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Recent theoretical work on the microscopic structure and surface tension of the liquid—
vapour interface of simple (argon-like) fluids is critically reviewed. In particular, the form of
pairwise intermolecular correlations in the liquid surface and the capillary wave treatment
of the interface are examined in some detail. It is argued that conventional capillary wave
theory, which leads to divergences in the width of the density profile, is unsatisfactory for
describing all the equilibrium aspects of the interface. The density functional formalism
which has been developed to study the liquid—vapour interface can also be profitably
applied to other problems in the statistical mechanics of non-uniform fluids; here a new
generalization of the ‘linear’ theory of spinodal decomposition is formulated and by
considering a ‘nearly uniform’ finid, some useful results for the long-wavelength behaviour
of the liquid structure factor of various monatomic liquids are obtained. Some other topics
of current interest in this area are briefly discussed.
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§1. INTRODUCTION

Whilst considerable progress has been made over the last decade in understand-
ing the equilibrium properties of uniform liquids, the microscopic structure and
thermodynamical properties of non-uniform fluids, i.e. fluids for which the average
number density exhibits spatial variation, are relatively less well understood. On the
other hand many important physical phenomena are associated with strongly non-
uniform situations. For example, at the surface of a liquid in equilibrium with its
vapour in a gravitational field (fig. 1), the density will vary extremely rapidly (see
fig. 2) for temperatures close to the triple point. Consequently any proper treatment
of the structure of the liquid—vapour interface and the corresponding surface tension
requires a detailed theory for the statistical mechanics of non-uniform fluids.
Similarly any theory of contact angle, wetting and other interfacial phenomena must
concern itself with the highly non-uniform density distributions which arise as a
result of the interactions between the liquid molecules and those of the solid surface.
Phase separation is another subject which is concerned with non-uniform fluids: the
theories of nucleation and of spinodal decomposition involve both the equilibrium
and non-equilibrium behaviour of density fluctuations in inhomogeneous situations.
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Geometry for the liquid-vapour system. The Gibbs dividing surface is located at z=0.
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The equilibrium density profile for a simple, monatomic fluid in the neighbourhood of its triple point
(schematic). ¢ is the molecular diameter. p;, and p, are the co-existent liquid and vapour densities.

During the last few years there have been significant developments in the formal
theory of the statistical mechanics of non-uniform classical fluids. Most applications
of this work have been aimed at the problem of the liquid—vapour interface. It is the
main purpose of the present article to assess critically our present understanding of
the structure and surface tension of simple (argon-like) liquids near their triple
points. We will show that rather good progress has been achieved. The second
purpose of this paper is to show how the general formalism can be used to derive
useful results for other problems. In particular, we develop a new and rather general
theory of the early stages of spinodal decomposition and, by considering a ‘nearly
uniform’ fluid, we derive some tractable theories for the long-wavelength behaviour
of the Ornstein—Zernike direct correlation function of a uniform liquid, or,
equivalently, the liquid structure factor. The latter is the quantity which is
measured in diffraction experiments on liquids. Other possible applications of the
formalism to surface and interface problems are also discussed.

Since it is our impression that the general formalism is not widely known, the first
part of this paper gives a self-contained account of the statistical theory. The
remainder and bulk of the article is concerned with the topics mentioned above. The
statistical mechanics of non-uniform classical fluids was originally developed by
Morita and Hiroike [1] and independently by De Dominieis [2] using the techniques
of functional differentiation and cluster expansion. A similar approach was later
developed by Stillinger and Buff [3] and Lebowitz and Percus [4] who derived
explicit results for the various thermodynamic potentials of a non-uniform fluid in an
external potential in terms of integrals with respect to density of the Ornstein—
Zernike direct correlation function. Whilst the general formalism proved extremely
fruitful for the development of approximate integral equations for the pair
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distribution function of a uniform fluid [5,6], it application to the statistical
mechanics and thermodynamics of intrinsically non-uniform systems was not
forthcoming until quite recently when several authors [7,8,9,10,11,12] employed
the formalism to develop theories of the liquid—vapour interface.

Our presentation of the theory differs from that of Morita and Hiroike and De
Dominicis. Whereas these authors use cluster expansion techniques to derive the
fundamental variational principle for the grand potential, we obtain the same
principle more directly using an argument borrowed from the theory of the
interacting electron gas [13, 14]. This approach also has the merit that it readily
yields useful approximation schemes. In particular the van der Waals expansion of
the Helmholtz free energy of a fluid as a series of density gradients can be derived and
the coefficients properly identified, for the case where the density is slowly varying
throughout the fluid. A presentation of the theory which is similar to the present can
be found in an appendix to a recent paper by Yang et al. {15].

Our article is arranged as follows. In § 2 we derive the variational principle for the
grand potential and this introduces two key quantities #[p] and Q,[p] which are
functionals of the one-particle density p(r). For a given interaction potential and a
fixed external potential, Q,[p] has a minimum value when p(r)=py(r), the
equilibrium density of the system and this minimum value Qy[p,] is the grand
potential; #[p] is a unique functional, independent of the external potential; #[p,]
is the ‘intrinsic’ Helmholtz free energy of the fluid. In § 3 we show that both % and Q,
act as generating funetionals for hierarchies of correlation functions. The functional
derivatives of & with respect to p(r) give rise to the direct correlation functions while
the functional derivatives of Q, with respect to the external potential yield the n
particle distribution functions. Some formal results for the various thermodynamic
potentials of a non-uniform fluid as integrals with respect to density of the direct
correlation functions are given in § 4. Although these results are identical to those of
Stillinger and Buff {3] and Lebowitz and Percus [4] our analysis dispels earlier
uncertainty concerning their uniqueness. We also discuss the functional dependence
of & on the interaction potential. For systems in which the latter can be represented
as a sum of pairwise intermolecular potentials ¢, #[p,] can be usefully written in
terms of the free energy of a reference system in which the molecules interact via a
potential ¢,, plus a ‘perturbation’ contribution from the remainder of the inter-
molecular potential i.e. ¢ —@,. This result forms the starting point for the various
thermodynamic perturbation theories of non-uniform fluids. In §5 exact integro-
differential equations for the equilibrium density are presented. These were
originally derived by Lovett et al. [9] and Wertheim [10] and they form the basis for
much of the recent work on liquid surfaces. We discuss the case of slowly varying
density in some detail in § 6. The gradient expansion is derived and a procedure for
calculating the coefficients is given. This procedure is only strictly valid when the
density is both slowly varying and exhibits only small departures from its mean
value. It is possible to effect a partial summation of the gradient expansion and
recently Ebner et al. [14] have used this to develop a practicable scheme for
calculating the free energy of non-uniform systems. Their work is also described in
this section. In § 7 we describe a recent application of the formalism to the theory of
uniform liquids; we show that the results of §§ 3 and 4 can be employed to construct
useful approximate theories for the long wavelength behaviour of the Ornstein—
Zernike direct correlation function of a dense liquid in which the molecules interact
via pairwise potentials [16, 17].
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Section 8 constitutes an extensive summary of recent work on the statistical
mechanics of liquid surfaces. In §8.1 we describe the van der Waals theory of the
surface tension and density profile of a planar interface and compare this approach
with the more sophisticated thermodynamic perturbation theories[18, 19]. We show
that these various treatments all give roughly the same monotonic density profile
and qualitatively similar surface tensions for a Lennard—Jones fluid near its triple
point. The Kirkwood—Buff [20] theory of surface tension and the use of closure
approximations for solving the associated integro-differential equation for the
density profile are briefly discussed in § 8.2. We derive a result for the surface tension
in terms of the Ornstein-Zernike direct correlation function of the non-uniform fluid
[7,8]in §8.3. The import of this result is discussed. By analysing two of the integro-
differential equations for the equilibrium density, we show that the density profile
should decay exponentially into each bulk phase but that the decay length is much
larger for the liquid side of the interface [11]. In § 8.4 we discuss the form of pairwise
correlations in the interface and review the interesting and important work of
Wertheim [10] which predicts the occurrence of long-ranged correlations parallel to
the surface. We show that such correlations are consistent with a description of the
surface in terms of capillary waves [11,12]. The possibility of building up the
equilibrium density profile by ‘unfreezing’ capillary wave-like fluctuations in some
hypothetical ‘bare’ interface is examined in §8.5. Conventional capillary wave
theory is found to lead to unrealistic (divergent) results for the width of the density
profile. We also comment on recent applications {8, 12, 21] of capillary wave models.
In §8.6 we compare the results of recent molecular dynamics simulations of the
density profile and surface tension with those obtained from the van de Waals and
related approximate theories. For a Lennard-Jones fluid near its triple point the
results for the density profile are found to be in good agreement; the ‘10-90° width of
the profile is about two molecular diameters. For parameters appropriate to liquid
argon the calculated surface tensions lie in the range 12-18dyncem™*,

§9 we show that the theory of spinodal decomposition can be placed on a proper
microscopic basis using the methods of this paper. Finally, in § 10 we briefly discuss
some other topics of current interest and present some conclusions and perspectives.

§2. THE VARIATIONAL PRINCIPLE FOR THE GRAND POTENTIAL AND THE EQUILIBRIUM
DENSITY
We consider a grand canonical ensemble of particles and define the equilibrium
probability density f, for N particles at temperature 7'

Jo=E""exp(—B(Hy—uN)), (1)
where Hy is the hamiltonian when there are N particles present, u is the chemical
potential and f=1/KyT. The grand partition function E is given by

E=Tryexp (—p(Hy—uN)), (2)
where Tr,, denotes the usual ‘classical’ trace, i.e.

i 1
Try= Y Wjdrl ..dry[dpy...dpy,

N=0

where ry, etc. denote position variables and p,, etc. momentum variables. Following
Mermin [13] we consider the functional

Qf1="Tro f(Hy—pN+p" " Inf). 3)
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For the equilibrium probability density we clearly have
Qlfo]l=—B ' InE=Q. (4)
Q is the grand potential. The functional Q[f] also satisfies the inequality

QUf1>Qlfol. f#fo (5)

for all probability densities with Tr,, f=1. This result is easily proved since from (1, 3
and 4) it follows that

Qf1=QIfol+ B~ (Try fInf—Try fIn fo)
and the term in brackets is positive if f#f The latter follows from a Gibbs
inequality (see e.g. [22]).
We now restrict consideration to hamiltonians of the form

Hy=T+U+V, (6)
where
N
T= Z p?/2m,
i=1
UE U(rlv 7rN)7
and

N
V=3 Veulr).

U is the potential energy of interaction of the particles. Pairwise additivity of this
function isnot, in general, assumed. V. (r) is an arbifrary external potential and m is
the mass of each particle. The system is assumed to be enclosed in a volume ¥”. The
equilibrium density p,(r) for such a system is given by

po(r=<p(r)> (7)
N

where p(r)= Z o(r—r;) is the density operator and the configuration average of any
i=1

operator O is defined by
<0>=Try fo0.

Since f, is a function of Vit follows that p,(r) is also a functional of V,,. We can also
prove the more useful result that f, is a functional of py(r). The proof (see Appendix 1)
proceeds by showing that, for a given interaction potential U, V. (r) is uniquely
determined by py(r), i.e. only one V., (r) can determine a given py(r). The resultant
Vex then determines f,. Thus, it follows that f, is a functional of py(r).

This result implies that, for a given U,
FIp1=Tro fo(T+U+B "Info) (8)

is a unique functional of the density p(r). The same form is valid for all external
potentials. #[p] plays a key role in the development of the theory. The other key
quantity is the functional

Qulp]= [dep(O) Vet + Fp)— [ dr p(r). ()
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When p(r) = py(r), the equilibrium density, Q,[p] reduces to the grand potential Q.
Furthermore, this is the minimum value of the functional. In order to prove this we
suppose p'(r) is the equilibrium density associated with another probability density
S’ of unit trace,t then

Qf)=Tro f (Hy—pN+p"*Inf)
= Jdr p/(0)V (V) + Fp) = fdr p'(r)
=Q[p'], (10)
where
Fp1=Try f(T+U+B Inf).
From (5) we have Q[f,]<Q[f"] so it follows that
Qy[po] <Qy[p']. (1)

Thus, the correct equilibrium density po(r) minimizes the functional Q,[p] over all
density functions that can be associated with the potential V().
We can express these important results as follows:

3Qy[p]|

Bl A EN R 12

5o |,, e
and

Qylpo]=Q. (120)

From (9) and (12 ) it is clear that # [ p,]is the ‘intrinsic’ Helmholtz free energy of the
system. The total Helmholtz free energy F is

F= [drpo(t)Vex(0)+F o], (13)
which includes the contribution from the external potential. From (12 ¢) we have
Vewl?) + il 0o 1= 1, (14)
where we have defined an intrinsic chemical potential
OF[p]
Winlp; ¥1= : (15)
op(r)

Equation (14) is the fundamental equation in the theory of non-uniform fluids.
Given some means of determing & [p], this is an explicit equation for the equilibrium
density. For example, in an non-interacting system (U =0), #[p] reduces to

F saeatlp] =B Jdr p(r)(In (p(r))—1) (16)
where A= (h*8/2mn)"/* and the intrinsic chemical potential is £~ In (42p(r)). In this
case (14) yields the familiar result

Po(r)=zexp (= BV (), (17)
where z=172 exp (Bu) is the fugacity. When the effects of interactions between the

particles are included, y;,, and hence y, are not simple functions of the local particle

1This proof assumes the existence of a potential Vi, (r) which gives rise to the density p/'(r) so that the
appropriate f' exists. The existence of #[p], as given above, is then guaranteed.
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density and, in general, u;, cannot be identified with the chemical potential of a
uniform fluid with density equal to the local density. In § 6 we will see that only in the
limit of very slowly varying densities will such an identification become valid.

