annotation-glyph)
(defsetf annotation-down-glyph set-annotation-down-glyph)
(defsetf annotation-face set-annotation-face)
(defsetf annotation-layout set-annotation-layout)
(defsetf annotation-data set-annotation-data)
(defsetf annotation-action set-annotation-action)
(defsetf annotation-menu set-annotation-menu)
;; Widget
(defsetf widget-get widget-put t)
(defsetf widget-value widget-value-set t)

;; Misc
(defsetf recent-keys-ring-size set-recent-keys-ring-size)
(defsetf symbol-value-in-buffer (s b &optional ignored-arg) (store)
  `(with-current-buffer ,b (set ,s ,store)))
(defsetf symbol-value-in-console (s c &optional ignored-arg) (store)
  `(letf (((selected-console) ,c))
     (set ,s ,store)))

(defsetf buffer-dedicated-frame (&optional b) (v)
  `(set-buffer-dedicated-frame ,b ,v))
(defsetf console-type-image-conversion-list
  set-console-type-image-conversion-list)
(defsetf default-toolbar-position set-default-toolbar-position)
(defsetf device-class (&optional d) (v)
  `(set-device-class ,d ,v))
(defsetf extent-begin-glyph set-extent-begin-glyph)
(defsetf extent-begin-glyph-layout set-extent-begin-glyph-layout)
(defsetf extent-end-glyph set-extent-end-glyph)
(defsetf extent-end-glyph-layout set-extent-end-glyph-layout)
(defsetf extent-keymap set-extent-keymap)
(defsetf extent-parent set-extent-parent)
(defsetf extent-properties set-extent-properties)
;; Avoid adding various face and glyph functions.
(defsetf frame-selected-window (&optional f) (v)
  `(set-frame-selected-window ,f ,v))
(defsetf glyph-image (glyph &optional domain) (i)
  (list 'set-glyph-image glyph i domain))
(defsetf itimer-function set-itimer-function)
(defsetf itimer-function-arguments set-itimer-function-arguments)
(defsetf itimer-is-idle set-itimer-is-idle)
(defsetf itimer-recorded-run-time set-itimer-recorded-run-time)
(defsetf itimer-restart set-itimer-restart)
(defsetf itimer-uses-arguments set-itimer-uses-arguments)
(defsetf itimer-value set-itimer-value)
(defsetf keymap-parents set-keymap-parents)
(defsetf marker-insertion-type set-marker-insertion-type)
(defsetf mouse-pixel-position (&optional d) (v)
  `(progn
     (set-mouse-pixel-position ,d ,(car v) ,(car (cdr v)) ,(cdr (cdr v)))
     ,v))
(defsetf trunc-stack-length set-trunc-stack-length)
(defsetf trunc-stack-stack set-trunc-stack-stack)
(defsetf undoable-stack-max set-undoable-stack-max)
(defsetf weak-list-list set-weak-list-list)
;; End of new XEmacs stuff

(defsetf getenv setenv t)
(defsetf get-register set-register)
(defsetf global-key-binding global-set-key)
(defsetf keymap-parent set-keymap-parent)
;; XEmacs addition: more keymap-related setf forms
(defsetf keymap-name set-keymap-name)
(defsetf keymap-prompt set-keymap-prompt)
(defsetf keymap-default-binding set-keymap-default-binding)
(defsetf local-key-binding local-set-key)
(defsetf mark set-mark t)
(defsetf mark-marker set-mark t)
(defsetf marker-position set-marker t)
(defsetf match-data store-match-data t)
(defsetf mouse-position (scr) (store)
  (list 'set-mouse-position scr (list 'car store) (list 'cadr store)
	(list 'cddr store)))
(defsetf overlay-get overlay-put)
(defsetf overlay-start (ov) (store)
  (list 'progn (list 'move-overlay ov store (list 'overlay-end ov)) store))
(defsetf overlay-end (ov) (store)
  (list 'progn (list 'move-overlay ov (list 'overlay-start ov) store) store))
(defsetf point goto-char)
(defsetf point-marker goto-char t)
(defsetf point-max () (store)
  (list 'progn (list 'narrow-to-region '(point-min) store) store))
(defsetf point-min () (store)
  (list 'progn (list 'narrow-to-region store '(point-max)) store))
(defsetf process-buffer set-process-buffer)
(defsetf process-filter set-process-filter)
(defsetf process-sentinel set-process-sentinel)
;;(defsetf process-get process-put)
(defsetf read-mouse-position (scr) (store)
  (list 'set-mouse-position scr (list 'car store) (list 'cdr store)))
;;(defsetf screen-height set-screen-height t)
;;(defsetf screen-width set-screen-width t)
(defsetf selected-window select-window)
;;(defsetf selected-screen select-screen)
(defsetf selected-frame select-frame)
(defsetf standard-case-table set-standard-case-table)
(defsetf syntax-table set-syntax-table)
(defsetf visited-file-modtime set-visited-file-modtime t)
(defsetf window-buffer set-window-buffer t)
(defsetf window-display-table set-window-display-table t)
(defsetf window-dedicated-p set-window-dedicated-p t)
(defsetf window-height (&optional window) (store)
  `(progn (enlarge-window (- ,store (window-height)) nil ,window) ,store))
(defsetf window-hscroll set-window-hscroll)
(defsetf window-point set-window-point)
(defsetf window-start set-window-start)
(defsetf window-width (&optional window) (store)
  `(progn (enlarge-window (- ,store (window-width)) t ,window) ,store))
(defsetf x-get-cutbuffer x-store-cutbuffer t)
(defsetf x-get-cut-buffer x-store-cut-buffer t)   ; groan.
(defsetf x-get-secondary-selection x-own-secondary-selection t)
(defsetf x-get-selection x-own-selection t)
(defsetf get-selection own-selection t)

;;; More complex setf-methods.
;;; These should take &environment arguments, but since full arglists aren't
;;; available while compiling cl-macs, we fake it by referring to the global
;;; variable byte-compile-macro-environment directly.

(define-setf-method apply (func arg1 &rest rest)
  (or (and (memq (car-safe func) '(quote function function*))
	   (symbolp (car-safe (cdr-safe func))))
      (error "First arg to apply in setf is not (function SYM): %s" func))
  (let* ((form (cons (nth 1 func) (cons arg1 rest)))
	 (method (get-setf-method form byte-compile-macro-environment)))
    (list (car method) (nth 1 method) (nth 2 method)
	  (cl-setf-make-apply (nth 3 method) (cadr func) (car method))
	  (cl-setf-make-apply (nth 4 method) (cadr func) (car method)))))

(defun cl-setf-make-apply (form func temps)
  (if (eq (car form) 'progn)
      (list* 'progn (cl-setf-make-apply (cadr form) func temps) (cddr form))
    (or (equal (last form) (last temps))
	(error "%s is not suitable for use with setf-of-apply" func))
    (list* 'apply (list 'quote (car form)) (cdr form))))

(define-setf-method nthcdr (n place)
  (let ((method (get-setf-method place byte-compile-macro-environment))
	(n-temp (gensym "--nthcdr-n--"))
	(store-temp (gensym "--nthcdr-store--")))
    (list (cons n-temp (car method))
	  (cons n (nth 1 method))
	  (list store-temp)
	  (list 'let (list (list (car (nth 2 method))
				 (list 'cl-set-nthcdr n-temp (nth 4 method)
				       store-temp)))
		(nth 3 method) store-temp)
	  (list 'nthcdr n-temp (nth 4 method)))))

(define-setf-method getf (place tag &optional def)
  (let ((method (get-setf-method place byte-compile-macro-environment))
	(tag-temp (gensym "--getf-tag--"))
	(def-temp (gensym "--getf-def--"))
	(store-temp (gensym "--getf-store--")))
    (list (append (car method) (list tag-temp def-temp))
	  (append (nth 1 method) (list tag def))
	  (list store-temp)
	  (list 'let (list (list (car (nth 2 method))
				 (list 'plist-put (nth 4 method)
				       tag-temp store-temp)))
		(nth 3 method) store-temp)
	  (list 'getf (nth 4 method) tag-temp def-temp))))

(define-setf-method substring (place from &optional to)
  (let ((method (get-setf-method place byte-compile-macro-environment))
	(from-temp (gensym "--substring-from--"))
	(to-temp (gensym "--substring-to--"))
	(store-temp (gensym "--substring-store--")))
    (list (append (car method) (list from-temp to-temp))
	  (append (nth 1 method) (list from to))
	  (list store-temp)
	  (list 'let (list (list (car (nth 2 method))
				 (list 'cl-set-substring (nth 4 method)
				       from-temp to-temp store-temp)))
		(nth 3 method) store-temp)
	  (list 'substring (nth 4 method) from-temp to-temp))))

;; XEmacs addition
(define-setf-method values (&rest args)
  (let ((methods (mapcar #'(lambda (x)
			     (get-setf-method x byte-compile-macro-environment))
			 args))
	(store-temp (gensym "--values-store--")))
    (list (apply 'append (mapcar 'first methods))
	  (apply 'append (mapcar 'second methods))
	  `((,store-temp
	     (multiple-value-list-internal 0 ,(if args (length args) 1))))
	  (cons 'values
		(mapcar #'(lambda (m)
			    (cl-setf-do-store (cons (car (third m)) (fourth m))
					      (list 'pop store-temp)))
			methods))
	  (cons 'list (mapcar 'fifth methods)))))

;;; Getting and optimizing setf-methods.
;;;###autoload
(defun get-setf-method (place &optional env)
  "Return a list of five values describing the setf-method for PLACE.
PLACE may be any Lisp form which can appear as the PLACE argument to
a macro like `setf' or `incf'."
  (if (symbolp place)
      (let ((temp (gensym "--setf--")))
	(list nil nil (list temp) (list 'setq place temp) place))
    (or (and (symbolp (car place))
	     (let* ((func (car place))
		    (name (symbol-name func))
		    (method (get func 'setf-method))
		    (case-fold-search nil))
	       (or (and method
			(let ((byte-compile-macro-environment env))
			  (setq method (apply method (cdr place))))
			(if (and (consp method) (eql (length method) 5))
			    method
			  (error "Setf-method for %s returns malformed method"
				 func)))
		   (and (save-match-data
			  (string-match "\\`c[ad][ad][ad]?[ad]?r\\'" name))
			(get-setf-method (compiler-macroexpand place)))
		   (and (eq func 'edebug-after)
			(get-setf-method (nth (1- (length place)) place)
					 env)))))
	(if (eq place (setq place (macroexpand place env)))
	    (if (and (symbolp (car place)) (fboundp (car place))
		     (symbolp (symbol-function (car place))))
		(get-setf-method (cons (symbol-function (car place))
				       (cdr place)) env)
	      (error "No setf-method known for %s" (car place)))
	  (get-setf-method place env)))))

(defun cl-setf-do-modify (place opt-expr)
  (let* ((method (get-setf-method place byte-compile-macro-environment))
	 (temps (car method)) (values (nth 1 method))
	 (lets nil) (subs nil)
	 (optimize (and (not (eq opt-expr 'no-opt))
			(or (and (not (eq opt-expr 'unsafe))
				 (cl-safe-expr-p opt-expr))
			    (cl-setf-simple-store-p (car (nth 2 method))
						    (nth 3 method)))))
	 (simple (and optimize (consp place) (cl-simple-exprs-p (cdr place)))))
    (while values
      (if (or simple (cl-const-expr-p (car values)))
	  (push (cons (pop temps) (pop values)) subs)
	(push (list (pop temps) (pop values)) lets)))
    (list (nreverse lets)
	  (cons (car (nth 2 method)) (sublis subs (nth 3 method)))
	  (sublis subs (nth 4 method)))))

(defun cl-setf-do-store (spec val)
  (let ((sym (car spec))
	(form (cdr spec)))
    (if (consp sym)
	;; XEmacs change, only used for implementing #'values at the moment.
	(let* ((orig (copy-list sym))
	       (intermediate (last orig))
	       (circular-limit 32))
	  (while (consp (car intermediate))
	    (when (zerop circular-limit)
	      (error 'circular-list "Form seems to contain loops"))
	    (setq intermediate (last (car intermediate))
		  circular-limit (1- circular-limit)))
	  (setcdr intermediate (list val))
	  `(let (,orig)
	    ,form))
      (if (or (cl-const-expr-p val)
	      (and (cl-simple-expr-p val)
		   (eq (cl-expr-contains form sym) 1))
	      (cl-setf-simple-store-p sym form))
	  (subst val sym form)
	(list 'let (list (list sym val)) form)))))

(defun cl-setf-simple-store-p (sym form)
  (and (consp form) (eq (cl-expr-contains form sym) 1)
       (eq (nth (1- (length form)) form) sym)
       (symbolp (car form)) (fboundp (car form))
       (not (eq (car-safe (symbol-function (car form))) 'macro))))

;;; The standard modify macros.
;;;###autoload
(defmacro setf (&rest args)
  "(setf PLACE VAL PLACE VAL ...): set each PLACE to the value of its VAL.
This is a generalized version of `setq'; the PLACEs may be symbolic
references such as (car x) or (aref x i), as well as plain symbols.
For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
The return value is the last VAL in the list."
  (if (cdr (cdr args))
      (let ((sets nil))
	(while args (push (list 'setf (pop args) (pop args)) sets))
	(cons 'progn (nreverse sets)))
    (if (symbolp (car args))
	(and args (cons 'setq args))
      (let* ((method (cl-setf-do-modify (car args) (nth 1 args)))
	     (store (cl-setf-do-store (nth 1 method) (nth 1 args))))
	(if (car method) (list 'let* (car method) store) store)))))

;;;###autoload
(defmacro psetf (&rest args)
  "(psetf PLACE VAL PLACE VAL ...): set PLACEs to the values VALs in parallel.
This is like `setf', except that all VAL forms are evaluated (in order)
before assigning any PLACEs to the corresponding values."
  (let ((p args) (simple t) (vars nil))
    (while p
      (if (or (not (symbolp (car p))) (cl-expr-depends-p (nth 1 p) vars))
	  (setq simple nil))
      (if (memq (car p) vars)
	  (error "Destination duplicated in psetf: %s" (car p)))
      (push (pop p) vars)
      (or p (error "Odd number of arguments to psetf"))
      (pop p))
    (if simple
	(list 'progn (cons 'setf args) nil)
      (setq args (reverse args))
      (let ((expr (list 'setf (cadr args) (car args))))
	(while (setq args (cddr args))
	  (setq expr (list 'setf (cadr args) (list 'prog1 (car args) expr))))
	(list 'progn expr nil)))))

;;;###autoload
(defun cl-do-pop (place)
  (if (cl-simple-expr-p place)
      (list 'prog1 (list 'car-safe place) (list 'setf place (list 'cdr place)))
    (let* ((method (cl-setf-do-modify place t))
	   (temp (gensym "--pop--")))
      (list 'let*
	    (append (car method)
		    (list (list temp (nth 2 method))))
	    (list 'prog1
		  (list 'car-safe temp)
		  (cl-setf-do-store (nth 1 method) (list 'cdr temp)))))))

;;;###autoload
(defmacro remf (place tag)
  "Remove TAG from property list PLACE.
PLACE may be a symbol, or any generalized variable allowed by `setf'.
The form returns true if TAG was found and removed, nil otherwise."
  (let* ((method (cl-setf-do-modify place t))
	 (tag-temp (and (not (cl-const-expr-p tag)) (gensym "--remf-tag--")))
	 (val-temp (and (not (cl-simple-expr-p place))
			(gensym "--remf-place--")))
	 (ttag (or tag-temp tag))
	 (tval (or val-temp (nth 2 method))))
    (list 'let*
	  (append (car method)
		  (and val-temp (list (list val-temp (nth 2 method))))
		  (and tag-temp (list (list tag-temp tag))))
	  (list 'if (list 'eq ttag (list 'car tval))
		(list 'progn
		      (cl-setf-do-store (nth 1 method) (list 'cddr tval))
		      t)
		(list 'plist-remprop tval ttag)))))

;;;###autoload
(defmacro shiftf (place &rest args)
  "(shiftf PLACE PLACE... VAL): shift left among PLACEs.
Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
Each PLACE may be a symbol, or any generalized variable allowed by `setf'."
  ;; XEmacs change: use iteration instead of recursion
  (if (every #'symbolp (butlast (cons place args)))
      (list* 'prog1 place
	     (let ((sets nil))
	       (while args
		 (push (list 'setq place (car args)) sets)
		 (setq place (pop args)))
	       (nreverse sets)))
    (let* ((places (reverse (cons place args)))
	   (form (pop places)))
      (while places
	(let ((method (cl-setf-do-modify (pop places) 'unsafe)))
	  (setq form (list 'let* (car method)
			   (list 'prog1 (nth 2 method)
				 (cl-setf-do-store (nth 1 method) form))))))
      form)))

;;;###autoload
(defmacro rotatef (&rest places)
  "Rotate left among PLACES.
Example: (rotatef A B C) sets A to B, B to C, and C to A.  It returns nil.
Each PLACE may be a symbol, or any generalized variable allowed by `setf'."
  (if (every #'symbolp places)
      (and (cdr places)
	   (let ((sets nil)
		 (first (car places)))
	     (while (cdr places)
	       (setq sets (nconc sets (list (pop places) (car places)))))
	     (nconc (list 'psetf) sets (list (car places) first))))
    (let* ((places (reverse places))
	   (temp (gensym "--rotatef--"))
	   (form temp))
      (while (cdr places)
	(let ((method (cl-setf-do-modify (pop places) 'unsafe)))
	  (setq form (list 'let* (car method)
			   (list 'prog1 (nth 2 method)
				 (cl-setf-do-store (nth 1 method) form))))))
      (let ((method (cl-setf-do-modify (car places) 'unsafe)))
	(list 'let* (append (car method) (list (list temp (nth 2 method))))
	      (cl-setf-do-store (nth 1 method) form) nil)))))

;; This function is not in Common Lisp, and there are gaps in its structure and
;; implementation that reflect that it was never well-specified. E.g. with
;; setf, the question of whether a PLACE is bound or not and how to make it
;; unbound doesn't arise, but we need some way of specifying that for letf to
;; be sensible for gethash, symbol-value and so on; currently we just hard-code
;; symbol-value, symbol-function and values (the latter is XEmacs work that
;; I've just done) in the body of this function, and the following gives the
;; wrong behaviour for gethash:
;; 
;; (setq my-hash-table #s(hash-table :test equal :data ())
;;       print-gensym t)
;; => t
;; (gethash "my-key" my-hash-table (gensym))
;; => #:G68010
;; (letf (((gethash "my-key" my-hash-table) 4000))
;;   (message "key value is %S" (gethash "my-key" my-hash-table)))
;; => "key value is 4000"
;; (gethash "my-key" my-hash-table (gensym))
;; => nil ;; should be an uninterned symbol.
;;
;; Aidan Kehoe, Fr Nov 13 16:12:21 GMT 2009