§3. DIRECT CORRELATION FUNCTIONS AND MOLECULAR DISTRIBUTION FUNCTIONS

The effects of interactions between particles are most readily incorporated by
introducing a hierarchy of direct correlation functions. We define a functional ®[p]
as the interaction part of #[p]:

FP1=F igeal P] = @lp]. (18)

For a given interaction potential U, ® is a unique functional of p(r). The intrinsic
chemical potential can then be written as:

Bl p: ¥]=In (Ap(r)) —c[p; r] (19)
where
ol
clp;r] —ﬁﬁp(r) (20)

is the contribution due to interactions. From (14) we find that the equilibrium
density is given by

Po(r) =zexp (— BV eu(r) +c[po; ¥l)- (21)

The quantity — B~ *¢[po;r] is the additional, effective one-body potential which
determines, in a self-consistent fashion, the equilibrium density. 1t is completely
analogous to the effective potential which appears in the one-electron Schrédinger
equation in the Kohn—-Sham [23] theory of the inhomogeneous electron gas.

c[p; r] is only the first member of the hierarchy of correlation functions generated
by ®[p]. The higher order functions are obtained by further differentiation:

_olpins] _ pEOlp] _ pE*DLp)

[pi¥,,t]= = = =c[p;ty,t
o= Sptendptes) dplropirn) 2" -
2.~
clpsry, rz’rs]zﬂl’i:([l); ry, ¥, r3] ete.
Sp(r3)dp(ry)

The second derivative, evaluated at the equilibrium density, is usually referred to as
the Ornstein—Zernike direct correlation function of the non-uniform fluid. The
reason for this will become clear but first we note that Qy[p] is also a generating
funectional. If we set

u(r)Eu—— Vext(r) (23)
then (9) becomes

Qulp]=— [dr piryu(r) + F[p] (24)

Differentiating w. r. t. «(r) and recalling that p(r) is a functional of u(r) we find

oQylp] Op(¥) (0F(p]
Su(r) pr)+ Jdr ou(r) ( op(r') ulr )>
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From (14) it follows that when p(r)=p,(r), the term in brackets vanishes and

0Qy [ po]
——= —py(r). 25
Su(r) Polr) (25)
Thus Qy is a generating functional, w.r.t. the variable u(r), for the equilibrium
density po(r). Since Qy{p ]| =Q, (25) could, of course, have been derived directly from
the grand partition function (see Appendix 2). Differentiating Q a second time we can
show (Appendix 2) that

0
G(ry,r)=p" 1;0—(’1)= L(D(ry) = polry)) (P(ra) = po(r2))>. (26)
%(¥3)

%(ry, ry)is often referred to as the density fluctuation function or the density—density
correlation function and is proportional to the static linear density response function
(see Appendix 3). I't is a positive definite quantity which is closely related to the usual
pairwise distribution function p®(r,,r,):

G(ry,ry) =p(2)(r1, 1)+ Po(r)d(ry —r3)— po(ry)po(rs). (27)

(This result and the definitions of the molecular distribution functions are given in
Appendix 2). The higher order distribution functions can be obtained by further
differentiation [4].

The inverse of 4 is related to the Ornstein—Zernike direct correlation function as
defined above. In order to demonstrate this we re-write (21) as

“[po; ¥1]=1n (/1390(’1))‘5“("1) (28)

and differentiate w. r. t. py(r,):

o(ry—ry) _.Béu(h) .
Polry) 0po(r3)

('(2)(r1>72)5('[po§ r, K= (29)

The second term on the r. h. s. of (29) is —% ~!(r,, r,) where the inverse is defined in
the conventional way by

j'dr3{€_1(r1,r3)€€(r3,r2)=5(r1—r2)_ (30)

Substituting from (27) and (29) into (30) we find that ¢'®(r, r,) and p®(r,, r,) satisfy
the integral equation:
P11, 1) = Po(r)po(r2) = Polr1)po(rs)e® ey, ¢y)

+Po(rz)jdr3 (P(Z)(rn"3)—Po('1)/’o("3))(’(2)(r3;"2) (31)
For a uniform fluid of density p,, ¢®(ry,r)=cP(|r;—r,|) and p@(ry,r,)

=pg g(|r; —r,]), where g(r) is the radial distribution function, and (31) reduces to the
usual Ornstein—Zernike equation:

g(r)—=1=cP(r)+po fdr (g(r") = 1) ([r —v

). (32)

Consequently, ¢®(r, r,) can be legitimately described as the generalized Ornstein—
Zernike correlation function.
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§4. THERMODYNAMIC POTENTIALS FOR ARBITRARY EXTERNAL POTENTIALS

In this section we derive some formal expressions for the various thermodynamic
potentials by functional integration w. r. t. (1) the particle density, (2) the external
potential and (3) the interaction potential.

4.1. Integration w. r. t. particle densily

We suppose that for a given f§, U and V., we have some prescription for solving
(14) for the equilibrium density of the system. If we suppose further that we can
evaluate the Ornstein-Zernike correlation function for a range of non-uniform
densities then we can evaluate the thermodynamic potentials of our system by
functional integration w. r. t. density. We concentrate on the functional ®[p] and
consider a path in the space of density functions which is characterized by a single
parameter o:

pa=p(ra)=pi(r) at a=0

=p(r)at a=1 (33)

where p;(r) is some initial (reference) density and a varies between O and 1.
Integrating (20) we have

} .
olp1= [, + f 4a f L dplri) 50p,|
0

o Op(r; o)
1 .
=®[p] +p" J do fdr % f;’ Y lpur] (34)
o o
and if we choose
plr; o) = pi(r) +-o(p(r) — py(r)) (35)
(34) simplifies to
1
Dp|=0p;)+p " j dot J‘dl‘ (p(r) = pi(r))clpg ¥ ). (36)
0

A further simplification is possible if the initial density p;(r) =0. In this case ®[p;]=0
since the effect of interactions become negligible at sufficiently low densities (we
assume finite range intermolecular potentials) and (36) reduces to

1

@[p]=ﬂ‘1f dot fdrp(r)c[ap; rl. (37)
4]

Using (22) this can be integrated again along the same path (35):

1 1
‘D[P]=l3_1j dfw[ do! J‘dﬁj‘drz p(ry)p(ry)cloa’pi ey, 1y . (38)
0

0

Since ®[p] is a unique functional of p(r) this result is independent of the choice of
integration path i.e. paths other than (35) lead to the same value for ®.

The Helmholtz free energy of the equilibrium system of density po(r) is given by
(13) and (18):

F=[dr po(0) V ex (1) + F sgeal Po] — P00 |- (39)
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This result is useful provided we can evaluate c[opg; ry,¥,] for all density distri-
butions apy(r;) with 0<a<1. The Gibbs free energy G is simply

G=,u§dr Polr)

with a free energy density

1po(1) =B po(1)(BY exi(r) + 1n(A% po (1)) — c[po; ¥1), (40)

where we have used (28). The grand potential then follows from (39, 40 and 16) by
formally eliminating the chemical potential:

Q=F—-@

=B~ {dr po(r)(c[po; 11— 1) — P[po]. (41)

As stressed recently by Saam and Ebner [24], these results for the thermody-
namic potentials are unique and do not depend on the particular choice of
integration path. The expressions for Q and F can be simplified by integrating by
parts in (38)

1
Q=" fdh Polry) |: j docor Jdrz Polrz)clapo; e, Fa]— 1:| (42)
0
and

F=p~1 jdh Polry) [ BV eulry)+1n (A2 pg(ry))—1

1
+J da (“_I)dez Po(’z)c[“,ﬂo;"l:"z]:l. (43)

0

For a uniform Huid (V. =0; po(r)=p,) these formulae for the thermodynamic
potentials reduce to well-known results. In this limit the zeroth Fourier coefficient of
the direct correlation function satisfies the Ornstein—Zernike compressibility
equation:

1 _Pojdr C(Z)(T)ZB(POXT)_l (44)

where yr is the isothermal compressibility at the appropriate density and tempera-
ture. The chemical potential and pressure p are obtained by integration since

S, (o (9P
(PoXT) —Po<apo>T—‘<ap0>T (45)

and Q= —p7¥" for a uniform fluid. The Helmholtz free energy is just Q+G.

As (40), (42) and (43) were originally derived by Stillinger and Buff [3] using
cluster expansion techniques, the validity of these formulae for dense liquids was
queried. Later Lebowitz and Percus [4] derived identical formulae using functional
integration methods equivalent to the present and thus showed the results were also
valid for liquids. These authors, however, had doubts concerning the uniqueness and
hence, usefulness, of the results for the Helmholtz free energy and the grand
potential. They noted that of the three free energy densities only the Gibbs density is
a ‘local functional’ of the equilibrium density, (this follows since u depends solely on
the effective one-body potential at the equilibrium density) and argued that it was
not possible to find path independent expressions for the other energy densities. For
these reasons Lebowitz and Percus discussed only approximations for the Gibbs free
energy. Our present derivation should dispel such doubts [24]. The existence of the
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unique functional # [ p] (or equivalently @[ p]) implies that all three potentials should
be generated from the same scheme. This point will be illustrated in §6 where we
derive approximations for the thermodynamic potentials of systems in which the
dengsity varies slowly.

As noted at the beginning of this section, any application of the general
formalism described above requires the determination of py(r;) plus some prescrip-
tion for ¢[p; ry, r,] in a non-uniform fluid. Finding an exact - solution of eqn. (21) for
the equilibrium density is, of course, difficult. This equation can be transformed to an
integro-differential equation (see §5) involving the Ornstein—Zernike correlation
function but this remains a daunting task. For practical purposesit is better to write

Qy[p]=B"" fdr p(r)(BV eu(r) — B +1n (p(r) — 1) = @[ p], (46)

with @[p] given by (38) and parametrize the final density p(r). By minimizing the
r.h.s. of (46) w.r.t. the parameters an approximate equilibrium density and grand
potential can be found directly. Saam and Ebner [24] have suggested that it should
be practicable to solve the Percus—Yevick equations for a non-uniform fluid over a
wide range of densities and hence evaluate c[p; vy, r,]. This would make a calculation
of Q along these lines quite feasible.

4.2, Integration w.r.l. an external potential
Qy is itself a generating functional for the equilibrium density so we can formally
integrate (25) using the potential function

Uy = (5 00) = u5(r) + ou(r) —24(r)) (47)

where wu;(r) is some initial (reference) value of the quantity u— V,,(r). This yields
1

Q=9i—f dot fdr platgs 1)) —us(r), (48)
0

where € is the grand potential of the initial state. This procedure requires p(u,; r},
the equilibrium density for an ‘intermediate’ value of the potential function. While
this could be expressed as an integral over %(r,, r,) (see (26)) such a scheme does not
appear to be useful for the purpose of calculation.

4.3. Integration w.r.t. a pairwise interaction potential
The grand potential is, of course, a functional of the interaction potential U. If
the latter can be written as a sum of pairwise potentials:

Ulry...ry) =32 6(r,1)), (49)
i)

it is easy to prove (see Appendix 2) that
6 _, i
(Fira)  O9(ry,ry)
for a fixed potential «(r). Thus, for pairwise intermolecular potentials, the grand
potential is a convenient generating functional for the equilibrium pairwise
distribution function. From (9), (18) and (50) it follows that
O0F [ po] _ oD[py]

5(],'>(r1,r2)_ 54’“1:’2).

PR ) =25 (50)

P(Z)(rx, r;)=2 (61)
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These equations can be functionally integrated. For example,

1
Fpol=7 pol +%J dor Jdn fdrz PP Pus 11, 1)(D(r 1, 12) —Bilry,¥3)),  (52)
0
where we have chogen a one-parameter integration path:

(»buE ¢(r13 F; OC) :d)r(rh r2) +O€(¢(I‘1, I’2) —qb,(rl, rZ))' (53)

Z [ po] corresponds to an initial (non-equilibrium) reference system in which the
pairwise potential is ¢,(r, r,) and the density is po(r). p@(Py; 1y, ¥,) is the pairwise
distribution function for a system of density p(r) in which the particles interact via a
pairwise potential ¢,. If ¢.(ry,r;)=0 then F =% 4., and (52) reduces to

1
f[l)o]=g’—idea1[l)o]+%f da Jdrl fdl'z P(Z)(d’a; rLT2)0(r, ). (54)
0

The grand potential can be derived in a similar fashion. This scheme avoids the
need to calculate correlation functions at different densities (once the equilibrium
density has been determined) and thus it might find useful applications.t For
uniform fluids (52) reduces to the familiar coupling constant algorithm for the
Helmbholtz free energy of a system in terms of that of a reference system at the same
density and temperature. This algorithm forms the basis of the various thermody-
namic perturbation theories of bulk liquids [22]. Equation (52) has been employed as
the starting point for perturbation theories of the surface tension and density profile
of the liquid-vapour interface (see §8.1) and in §7 we will use (52) to formulate a
perturbation theory for the long-wavelength behaviour of the Ornstein—Zernike
direct correlation function of a dense uniform fluid.

§5. INTEGRO—DIFFERENTIAL EQUATIONS FOR THE EQUILIBRIUM DENSITY
Here we present several exact equations for the equilibrium density py(r) of the
fluid in an external potential. We begin with eqn. (28) which is equivalent to the
fundamental result (14). Taking the gradient on each side we have

B~ 1V1 Inpo(ry)+V,  Veg(ry)=5" 1V1C[Po; r]
=ﬁ_1jd"2 ¢y, 15)V,00(r3), (55)

where we used (22) and (29). Equation (55) has a simple physical interpretation. It
states that the effective force on a particle due to interactions with the other particles
B~ 'Vic[po; 4] is exactly balanced by the sum of the external force — Vi Veu(ry) and
the kinetic term. Given some (approximate) means of evaluating the Ornstein—
Zernike correlation function, (55) could, in principle, be solved for py(r,).

The manipulation involved in going from the first to the second line of (55) is not
immediately transparent and warrants clarification. Since the potential u(r) is a
unique functional of the equilibrium density po(r) (see Appendix 1) it follows that if
Po(r) is displaced by a spatial distance s, then u(r) must be similarly displaced, i.e. if
u(ry;[po(r)]) =u(ry), where we have explicitly indicated the functional dependence on

t For the interacting electron gas, the analogous procedure can be used to calculate the correlation
energy.
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Polr), then u(ry; [po(r+s))=u(r, +s). We now make a functional Taylor expansion
in po(r):

(e [Po(r +8)1) =u(r; [polr) +IdzTrli[_p>0l)

where the derivative is taken at the undisplaced density. It then follows that

ou(ry; [pol)
Spo(ry)

(Po(ry+8)—poltz))+ ...
$=0

w(ry +s)—u(r)= [dr,

{00tz +8)—polr))+ ...,

§=0

so that in the limit s—>0 we have

ou(ry)
0po(r3)

and (55) then follows directly using (28) and (29).