;;;###autoload
(defmacro letf (bindings &rest body)
  "Temporarily bind to PLACEs.
This is the analogue of `let', but with generalized variables (in the
sense of `setf') for the PLACEs.  Each PLACE is set to the corresponding
VALUE, then the BODY forms are executed.  On exit, either normally or
because of a `throw' or error, the PLACEs are set back to their original
values.  Note that this macro is *not* available in Common Lisp.
As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
the PLACE is not modified before executing BODY.

arguments: (((PLACE VALUE) &rest BINDINGS) &body BODY)"
  (if (and (not (cdr bindings)) (cdar bindings) (symbolp (caar bindings)))
      (list* 'let bindings body)
    (let ((lets nil)
	  (rev (reverse bindings)))
      (while rev
	(let* ((place (if (symbolp (caar rev))
			  (list 'symbol-value (list 'quote (caar rev)))
			(caar rev)))
	       (value (cadar rev))
	       (method (cl-setf-do-modify place 'no-opt))
	       (save (gensym "--letf-save--"))
	       (bound (and (memq (car place)
                                 '(symbol-value symbol-function values))
			   (gensym "--letf-bound--")))
	       (temp (and (not (cl-const-expr-p value)) (cdr bindings)
			  (gensym "--letf-val--")))
               (syms (and (eq 'values (car place))
                          (gensym "--letf-syms--")))
               (cursor (and syms (gensym "--letf-cursor--"))))
	  (setq lets (nconc (car method)
                            (cond
                             (syms
                              `((,syms ',(loop
                                           for sym in (cdr place)
                                           nconc (if (symbolp sym) (list sym))))
                                (,cursor ,syms)
                                (,bound nil)
                                (,save
                                 (prog2
                                     (while (consp ,cursor)
                                       (setq ,bound
                                             (cons (and (boundp (car ,cursor))
                                                        (symbol-value
                                                         (car ,cursor)))
                                                   ,bound)
                                             ,cursor (cdr ,cursor)))
                                     ;; Just using ,bound as a temporary
                                     ;; variable here, to initialise ,save:
                                     (nreverse ,bound) 
                                   ;; Now, really initialise ,bound:
                                   (setq ,cursor ,syms
                                         ,bound nil
                                         ,bound 
                                         (progn (while (consp ,cursor)
                                                  (setq ,bound
                                                        (cons
                                                         (boundp (car ,cursor))
                                                         ,bound)
                                                        ,cursor (cdr ,cursor)))
                                                (nreverse ,bound)))))))
                              (bound
                               (list (list bound
                                           (list (if (eq (car place)
                                                         'symbol-value)
                                                     'boundp 'fboundp)
                                                 (nth 1 (nth 2 method))))
                                     (list save (list 'and bound
                                                      (nth 2 method)))))
                               (t
                                (list (list save (nth 2 method)))))
			    (and temp (list (list temp value)))
			    lets)
		body (list
		      (list 'unwind-protect
			    (cons 'progn
				  (if (cdr (car rev))
				      (cons (cl-setf-do-store (nth 1 method)
							      (or temp value))
					    body)
				    body))
                            (cond 
                             (syms
                              `(while (consp ,syms)
                                (if (car ,bound)
                                    (set (car ,syms) (car ,save))
                                  (makunbound (car ,syms)))
                                (setq ,syms (cdr ,syms)
                                      ,bound (cdr ,bound)
                                      ,save (cdr ,save))))
                             (bound
                              (list 'if bound
                                    (cl-setf-do-store (nth 1 method) save)
                                    (list (if (eq (car place)
                                                  'symbol-function)
                                              'fmakunbound
                                            'makunbound)
                                          (nth 1 (nth 2 method)))))
                             (t
			      (cl-setf-do-store (nth 1 method) save)))))
		rev (cdr rev))))
      (list* 'let* lets body))))

;;;###autoload
(defmacro letf* (bindings &rest body)
  "Temporarily bind to PLACES.
This is the analogue of `let*', but with generalized variables (in the
sense of `setf') for the PLACEs.  Each PLACE is set to the corresponding
VALUE, then the BODY forms are executed.  On exit, either normally or
because of a `throw' or error, the PLACEs are set back to their original
values.  Note that this macro is *not* available in Common Lisp.
As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
the PLACE is not modified before executing BODY.

arguments: (((PLACE VALUE) &rest BINDINGS) &body BODY)"
  (if (null bindings)
      (cons 'progn body)
    (setq bindings (reverse bindings))
    (while bindings
      (setq body (list (list* 'letf (list (pop bindings)) body))))
    (car body)))

;;;###autoload
(defmacro callf (func place &rest args)
  "Set PLACE to (FUNC PLACE ARGS...).
FUNC should be an unquoted function name.  PLACE may be a symbol,
or any generalized variable allowed by `setf'."
  (let* ((method (cl-setf-do-modify place (cons 'list args)))
	 (rargs (cons (nth 2 method) args)))
    (list 'let* (car method)
	  (cl-setf-do-store (nth 1 method)
			    (if (symbolp func) (cons func rargs)
			      (list* 'funcall (list 'function func)
				     rargs))))))

;;;###autoload
(defmacro callf2 (func arg1 place &rest args)
  "Set PLACE to (FUNC ARG1 PLACE ARGS...).
Like `callf', but PLACE is the second argument of FUNC, not the first."
  (if (and (cl-safe-expr-p arg1) (cl-simple-expr-p place) (symbolp func))
      (list 'setf place (list* func arg1 place args))
    (let* ((method (cl-setf-do-modify place (cons 'list args)))
	   (temp (and (not (cl-const-expr-p arg1)) (gensym "--arg1--")))
	   (rargs (list* (or temp arg1) (nth 2 method) args)))
      (list 'let* (append (and temp (list (list temp arg1))) (car method))
	    (cl-setf-do-store (nth 1 method)
			      (if (symbolp func) (cons func rargs)
				(list* 'funcall (list 'function func)
				       rargs)))))))

;;;###autoload
(defmacro define-modify-macro (name arglist func &optional doc)
  "Define a `setf'-like modify macro.
If NAME is called, it combines its PLACE argument with the other arguments
from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)"
  (if (memq '&key arglist) (error "&key not allowed in define-modify-macro"))
  (let ((place (gensym "--place--")))
    (list 'defmacro* name (cons place arglist) doc
	  (list* (if (memq '&rest arglist) 'list* 'list)
		 '(quote callf) (list 'quote func) place
		 (cl-arglist-args arglist)))))


;;; Structures.