Similarly, we can use the fact that since «(r) is the only field which locates py(r) in
space, shifting u(r) by a distance s must cause a similar shift in py(r). Such an
argument simply leads to the inverse of the last equation:

Vlu/ rl j‘d ry

V,1p0(r3)

0
Vipolr jd Po 2u(ty),

which, from (26) and (27), can be written as

V1po(r; =—ﬁ§dr2 () (ri,r2) +po(r)(rs —ry) = po(r1)po(t))Va Veyl(rs).  (56)

Equations (55) and (56) were derived, independently, by Lovett ef al. [9] and
Wertheim [10]. Neither equation depends explicitly on the form of interaction
potential; they are completely general. For a fluid in which the particles interact via
pairwise potentials (55) is equivalent to the first member of the Yvon—Born—Green
hierarchy. In this case the effective force acting on a particle at position ry due to
interactions can be calculated explicitly from the pairwise potential ¢(ry,¥,) and we
have

_ 1
B lvlc[po; r=-
Polr

o) Idrz Vid(r,13)pP(r.ry). (67)

Using (55) we find
V1Po +ﬂp0 V Vext = ‘ﬁfd'zv ¢(r1,l'2 )(r1>r2)a (58)

which is the first YBG equation. This result is usually derived directly from the
definitions of the distribution functions. Equations (55), (56) and (58) are important
in the theory of liquid surfaces and we will make use of them in §8. For practical
calculations on insulating fluids, (55) is probably the most useful since it involves
only the direct correlation function. The latter is still short ranged in a non-uniform
insulating fluid, i.e. ¢®(ry,r,) >0 when |r; —r,|>, the range of intermolecular forces
in the fluid. Thus it may be easier to construct approximations for ¢*)(r,,r,) than for
the long range function p@(r,r,) [9]. Furthermore, if py(r) is slowly varying over the
range of intermolecular forces so- that Z'Vpo(r)l« po(t) eqn. (565) reduces to the
equation of hydrostatics. Under this condition
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§ar,c®(r 1, 13)V,00(r) >V 1po(rs)fdr, ¢@(|t; —r,|) where ¢?(jr, —r,|) refers to a uni-
form fluid of density py(r,). Equation (55) can then be written as

ﬁ'lvlpo(n)(l—po jd”m )= —po(t)V1Vexlry). (69)

The term in brackets is f(pox )~ where y is the isothermal compressibility of the
uniform fluid of density py(r;). From (45) it then follows

5,
Vip(t)= <£>V1Po("1)= —polr1)V1Veulry) (60)
0

where p(r,) is the local pressure. A more systematic treatment of the case of slowly
varying densities is presented in the next section.

§6. SLOWLY VARYING DENSITIES

In many problems of interest we are concerned with density distributions
which vary slowly over the range of molecular correlations. Such distributions occur,
for example, for fluids in gravitational or centrifugal fields. In such circumstances
the various thermodynamic potentials possess energy densities which are equal to
those of a hypothetical uniform fluid whose density is everywhere pg(r), the
equilibrium density at position r in the real non-uniform system. When the density
varies more rapidly it is natural to expand the energy densities about their local
density values in a series of density gradients.

6.1. The gradient expansion

The formal development of gradient expansions is most easily accomplished
by extending the arguments originally presented by Hohenberg and Kohn [25] for
the interacting electron gas. We suppose that a density distribution p(r) can be
usefully written in the form p(r)="¥(r/r,) where the scale parameter r,—oc. The
function ¥ can exhibit considerable, but long-wavelength variation. We choose to
expand the functional [ p] but we could equally well work with ®[p]. For large o we
assume that the energy density f[p] can be expanded as a series of density gradients:

Fp)= [drflp]
with

3

3
flel=fo(pe) + 3 flp0)Vip() + [ (p0)Vip()V;p(r)
i=1 i, j

i,j=1
IS ONAZ IR o

The coefficients fo(p(r)), fi(p(r)) ete., are functions of p(r) not functionals, and the
subscripts ¢, 7 denote cartesian components. Successive terms in (61) correspond to
successive powers of the inverse scale parameter 7o . For a finite r, this series does
not strictly converge but, provided 7, is large enough, it may be useful in an
asymptotic sense. Since f[ p] is a unique functional of p independent of V. (r), it must
be invariant under rotations aboutr. The coefficients fy, f; etc., are functions of scalar
p(r) so these are invariant under rotations. It is straightforward to show that f[p]
must have the form

flel=folp)+f$p) Vip+FP(p)Vp . Vp+0 (VH

where the subscript 2 now refers to the number of gradient operations. The term in V2
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p can be written as

a5 (p)
— === (p)Vp . Vp
0

V. (f$(p)Vp)

and it is clear that the divergence term will vanish on integrating f{p] over the
volume of the system. Thus the energy density simplifies by symmetry arguments to

flpl=fo(p)+[2(p)Vp.Vp+O (Vi)
and the appropriate expansion of #[p] must be of the form
= Jdr (fo(p0) +/2(p(r)|Vo()]? +0 (V) (62)

Clearly fy(p) is the Helmholtz free energy density of a uniform fluid of density p but
the other coeflicients f,(p) etc., are as yet, undetermined.
The intrinsic chemical potential is readily evaluated

f[p] —fo (P\Vp|> =2f2(p)V?p+ .. (63)

uin[p; I‘]
where the prime denotes differentiation w.r.t. p. From (14) it follows that the
equilibrium density po(r) satisties the differential equation

U=V ou(t) + 1 po(r ) —f2(po(t)) IVPO ‘ W2 —2f2(po(r)) Vo) + .. ., (64)

where pi(p)=fo(p) is the chemical potential of the uniform fluid of density p. Given
some procedure for evaluating f,(p) etc., (64) can be solved for py(r) and the various
thermodynamic potentials calculated.

6.2. Evaluation of the coefficients in the gradient expansion

Provided we restrict consideration to density distributions which vary slowly
and exhibit only small departures from some mean value p,, the coefficients f, etc.,
can be expressed in terms of the density response functions of a uniform fluid of
density p,. If |p(r)| = |p(r) — p,| < p, the functional F[p] can be expanded in powers of
p(r). The existence of such a series then guarantees the existence of the gradient
expansion. Here we derive the result for f,(p). This involves only linear response
theory. The higher-order coefficients can also be evaluated but they require, in
general, higher-order, non-linear response functions [25] and are consequently more
difficult to calculate.

The functional Taylor expansion of # is

F(p]
op(r)

8*Fp)

S puf)(r),b(r')—l— .., (65)

Fp)=F[p,)+ jdr p)+3 § fdrdr’

where lpu means the densities are to be set equal to p,, a constant, after performing
the functional differentiation. The second derivative of # is related to the Ornstein—
Zernike correlation function (see (18), (19) and (22)):

3Fp] _d(r—r)

- P (66)
Some)~ pin o]

p
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and for a uniform system this can only depend on |r —r’]. Equation (65) can then be
rewritten:

Fp)=F [p)+ [dr u(p,)p(r)
1 o(r—r")
o) drdr | ————c[py; r—"'])ﬁ(")i’("’)
e (X —ctpe—r
+0(p?)
On Fourier transforming the term in p* we have

1 1
Flpl=Fp)+ fdfﬂ(Pu)ﬁ(r)——éW <C[Pu; q]— P )ﬁ(Q)ﬁ(—Q)+0(ﬁ3) (67)
q u

¢[pu; ¢ is the Fourier transform of the Ornstein—Zernike direct correlation function
of a uniform fluid and for a fluid in equilibrium is related (see Appendix 3) to the
(static) linear density response function y(g):

1
clpuiq] —;=ﬁ/X(Q) (68)

Equation (67) is valid for any density distribution provided | ,?)(r)/pul is small. If, in
addition, p(r) is slowly varying only the low ¢ Fourier components will be important
in the expansion of the term in p? and we can expand the direct correlation function
in powers of ¢*:

clpu gl =alpy) +b(p)a* +d(pu)g* + . .. (69)
Substituting into (67) and Fourier transforming we find

1
Flpl=Fp,)+ [ dr u(p,)p(r)— 2B[< (Pu) —p—)fdrp

+b(py) fdr |Vp)]* + :I +0(p?) (70)

In order to compare this result with the original gradient expansion we expand fo(p)
and f,(p) in (62) in Taylor series about p,:

#ip1= Jar| s tponter+ L) oo+
+|Vp[*(f2pu) + ()P0} + ... )+ O (V?):| : (71)
Comparing coefficients between (70) and (71) we find
folpa)=nu(py) (720)
S(Pu) =— B alpy) —1/py) (72b)
—b(pu)

Jalpu) = (72¢)

2p
Equation (72a) is the standard thermodynamic identity and (72b) is merely a
statement of the compressibility sum rule (see (44) and (45)). The non-trivial result is
(72 ¢) which shows that f, is proportional to the coefficient of ¢* in the expansion of
the direct correlation function, i.e.

AP. L
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1
J2(p) =@§ dre[p;r). (73)

This result appears to have been derived first by Yang et al. [15] who used a
somewhat different approach.

6.3. Energy densities in the slowly varying limal

Having made the above identification of f,(p) we return to (64), the differential
equation for the equilibrium density. An equation of the same form as (64) appears in
the paper of Lebowitz and Percus [4]. Whilst they correctly identify the coetficient of
V2p,, i.e. they showed this coefficient was —2f,(p,) with f, given by (73), it is not
obvious that their expression for the coefficient of |Vp0|2 is simply —f%(po) [15]. As
mentioned in §4.1, Lebowitz and Percus did not extend their analysis to the other
free energv densities. These follow directly from our present analvsis.

The Helmholtz free energy density is

W[0e]= po(t)V ex(¥) +11p0]
= Po Vexe TfolPo) +12(Po) |VP0|2+O (V?) (714)

while the grand potential has an energy density

w[pol=Y[pol— ppo(r)
=fo(Po) +f2(P0)1VPO|2 = Polfo (po) _flz(Po)‘VP0|2 _2f2(Po)V2P0) +0 (V?), (75)

where we have used (64) to eliminate pu— V. (r).
When f, and all higher-order coefficients are set equal to zero it is easy to show
that

Volpel= —p, f”o(Po)VPo
=po(NVVeyl(r) (76)

and it is reasonable to identify a local hydrostatic pressure p(r) with —w[p,] (see
(60)). In other words, the conventional thermodynamic identification applies locally
throughout the non-uniform fluid. If, however, we include the first gradient
correction f, such an identification is no longer valid since in this case,
Volpel# po(r)VV . (r). An expression for the pressure tensor 6 can be found [15]

6= —w[po|1+2f,(po)VpoVpo (717)

which satisfies the equation of hydrostatics:
V.o=—po(N)VVeu(r) (78)

This result forms the basis of the van der Waals theory of surface tension and we will
return to it in §8.1.

6.4. A partial summation of the gradient expansion
In their work on the inhomogeneous electron gas Hohenberg and Kohn [25] and
later Kohn and Sham [23] introduced an approximation scheme for the analogue of
the functional &[p] which should be valid when either the density has nearly the



12: 49 18 Decenber 2008

TIB Licence Affairs] At:

Downl oaded By: [TIB-Lizenzen -

Liquid—vapour interface 161

same value everywhere or is slowly varying. This approximation now permits short
wavelength variation in p(r),provided the departure from the mean is small, and can
therefore be used to treat certain oscillatory density distributions. Formally, the
approximation corresponds to summing terms of the form f,,(p)Vp" . Vp™ " where m
and n are integers, in the gradient expansion but it can easily be derived from the
following argument.

Suppose #[p] can be expressed in terms of a local energy density plus an
expansion in powers of the difference between densities at different points in the

fluid. T'o second order in this difference #|p| must have the form

o 1 ’ ’ V2

Flpl= J"dl‘fo(ﬂ("))—%”d"dl‘ K(r, ¥')(p(r)—p(r')) (79)
(Any term linear in p(r)— p(r') will vanish by symmetry). We further suppose that

the kernel K can be written as

K(r,v)=K|p;

r—r|

where p is some average of the local densities, e.g. p=(p(r)+ p(r'))/2. In order to
specify K further we insist that (79) reduces to (67) in the limit [5(r)| = |o(r) — p,| < p,
i.e. we ask that #[p] reproduce the linear response result. It is straightforward to
show that, to order p?, (67) and (79) are identical provided

_b &7
2 9p(r)dp(r')

K[pw r—r']

Pu

=%< 5“; ) oo |r—r'l]> (80)

u

With this identification (79) clearly contains short wavelength (large q) contri-
butions but it also reduces to the aforementioned series of gradient terms, with the
coefficients given in §6.2, for slowly varying densities. Combining (79) and (80) we
have

1
Flpl= [drfo(p(r)) +@I fdvar'c|p;r—r

1(p(r) = p(r))*. (81)

All that is required to use this approximation is some prescription for the direct
correlation function of a uniform fluid at arbitrary densities.

Recently Ebner ef al. [14] have carried out extensive calculations of the surface
tension and equilibrium density profile of a Lennard-Jones fluid over a wide range of
temperatures using this approximation. These authors also used the theory to
calculate the oscillatory density profile for a fluid in the neighbourhood of a model
container wall. All their calculations were based on the Percus—Yevick solution for
the direct correlation function and suitably parametrized functions were chosen to
represent p(r). It appears that (81) is a useful and tractable approximation. Saam
and Ebner [24] have compared (81) with the exact expression for #[p] as obtained

L2
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by integrating the direct correlation function of the non-uniform system w.r.t.
density. The latter can be written as

F[p)=F geml 0] — Plp]

2
=ﬁ‘1§dr<p(r)(ln(i3p(r))—1)—p(2r) s(r)> (82)

1 7o~ ’ _ N\ 2
+ g T e o0 —pie)
where
1 1
5(r,r’)’=_=2j dozocj de’ c[ood p;x, ¥
0 0

and
s(n= fdr&(r,v)

and we have used (38) and the symmetry property (22). The nature of the two
approximations made in (81) are now apparent. Firstly, c[ao/p; r, '] is replaced by
¢[p;|r—r|], the direct correlation function of a uniform fluid whose density is
arbitrarily fixed at p. The second approximation replaces the quantity

—p(r)*s(r)
2

by the interaction part of the local free energy density. This replacement would be
exact for a uniform fluid so the second approximation simply assumes that the
equivalence applies locally.

§7. THE LONG-WAVELENGTH BEHAVIOUR OF THE DIRECT CORRELATION FUNCTION OF
A UNIFORM FLUID

Recently Evans and Schirmacher [17] have used the formalism described in the
earlier sections of this paper to derive some useful approximations for the long-
wavelength behaviour of the Ornstein—Zernike direct correlation function of a
uniform fluid. Their analysis is appropriate to a fluid in which the particles interact
via a central pairwise potential ¢(r). This potential is divided into a suitable
‘reference’ part ¢, and a ‘perturbation’ part ¢,

P(r)=bo(r) + &y(r).

The free energy of the system with pair potential ¢ can then be related to that ofa
system with pair potential ¢, using (52). From (66) it follows that

p

s . p 2)( ry-

(1) — i (r15) = 25p(r1)5p(r2)fodafjdrldrzp (o571, 02)Pp(r12) o=
(83)

c@®

where 7, =|r; —1,],c'P(r) is the direct correlation function for the uniform fluid of
equilibrium density p (corresponding to pair potential ¢) and c¢P(r) is the
corresponding function for the reference fluid at the same density (pair potential ¢,).
p@(a; ¥y, v,) is the pairwise distribution function of a non-uniform fluid in which the



12: 49 18 Decenber 2008

TIB Licence Affairs] At:

Downl oaded By: [TIB-Lizenzen -

Liquid—vapour interface 163

particles interact via a pairwise potential ¢, +a¢,. While (83) is formally exact its
usefulness is restricted by the necessity of having to evaluate p®(a; ry,r,).

The crudest approximation simply ignores all correlations between the particles
and sets

P05 w4, 1) = p(ry)p(rz). (84)
The functional differentiation in (83) is then trivial and leads to
D) =P (r)=—Py(r) (85)

which is the well-known random phase approximation (RPA) [22]. In order to
progress beyond the RPA we first expand p®(a: ¥, ;) in powers of ¢,(ry,). To the
lowest, order the integral in (83) is

“drld"z P& (g, "z)ﬁbp(ﬁz),

where p@(r,,r,)=p®(a=0;r,,r,) is the pairwise distribution function of the non-
uniform reference fluid. The problem is now reduced to finding a suitable prescription
for this quantity. There is, however, no general theory for the pairwise distribution
function in strongly inhomogeneous systems and so we are forced into approxim-
ation schemes which apply only to weakly non-uniform fluids. We expand p®(ry, r,)
about its uniform density value p®(ry,):

d (2)(712)

@) Pr
op

Py, )= pPAry,) +3(p(F) — p+ p(r,) —p)

52p£2)(7"12)
op?
(2)

with p®(r)= p?g,(r), where g,(r) is the radial distribution function of the uniform
reference system of density p. The derivatives in (86) are to be evaluated at density p.
Using this expansion we find

+3(p(ry) —p)(p(ry) —p) + ..., (86)

62 |(~2) )
: ¢p<r>gp—2“. (87)

@y —cP(r)= —
This result was first obtained by Henderson and Asheroft [16] from a rather different
derivation. These authors named it the mean density approximation (MDA) and
used it to study phase separation in binary metallic alloys.
On Fourier transforming, we have
62

5P A=k, (88)

@(g)—cP(g)= - 5 (2[;)3 [ dk ¢, (k)

which can be re-written in terms of the liquid structure factor S,(¢) of the reference
fluid:

9S(la—k) +pazs,(|q—kl>>. (89)

B
@) — @) — — —
c@(g)—cPg) Bo,(q) 2 jdkd’p(k)( op 20p°

since the structure factor and radial distribution function are related by the usual
equation:

Siq)—1=p [drexp (iq.r)(g(r)—1). (90)
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We can only expect (89) to be a realistic approximation at small wave vectors
because the expansion in (86) is only appropriate when p(r) varies slowly and exhibits
small departures from the mean value. At ¢=0 (89) is exact, to first order in ¢,. In
this limit the result can be derived [17], without recourse to the theory of non-
uniform fluids, using the compressibility sum rule (725) and the coupling constant
algorithm for uniform fluids mentioned in §4.2.

Given some procedure for calculating S,(¢) at different densities (89) can be used
to obtain explicit corrections to the RPA results. Evans and Schirmacher {17] have
suggested a further simplifying approximation which is to neglect the density
dependence of ¢.(r). Equation (87) then reduces to

(Dr)—e2r) =~ Beby(r)gi(7) (91)

and (89) becomes

_ B k)
) =)= =Py~ s [dkdy(k)(S(a—kh—1) (92)

The second term in (92) should yield an estimate of the importance of correlations at
small g. Equations (91) and (92) are referred to as the extended random phase
approximation (ERPA).

The ERPA and the RPA have been used to calculate the ¢=0 limit of the direct
correlation function and, hence the isothermal compressibility of several simple
fluids and a wide variety of liquid metals at temperatures close to their triple points
[17]. In these calculations the pairwise potential was divided into a reference part ¢,
and a perturbation part ¢, according to the Weeks, Chandler, Andersen (WCA) [26]
prescription, i.e. ¢, refers to the short-range repulsive force part while ¢, represents
the remainder of the intermolecular pair potential. S,(¢g) can then be calculated using
the WCA perturbation theory based on the hard-sphere structure factor. The
compressibilities calculated from the ERPA differ by only a few per cent from those
obtained from the RPA and are in good agreement with the results of computer
simulations based on the same potential—where these are available. Thus it appears
that with the WCA division of the potential, correlation effects are rather small at
g=0. It would be interesting to examine the accuracy of all three approximation
schemes for small but finite values of g.

§8. APPLICATIONS TO LIQUID SURFACES

In this section we apply the formalism developed earlier in the paper to the
statistical thermodynamics of liquid surfaces. For simplicity we first consider a
monatomie fluid in zero external potential. We assume this fluid possesses a planar
surface of area A = L? parallel to the z—y plane (see figure 1). The volume of the fluid
is 7' =L* and L is macroscopic. We assume further that the equilibrium density
profile pg(r)=py(z) and at temperatures close to the triple point has the form
sketched in fig. 2. py(z) is expected to vary rapidly (typically over two or three
molecular diameters) between the co-existent densities p, and p,. As the temperature
is increased p, will decrease, p, will increase and the density profile will become less
‘sharp’, i.e. the interfacial width will increase. At the critical temperature the
interfacial width will diverge with the same exponent as the bulk correlation length
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in either of the bulk phases [27]. In general, the equilibrium profile should satisfy the
following boundary conditions:

po(Lj2)=py,  po(—L/2)=p;,
(93)
%
dz

4po

= 5 :O’
L/2 dZ

—L/2

provided L is macroscopic.

Of course, planar interfaces of this kind do not exist in the absence of an external
field (e.g. gravity). If the gravitational acceleration ¢ is zero one fluid phase would
form in one or more spherical regions embedded in the second phase. It is the external
field which determines the location of the interface in space. Thus, if we set g=0
initially we should strictly work with spherical interfaces. We may suppose,
however, that one phase forms a sphere of essentially infinite radius so that its
surface is effectively planar. The gravitational field plays another more subtle role in
surface problems [28, 27, 10, 12, 21] by surpressing capillary wave-like fluctuations
in the position of the Gibbs dividing surface. We will return to this later in §8.4,
where we consider such fluctuations in some detail.

In the absence of an external field, the thermodynamics of liquid surfaces is
straightforward [29]. By considering the Helmholtz free energy as a function F(T,
¥, A, N) it is easy to show that the liquid-vapour surface tension is given by

Y= (3A T’.“Nf ( )

where N is the total number of molecules. Often it is more convenient to work with
the grand potential Q(T,¥", A, u) from which it follows that

Y= aA T‘y..“' ( )

The grand potential can also be explicitly decomposed into bulk and surface
contributions:

Q= —p? +74, (96)

where p is the pressure of the co-existing bulk phases. Another useful formula for the
surface tension relates this quantity to the integral through the interface of the
difference between the normal and the tangential components of the stress tensor:

L/2
y =f 2 (on() ~ 01(2)). (©7)
-Li2
The component normal to the interface ox(z) = p is constant for a fluid in hydrostatic
equilibrium in zero external field. The tangential component o1(2) reduces to p for 2
m either bulk phase but varies for zin the interface region. Consequently it is possible
to replace L/2 by co and —L/2 by — oo in the limits of (97). This equation is often
referred to as the ‘mechanical’ definition of surface tension.

8.1. The van der Waals and related approximate theories
The approximation schemes developed in § 6 are readily applied to the strictly
planar model of an interface. If the expansion of the Helmholtz free energy is
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terminated after the second term, i.e.

Flpl= fdr(folp(r)+f2(p(e)|Vo(r)?), (98)
then it follows from (64) that the equilibrium density profile should satisfy
d 2 d?
p=(pole)) 1 spole) [ 2o ‘ - 2h5(po(e) =, 99)

This equation has been analysed in some detail by Yang e al. [15] who have
concluded that a solution py(z) does exist and has the form indicated in fig. 1. These
authors have also shown that this solution is identical to the one which would be
obtained by solving (64) in zero external field for spherical geometry in the limit of a
sphere of infinite radius.

The surface tension can be obtained using the prescription of either (96) or (97).
From (77) the tangential and normal components of the stress tensor are given by

or(z) = —w[po] (100)
and

2

on(z)= — [ po]+2f3(po(2))

‘dpo(z)
So from (97) it follows

dz

2

dpo(2)
dz

?=2f dzf2(po(2)) (101)

-0

Since the pressure of the co-existing bulk phases is p =0y, the same result follows
immediately from (96).

The results embodied by (99) and (101) represent what is probably the simplest
microscopic treatment of the liquid-vapour interface. This type of approach was
introduced by van der Waals in 1894 [30] who suggested a free energy of the form
given in (98) but treated f, as a constant positive parameter. (Incidentally a formula
similar to (101) was derived in 1892 by Lord Rayleigh [31] using a different
approach.) For an excellent account of the van der Waals theory of interfaces and its
application to critical phenomena see the article by Widom [27]. In order to make the
theory quantitative some prescription for f,(p) is required. The obvious choice is that
given by (73). One then has a well-defined procedure for calculating both the density
profile and surface tension from a given intermolecular potential. Clearly such a
theory should not be accurate near the triple point since here the density is varying
too rapidly to meet the conditions required in § 6. Thus, for low temperatures a van
der Waals type of approach can be expected to be useful only in an asymptotic sense.
At high temperatures approaching the critical point the density profile varies slowly
over the range of intermolecular forces and the departures from the mean value are
everywhere small, so a gradient expansion of the kind described in § 6 should be valid.
There is, however, no reason to expect a theory based on truncating the expansion
after the second term to be especially accurate even at high temperatures [27].

1 The same authors [74] later demonstrated that a solution also exists when the gravitational field is
included and that this solution approaches the solution of (99) as the gravitational acceleration
approaches zero.
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It is necessary to mention another caveat concerning the van der Waals theory.
In applying (98) to the surface problem we are forced to consider the free energy
density fo(p) and the function f,(p) for densities p in the range p,<p<p,, i.e. for
densities corresponding to a two-phase system. The theory implicitly assumes that
folp) and f,(p) are given by analytic continuation of these functions from the bulk
equilibrium phases into the two-phase region [27]. Similar assumptions are inherent
in all the approximate theories of liquid surfaces and we will return to this important
point in §8.4.

One obvious extension of the van der Waals theory is to perform a partial
summation of the gradient expansion and use (81) for #[p] rather than (98). This is
the scheme employed by Ebner et al. [14] which was described in §6.4. A different
modification of the van der Waals theory has been proposed by Bongiorno and Davis
[32].

Thermodynamic perturbation theories have been developed for the study of the
planar interface [18, 33, 34, 35]. These methods can also be considered as
generalizations of the van der Waals theory. They are, however, primarily intended
for triple point studies since they are based on the successful perturbation theories of
dense liquids. All these theories start from (52) which expresses the free energy #[p]
of the actual non-uniform fluid, in which the intermolecular pair potential is ¢, in
terms of the free energy 7 [p] of a suitable reference system in which the particles
interact via a reference potential ¢,. If ¢, = ¢ — ¢, is the perturbation potential, then
(62) can be expanded as:

Flpl=Z [p] +%ffdr1dr2 pP(ry, r2)¢u(r12)+0 (¢;21), (102)
2)

where p;”)(ry, r,) is the pairwise distribution function of the reference system (see also
§7). It is then assumed that & [p] and p®(r,,r,) can be approximated as follows:

F [pl= [drfio(p(r)) (103a)
Pﬁz)(rhrz)zp(ﬁ)/)(rz)!]r(p?ﬁz), (1036)

where f,o(p) is the free energy density of the uniform reference fluid and g,(p; r;,) is
the radial distribution function of the uniform reference fluid evaluated at some
mean density, e.g. p=(p(r{)+ p(r,))/2. Equations (103 a,b) constitute the simplest
‘local density’” ansatz. Two prescriptions for the division of the pairwise potential
into reference and perturbation parts have been used. These are the Barker—
Henderson (BH) [36] and Weeks—Chandler—Andersen (WCA) [26] schemes. In the
former the reference system is chosen to be that of hard spheres while in the latter ¢,
is the ‘repulsive force’ part of the pairwise potential. Since the free energy and radial
distribution function of the uniform hard-sphere system are readily available it is
then straightforward to calculate % [p] for a suitably parametrized (exponential or
tanh) density profile p(z). The chemical potential u and the co-existing bulk densities
py and p, are obtained by solving the simultaneous equations

w=p(p)=plpy) (104 2)

p=p(p)=p(p,) (104 b)

The grand potential Q[p]=ZF[p]— fdr up(z) can then be minimized with respect to
the parameters which specify p(z) to obtain both the equilibrium profile and the
surface tension.
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Table 1. Interfacial ‘10-90’ widths (w) and surface tensions (y) calculated from van der Waals and
related theories for a Lennard—Jones 126 fluid near its triple point.t

Theory Reference T(K) w/o y(dynem™?)
BH perturbation theory (18] 90 2:3 14
BH perturbation theory {38] 84 2:2 16
BH perturbation theory [33] 90 15 17
WCA perturbation theory [33] 90 1-8 17
WCA perturbation theory (simplified) [37] 85 28 14
WCA perturbation theory (extended) [19] 84 14 i8
Partial summation of gradient expansion [14] 84 17 18
van der Waals (eqn. 98) [39] 84 27 25

+1In order to compare with ‘real’ argon, the parameters of the Lennard-Jones potential are taken as
6=3405 A and &/ky =119-8 K. The experimental results are y=13-1dyncm™" at 85 K and y=11-9dyn
em” ! at 90 K [40].

For a Lennard-Jones 12-6 fluid at temperatures close to the triple point the
density profiles calculated from the perturbation theories have the form indicated in
fig. 2. The calculated interfacial ‘10-90” widths w (defined as the distance over which
the density changes from 0:9p, to 0-1p)) are listed in table 1. w results from a balance
between the attractive forces (the term in ¢,) which favour a sharp transition and the
repulsive forces (#,) which favour a broad transition region [37]. The corresponding
results for the surface tension are also given in table 1. The perturbation theories
predict an increase of w with an accompanying linear decrease in y as the temperature
is increased [18, 37, 38].

Recently Singh and Abraham [19] have attempted to improve upon the
approximations (103 a,b) by adding what are essentially gradient corrections or
partial summations of gradient expansions. The results of calculations incorporating
these modifications are not substantially different from those based on the local
density ansatz. These authors find w is slightly smaller and 7 is reduced by about
2dynem ™!, In table 1 we include the results of Ebner et al. [14] which are based on
the more direct extension of the van der Waals theory (see §6.4). We also present
results calculated using (98) and the Percus—Yevick solutions for f, and f, [39].

It is clear that all versions of the van der Waals theory predict an interfacial
width of about two atomic diameters at the triple point, and a surface tension which
is in rough agreement with experiment.