;;;###autoload
(defmacro defstruct (struct &rest descs)
  "(defstruct (NAME OPTIONS...) (SLOT SLOT-OPTS...)...): define a struct type.
This macro defines a new Lisp data type called NAME, which contains data
stored in SLOTs.  This defines a `make-NAME' constructor, a `copy-NAME'
copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors."
  (let* ((name (if (consp struct) (car struct) struct))
	 (opts (cdr-safe struct))
	 (slots nil)
	 (defaults nil)
	 (conc-name (concat (symbol-name name) "-"))
	 (constructor (intern (format "make-%s" name)))
	 (constrs nil)
	 (copier (intern (format "copy-%s" name)))
	 (predicate (intern (format "%s-p" name)))
	 (print-func nil) (print-auto nil)
	 (safety (if (cl-compiling-file) cl-optimize-safety 3))
	 (include nil)
	 (tag (intern (format "cl-struct-%s" name)))
	 (tag-symbol (intern (format "cl-struct-%s-tags" name)))
	 (include-descs nil)
	 (side-eff nil)
	 (type nil)
	 (named nil)
	 (forms nil)
	 pred-form pred-check)
    (if (stringp (car descs))
	(push (list 'put (list 'quote name) '(quote structure-documentation)
		       (pop descs)) forms))
    (setq descs (cons '(cl-tag-slot)
		      (mapcar #'(lambda (x) (if (consp x) x (list x)))
			      descs)))
    (while opts
      (let ((opt (if (consp (car opts)) (caar opts) (car opts)))
	    (args (cdr-safe (pop opts))))
	(cond ((eq opt :conc-name)
	       (if args
		   (setq conc-name (if (car args)
				       (symbol-name (car args)) ""))))
	      ((eq opt :constructor)
	       (if (cdr args)
		   (push args constrs)
		 (if args (setq constructor (car args)))))
	      ((eq opt :copier)
	       (if args (setq copier (car args))))
	      ((eq opt :predicate)
	       (if args (setq predicate (car args))))
	      ((eq opt :include)
	       (setq include (car args)
		     include-descs (mapcar #'(lambda (x)
					       (if (consp x) x (list x)))
					   (cdr args))))
	      ((eq opt :print-function)
	       (setq print-func (car args)))
	      ((eq opt :type)
	       (setq type (car args)))
	      ((eq opt :named)
	       (setq named t))
	      ((eq opt :initial-offset)
	       (setq descs (nconc (make-list (car args) '(cl-skip-slot))
				  descs)))
	      (t
	       (error "Slot option %s unrecognized" opt)))))
    (if print-func
	(setq print-func (list 'progn
			       (list 'funcall (list 'function print-func)
				     'cl-x 'cl-s 'cl-n) t))
      (or type (and include (not (get include 'cl-struct-print)))
	  (setq print-auto t
		print-func (and (or (not (or include type)) (null print-func))
				(list 'progn
				      (list 'princ (format "#S(%s" name)
					    'cl-s))))))
    (if include
	(let ((inc-type (get include 'cl-struct-type))
	      (old-descs (get include 'cl-struct-slots)))
	  (or inc-type (error "%s is not a struct name" include))
	  (and type (not (eq (car inc-type) type))
	       (error ":type disagrees with :include for %s" name))
	  (while include-descs
	    (setcar (memq (or (assq (caar include-descs) old-descs)
			      (error "No slot %s in included struct %s"
				     (caar include-descs) include))
			  old-descs)
		    (pop include-descs)))
	  (setq descs (append old-descs (delete* (assq 'cl-tag-slot descs) descs))
		type (car inc-type)
		named (assq 'cl-tag-slot descs))
	  (if (cadr inc-type) (setq tag name named t))
	  (let ((incl include))
	    (while incl
	      (push (list 'pushnew (list 'quote tag)
			     (intern (format "cl-struct-%s-tags" incl)))
		       forms)
	      (setq incl (get incl 'cl-struct-include)))))
      (if type
	  (progn
	    (or (memq type '(vector list))
		(error "Illegal :type specifier: %s" type))
	    (if named (setq tag name)))
	(setq type 'vector named 'true)))
    (or named (setq descs (delete* (assq 'cl-tag-slot descs) descs)))
    (push (list 'defvar tag-symbol) forms)
    (setq pred-form (and named
			 (let ((pos (- (length descs)
				       (length (memq (assq 'cl-tag-slot descs)
						     descs)))))
			   (if (eq type 'vector)
			       (list 'and '(vectorp cl-x)
				     (list '>= '(length cl-x) (length descs))
				     (list 'memq (list 'aref 'cl-x pos)
					   tag-symbol))
			     (if (= pos 0)
				 (list 'memq '(car-safe cl-x) tag-symbol)
			       (list 'and '(consp cl-x)
				     (list 'memq (list 'nth pos 'cl-x)
					   tag-symbol))))))
	  pred-check (and pred-form (> safety 0)
			  (if (and (eq (caadr pred-form) 'vectorp)
				   (= safety 1))
			      (cons 'and (cdddr pred-form)) pred-form)))
    (let ((pos 0) (descp descs))
      (while descp
	(let* ((desc (pop descp))
	       (slot (car desc)))
	  (if (memq slot '(cl-tag-slot cl-skip-slot))
	      (progn
		(push nil slots)
		(push (and (eq slot 'cl-tag-slot) (list 'quote tag))
			 defaults))
	    (if (assq slot descp)
		(error "Duplicate slots named %s in %s" slot name))
	    (let ((accessor (intern (format "%s%s" conc-name slot))))
	      (push slot slots)
	      (push (nth 1 desc) defaults)
	      (push (list*
			'defsubst* accessor '(cl-x)
			(append
			 (and pred-check
			      (list (list 'or pred-check
					  (list 'error
						(format "%s accessing a non-%s"
							accessor name)
						'cl-x))))
			 (list (if (eq type 'vector) (list 'aref 'cl-x pos)
				 (if (= pos 0) '(car cl-x)
				   (list 'nth pos 'cl-x)))))) forms)
	      (push (cons accessor t) side-eff)
	      (push (list 'define-setf-method accessor '(cl-x)
			     (if (cadr (memq :read-only (cddr desc)))
				 (list 'error (format "%s is a read-only slot"
						      accessor))
			       (list 'cl-struct-setf-expander 'cl-x
				     (list 'quote name) (list 'quote accessor)
				     (and pred-check (list 'quote pred-check))
				     pos)))
		       forms)
	      (if print-auto
		  (nconc print-func
			 (list (list 'princ (format " %s" slot) 'cl-s)
			       (list 'prin1 (list accessor 'cl-x) 'cl-s)))))))
	(setq pos (1+ pos))))
    (setq slots (nreverse slots)
	  defaults (nreverse defaults))
    (and predicate pred-form
	 (progn (push (list 'defsubst* predicate '(cl-x)
			       (if (eq (car pred-form) 'and)
				   (append pred-form '(t))
				 (list 'and pred-form t))) forms)
		(push (cons predicate 'error-free) side-eff)))
    (and copier
	 (progn (push (list 'defun copier '(x) '(copy-sequence x)) forms)
		(push (cons copier t) side-eff)))
    (if constructor
	(push (list constructor
                    (cons '&key (remove* nil slots)))
              constrs))
    (while constrs
      (let* ((name (caar constrs))
	     (args (cadr (pop constrs)))
	     (anames (cl-arglist-args args))
	     (make (mapcar* #'(lambda (s d) (if (memq s anames) s d))
			    slots defaults)))
	(push (list 'defsubst* name
		       (list* '&cl-defs (list 'quote (cons nil descs)) args)
		       (cons type make)) forms)
	(if (cl-safe-expr-p (cons 'progn (mapcar 'second descs)))
	    (push (cons name t) side-eff))))
    (if print-auto (nconc print-func (list '(princ ")" cl-s) t)))
    (if print-func
	(push (list 'push
		       (list 'function
			     (list 'lambda '(cl-x cl-s cl-n)
				   (list 'and pred-form print-func)))
		       'custom-print-functions) forms))
    (push (list 'setq tag-symbol (list 'list (list 'quote tag))) forms)
    (push (list* 'eval-when '(compile load eval)
		    (list 'put (list 'quote name) '(quote cl-struct-slots)
			  (list 'quote descs))
		    (list 'put (list 'quote name) '(quote cl-struct-type)
			  (list 'quote (list type (eq named t))))
		    (list 'put (list 'quote name) '(quote cl-struct-include)
			  (list 'quote include))
		    (list 'put (list 'quote name) '(quote cl-struct-print)
			  print-auto)
		    (mapcar #'(lambda (x)
				(list 'put (list 'quote (car x))
				      '(quote side-effect-free)
				      (list 'quote (cdr x))))
			    side-eff))
	     forms)
    (cons 'progn (nreverse (cons (list 'quote name) forms)))))

;;;###autoload
(defun cl-struct-setf-expander (x name accessor pred-form pos)
  (let* ((temp (gensym "--x--")) (store (gensym "--store--")))
    (list (list temp) (list x) (list store)
	  (append '(progn)
		  (and pred-form
		       (list (list 'or (subst temp 'cl-x pred-form)
				   (list 'error
					 (format
					  "%s storing a non-%s" accessor name)
					 temp))))
		  (list (if (eq (car (get name 'cl-struct-type)) 'vector)
			    (list 'aset temp pos store)
			  (list 'setcar
				(if (<= pos 5)
				    (let ((xx temp))
				      (while (>= (setq pos (1- pos)) 0)
					(setq xx (list 'cdr xx)))
				      xx)
				  (list 'nthcdr pos temp))
				store))))
	  (list accessor temp))))


;;; Types and assertions.

;;;###autoload
(defmacro deftype (name arglist &rest body)
  "Define NAME as a new data type.
The type name can then be used in `typecase', `check-type', etc."
  (list 'eval-when '(compile load eval)
	(cl-transform-function-property
	 name 'cl-deftype-handler (cons (list* '&cl-defs ''('*) arglist) body))))

(defun cl-make-type-test (val type)
  (if (symbolp type)
      (cond ((get type 'cl-deftype-handler)
	     (cl-make-type-test val (funcall (get type 'cl-deftype-handler))))
	    ((memq type '(nil t)) type)
	    ((eq type 'null) `(null ,val))
	    ((eq type 'float) `(floatp ,val))
	    ((eq type 'real) `(numberp ,val))
	    ((eq type 'fixnum) `(fixnump ,val))
	    ;; XEmacs change: we do not have char-valid-p
	    ((memq type '(character string-char)) `(characterp ,val))
	    (t
	     (let* ((name (symbol-name type))
		    (namep (intern (concat name "p"))))
	       (if (fboundp namep) (list namep val)
		 (list (intern (concat name "-p")) val)))))
    (cond ((get (car type) 'cl-deftype-handler)
	   (cl-make-type-test val (apply (get (car type) 'cl-deftype-handler)
					 (cdr type))))
	  ((memq (car-safe type) '(integer float real number))
	   (delete* t (list 'and (cl-make-type-test val (car type))
			 (if (memq (cadr type) '(* nil)) t
			   (if (consp (cadr type)) (list '> val (caadr type))
			     (list '>= val (cadr type))))
			 (if (memq (caddr type) '(* nil)) t
			   (if (consp (caddr type)) (list '< val (caaddr type))
			     (list '<= val (caddr type)))))))
	  ((memq (car-safe type) '(and or not))
	   (cons (car type)
		 (mapcar #'(lambda (x) (cl-make-type-test val x))
			 (cdr type))))
	  ((memq (car-safe type) '(member member*))
	   (list 'and (list 'member* val (list 'quote (cdr type))) t))
	  ((eq (car-safe type) 'eql)
	   (list 'eql (cadr type) val))
	  ((eq (car-safe type) 'satisfies) (list (cadr type) val))
	  (t (error "Bad type spec: %s" type)))))

;;;###autoload
(defun typep (object type)   ; See compiler macro below.
  "Check that OBJECT is of type TYPE.
TYPE is a Common Lisp-style type specifier."
  (eval (cl-make-type-test 'object type)))

;;;###autoload
(defmacro check-type (place type &optional string)
  "Verify that PLACE is of type TYPE; signal a continuable error if not.
STRING is an optional description of the desired type."
  (and (or (not (cl-compiling-file))
	   (< cl-optimize-speed 3) (= cl-optimize-safety 3))
       (let* ((temp (if (cl-simple-expr-p place 3) place (gensym)))
	      (test (cl-make-type-test temp type))
	      (signal-error `(signal 'wrong-type-argument
			      ,(list 'list (or string (list 'quote type))
				     temp (list 'quote place))))
	      (body
	       (condition-case nil
		   `(while (not ,test)
		     ,(macroexpand `(setf ,place ,signal-error)))
		 (error
		  `(if ,test (progn ,signal-error nil))))))
	 (if (eq temp place) `(progn ,body nil)
	   `(let ((,temp ,place)) ,body nil)))))

;;;###autoload
(defmacro assert (form &optional show-args string &rest args)
  "Verify that FORM returns non-nil; signal an error if not.
Second arg SHOW-ARGS means to include arguments of FORM in message.
Other args STRING and ARGS... are arguments to be passed to `error'.
They are not evaluated unless the assertion fails.  If STRING is
omitted, a default message listing FORM itself is used."
  (and (or (not (cl-compiling-file))
	   (< cl-optimize-speed 3) (= cl-optimize-safety 3))
       (let ((sargs (and show-args
                         ;; #'remove-if isn't necessarily available yet.
                         (remove* t (cdr form) :key #'cl-const-expr-p))))
	 (list 'progn
	       (list 'or form
		     (if string
			 (list* 'error string (append sargs args))
		       (list 'signal '(quote cl-assertion-failed)
			     (list* 'list (list 'quote form) sargs))))
	       nil))))

;;;###autoload
(defmacro ignore-errors (&rest body)
  "Execute BODY; if an error occurs, return nil.
Otherwise, return result of last form in BODY."
  `(condition-case nil (progn ,@body) (error nil)))

;; XEmacs addition
;;;###autoload
(defmacro ignore-file-errors (&rest body)
  "Execute FORMS; if an error of type `file-error' occurs, return nil.
Otherwise, return result of last FORM."
  `(condition-case nil (progn ,@body) (file-error nil)))


;;; Compiler macros.

;;;###autoload
(defmacro define-compiler-macro (func args &rest body)
  "Define a compiler-only macro.
This is like `defmacro', but macro expansion occurs only if the call to
FUNC is compiled (i.e., not interpreted).  Compiler macros should be used
for optimizing the way calls to FUNC are compiled; the form returned by
BODY should do the same thing as a call to the normal function called
FUNC, though possibly more efficiently.  Note that, like regular macros,
compiler macros are expanded repeatedly until no further expansions are
possible.  Unlike regular macros, BODY can decide to \"punt\" and leave the
original function call alone by declaring an initial `&whole foo' parameter
and then returning foo."
  (let ((p (if (listp args) args (list '&rest args))) (res nil))
    (while (consp p) (push (pop p) res))
    (setq args (nconc (nreverse res) (and p (list '&rest p)))))
  (list 'eval-when '(compile load eval)
	(cl-transform-function-property
	 func 'cl-compiler-macro
	 (cons (if (memq '&whole args) (delete* '&whole args)
		 (cons '--cl-whole-arg-- args)) body))
	(list 'or (list 'get (list 'quote func) '(quote byte-compile))
	      (list 'put (list 'quote func) '(quote byte-compile)
		    '(quote cl-byte-compile-compiler-macro)))))

;;;###autoload
(defun compiler-macroexpand (form)
  (while
      (let ((func (car-safe form)) (handler nil))
	(while (and (symbolp func)
		    (not (setq handler (get func 'cl-compiler-macro)))
		    (fboundp func)
		    (or (not (eq (car-safe (symbol-function func)) 'autoload))
			(load (nth 1 (symbol-function func)))))
	  (setq func (symbol-function func)))
	(and handler
	     (not (eq form (setq form (apply handler form (cdr form))))))))
  form)

(defun cl-byte-compile-compiler-macro (form)
  (if (eq form (setq form (compiler-macroexpand form)))
      (byte-compile-normal-call form)
    (byte-compile-form form)))

(defmacro defsubst* (name arglist &optional docstring &rest body)
  "Define NAME as a function.
Like `defun', except the function is automatically declared `inline',
ARGLIST allows full Common Lisp conventions, and BODY is implicitly
surrounded by (block NAME ...)."
  (let* ((argns (cl-arglist-args arglist)) (p argns)
         (exec-body (if (or (stringp docstring) (null docstring))
                        body
                      (cons docstring body)))
	 (pbody (cons 'progn exec-body))
	 (unsafe (not (cl-safe-expr-p pbody))))
    (while (and p (eq (cl-expr-contains arglist (car p)) 1)) (pop p))
    (list 'progn
	  (if (or p (memq '&rest arglist))
              ; Defaults refer to earlier args, or we would have to cons up
              ; something for &rest:
              (list 'proclaim-inline name) 
	    (list 'define-compiler-macro name
		  (if (memq '&key arglist)
		      (list* '&whole 'cl-whole '&cl-quote arglist)
		    (cons '&cl-quote arglist))
		  (list* 'cl-defsubst-expand (list 'quote argns)
			 (list 'quote (list* 'block name exec-body))
			 (not (or unsafe (cl-expr-access-order pbody argns)))
			 (and (memq '&key arglist) 'cl-whole) unsafe argns)))
	  (list* 'defun* name arglist docstring body))))

(defun cl-defsubst-expand (argns body simple whole unsafe &rest argvs)
  (if (and whole (not (cl-safe-expr-p (cons 'progn argvs))))
      whole
    (if (cl-simple-exprs-p argvs)
        (setq simple t))
    (let* ((symbol-macros nil)
           (lets (mapcan #'(lambda (argn argv)
                             (if (or simple (cl-const-expr-p argv))
                                 (progn 
				   ;; Avoid infinite loop on symbol macro
				   ;; expansion:
				   (or (block find
                                         (subst nil argn argvs :test
                                                #'(lambda (elt tree)
                                                    ;; Give nil if argn is
                                                    ;; in argvs somewhere:
						    (if (eq elt tree)
							(return-from find)))))
                                       (let ((copy-symbol (copy-symbol argn)))
                                         ;; Rename ARGN within BODY so it
                                         ;; doesn't conflict with its value
                                         ;; in the including scope:
                                         (setq body
                                               (cl-macroexpand-all
                                                body `((,(eq-hash argn)
                                                        ,copy-symbol)))
                                               argn copy-symbol)))
                                   (push (list argn argv) symbol-macros)
                                   (and unsafe (list (list argn argv))))
                               (list (list argn argv))))
                         argns argvs)))
      `(let ,lets
         (symbol-macrolet
             ;; #### Bug; this will happily substitute in places where the
             ;; symbol is being shadowed in a different scope (e.g. inside
             ;; let bindings or lambda expressions where it has been
             ;; bound). We don't have GNU's issue where the replacement will
             ;; be done when the symbol is used in a function context,
             ;; because we're using #'symbol-macrolet instead of #'subst.
             ;;
             ;; #'symbol-macrolet as specified by Common Lisp is shadowed by
             ;; #'let, #'let* and lambda argument lists, and that would suit
             ;; our purposes here perfectly; we could implement it in
             ;; cl-macroexpand-all by shadowing any existing symbol macros
             ;; when we descend let forms or arglist lambdas. Doing it
             ;; unconditionally could well break #'loop, though.
             ,symbol-macros
           ,body)))))

;; When a 64-bit build is byte-compiling code, some of its native fixnums
;; will not be represented as fixnums if the byte-compiled code is read by
;; the Lisp reader in a 32-bit build. So in that case we need to check the
;; range of fixnums as well as their types. XEmacs doesn't support machines
;; with word size less than 32, so it's OK to have that as the minimum.
(macrolet
    ((most-positive-fixnum-on-32-bit-machines () (1- (lsh 1 30)))
     (most-negative-fixnum-on-32-bit-machines ()
       (lognot (most-positive-fixnum-on-32-bit-machines))))
  (defun cl-non-fixnum-number-p (object)
    "Return t if OBJECT is a number not guaranteed to be immediate."
    (and (numberp object)
	 (or (not (fixnump object))
	     (not (<= (most-negative-fixnum-on-32-bit-machines)
		      object
		      (most-positive-fixnum-on-32-bit-machines)))))))

;;; Compile-time optimizations for some functions defined in this package.
;;; Note that cl.el arranges to force cl-macs to be loaded at compile-time,
;;; mainly to make sure these macros will be present.

(define-compiler-macro eql (&whole form a b)
  (cond ((eq (cl-const-expr-p a) t)
	 (let ((val (cl-const-expr-val a)))
	   (if (cl-non-fixnum-number-p val)
	       (list 'equal a b)
	     (list 'eq a b))))
	((eq (cl-const-expr-p b) t)
	 (let ((val (cl-const-expr-val b)))
	   (if (cl-non-fixnum-number-p val)
	       (list 'equal a b)
	     (list 'eq a b))))
	(t form)))

(macrolet
    ((define-star-compiler-macros (&rest macros)
       "For `member*', `assoc*' and `rassoc*' with constant ITEM or
:test arguments, use the versions with explicit tests if that makes sense."
       (list*
	'progn
	(mapcar
	 (function*
	  (lambda ((star-function eq-function equal-function))
	    `(define-compiler-macro ,star-function (&whole form &rest keys)
              (if (< (length form) 3)
                  form
                (condition-case nil
                    (symbol-macrolet ((not-constant '#:not-constant))
                      (let* ((item (pop keys))
                             (list (pop keys))
                             (test-expr (plist-get keys :test ''eql))
                             (test (cl-const-expr-val test-expr not-constant))
                             (item-val (cl-const-expr-val item not-constant))
                             (list-val (cl-const-expr-val list not-constant)))
                        (if (and keys (not (and (eq :test (car keys))
                                                (eql 2 (length keys)))))
                            form
                          (cond ((eq test 'eq) `(,',eq-function ,item ,list))
                                ((eq test 'equal)
                                 `(,',equal-function ,item ,list))
                                ((and (eq test 'eql)
                                      (not (eq not-constant item-val)))
                                 (if (cl-non-fixnum-number-p item-val)
                                     `(,',equal-function ,item ,list)
                                   `(,',eq-function ,item ,list)))
                                ((and (eq test 'eql) (not (eq not-constant
                                                              list-val)))
                                 (if (some 'cl-non-fixnum-number-p list-val)
                                     `(,',equal-function ,item ,list)
                                   ;; This compiler macro used to limit
                                   ;; calls to ,,eq-function to lists where
                                   ;; all elements were either fixnums or
                                   ;; symbols. There's no reason to do this.
                                   `(,',eq-function ,item ,list)))
                                ;; This is a hilariously specific case; see
                                ;; add-to-list in subr.el.
                                ((and (eq test not-constant)
                                      (eq 'or (car-safe test-expr))
                                      (eql 3 (length test-expr))
                                      (every #'cl-safe-expr-p (cdr form))
                                      `(if ,(second test-expr)
                                        (,',star-function ,item ,list :test
                                                          ,(second test-expr))
                                        (,',star-function
                                         ,item ,list :test
                                         ,(third test-expr)))))
                                (t form)))))
                  ;; No need to warn about a malformed property list,
                  ;; #'byte-compile-normal-call will do that for us.
                  (malformed-property-list form))))))
	 macros))))
  (define-star-compiler-macros
    (member* memq member)
    (assoc* assq assoc)
    (rassoc* rassq rassoc)))