8.2. The Kirkwood—Buff theory
Another theory which is frequently employed in the study of the liquid-vapour
surface is that due originally to Kirkwood and Buff [20]. In this approach, it is
assumed from the outset that the potential energy of the fluid can be expressed as a
sum of pairwise intermolecular potentials and the stress tensor is evaluated in terms
of the intermolecular virial. For the planar surface the tangential and normal
components can be written as:

_ x2 dd(ry,) 1
or(z1) =P 1po<z1>—%jdru—‘3 —C—li do p®(ry —ary 5,11 +(1—a)r )
712 712 0
(105 a)
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and
N z d(f) (r !
z2)=B" ' polz1) = fdr12 = 12) f dopP(ry—aryp, vy +(1—ajryy).
12 OFq3 o
(1056)
The condition of hydrostatic equilibrium (6y= a constant) then implies
d d
M—,B dr 12212 Qb 7'12 p(z)(rl,r2)7 (106)
dz ¥12 OT13

which is identical to the first YBG equation (58) for planar geometry and zero
external field. This means that the stress tensor in (105) is consistent with the
requirements of thermodynamic equilibrium. The surface tension follows from the
mechanical definition (97):

S )do(r
%J fd rz 12)00012) jory 1y (107)

dry,

where use is made of the fact that pm is invariant under a renumbering of the
particles. The formula for the surface tension can also be derived from the grand
partition function using (95) [41] or from the canonical partition function using (94).
These methods are equivalent to the following argument which makes use of the fact
that the grand potential is a functional of the pairwise potential ¢. From (50) we
have that the infinitesimal change in grand potential due to an infinitesmal change in
the pairwise potential is

AQ—ZHde"zP (ri,1)AQ(ry, 15), (108)

for a fixed chemical potential. Suppose A¢ corresponds to the following transform-
ation which increases the surface area by A4 =¢L* but keeps the volume fixed

¢(‘7’l1?y1:z17x27 Y2:22, )“’(]’)(331(1 +6)’y1v21(1 +é)_17x2(1 +é)=y2722(1 +é)—1)

where ¢ is an infinitesimal, then A¢ is of the form

_pfp OO 0P 0 0P 2
A¢—é<x1axl+xzax2 21621 Zzaz2>+0(f ).
If ¢(ry,r,)= d(ry,) then this reduces to
2 2
Aqbzé(xlz Z12)d¢(7”12)_|_0(€2). (109)

712 dryy

Combining (108) and (109) and using y=AQ/AA we rederive (107). -Although (106)
and (107) are formally exact results for a planar interface, they are not useful unless
some prescription can be found for the equilibrium distribution functions py(z) and
pP(r,r,). Several attempts have been made to produce approximate solutions of
the first YBG equation (see the review by Toxvaerd [42]). These usually assume that
p® can be approximated by some suitable weighted mean of the bulk radial
distribution functions and solve (106) by iteration. It now seems to be well
established (see, however, [43]) that these methods give rise to monatomic density
profiles whose interfacial widths are similar to those calculated from the van der
Waals types of theory and surface tensions which are somewhat smaller than those
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reported in § 8.1. Recently Toxvaerd [44] has extended his analysis by approximat-
ing pP(ry, 1) polz1)Po(22)9(P;71,) With p=po((2;+2,)/2) and used a thermody-
namic perturbation theory to calculate the radial distribution function at the
required densities p. The profiles which he obtained by iterating (106) are again
similar to those obtained from the calculations described in §8.1.

Local density approximations to p® will be accurate in the ‘wings’ of the density
profile where pq(z) is close to p; or p, and in these regions we can nse the first Y BG
equation to evaluate the functional form of py(z) [11]. We set p@ (r;,r)=
Pol22)9(py ;712), where p, refers to either p, or p,, and integrate (106) from the
bulk into the interface:

d
ﬁ 11 < > J J‘d 12212 ¢7'12 =2l s, (21+212)g(pb;7-12) (110)

r12 dry,

If py(z) is slowly varying over the range of the intermolecular force d@/dr then
Polz1 +215) may be usefully expanded in a Taylor series about z,. The integration
over dry, can be performed using cylindrical coordinates

w ria
fd’12*2nj dry, rlzf dz,,
0 -

12
and after some straightforward algebra we find

d?
m(ﬁz(z)) =0l (Po(2) — Pp) + ; 22+ higher derivatives, (1)
b
where

4nB(” do(r)

% =‘3—j‘0 dr 737(/(%1 r),
278 sa¢(r)

0y, = 15 d d?" (pb7 )

and we have assumed that all derivatives of py(z) vanish when p,= p,. Multiplying
each side of (111) by dpy(z)/dz and integrating we obtain

d 2
200<z>1n<p°(2) )+2<pb—po(z)>=a0<po<z>~pb>2+a2< Po(z)) ,
Po dz

which can be further simplified by expanding in p(z)=py(z)— p, to give

dp) V> [ 1
a2<—§(j—)) =(p—b~cxo>b<z>2. (112)

This predicts that p(z) has exponential behaviour as the bulk liquid or vapour is
approached from the interface region. The decay length 1 associated with this

behaviour is given by
(=)
—_ao 0(2
Py

and it follows that near the triple point A is much larger for the liquid side of the
interface than for the vapour, i.e. there is a more rapid decrease in py(z) for z
approaching the bulk vapour region.

-1/2

A= (113)
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8.3. Theory based on the direct correlation function
Rather than focusing attention on the pairwise distribution function in the
interface, it may be more convenient to work with the direct correlation function and
seek realistic approximations for this quantity. For a planar surface in the limit of
zero external field we have from (55)

dn po(2y)
dz,

dpo(z2)
dz,

= [drycP(ry, ty) (114)
which is an exact equation for the equilibrium density profile and, as stressed in § 5, is
equivalent to the first YBG equation, i.e. (106).

The surface tension can be evaluated with this approach by either calculating the
change in grand potential due to the increase in surface area caused by a fluctuation
in density [7] or calculating the pressure difference across a spherical surface with a
large radius of curvature [8]. These yield identical results so here we present a
derivation using the former method only. We consider the zero-field functional (see

9)

Q- olpl=F[p]—ufdrp(r) (115)

and calculate the change in grand potential due to a change in density p(r) at fixed
chemical potential u. Using (14) we find

3’7 p]

dp(r)dp(r) |,

where py(r) is the equilibrium density distribution. Thus to lowest order the change
in grand potential is quadratic in the density fluctuations and depends on

2ot ,
O Fpl | =) @y py (117)
dp(nop(r) |, polr)
For the planar interface it is convenient to introduce the variable R which refers to
the x—y plane, i.e. r=(R,z)=(x,y,2) so that two-point functions such as ¢®(r{,r,)
and p(ry,r,) depend only on the variables z;,2, and R;,= (x5 —2;)* + (¥, —y)*) %
It is also useful to introduce the two dimensional Fourier transforms

AQ=0y - o[po+P1—=Qy = olpo} =1 | [ drdr PO+ ..., (116)

COr,¥)=p

= [dRexp (:Q . R)p(R,2) (118 a)
and
0(2)(Q’ 21,23)= deIZ exp (iQ. - Rlz)O(Z}(Rn, 21,%2), (118b)
so that (116) can be expressed as
A= ey T09Q,20,9P(@.200(~ Q)T 0 (7)), (119)

2A[3

where 4 is the area of the planar (unperturbed) surface. In order to proceed, we
consider a fluctuation which changes the location of the Gibbs dividing surface from z
=0 at equilibrium to z=z5(R). The latter is given by

Z5 o0
J dZ(P(R:Z)~Pn)+J (p(R,2)—p,)=0 (120)

-0 2,
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where p, and p, are, as usual, the co-existing bulk densities. After a straightforward
manipulation it follows that

o0

26(R)=(p,— p,) ! f d2p(R,2) (121)

—

This new dividing surface will have an area
A'= [dR (14|Vrzg(R)H)'2, (122)

where the integral is over the original surface. Thus for a given p(R,z) we can
calculate both AQ and Ad=A4"—A. Equation (119) is only useful, however, if the
amplitude of p is small and if the summation over wave vectors can be restricted.
With this aim in mind, we consider a long wavelength small amplitude fluctuation in
the position of the dividing surface. The surface then deviates only slightlv from
planarity and the perturbed density should correspond to a rigid shift of the
equilibrium profile, i.e.

P(R,2)=po(z—25(R))

or

dpo(z)

PR.2)=p(R,2)~ po(2) ~ —26(R) 22, (123)
which certainly satisfies (121). The corresponding change in area is then
Ad =7 [dR |Vgzg(R)|. (124)

Parallel to the surface p has only long wavelength components so we need only
consider the small @ expansion of C?:

0(2)(Q5 215 ZZ)ZOO(zlﬁ 22)+Q202(21, 2“2)—’_ ey (125)

Substituting into (119) and Fourier transforming back to real space we find
1 - ~
AQ:ﬁ”dﬁdzz (Colz1,22) de P(R,z)D(R, ;)

+02(21722)de VeP(R,21). Vap(R, 25)+ . ..)

which simplifies on using (123) for the fluctuation to

1 d d
AQ—_—gﬁ j'jdz1d22 %fl)%gﬁ(c’o(zl’ 2,) de!ZG(R),Z
e AR S 20

The first term on ther. h.s. of (126) is zero. This follows from (114) for the equilibrium
profile which can be re-written as

d d
{dr, __,O;z(zz) CO(ry,vy)= [dz, Pol%)
2

Colz1,2,)=0 (127)
%2

This result implies that shifting the Gibbs dividing surface vertically by a constant
requires zero energy provided the external field is zero—an eminently reasonable

conclusion. The second term of (126) yields the surface tension since it is proportional
to A4, i.e.
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dpo(z1) dpo(2z)
21 dZZ

y=B""{[dzdz,

where, from (125) and (117),
Colz1,29)= 4,de12R 20(2 (R12,21,22)
=2 {[day2dy s (@3, +yT2)c®(r,,ry). (129)

To complete the derivation we must check that the chemical potential i/ does not
change from its equilibrium value u as a result of the fluctuation described by (123).
Clearly

Oa(21,25), (128)

ou(ry)

"=p+ |dr p(ry)+O (p?
W=pt fdg o y) P 0@
_ 1/)0( ).(2)
=pu—p 7 ydryzg(Ry)——" da CH(Ry5,21,2,)+0 (P7), (130)
2

where we have used (29) and (117). The integral vanishes and ¢ remains constant, to
the appropriate order.

We believe (128) to be an exact result for the surface tension of the planar
interface. The validity of this assertion has been queried (see Leng et al. [45] for a
recent discussion) since it has not yet proved possible to show that (128) reduFeb to
the Kirkwood-Buff result (107) when only pairwise interactions are considered (see
§ 10, however). The difficulty lies in finding a suitable representation for the stress
tensor in terms of the direct correlation function, i.e. performing an integration of
equation (57) which expresses the equivalence of the two representations for the
force acting on a particle. Leng et al. [45] have demonstrated the equivalence of the
Kirkwood—Buff and direct correlation function approach for a ‘penetrable sphere
model’ but only within a mean-field approximation. Lekner and Henderson [46]
have shown the two approaches lead to identical results in the low density limit, i.e.
with p(ry, 1)) = pol21)po(22) exp (—Bd(r1,)) and ¢B(ry, 1) =exp (—fd(r;y)— 1. It
is also possible to show that for a van der Waals free energy density (see (98)) the
surface tension as obtained from (128) is identical to that of (101),i.e. that calculated
from the stress tensor or via (96). In this case C‘®(r, r,) can be evaluated explicitly
by functional differentiation and we find

C(Z) (r,v2)=B(fo(po) f”z(Po)IVPoIZ _szl(Po)Vzpo
—2f 2(Po) VPo. -2'f2(p0)V2)5(rlﬂr2). (131)

Only the last term of this expression makes a finite contribution to C,(z,, 2,) and this
is an amount 2f2(py(z,))d(z; —2,) as required. Furthermore, on substituting (131)
into (127) we regain (99) for the equilibrium density profile. This exercise shows that
the formula for y in terms of the direct correlation function is not a linear response
approximation as one might (erroneously) suspect from the derivation.

As in §8.2 we can determine the functional form of py(2) in the ‘wings’ of the
distribution by integrating (114) using a local density approximation for the direct
correlation function [11]. Setting ¢®(r,, r,)=c@(py;7,), where p, again refers to
bulk liquid or bulk vapour, we have

z dpylz
ln<p0(2) )zj dzy jdruwcm(%;ﬁz)- (132)
Py dzy;
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If po(z; +21,) is Taylor expanded about z; we find

In < L‘;jﬁ) =u'(po(z) — pp) + " %—1— higher derivatives, (133)
b
where
y J Carre g
)
and

2 o0
oc”=nJv drr*c®(py; ),
3 Jo

which has exactly the same form as (111) from the first YBG equation.
Consequently, this theory also predicts an exponential decay of po(z) as the bulk
phases are approached. The decay length is given by

R

which differs from A of (113). This is to be expected since the local density
approximations for p® and ¢®, which were employed in these analyses, are not
strictly equivalent. (The Ornstein-Zernike relation of (31) is not satisfied to the
appropriate order.) Exponential decay characterized by the length A" is predicted by
the van der Waals theory. Equation (133) follows from (99) provided fo(p) and f,(p)
are identified as in § 6.2 and the direct correlation function of the uniform fluid is
assumed density independent.

-1/2

: (134)

8.4. Correlations in the interface

At this stage the reader might be under the impression that the statistical
mechanics of the liquid surface is reasonably well understood. The modern theories
appear to have merely put the classical van der Waals theory on a sounder
microscopic basis. They seem to confirm the physical picture of a rather uninterest-
ing, monotonic transition from the liquid to the vapour and give, at least, a good
qualitative account of the surface tension. Recent computer simulations of the
liquid—vapour interface [47, 48, 49] yield similar density profiles and surface tensions
and would appear to reinforce the above viewpoint.

In fact the modern formalism is much richer and makes important predictions
concerning the form of intermolecular correlations in the interface. To be more
specific, the formalism shows that while a local density approximation to p®(ry, r,)
may be reasonably accurate when one considers vertical correlations (i.e. corre-
lations along the z axis, perpendicular to the interface) it cannot give a proper
description of horizontal correlations (i.e. correlation parallel to the interface) since
the latter are of macroscopic range when z; and z, lie in the interface region.

The existence of long-ranged correlations was first pointed out in an elegant and
important paper by Wertheim [10]. He noticed that (56) for the equilibrium density
in an external field exhibits an interesting feature in the limit of the field going to
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zero. If we specialize, as usual, to planar geometry but retain the gravitational
potential so that V., (r)=mgz, (56) reduces to

d
pa?z(Zl N —ﬁm(]jdrz (rl’ r2)+po(21)0(r, — ty) — Po(21)Po(22))

=—/3mg§dr2g(r1,r2), (135)

where  we  have re-introduced the density fluctuation function
G(r1, 1) =9 (B3, 21, 2,) defined in (27). Above the critical temperature in the single
phase region we expect dpy(2)/dz to go to zero as g tends to zero. This implies the
integral in (135) is finite. At an arbitrary temperature below the critical temperature
we suppose that as g tends to zero py(z) approaches a limit representing two co-
existing phases so that dpy(z)/dz is finite. (We have assumed such behaviour
throughout the present article.) We are led to conclude that the integral in (135)
diverges as g~ ' in this range of temperature. This, in turn, indicates the growth of
long-ranged correlations.

Wertheim [10] has analysed the correlations in some detail using matrix
techniques (see Appendix 4 for a resumé of his analysis) and shown that the long-
ranged behaviour occurs only in the x and y directions and is restricted to the
interface region. The divergence of the integral in (135) reflects a pointwise
divergence of ,@0(21, 25)= [dRy; %(R,,, 2, 2,) and this function can be approximated
by

dpo(z1) dpo(2;)
dzy dz,

Go(z1,25)= ((p1— py)Bmg) ~ ! +less singular terms. (136)

This result indicates that the long-ranged correlations are rapidly damped as either
zy or 2, moves out of the interface. %,(z, 2,) is the @ =0 limit of the Fourier transform
with respect to horizontal coordinates of the density fluctuation function. For an
arbitrary wave vector ¢ we define

Y(Q,21,2,)= deu exp (1Q . Ry3)%(Ry5,21,2,) (137)
and in Appendix 4 we show that for small finite @

dpo(21) dpo(z,)
dz, dz,

G(Q,2(,2,)~ B! ((p1— pyymg +7Q%) ™ +less singular terms, (138)
where y is the surface tension as given by (128). This approximation is valid to O (Q?).
Equation (138) represents Ornstein—Zernike-like behaviour of the horizontal
density—density correlation function. The correlation length is

= (y/(py— pyymg)*/? (139)

which for liquid argon near its triple point in the earth’s gravity is~1mm. Since
%(r,r) is also a measure of the density response of a system to the change in an
applied external field (see Appendix 3) it is clear that £ is a horizontal decay length
for the interface. In other words, if the interface is disturbed by an external force
there will be a displacement of the interface which decays horizontally with decay
length &. The derivation leading to (138) is rather general but still approximate. The
form of the result suggests that the horizontal correlations correspond to surface
modes (capillary waves) thermally excited against surface tension and gravity. This

AP, M
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interpretation can be made explicit using a slight extension of an argument due to
Kalos et al. [11].

We consider a fluid in a gravitational field with, initially, a planar Gibbs dividing
surface of area A located at z=0. The corresponding density profile is p,(z) and the
surface tension is y. Suppose an external potential AV, (r) is applied and this
produces a distortion of the Gibbs dividing surface of amplitude zg(R). Provided the
amplitude of the distortion is small and the wavelength is long (see §8.3) the
perturbed density profile will be p(R,z)=p(z—2G(R)). The change in energy
associated with such a perturbation is

AE=y [dR(1+|Vezg(R))2 —yA + [dr po(z—25(R))mgz

- jdl‘ pO(Z)mgz+ jdl’ pO(Z—ZG(R))AVext(r)J

where we have assumed the surface contribution can be obtained macroscopically as
yAA. Expanding in z; we find that the gravitational contribution which is linearinzg
vanishes because of our choice of the initial dividing surface, and

AJF%WRlVRZG(R)\ZJF%(pI—pV)WMRlZc * + Jdrpo(R)AV e(m)

- jdr%zG(R)A Veu(r) +higher order terms  (140)

2
We Fourier expand:

-t Za yexp (—2Q .R) (141)
so that

1
AE:ﬂZ a(@)a(— Q) (o1~ p)mg +7Q%) + [dr po(2)AV eq(¥)
Q
-1 d/’o(z) o
—A7'Y a(Q) fdr——dz exp (—iQ . R)AV ,(r)+
Q

Completing the square we have

1
=ﬂ§[a’(0)a’( —Q)((p1—pyymg +7Q%)
e ;f) exp (—iQ . R)AV oy (r)?

B (pr— py)mg + 7@ ]
+ [dr po()AV e0)+ ..., (142)

where

d(Q)=a(Q)— [dr

o) oxp (1@ RIAV (1 g +707)

AE refers to a particular amplitude zg(R). In order to calculate the free energy due to
thermal fluctuations we must perform the appropriate statistical average over all
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values of z5(r). This type of averaging is described in Appendix 5. If we ignore all the
higher order contributions in (142) we find

a'(@)a'(—Q)>=A[B((p1— py)mg +y@*)| " (143)

and the free energy
1 Blov—p)mg +7@*)
p —1
AF ;[2/3 n( AN
_ZQ R)Avexl( )

dr
E |f
( —pyymg +yQ* }

+§dr Po(2)AV eulF). (144)

2

A" is a normalization factor. If the chemical potential remains unchanged by the
perturbation (see § 8.3) the change in grand potential AQ= AF and can be expressed
in terms of Au(n)=Apu—AV .= —AV

B 2
AQ= Z[ln(ﬂ((p‘ Q’ZTjﬂQ )>] - Jdrpo(z)Au(r)

] d d
(P — pomg +7Q) ”dd' Pol?) 4ol

_ﬂo dz dz
x exp (—iQ . (R—R)Au(r)Au(r). (145)
Since
Gir )= 1 80
)= = g Sunoulr)

(see (25) and (26)), the coefficient of (Au)? yields the density fluctuation function for
the unperturbed planar surface

L dpo(z) dpo(?')
ﬂA dz dz

G(r,v)= Y (o= p)mg+yQ*)  Texp (—iQ . (R—R")). (146)

Q
On Fourier transforming with respect to horizontal variables we regain precisely
(138). The present derivation is only valid for long wavelength fluctuations so we can
only expect the result to be accurate for wave vectors @) « 27/ where ¢ is a typical
molecular diameter.

Kalos et al. [11] have performed a detailed molecular dynamics simulation of the
liquid—vapour interface of a Lennard- Jones fluid in zero external field (g =0). They
calculated the correlation function %(@, z,,2,) at various values of z,. For z; in the
interface region they found (@, z,2,)oc@ 2 for @ <1-4/0. (The finite size of their
periodic box restricts the calculation to @ >0-5/¢.) For z; in the bulk liquid or bulk
vapour, where dp,(z)/dz =~ 0, they find no such behaviour in 4(Q, z,, z;). These results
provide direct evidence for the validity of (138).

It is clear that local density approximations for the pairwise distribution
function, p®(r, r,) as introduced in (103 b) orin § 8.2, cannot generate singular low ¢
behaviour since there is no reason to expect ¢(p; r), as obtained by extrapolation from
physical (one-phase) densities, to exhibit special features. This failing of the local

M2
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density approximation hasimportant consequences. 1t casts doubt on the validity of
those theories of the interface which are based on this assumption, i.e. thermody-
namic perturbation theories as described in § 8.1 and theories which attempt closure
of the first YBG equation as outlined in §8.2. However, these theories are primarily
concerned with the density profile and the surface tension which involve averages
over both horizontal and vertical correlations of all wavelengths, so the shortcom-
ings at low @ may not be too important. Indeed, there are some preliminary
indications [11] that the local density approximation may be reasonably accurate for
vertical correlations. The more fundamental question concerns the implications for
the detailed microscopic structure of the interface.

The occurrence of long-ranged horizontal correlations is a consequence of
spontaneous symmetry breaking of a two-phase system [10]. Since the local density
approximation to p@ fails to account for such behaviour, we are forced to re-examine
the two-phase aspect of the interface problem. Whilst it may be reasonable to
suppose that the analytic continuation of the free energy density fo(p) into the two-
phase region can be realized in the interface, as in the van der Waals theory, it is not
obvious that any extrapolation procedure will be valid for the pairwise or, indeed,
the higher order distribution functions. A promising start in the search for a realistic
model of correlations in the interface has been made by Kalos et al. [11]. These
authors base their model on experience with a bulk two-phase system. In discussing
the statistical mechanics of the latter [50] it is usually implied that liquid and vapour
are predominantly present only in very large clusters so that at any given time all
points ry...r, (relevant to a n-body distribution function) can be regarded as
internal to the same single phase cluster. Kalos e al. then assume the two-phase
interface system “‘can be viewed as a temporal sequence, or phase space ensemble of
configurations sharply divided into gas and liquid regions. The geometic form of the
dividing surface is, however, open.”.

At the crudest level they take the dividing surface to be planar and assume that
for a given plane located at height Z there is pure vapour for z>Z and pure liquid
uncorrelated with vapour for z < Z. The conditional distribution functions for this
particular dividing surface are then

Pz =p, =z<Z
Py, 2>Z {147)
and
PUZ;ry, rz):plzgl(.rl —’2|), 2 <Zjz,<Z
plpv, 21>Z;Z2<Z
or 2, <Z;2y>7
pﬁgv(ln—rzl) 21 >7252,> 2. (148)

If Z is distributed with a probability density P(Z) the equilibrium distribution
functions are given by

po(2)= [ dZ p(Z;2)P(Z)
PPy, 1) = [dZ p*UZ; 11, 1,)P(Z) (149)
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These equations can be integrated and P(Z) eliminated to give a relationship
between p® and p, [11]. Here, for simplicity, we set the density of the vapour to zero
and it is easy to prove that

P(Z)(rh 1) =ppo(Max (24, Zz))!/l(lh - rzl) (150)

This approximation should be compared with the local density approximation
which, we recall, sets p®(ry, 1,) = po(21)po(22)9(P; [t —12|).

For vertical correlations, Ry, =0, both approximations yield a good qualitative
account of the computer generated p® [11]. For horizontal correlations with z, =z,
the approximations are significantly different. Equation (150) gives

Po(21)
g(R1z;Z1,Z1)=< ot >P12 (1(B12) — 1)+ po(21)(p1— Po(21)) + polz1)0(r; —13),
1
(151)
while the local density approximation yields
YG(Ryy,21,21) = P5(1)(g(Po(21); B12) — 1)+ pol(z1)d(r; — ). (152)

On Fourier transforming w.r.t. B;, we expect (151) and (152) to give qualitatively
similar behaviour at finite wave vectors . At =0 however, the local density
approximation will lead to regular behaviour as mentioned above while (151) gives
rise to a d-function singularity. This argument of Kalos ef ol. shows how it is possible
to construct a simple microscopic model of the interface which generates a =0
divergence in the horizontal correlations. The approximation of (150) cannot be
accurate since as |r; —r,|—>00, p® must satisfy the asymptotic relation

P(Z)(H, ry)—po(21)00(%2)-

The latter is, of course, consistent with the local density approximation.
Furthermore, the true %(Q), z{, z,) does not have a §-function singularity but exhibits
a weaker small ) divergence (see (138)). The restriction to strictly planar interfaces is
responsible for the d-function singularity. If this is lifted and the location of the
dividing surface is permitted to show long wavelength variation with R as considered
in earlier sections, presumably the divergence will be weakened appropriately.
Recently, Weeks [12] has developed a model along these lines. His model can be
solved explicitly in certain limiting cases and he finds that for z; =2, =0 the zeroth
Fourier component of 9(Q, z(, z,) agrees, to within a trivial numerical factor, with
the general result of (136).

Further support for a very sharp liquid—vapour interface but which fluctuates in
position and time is provided by the computer simulation of Kalos et al. [11]. These
calculations also show a tendency for atoms to cluster in the surface-forming regions
of high and low density.

Before concluding this section it is instructive to examine the general impli-
cations of (138) for the density fluctuation function %(@Q,z,2,) when the gravi-
tational field is zero. Provided the temperature is below the critical point 7', so that
dpo(z)/dz is finite, this function diverges as @ ~2. Above T, dpy(z)/dz is zero and there
isno divergence. Such behaviour in a static correlation function is usually associated
with spontaneous symmetry breaking. For example, in a ferromagnet below the
Curie temperature all the spins lie parallel to a preferred direction, say the z axis, and
the average magnetization (M ,) is finite. Above the Curie temperature in the
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paramagnetic state the spins are randomly oriented, {(M,» =0 and there is no long-
range order. Thus there is a breakdown of rotational symmetry associated with the
preferred direction of the ferromagnetic state. The corresponding long-range order is
characterized by the non-vanishing order parameter (M > and by a static transverse
susceptibility (i.e. the correlation function corresponding to variables M, or M)
which diverges as ¢~ 2. In the interface problem it is natural to treat dp,(2)/dz as the
order parameter. Below 7', we have a non-uniform, two-phase system and the order
parameter is finite due to the breakdown of translational symmetry. Thus, by
analogy we would expect to find a long-wavelength divergence in the static
correlation function of some associated dynamical variable.

Very recently Jhon et a/. [75] have shown that the appropriate variable is z5(R, ¢),
the time-dependent normal displacement of the Gibbs dividing surface, and have
demonstrated, using arguments based on sum rules and dynamical correlation
functions, that the static correlation function {(zg(Ry,0)zs(R,,0)) exhibits long-
range order below 7. To be more specific, they have shown that the Fourier
transform of this correlation function w.r.t. @ behaves as (fyQ*) ™! as @ tends to
zero. Their result is equivalent to (138). In order to show this, we recall that for long
wavelength, small amplitude distortions of the Gibbs surface p(R,z)—po(z)=
—25(R) dpo(2)/dz so that the (time-dependent) density—density correlation function
in this hmlt is simply

dpo(z1) dpolzs)

dz, dz, (26(Ry,11)26(Ry, 65)).

Thus, setting £, =, =0 and Fourier transforming, we find

dpo(21) dpo 22) 2
dz, dz, (hre")

for small ¢, which is identical to (138) with g=0.

Jhon et al. have also developed a detailed memory function approach for
interfacial dynamics. They find that associated with the symmetry breaking
variable zg(R, ) are propagating modes whose long-wavelength dispersion relation is
identical to the classical hydrodyhamic result for capillary waves, i.e.

y 1/2 "
w(Q):<m<pl—pv)> v

It then follows that capillary waves arise from the spatial symmetry breaking which
occurs at an interface, i.e. from having a non-uniform density distribution.
Propagating modes of this kind are well known in uniform systems where they are
called zero-mass bosons or Goldstone bosons. Spontaneous symmetry breaking in
uniform condensed systems is accompanied by the appearance of Bose-type
excitations whose energy tends to zero as the wave vector tends to zero. For example,
the transition from the paramagnetic state to the ferromagnetic state leads to spin
waves. Since these are associated with local deviations of the atomic spins from
perfect alignment, it requires no energy to excite them in the long-wavelength limit.
The propagating modes in the interface problem are associated with local distortions
of the Gibbs dividing surface. Shifting this surface vertically by a constant then
corresponds to taking the long-wavelength limit. This process must require zero
energy in the absence of an external field (see also 127)). In the light of these

Y(Q,2y,2,)=
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considerations it would seem reasonable to describe capillary waves as Goldstone
bosons for non-uniform fluids [75].