(define-compiler-macro adjoin (&whole form a list &rest keys)
  (if (and (cl-simple-expr-p a) (cl-simple-expr-p list)
	   (not (memq :key keys)))
      (list 'if (list* 'member* a list keys) list (list 'cons a list))
    form))

(define-compiler-macro delete (&whole form &rest args)
  (if (eql 3 (length form))
      (symbol-macrolet ((not-constant '#:not-constant))
        (let ((cl-const-expr-val (cl-const-expr-val (nth 1 form) not-constant)))
          (if (and (cdr form) (not (eq not-constant cl-const-expr-val))
                   (or (symbolp cl-const-expr-val) (fixnump cl-const-expr-val)
                       (characterp cl-const-expr-val)))
              (cons 'delete* (cdr form))
            `(delete* ,@(cdr form) :test #'equal))))
    form))

(define-compiler-macro delq (&whole form &rest args)
  (if (eql 3 (length form))
      (symbol-macrolet
          ((not-constant '#:not-constant))
        (let ((cl-const-expr-val (cl-const-expr-val (nth 1 form) not-constant)))
          (if (and (cdr form) (not (eq not-constant cl-const-expr-val))
                   (not (cl-non-fixnum-number-p cl-const-expr-val)))
              (cons 'delete* (cdr form))
            `(delete* ,@(cdr form) :test #'eq))))
    form))

(define-compiler-macro remove (&whole form &rest args)
  (if (eql 3 (length form))
      (symbol-macrolet
          ((not-constant '#:not-constant))
        (let ((cl-const-expr-val (cl-const-expr-val (nth 1 form) not-constant)))
          (if (and (cdr form) (not (eq not-constant cl-const-expr-val))
                   (or (symbolp cl-const-expr-val) (fixnump cl-const-expr-val)
                       (characterp cl-const-expr-val)))
              (cons 'remove* (cdr form))
            `(remove* ,@(cdr form) :test #'equal))))
    form))

(define-compiler-macro remq (&whole form &rest args)
  (if (eql 3 (length form))
      (symbol-macrolet
          ((not-constant '#:not-constant))
        (let ((cl-const-expr-val (cl-const-expr-val (nth 1 form) not-constant)))
          (if (and (cdr form) (not (eq not-constant cl-const-expr-val))
                   (not (cl-non-fixnum-number-p cl-const-expr-val)))
              (cons 'remove* (cdr form))
            `(remove* ,@(cdr form) :test #'eq))))
    form))
 
(macrolet
    ((define-foo-if-compiler-macros (&rest alist)
       "Avoid the funcall, variable binding and keyword parsing overhead
for the FOO-IF and FOO-IF-NOT functions, transforming to forms using the
non-standard :if and :if-not keywords at compile time."
       (cons
	'progn
	(mapcar
	 (function*
	  (lambda ((function-if . function))
	    (let ((keyword (if (equal (substring (symbol-name function-if) -3)
				      "not")
			       :if-not
			     :if)))
	      `(define-compiler-macro ,function-if (&whole form &rest args)
		 (if (and (nthcdr 2 form)
			  (or (consp (cl-const-expr-val (second form)))
			      (cl-safe-expr-p (second form))))
		     ;; It doesn't matter what the second argument is, it's
		     ;; ignored by FUNCTION.  We know that the symbol
		     ;; FUNCTION is in the constants vector, so use it.
		     `(,',function ',',function ,(third form) ,,keyword
		       ,(second form) ,@(nthcdr 3 form))
		   form)))))
	 alist))))
  (define-foo-if-compiler-macros
    (remove-if . remove*)
    (remove-if-not . remove*)
    (delete-if . delete*)
    (delete-if-not . delete*)
    (find-if . find)
    (find-if-not . find)
    (position-if . position)
    (position-if-not . position)
    (count-if . count)
    (count-if-not . count)
    (member-if . member*)
    (member-if-not . member*)
    (assoc-if . assoc*)
    (assoc-if-not . assoc*)
    (rassoc-if . rassoc*)
    (rassoc-if-not . rassoc*)))

(macrolet
    ((define-substitute-if-compiler-macros (&rest alist)
       "Like the above, but for `substitute-if' and friends."
       (cons
	'progn
	(mapcar
	 (function*
	  (lambda ((function-if . function))
	    (let ((keyword (if (equal (substring (symbol-name function-if) -3)
				      "not")
			       :if-not
			     :if)))
	      `(define-compiler-macro ,function-if (&whole form &rest args)
		 (if (and (nthcdr 3 form)
			  (or (consp (cl-const-expr-val (third form)))
			      (cl-safe-expr-p (third form))))
		     `(,',function ,(second form) ',',function ,(fourth form)
		       ,,keyword ,(third form) ,@(nthcdr 4 form))
		   form)))))
	 alist))))
  (define-substitute-if-compiler-macros
    (substitute-if . substitute)
    (substitute-if-not . substitute)
    (nsubstitute-if . nsubstitute)
    (nsubstitute-if-not . nsubstitute)))

(macrolet
    ((define-subst-if-compiler-macros (&rest alist)
       "Like the above, but for `subst-if' and friends."
       (cons
	'progn
	(mapcar
	 (function*
	  (lambda ((function-if . function))
	    (let ((keyword (if (equal (substring (symbol-name function-if) -3)
				      "not")
			       :if-not
			     :if)))
	      `(define-compiler-macro ,function-if (&whole form &rest args)
		(if (and (nthcdr 3 form)
			 (or (consp (cl-const-expr-val (third form)))
			     (cl-safe-expr-p (third form))))
		    `(,',function ,(if (cl-const-expr-p (second form))
				       `'((nil . ,(cl-const-expr-val
						   (second form))))
				     `(list (cons ',',function
						  ,(second form))))
		      ,(fourth form) ,,keyword ,(third form)
		      ,@(nthcdr 4 form))
		   form)))))
	 alist))))
  (define-subst-if-compiler-macros
    (subst-if . sublis)
    (subst-if-not . sublis)
    (nsubst-if . nsublis)
    (nsubst-if-not . nsublis)))

(define-compiler-macro list* (arg &rest others)
  (let* ((args (reverse (cons arg others)))
	 (form (car args)))
    (while (setq args (cdr args))
      (setq form (list 'cons (car args) form)))
    form))

;; XEmacs change: our builtin get takes the default argument
(define-compiler-macro get* (sym prop &optional default)
  (list 'get sym prop default))

(define-compiler-macro getf (sym prop &optional default)
  (list 'plist-get sym prop default))

(define-compiler-macro typep (&whole form val type)
  (if (cl-const-expr-p type)
      (let ((res (cl-make-type-test val (cl-const-expr-val type))))
	(if (or (memq (cl-expr-contains res val) '(nil 1))
		(cl-simple-expr-p val)) res
	  (let ((temp (gensym)))
	    (list 'let (list (list temp val)) (subst temp val res)))))
    form))

(define-compiler-macro apply-partially (&whole form &rest args)
  "Generate a #'make-byte-code call for #'apply-partially, if appropriate."
  (if (< (length args) 1)
      form
    (if (cl-const-exprs-p args)
        `#'(lambda (&rest args) (apply ,@args args))
      (let* ((placeholders (mapcar 'quote-maybe (mapcar 'gensym args)))
             (compiled (byte-compile-sexp
                        `#'(lambda (&rest args) (apply ,@placeholders args)))))
        (assert (equal (intersection
                        (mapcar 'quote-maybe (compiled-function-constants
                                              compiled))
                        placeholders :test 'equal :stable t)
                       placeholders)
                t "This macro requires that the relative order is the same\
in the constants vector and in the arguments")
        `(make-byte-code
          ',(compiled-function-arglist compiled)
          ,(compiled-function-instructions compiled)
          (vector ,@(sublis (pairlis placeholders args)
                            (mapcar 'quote-maybe
                                    (compiled-function-constants compiled))
                            :test 'equal))
          ,(compiled-function-stack-depth compiled))))))

(define-compiler-macro delete-dups (list)
  `(delete-duplicates (the list ,list) :test #'equal :from-end t))

;; XEmacs; inline delete-duplicates if it's called with one of the
;; common compile-time constant tests and an optional :from-end
;; argument, we want the speed in font-lock.el.
(define-compiler-macro delete-duplicates (&whole form &rest cl-keys)
  (let ((cl-seq (if cl-keys (pop cl-keys))))
    (if (or 
	 (not (or (memq (car-safe cl-seq)
			;; No need to check for a list at runtime with
			;; these. We could expand the list, but these are all
			;; the functions in the relevant context at the moment.
			'(nreverse append nconc mapcan mapcar string-to-list))
		 (and (listp cl-seq) (equal (butlast cl-seq) '(the list)))))
	 ;; Wrong number of arguments.
	 (not (cdr form)))
	form
      (cond
       ((or (plists-equal cl-keys '(:test 'eq) t)
	    (plists-equal cl-keys '(:test #'eq) t))
	`(let* ((begin ,cl-seq)
		cl-seq)
	  (while (memq (car begin) (cdr begin))
	    (setq begin (cdr begin)))
	  (setq cl-seq begin)
	  (while (cddr cl-seq)
	    (if (memq (cadr cl-seq) (cddr cl-seq))
		(setcdr (cdr cl-seq) (cddr cl-seq)))
	    (setq cl-seq (cdr cl-seq)))
	  begin))
       ((or (plists-equal cl-keys '(:test 'eq :from-end t) t)
	    (plists-equal cl-keys '(:test #'eq :from-end t) t))
	`(let* ((begin ,cl-seq)
		(cl-seq begin))
	  (while cl-seq
	    (setq cl-seq (setcdr cl-seq
				 (delete* (car cl-seq) (cdr cl-seq)))))
	  begin))
       ((or (plists-equal cl-keys '(:test 'equal) t)
	    (plists-equal cl-keys '(:test #'equal) t))
	`(let* ((begin ,cl-seq)
		cl-seq)
	  (while (member (car begin) (cdr begin))
	    (setq begin (cdr begin)))
	  (setq cl-seq begin)
	  (while (cddr cl-seq)
	    (if (member (cadr cl-seq) (cddr cl-seq))
		(setcdr (cdr cl-seq) (cddr cl-seq)))
	    (setq cl-seq (cdr cl-seq)))
	  begin))
       ((or (plists-equal cl-keys '(:test 'equal :from-end t) t)
	    (plists-equal cl-keys '(:test #'equal :from-end t) t))
	`(let* ((begin ,cl-seq)
		(cl-seq begin))
	  (while cl-seq
	    (setq cl-seq (setcdr cl-seq (delete (car cl-seq)
						(cdr cl-seq)))))
	  begin))
       (t form)))))

;; XEmacs; it's perfectly reasonable, and often much clearer to those
;; reading the code, to call regexp-quote on a constant string, which is
;; something we can optimise here easily.
(define-compiler-macro regexp-quote (&whole form string)
  (if (stringp string)
      (regexp-quote string)
    form))

;; NOTE: `equalp' is now a primitive, although as of yet it still doesn't
;; have a byte-compiler opcode for it.  The compiler-macro for `equalp' used
;; to try and remove as much as possible of the logic of the Lisp `equalp' as
;; possible whenever one of the arguments is a constant, boiling things down
;; to a few if-statements and some calls to various no-longer-defined
;; helper functions.  Besides the fact that the helper functions aren't
;; defined, there's little point in doing any of that expansion, since it will
;; end up executing in Lisp what would otherwise be done in C by a direct
;; call to `equalp'.  The only exception is when the reduction is quite
;; simple and is to functions that do have op-codes; that may gain something.
;; However, if `equalp' becomes an opcode itself, consider removing everything
;; here except maybe when the call can directly be reduced to `equal' or `eq'.
;;
;; --ben

(define-compiler-macro equalp (&whole form x y) 
  "Expand calls to `equalp' where X or Y is a constant expression.

Much of the processing that `equalp' does is dependent on the types of both
of its arguments, and with type information for one of them, we can
eliminate much of the body of the function at compile time.

Where both X and Y are constant expressions, `equalp' is evaluated at
compile time by byte-optimize.el--this compiler macro passes FORM through to
the byte optimizer in those cases."
  ;; Cases where both arguments are constant are handled in
  ;; byte-optimize.el, we only need to handle those cases where one is
  ;; constant here.
  (let* ((equalp-sym (eval-when-compile (gensym)))
	(let-form '(progn))
	(original-y y)
	equalp-temp checked)
  (macrolet
      ((unordered-check (check)
	 `(prog1
	     (setq checked
		   (or ,check
		       (prog1 ,(sublis '((x . y) (y . x)) check :test #'eq)
			 (setq equalp-temp x x y y equalp-temp))))
	   (when checked
	     (unless (symbolp y)
	       (setq let-form `(let ((,equalp-sym ,y))) y equalp-sym))))))
    ;; In the bodies of the below clauses, x is always a constant expression
    ;; of the type we're interested in, and y is always a symbol that refers
    ;; to the result non-constant side of the comparison. 
    (cond ((unordered-check (and (arrayp x) (not (cl-const-expr-p y))))
	   ;; Strings and other arrays. A vector containing the same
	   ;; character elements as a given string is equalp to that string;
	   ;; a bit-vector can only be equalp to a string if both are
	   ;; zero-length.
	   (cond
	    ((member x '("" #* []))
	     ;; No need to protect against multiple evaluation here:
	     `(and (member ,original-y '("" #* [])) t))
	    (t form)))
	  ((unordered-check (and (numberp x) (not (cl-const-expr-p y))))
	   `(,@let-form
	     (and (numberp ,y)
		  (= ,x ,y))))
	  ((unordered-check (and (hash-table-p x) (not (cl-const-expr-p y))))
	   form)
	  ((unordered-check
	    ;; Symbols; eq. 
	    (and (not (cl-const-expr-p y))
		 (or (memq x '(nil t))
		     (and (eq (car-safe x) 'quote) (symbolp (second x))))))
	   (cons 'eq (cdr form)))

	  ;; This clause is wrong -- e.g. when comparing a constant char-table
	  ;; against a non-constant expression that evaluates to a char-table,
	  ;; or some for range tables or certain other types, `equalp' is
	  ;; not the same as `equal'.  We could insert the known list of
	  ;; types with special `equalp' property, but it's fragile and may
	  ;; not be much of an optimization, esp. since these types don't
	  ;; occur that often are often big.
	  ;;((unordered-check
	  ;;  ;; Compare conses at runtime, there's no real upside to
	  ;;  ;; unrolling the function -> they fall through to the next
	  ;;  ;; clause in this function.
	  ;;  (and (cl-const-expr-p x) (not (consp x))
	  ;;       (not (cl-const-expr-p y))))
	  ;; ;; All other types; use equal.
	  ;; (cons 'equal (cdr form)))
	  
	  ;; Neither side is a constant expression, do all our evaluation at
	  ;; runtime (or both are, and equalp will be called from
	  ;; byte-optimize.el).
	  (t form)))))

(define-compiler-macro notany (&whole form &rest cl-rest)
  `(not (some ,@(cdr form))))

(define-compiler-macro notevery (&whole form &rest cl-rest)
  `(not (every ,@(cdr form))))

(define-compiler-macro constantly (&whole form value &rest more-values)
  (cond
   ((< (length form) 2)
    ;; Error at runtime:
    form)
   ((cl-const-exprs-p (cdr form))
    `#'(lambda (&rest ignore) (values ,@(cdr form))))
   (t
    (let* ((num-values (length (cdr form)))
	   (placeholders-counts (make-vector num-values -1))
	   (placeholders (loop
			   for i from 0 below num-values
			   collect (make-symbol (format "%d" i))))
	   (compiled
	    (byte-compile-sexp
	     `#'(lambda (&rest ignore)
		  ;; Compiles to a references into the compiled function
		  ;; constants vector:
		  (values ,@(mapcar #'quote-maybe placeholders)))))
	   position)
      `(make-byte-code '(&rest ignore)
	,(compiled-function-instructions compiled)
	(vector ,@(loop
		    for constant across (compiled-function-constants compiled)
		    collect (if (setq position
				      (position constant placeholders))
				(prog2
				    (incf (aref placeholders-counts position))
				    (nth position (cdr form)))
			      (quote-maybe constant))
		    finally
		    (assert (every #'zerop placeholders-counts)
			    t "Placeholders should each have been used once")))
	,(compiled-function-stack-depth compiled))))))

(define-compiler-macro stable-sort (&whole form &rest cl-rest)
  (cons 'sort* (cdr form)))

(define-compiler-macro svref (&whole form)
  (cons 'aref (cdr form)))

(define-compiler-macro acons (a b c)
  `(cons (cons ,a ,b) ,c))

(define-compiler-macro pairlis (a b &optional c)
  `(nconc (mapcar* #'cons ,a ,b) ,c))

(define-compiler-macro revappend (&whole form &rest args)
  (if (eql 3 (length form)) `(nconc (reverse ,(pop args)) ,(pop args)) form))

(define-compiler-macro nreconc (&whole form &rest args)
  (if (eql 3 (length form)) `(nconc (nreverse ,(pop args)) ,(pop args)) form))

(define-compiler-macro complement (&whole form fn)
  (if (or (eq (car-safe fn) 'function) (eq (car-safe fn) 'quote))
      (cond
       ((and (symbolp (second fn)) (get (second fn) 'byte-compile-negated-op))
        (list 'function (get (second fn) 'byte-compile-negated-op)))
       ((and (symbolp (second fn)) (fboundp (second fn))
             (compiled-function-p (indirect-function (second fn))))
        (let* ((cf (indirect-function (second fn)))
               (cfa (compiled-function-arglist cf))
               (do-apply (memq '&rest cfa)))
          `#'(lambda ,cfa
               (not (,@(if do-apply `(apply ',(second fn)) (list (second fn)))
                       ,@(remq '&optional
                               (remq '&rest cfa)))))))
       (t
        `#'(lambda (&rest arguments)
             (not (apply ,fn arguments)))))
    ;; Determine the function to call at runtime.
    (destructuring-bind
        (arglist instructions constants stack-depth)
        (let ((compiled-lambda
               (byte-compile-sexp
                #'(lambda (&rest arguments)
                    (not (apply 'placeholder arguments))))))
          (list
           (compiled-function-arglist compiled-lambda)
           (compiled-function-instructions compiled-lambda)
           (append (compiled-function-constants compiled-lambda) nil)
           (compiled-function-stack-depth compiled-lambda)))
      `(make-byte-code
        ',arglist ,instructions (vector
                                 ,@(nsublis
                                    (list (cons (quote-maybe
                                                 'placeholder)
                                                fn))
                                    (mapcar #'quote-maybe constants)
                                    :test #'equal))
        ,stack-depth))))