Clearly the study of correlations in the interface is an important area of current
and future research. One obvious question which has been discussed at some length
in several papers [28, 27, 8, 11, 12, 21] concerns the role of the capillary wave-like
fluctuations of the dividing surface in determining the width of the density profile.
We discuss this in the next section.

8.5. The width of the density profile

It is tempting to use the capillary wave model to investigate the form of the
equilibrium density profile. We suppose there exists some ‘bare’ density profile
Opare(2) Teferred to a planar Gibbs dividing surface located at z=0. This profile may
not necessarily have infinite gradient as in (147) but will, in general, be very sharp.
Let the corresponding surface tension be yy,,. and the area of the interface be 4 = L?
with L—o0. We consider fluctuations in the location of the dividing surface of
amplitude zg(R). If their wavelength is sufficiently long and their amplitude
sufficiently small we can use the analysis leading to (144) (see Appendix 5) and
calculate the mean square fluctuation in the average location of the dividing surface.
The latter is defined as

0% =2k — <26 )P, (153)
where

ZZ:A-ldezg(R)zA—zga(o)a(-m

and
26=A4"" [dRz;(R)=A4"a(0).
Since z is linear in a, its expectation value is zero and from (143) it follows that

2

0G= l_pv)mg—*—’ybareQz)_l' (154)

oWt
rypaAY
pdq
Transforming the summation to an integral we have

1 'Qmax
0.(2;_ J- dQ Q((pl_pv)mg—l_ybareQz)_l

- 27’[ﬂ Qmin
1 —2 2
= In (‘f"_“;eJrQ';“), (155)
4nﬂybare ébare + Qmin

where ... = (Voare/mg(p;— p,))*/* is the ‘bare’ correlation length. It remains to

specify the upper and lower limits of integration, i.e. @, and @ ,;,,. We can take @),
=2n/L since this is the smallest wave vector which can sensibly be defined. The
choice of Q.. 18, however, somewhat arbitrary and the present continuum treatment
cannot make a rigorous identification of this quantity. In their original capillary
wave treatment of the liquid—vapour interface Buff e/ al [28] assumed a ().,
inversely proportional to the width of the equilibrium density profile which depends
of course, on gg. This procedure leads to a transcendental equation for og. For
simplicity we take Q. =27/0, where ¢ is a molecular diameter.
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It is clear from (154) that the major contribution to 62 comes from fluctuations
with small values of ¢. This implies that the bare density profile is broadened by long
wavelength capillary waves. For the idealized bare profile py,,.(2) = p,®(—z), where
O(z) is the Heaviside function, an explicit formula for the equilibrium density can be
obtained [11, 12]. In this case

Po(2) = Poare(2—26(R))>=p {O(26(R)~2))> (156)
which gives, on differentiating,
dpo(2)

= —p{0(zg(R)—2))

2
_ pl <J‘OO d - >
=_ sexp (1s(zg(R)—2)) (157)
2n —»

The relevant expectation value is

d

8

{oxp (iszg(R))) = exp(z—ga(mexp(—io.m»

o2
=8Xpl: : Z((pl_pv)m,(]—i_ybaregz)_ljla

2p4Q
where we have used the methods of Appendix 5. From (157) and (154) it then follows
that
d .2
Po(?) - 1212 exp 22 (158)
dz 2n)%0 202
and hence
P1
po_(z)=?erfc (2/\/205). (159)

The ‘10-90’ width of this density profile is 2-560; and thus depends explicitly on both
the area of the interface and the strength of the gravitational field.

In the absence of gravity &yl =0 and 62 = (27By4,.e) ~ ! In (L/0). As the area of the
interface becomes infinite ¢ diverges logarithmically. Long-wavelength diver-
gences of this kind are common in the study of strictly two-dimensional systemst
(e.g. [61]). We note that this divergence is extremely slow; choosing parameters
appropriate to liquid argon near its triple point, i.e. Yy, =14 dynem ™ *7 =85 K and
0=34A, we find for L=1mm, o;=1320. The corresponding result for L=1 m is
1-590.

For statistical mechanical application it is natural to take the limit L— oo first
and then examine the system as g—0. In this case @, =0 and 6% = (47BYpare) ~*
In (142, Qhax) and for argon in the earth’s gravitional field 6,2 1-395. As g—0
however, o5 diverges as (—Ing)'/2.

Although these divergences are extremely weak they have important repercus-
sions. The last result, when inserted into (158), implies dpy(z)/dz—0as (—Ing) "2 in

5

TIn two dimensions long-wavelength fluctuations (Goldstone modes) have sufficient density to
destroy the ordered state; in the present case the capillary waves force dpy(z)/dz to zero.
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the limit g—0 and indicates that, in general, the equilibrium density should not have
a finite width in zero gravitational field [28]. Since this result is contrary to what we
have supposed throughout this paper we examine both it status and its implications.

Earlier we demonstrated that the van der Waals and related approximate
theories yield equilibrium profiles of finite width in the limit of infinite interfacial
area and zero gravity. We also indicated in §8.2 and §8.3 how the exact integro-
differential equations imply exponential-like profiles of finite decay length in the
same limit. The corresponding interfacial widths are clearly intrinsic to the phase
equilibrium itself. Equations (155) and (159), on the other hand, predict a density
profile which depends on 4 or g or both and hence its width cannot be an intrinsic
property of the fluid. To quote Wertheim [10]f: “Such behaviour is completely at
odds with what is usually held.”. We are of the opinion that the true equilibrium
profile cannot be rigorously constructed by simply ‘unfreezing’ capillary waves in the
hypothetical bare interface. The difficulty lies ultimately in the fact that the liquid—
vapour interface is a three-dimensional system. In applying capillary wave theory
we are forced to (a) select a particular bare profile with a corresponding surface
tension and (b) make some statement about the number of ‘surface’ atoms, i.e. we
must specify @, and @p,. Although there is no unique procedure for doing either of
these, this may not be the major problem. We suspect the capillary wave model, as
described in Appendix 5, is inapplicable to the real surface problem when the
amplitude zg(R) becomes finite or develops short-wavelength Fourier components or
has a large gradient. Under these circumstances (A 29) is not a valid free-energy
functional for a proper three-dimensional interface and something more realistic is
required. We note that merely including a term |zG(R)|4 in the functional does not
appear to remove the logarithmic divergence in 65[76]. (We should stress that this
objection to the use of capillary wave ideas does not apply to the analysis leading to
(146) for the density fluctuation funetion of the equilibrium system. The latter is a
linear response function and is, therefore, solely concerned with infinitesimal
changes in the amplitude z;. Furthermore that analysis was specifically aimed at the
long-wavelength limit.)

It is now appropriate to comment on some recent papers on this topic. Lovett et
al.[8] imply that the width of the equilibrium profile can be calculated using a model
based on capillary wave theory (with L=co and finite g) and that the result can be
legitimately compared with the width obtained from a van der Waals type of
approach. It is clear from the argument of the previous paragraph that such a
procedure cannot be strictly correct. The widths which Lovett ef al. obtained from
the capillary wave route appear to be quite reasonable but this is probably

Afortuitous; we recall that og~139¢ for parameters appropriate to liquid argon

which would yield a ‘10-90" width of <40. Davis [21], on the other hand, has argued
that the density profile should be determined by unfreezing capillary waves on a bare
planar interface whose underlying form is that given by a van der Waals type of
theory. He then compares the resultant total width, which is now dependent on L
and g and hence not an intrinsic property, with the results of computer simulations.
This would seem to be inconsistent. It would make more sense to compare the van
der Waals widths directly with those obtained from computer simulation—provided

T Wertheim also shows that dpy(z)/dz having a finite limit as g—0 is consistent with the invariance
properties of a system in a gravitational field provided py(z) can be associated with the usual Gibbs
dividing surface.
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thelatter are suitably modified to take into account the finite size of the interface (see
below).

Another model of the interface has been proposed by Weeks [12]. He divides the
fluid into an array of vertical columns whose horizontal width is of the order of a bulk
correlation length and then considers fluctuations in the number of particles in each
column. These fluctuations can be related to changes in the location of the local
Gibbs dividing surface. The free energy associated with such distortions is then
caleulated using macroscopic arguments which are essentially equivalent to those of
capillary wave theory. Weeks suggests that the local interface width, i.e. the width
relevant to a single column, should be identified with the width as calculated from
a van der Waals type of approach. Not surprisingly he finds that, as a result of the
capillary wave-like fluctuations, the total interface width diverges in the same
fashion as we described above. In particular he finds that, for infinite interfacial area,
the derivative of the equilibrium density dpy(z)/dz should go to zero as (—In 9)¥? in
the limit g—0 and shows that within his model, this divergence is due to “the same
fluctuations which lead to the long-ranged horizontal correlations”t. Whilst we
accept that Weeks’ model is probably the best microscopic model which is presently
available for describing density correlations in the interface, we are not convinced
that it gives a good description of the equilibrium density profile. As we argued
earlier, it is important to distinguish between theories for the density response of the
equilibrium system (this being characterized by the long-ranged horizontal corre-
lations) and theories for the equilibrium density itself. For the sake of clarity we
summarize our arguments.

In zero gravity the density—density correlation function %(@),z;,2,) of the
equilibrium fluid exhibits a @2 divergence as @—0 for z; and z, in the interface
region. This result (see Appendix 4) was derived using rather general arguments by
Wertheim [10], Kalos efal.[11] and indeed Weeks [12]. In§ 8.4, we showed that, since
4 is directly proportional to the density response of the equilibrium system to an
infinitesimal change in the external potential, the long-wavelength behaviour of
4(Q, 2,, z,) can be calculated by generating capillary wave-like fluctuations of the
Gibbs dividing surface. The @~ * divergence, which is the indicator of long-ranged
horizontal correlations, then has a natural and rigorous interpretation in terms of
these fluctuations. The equilibrium density profile itself has nothing to do with these
fluctuations; it forms the underlying structure and determines the surface tension of
the interface whose long-wavelength density response has capillary wave-like
behaviour. In a diffraction experiment one measures a ‘structure factor’ correspond-
ing to (138) and y is the usual ‘equilibrium’ surface tension. This point of view would
appear to be the same as that of Widom [27].

On the other hand, we have shown that attempts to build up the equilibrium
profile by unfreezing capillary waves on some ‘bare’ non-equilibrium interface are
unsatisfactory. They produce profiles which depend on the area of the interface and
on g and thus cannot be intrinsic to the phase equilibrium. (The surface tension has a
bounded anomaly and can be considered as intrinsic—see Appendix 5.)

We do not wish to imply that capillary wave theory is not useful. Indeed, the
basic idea that the density profile is broadened by capillary wave-like fluctuations in

+We should recall that the argument of §8.4 which predicted long-ranged horizontal correla-
tions assumed that dpg(z)/dz was finite for g=0. The same argument goes through, however, provided
dpo(z)/dz—0 more slowly than g.
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some ‘bare’ interface must be qualitatively correct. However, a proper theory must
be able to treat both finite amplitude and short-wavelength fluctuations. We are not
aware of such a theory but work along these lines is in progress [21]. Clearly a theory
of this kind would be useful for extrapolating the results of computer simulations on
systems of finite interfacial area to infinite area. The shortest horizontal wave vector
which can be allowed in a computer simulation is 2n/L =0, ;, where L is typically
5-20¢. Consequently, fluctuations with wave vectors <@,,;, are not permitted and
we can expect the density profile calculated for a small finite system to be rather
sharper than for the case of infinite interfacial area. The results of Chapela et of. [49)
for a Lennard—Jones model of argon illustrate this quite nicely. As the number of
atoms in their molecular dynamics simulation was increased from 255 to 1020, the
width of the interface increased by about 199, while their 4080-atom simulation
gave a width 49, greater than the 1020-atom simulation. The values of L
corresponding to these three simulations are 50, 106 and 20¢ respectively. The
increase in the width of the density profile clearly saturates for L in the region of 200.

We conclude this section by presenting in table 2 results for the ‘10-90" width of
the density profile and the surface tension as obtained by recent molecular dynamics
simulations of the interface of a Lennard-Jones fluid. Several Monte-Carlo
simulations have been performed (see Abraham et al. [52] for references to earlier
work) some of which produced non-monotonic density profiles, i.e. oscillations in the
liquid side of the interface. The present consensus [49] is that these oscillations are an
artefact of over constraining the system or not averaging over enough
configurations.

Table 2. Interfacial ‘10-90° widths «w and surface tensions y obtained from- molecular dynamics
simulations of a Lennard-Jones 12-6 fluid at various temperatures 7't. The experimental results
Yexp aT€ for argon [40].

Reference T(K) w/o p(dyn em ™) Pexpldyncm ™)
a 84 ~20 ~12 129
b 84 20 157 12:9
b 94 2-2 11-8 10-4
b 100 27 10-6 9.4

(a) Rao and lievesque (48], (b) Chapela et al. {49] using 1020 atoms.
1 In order to compare with ‘real’ argon the parameters of the Lennard—Jones potential are taken as
6=3405A and ¢/Kz=1198K.

It can be seen that the two independent simulations at 84 K agree on the width of
the profile wa2¢. This result is essentially the median of the widths obtained from
the van der Waals and related theories (see table 1). The surface tensions calculated
in these two simulations differ. This may be due to different treatments of truncation
of the Lennard—Jones potential [19]. Experience with thermodynamic perturbation
theories for the surface tension [38, 47] indicates that replacing the Lennard—Jones
potential by a more accurate argon potential function (including triplet interactions)
reduces y by ~3 dyn cm ™! in the temperature range of table 2. This suggests that the
results of Chapela ef al. [49] give a rather good description of the surface tension of
argon near its triple point and therefore, by inference, so do the approximate theories
described in §8.1.