(define-compiler-macro concatenate (&whole form type &rest seqs)
  (if (and (cl-const-expr-p type) (memq (cl-const-expr-val type)
                                        '(vector bit-vector list string)))
      (case (cl-const-expr-val type)
        (list (append (list 'append) (cddr form) '(nil)))
        (vector (cons 'vconcat (cddr form)))
        (bit-vector (cons 'bvconcat (cddr form)))
        (string (cons 'concat (cddr form))))
    form))

(define-compiler-macro subst-char-in-string (&whole form fromchar tochar
					     string &optional inplace)
  (if (every #'cl-safe-expr-p (cdr form))
      `(funcall (if ,inplace #'nsubstitute #'substitute) ,tochar ,fromchar
	(the string ,string) :test #'eq)
    form))

(define-compiler-macro assoc-ignore-case (&whole form &rest args)
  (if (eql 2 (length args))
      `(assoc* (the string ,(pop args))
               (the (and list (satisfies
                               (lambda (list)
                                 (not (find-if-not 'stringp list :key 'car)))))
                    ,(pop args))
               :test 'equalp)
    form))

(define-compiler-macro assoc-ignore-representation (&whole form &rest args)
  (if (eql 2 (length args))
      `(assoc* (the string ,(pop args))
               (the (and list (satisfies
                               (lambda (list)
                                 (not (find-if-not 'stringp list :key 'car)))))
                    ,(pop args))
               :test 'equalp)
    form))

(define-compiler-macro member-ignore-case (&whole form &rest args)
  (if (eql 2 (length args))
      `(member* (the string ,(pop args))
                (the (and list (satisfies
                                (lambda (list) (every 'stringp list))))
                     ,(pop args))
                :test 'equalp)
    form))

(define-compiler-macro stable-union (&whole form &rest cl-keys)
  (if (> (length form) 2)
      (list* 'union (pop cl-keys) (pop cl-keys) :stable t cl-keys)
    form))

(define-compiler-macro stable-intersection (&whole form &rest cl-keys)
  (if (> (length form) 2)
      (list* 'intersection (pop cl-keys) (pop cl-keys) :stable t cl-keys)
    form))

(map nil
     #'(lambda (function)
         ;; There are byte codes for the two-argument versions of these
         ;; functions; if the form has more arguments and those arguments
         ;; have no side effects, transform to a series of two-argument
         ;; calls.
         (put function 'cl-compiler-macro
              #'(lambda (form &rest arguments)
                  (if (or (null (nthcdr 3 form))
                          (notevery #'cl-safe-expr-p (butlast (cdr arguments))))
                      form
                    (cons 'and (mapcon
                                #'(lambda (rest)
                                    (and (cdr rest)
                                         `((,(car form) ,(pop rest)
                                            ,(car rest)))))
                                (cdr form)))))))
     '(= < > <= >=))

;; XEmacs; unroll this loop at macro-expansion time, so the compiler macros
;; are byte-compiled.
(macrolet
    ((inline-side-effect-free-compiler-macros (&rest details)
       (cons
        'progn
        (loop
          for (function . details) in details
          nconc `((put ',function 'side-effect-free t)
                  (define-compiler-macro ,function (&whole form x)
                    ,(if (symbolp (car details))
                         (reduce #'(lambda (object1 object2)
                                     `(list ',object1 ,object2))
                                 details :from-end t :initial-value 'x)
                       (cons 'list details))))))))
  (inline-side-effect-free-compiler-macros
   (first 'car x) (second 'cadr x) (third 'caddr x) (fourth 'cadddr x)
   (fifth 'nth 4 x) (sixth 'nth 5 x) (seventh 'nth 6 x)
   (eighth 'nth 7 x) (ninth 'nth 8 x) (tenth 'nth 9 x)
   (rest 'cdr x) (plusp '> x 0) (minusp '< x 0)
   (oddp  'eql (list 'logand x 1) 1)
   (evenp 'eql (list 'logand x 1) 0)
   (caar car car) (cadr car cdr) (cdar cdr car) (cddr cdr cdr)
   (caaar car caar) (caadr car cadr) (cadar car cdar)
   (caddr car cddr) (cdaar cdr caar) (cdadr cdr cadr)
   (cddar cdr cdar) (cdddr cdr cddr) (caaaar car caaar)
   (caaadr car caadr) (caadar car cadar) (caaddr car caddr)
   (cadaar car cdaar) (cadadr car cdadr) (caddar car cddar)
   (cadddr car cdddr) (cdaaar cdr caaar) (cdaadr cdr caadr)
   (cdadar cdr cadar) (cdaddr cdr caddr) (cddaar cdr cdaar)
   (cddadr cdr cdadr) (cdddar cdr cddar) (cddddr cdr cdddr)))

;;; Things that are inline. XEmacs; the functions that used to be here have
;;; compiler macros or are built-in.
(proclaim '(inline cl-set-elt))

;;; Things that are side-effect-free.  Moved to byte-optimize.el
;[...]

;;; Things that are side-effect-and-error-free.  Moved to byte-optimize.el
;[...]

;; XEmacs; move the following macros to the end of this file, since the
;; override the versions in byte-compile-initial-macro-environment for the
;; duration of the file they're defined in.

;;;###autoload
(defmacro the (type form)
  "Assert that FORM gives a result of type TYPE, and return that result.

TYPE is a Common Lisp type specifier.

If macro expansion of a `the' form happens during byte compilation, and the
byte compiler customization variable `byte-compile-delete-errors' is
non-nil, `the' is equivalent to FORM without any type checks."
  (if (cl-safe-expr-p form)
      `(prog1 ,form (assert ,(cl-make-type-test form type) t))
    (let ((saved (gensym)))
      `(let ((,saved ,form))
        (prog1 ,saved (assert ,(cl-make-type-test saved type) t))))))

;;;###autoload
(defmacro declare (&rest specs)
  nil)

;;;###autoload
(defmacro load-time-value (form &optional read-only)
  "Evaluate FORM once at load time if byte-compiled.

The result of FORM is returned and stored for later access.  In
interpreted code, `load-time-value' is equivalent to `progn'."
  (list 'progn form))

;;;###autoload
(defmacro* labels (bindings &rest body &environment env)
  "Make temporary function bindings.

This is like `flet', except the bindings are lexical instead of dynamic.
Unlike `flet', this macro is compliant with the Common Lisp standard with
regard to the scope and extent of the function bindings.

Each function may be called from within FORM, from within the BODY of the
function itself (that is, recursively), and from any other function bodies
in FUNCTIONS.

Within FORM, to access the function definition of a bound function (for
example, to pass it as a FUNCTION argument to `map'), quote its symbol name
using `function'.

arguments: (((FUNCTION ARGLIST &body BODY) &rest FUNCTIONS) &body FORM)
"
  ;; XEmacs; the byte-compiler has a much better implementation of `labels'
  ;; in `byte-compile-initial-macro-environment' that is used in compiled
  ;; code.
  (let ((vars nil) (sets nil))
    (while bindings
      (let ((var (gensym)))
	(push var vars)
	(push `#'(lambda ,@(cdr (cl-transform-lambda (cdar bindings)
                                                     (caar bindings)))) sets)
	(push var sets)
	(push (list (car (pop bindings)) 'lambda '(&rest cl-labels-args)
		       (list 'list* '(quote funcall) (list 'quote var)
			     'cl-labels-args))
              env)))
    (cl-macroexpand-all `(lexical-let ,vars (setq ,@sets) ,@body) env)))

;;;###autoload
(defmacro flet (functions &rest form)
  "Make temporary function definitions.

This is an analogue of `let' that operates on the function cell of FUNC
rather than its value cell.  The FORMs are evaluated with the specified
function definitions in place, then the definitions are undone (the FUNCs go
back to their previous definitions, or lack thereof).  This is in
contravention of Common Lisp, where `flet' makes a lexical, not a dynamic,
function binding.

Normally you should use `labels', not `flet'; `labels' does not have the
problems caused by dynamic scope, is less expensive when byte-compiled, and
allows lexical shadowing of functions with byte-codes and byte-compile
methods, where `flet' will fail.  The byte-compiler will warn when this
happens.

If you need to shadow some existing function at run time, and that function
has no associated byte code or compiler macro, then `flet' is appropriate.

arguments: (((FUNCTION ARGLIST &body BODY) &rest FUNCTIONS) &body FORM)"
  ;; XEmacs; leave warnings, errors and modifications of
  ;; byte-compile-function-environment to the byte compiler. See
  ;; byte-compile-initial-macro-environment in bytecomp.el.
  (list*
   'letf*
   (mapcar
    (function*
     (lambda ((function . definition))
       `((symbol-function ',function) 
         ,(cons 'lambda (cdr (cl-transform-lambda definition function))))))
    functions) form))

(run-hooks 'cl-macs-load-hook)

;;; arch-tag: afd947a6-b553-4df1-bba5-000be6388f46
;;; cl-macs.el ends here