12: 49 18 Decenber 2008

TIB Licence Affairs] At:

[ TI B-Li zenzen -

Downl oaded By:

186 R. Evans

§9. SPINODAL DECOMPOSITION
The liquid—vapour interface is not the only problem of interest in the statistical
physics of non-uniform fluids. One closely related topic, where the general formalism
can make a useful contribution, is the theory of spinodal decomposition. This is the
name given to the process of phase separation which occurs in the ‘unstable’ region of
the phase diagram (see fig. 3). (For a recent discussion and references to earlier work
see Abraham [53].) The equilibrium and kinetic aspects of this problem have
traditionally been treated in terms of the empirical van der Waals square-gradient
approximation to the Helmholtz free energy of a non-uniform fluid [54]. A general
treatment of the equilibrium aspects can now be given.
We consider an initially uniform fluid of density p, and examine the stability of
this fluid to infinitesimal density fluctuations p(r)=p(r)—p,. Expanding the free
energy as in (65) we have

f[p]=%[puJ+u<pu)J" dr p(r)
”drd < /)—([pu, |r—r|]> P+ (160)

where u(p,) is the chemical potential of the uniform fluid and ¢[py; lr—r’[] is the
corresponding Ornstein—Zernike direct correlation function. We assume that the
number of molecules is unchanged by the fluctuation so that the second term in the
expansion vanishes. It then follows that

—t l]> np(r)

1 1 .
=2 4 <v— [Pmﬂ) (@)p(—q). (161)

AF =F(p]=F[p.]= Hd’d ( ) il

Fig.3

Density @

Critical point

Temperature

Phase diagram for a simple monatomic fluid (schematic). The solid curve denotes the liquid-vapour co-
existence curve and the dashed curve the spinodal f §(p) =0. In the unstable region f§(p) <0 phase
separation occurs by spinodal decomposition. In the metastable region f¢(p) > 0 phase separation
occurs by nucleation and growth.
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If A >0 the fluid is stable with respect to infinitesimal density fluctuations. For an
arbitrary fluctuation A% may be rather complicated but if we restrict consideration
to long wavelength fluctuations we can profitably expand ¢[p,; ¢] as in (69)and we

find
1 18
A¢=;;z<i%?ﬁ+qvxpo+.~>bmnu—qx (162)

q
where we have used (72) to re-introduce the free energy density fo(p,) and the
coefficient of the square-gradient term f,(p,). If we consider a fluctuation of
amplitude a with a single Fourier component, i.e. p(r)=aexp (—iq . r) then to O (¢?)
e

= a<°g”+fhpu (163)
Henceforward, we assume f,(p,)}>0 for any density p, of interest. (This should be
valid for any potential with a reasonable attractive tail—see (73).) If f{(p,)>0
(positive isothermal compressibility) then AZ in (163) is positive for all wave vectors
g and it follows that the fluid is stable against long-wavelength fluctuations. On the
other hand if f(p,) <0 (negative compressibility) AZ in (163) will be negative for
q<q,, where

22= (= 6(Pu)/2f2(pu))"? (164)

is the ‘critical’ wave vector and the fluid will be unstable against such fluctuations.
Whilst these results are of precisely the same form as those obtained by Cahnt [54] in
his classic analysis we have now made a rigorous microscopic identification of f,. In
Cahn’s theory, as in the van der Waals treatment of surface tension, there is usually
no attempt to relate the coefficient of the square-gradient term to a particular
microscopic quantity. The present analysis also shows that a proper generalization of
Cahn’s theory, which is not restricted to long wavelengths, exists and leads to a
different critical wave vector g,. The latter is the solution of

L=pyclpuig - (165)

The existence of a spinodal (the locus of points in the p — 7" plane where f §(p,) =0;
(see fig. (3)) is, of course, dependent on the idea that the free energy density in the
single-phase region has an analytic continuation into the two-phase region. This idea
has not been proved [27]. In fact the argument [27, 53] in favour of it depends to a
large extent on the strong experimental evidence for spinodal decomposition (see
below). The analysis we have described above also requires that the Ornstein—
Zernike direct correlation function has an analytic continuation into the two-phase
region. There exist practical procedures for performing such a continuation |14].

The kinetics of spinodal decomposition may be analysed in an analogous fashion.
We assume that the density satisfies the continuity equation

Op(r,t)
ot

where J is the current density. If the departures from equilibrium are small, d should

—_v., (166)

T Cahn considered eoncentration fluctuations in binary systems rather than density fluctuations in a
single-component system. His free energy functional was of the Cahn—Hilliard square-gradient type which
is analogous to the van der Waals approximation.
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be proportional to some driving force which will be associated with the effective one-
body potential in the fluid, i.e.

J=—Bp(r, )V pa[ p(r, )], (167)

where B is a positive constant of proportionality and | p] is the intrinsic chemical
potential defined in (15). In general, we require some prescription for y;,[p] or
equivalently #[p]. One way of proceeding is to assume p(r.f) is slowly varying in
space and use the gradient expansion (see (63))

il o) =fol0)— 3V o —2f2(p)V2p + .

Substituting the resultant J into (166) will give an explicit, but non-linear, partial
differential equation for p(r,t). This could then be linearized. It is preferable,
however, to linearize directly, i.e. Taylor expand % [p] about some initial uniform
density p, as in (160) and then differentiate so that

r—r'l])p(r’,t)+
l

1

5 - !
talpl=pip) +B dr’(%w[pu;

= U(py

where

p(a,t)= [drexp (iq.1)p(ri).
Thus, to first order in p, the current density is

_Bp, ) . .
| ——c[py p(q,texp(—1q.1) (168
R )y q(pu [P q] p(—iq )
and substituting into (166) we have
op@.t) B (1 " '
o g lpu; 41 |P(a,1) (169)
The solution of (169) is of the form
p(q,t)=p(q,0) exp (£(q)t) (170)
with
R(g) BP 2< : [p 1) (171)
=——p0° | ——¢[psq] |-
q [; 4q 0. q

For long-wavelength fluctuations we can again expand the direct correlation
function in powers of ¢* and it follows that to O (¢*):

R(q)= — Bp(¢*f o(pu) +20%f2(pu))- (172)

If the fluid is in the unstable region, i.e. f{(p,) <O (see fig. 3), the amplitude of the
fluctuations will increase exponentially with time provided ¢ is smaller than the
critical wave vector ¢, as defined in (164). When ¢> ¢, the amplitude will decay
exponentially with time. Equation (172) is identical in form to that derived by Cahn
[54]. We now find, from our more general analysis, that R(g) will be positive and the
amplitude of the fluctuations will increase with time, provided g <g, where ¢, is
defined by (165).
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It is possible, in principle, to test the predictions of this theory experimentally.
X-ray or light scattering experiments measure an intensity 7(q,¢)oc|p(q,#)]>. The
present theory predicts that the time derivative of the logarithm of the intensity
should be time independent and equal to 2R(g). The quantity which is conveniently
extracted from an experiment is

D<q>=q*2%1n1<q,t>=2q‘2R<q>. (173)
Thus for very small wave vectors ¢, D(g) should vary linearly with ¢2. This would
correspond to the light-scattering situation. For wave vectors corresponding to
wavelengths <200, where ¢ is a molecular diameter, (171) predicts deviations from a
linear behaviour, since higher order terms in the expansion of ¢[p,; ¢] then become
important. The critical wave vectors ¢, and ¢, will lie in this range. Cahn’s theory
predicts that D(q) varies linearly with ¢? for all 4. Recently Abraham [33, 55] has
used an approximate thermodynamic perturbation theory to treat this problem. He
calculates substantial deviations from linear behaviour for g4z ¢,. Our analysis
provides a general explanation for such behaviour.

We stress that the theory of spinodal decomposition as described above is only
valid for the initial stages of the decomposition when the amplitudes of the
fluctuations are small. As the amplitudes grow non-linear effects become important
and the present linear theory will be invalid [56, 57]. It has also been suggested [58,
57] that even in the early stages of decomposition the above theory is incomplete and
that there should be a ‘random-force’ contribution to the current density in (167).
The addition of such a term modifies the subsequent analysis and can lead to
additional curvature effects in D(q), i.e. this separate mechanism also acts to produce
deviations from a linear variation with ¢2. Abraham [55, 53] has commented on the
present experimental and theoretical situations. Experiments are usually performed
on binary alloys rapidly quenched from the melt into the unstable, solid-solution
region. Consequently the relevant order parameter is not the density but the
concentration. Whilst these experiments provide ample evidence that the early
stages of spinodal decomposition are well described by the Cahn theory they
frequently yield a D(¢) which is not proportional to ¢ for ¢ 2 ¢,. Hence the current
interest in this problem. Cahn’s theory has also given a satisfactory explanation of
light scattering measurements on some binary-fluids (see e.g. [53]). The interpre-
tation of the various experiments and, in particular, the role of the non-linear terms
and the ‘random force’ remain the subject of current investigation.

§10. CONCLUSIONS, PERSPECTIVES AND OTHER TOPICS

In this paper we have reviewed the general theory of the equilibrium statistical
mechanics of non-uniform classical fluids and we have described the application of
this theory to three different problems—the long-wavelength behaviour of the direct
correlation function of a uniform fluid, the early stages of spinodal decomposition
and the liquid—vapour interface. It might be useful to summarize some of our main
conclusions and mention possible topics for future research in these areas.

The approximations described in §7 for the long-wavelength behaviour of the
direct correlation function or, equivalently, the liquid structure factor S(¢) are both
physically revealing and sufficiently simple to warrant application in more complex
fluids. S(g) at small ¢ contains information concerning the long-range part of the
interatomic potential. Consequently we might expect S(g=x0) to differ considerably
between metals and insulators, reflecting the long-range oscillations and van der
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Waals attraction of the different pair potentials. Experimentally most liquid metals
at their triple points are considerably less compressible than their equivalent hard-
sphere reference system while insulators are roughly twice as compressible as their
equivalent hard-sphere reference systems. Calculations based on the RPA and
ERPA of §7 give a good account of this trend in the compressibility [17]. The
approximation schemes may also prove useful for the interpretation of small ¢
diffraction data in both metals and insulators. The extension of the general theory to
binary mixtures is straightforward [16] and the RPA and MDA have been used in a
study of phase separation in binary alloys [16]. (Phase separation is concerned with
the ¢ =0 divergence of the partial structures factors.) The results for a single alloy
system, Li—-Na, are encouraging and this would appear to be a promising approach to
what is traditionally regarded as a difficult problem. In a related, but somewhat less
ambitious, vein the various approximations should throw considerable insight into
the long-wavelength behaviour of the measured partial structure factors of binary
systems near the triple point. We note that the ¢=0 limits of the partial structure
factors are related to important thermodynamic quantities, i.e. the isothermal
compressibility, partial molar volumes and activities (e.g., Bhatia [59]).

Our present treatment of spinodal decomposition has put Cahn’s classic work on
a proper theoretical basis and showed how to properly extend his approach to finite
wavelengths. We have not attempted to go beyond the linear aspects of the problem
or to deal with all the rather controversial aspects of the kinetics of spinodal
decomposition. Calculations of the critical wave vectors ¢,, g, and the function R(q)
of § 9have recently been performed for a Lennard—Jones fluid at various pointsin the
unstable region [77]. We find that the small ¢ expansion is inaccurate for ¢ ~¢q.. The
formal extension of our analysis to binary mixtures appears to be quite straightfor-
ward and it would be useful to develop tractable approximation schemes for this case
since spinodal decomposition appears to be observed in various binary systems (see
§9).

In §8 we saw that the general theory has proved extremely fruitful in its
application to the liquid—vapour interface. It is probably safe to argue that the
density profile and surface tension of simple, argon-like liquids is now quite well
understood. One major theoretical problem remains, however, and this concerns the
search for a proper microscopic model which will describe correldtions in the
interface. As discussed in § 8.4 and §8.5, while there is important recent work in this
area, most existing models are based on capillary wave theory and lead to what we
believe are unrealistic divergences in the width of the equilibrium density profile
under certain limiting conditions. A second more technical problem econcerns the
relationship between the Kirkwood—Buff result (107) for the surface tension and the
corresponding result in terms of the direct correlation function (128). As we
mentioned in § 8.3 no direct proof of their equivalence has been given. Very recently,
however, Jhon et al. |60] have shown that the Kirkwood—Buff result can be
transformed to a formula involving a force—force correlation function and that the
latter is equivalent to (128). Whilst this does not constitute a direct demonstration of
the equivalence of the two approaches it certainly implies that a direct derivation
should exist.§

Relatively little work has been done on the statistical theory of the liquid-vapour
interface for more complex fluids (for a recent review see Croxton [61]). The formal

T Schofield [79] has shown that the Kirwood-Buff result can be directly transformed to the formula
involving the direct correlation function.
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extension of the theory to multi-component systems is straightforward [29] but
there have been few calculations. Chapela et al. [49] have carried out a computer
simulation of the surface of a Lennard-Jones binary mixture. This calculation shows
the expected adsorption of the component of higher vapour pressure. It is clear that
in binary fluids the surface tension is very sensitive to the form of the density profiles
of each component, so one requires fairly accurate, yet tractable, approximate
theories in order to understand experimental data. Recently Pastor and Goodisman
[62] have stressed this point for molten salts;-there is little theoretical understanding
of these important systems. For mixtures of neutral atoms, thermodynamic
perturbation theories would appear to be useful and Abraham [63] has discussed
this. While liquid metals lie outside the scope of this paper we should mention that
Lu and Rice [78] have recently reported experimental results for the ion-density
profile of liquid Hg using X-ray techniques. This would appear to be the first
successful experimental determination of a density profile for any liquid near its
triple point. The width of the measured profile is about two or three atomic
diameters, i.e. similar to that which would be expected from theoretical work on
insulating liquids. However, this width is much larger than that predicted by the
theoretical work of Rice and co-workers (see [78] for details) on metals. It is also
larger than widths predicted by the present author [64] who developed a
‘pseudoatom’ model to describe the free surface of a liquid metal. This model takes
into account both electronic and ionic contributions to the surface tension and
involves both the averaged conduction electron density and the ion-density profile.
Calculations for a few metals near their melting points yield surface tensions which
are in fair agreement with experiment and predict ion-density profiles with
substantially smaller widths than those obtained for insulating, argon-like liquids at
their triple points [35]. It might also be interesting to examine the horizontal
correlation functions at the surface of binary liquids—especially for charged fluids.
Gray and Gubbins [65] have generalized the Kirkwood-Buff theory to molecular
fluids in which the interaction potential depends on the relative orientation of the
molecules and Haile ef al. [66] have developed a thermodynamic perturbation theory
for the surface properties of such fluids.

The statistical thermodynamics of the surface of superfluid “He has received a
great deal of attention in recent years. Much of the theoretical work in this field is
based on density functional techniques which are quantum-mechanical analogues of
those deseribed in this paper (see, e.g. Ebner and Saam [67] and references therein).
There are also models which build up the equilibrium density profile and calculate
the surface tension by unfreezing ‘ripplons’ in a ‘bare’ surface [68, 67]. These
rlpplons are analogous to capillary waves but possess a large zero-point energy.
They lead to a considerable broadening of the surface profile and give a very large
contribution to the surface tension. It would also appear that these models should
lead to troublesome divergences in the limit g—0 or 4, the area of the interface, — 0.

One important area of research, where the general theory of non-uniform fluids
can make an impact is that concerned with the liquid-solid interface. Several
authors have developed theories of the density profile of a simple liquid in contact
with a structureless, repulsive wall (see, e.g. Sullivan and Stell [69] and references
therein). These theories solve the appropriate Ornstein-Zernike equation, usually
within a Percus-Yevick type of approximation. Saam and Ebner [70] have criticized
some aspects of the approximation scheme. In particular they argue it cannot
predict the formation and growth of unsaturated liquid films near the fluid—solid

A.P. N
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interface and that the density functional technique of Ebner et al. (see §6.4) is much
superior in this respect. Singh and Abraham [71] have applied their thermodynamic
perturbation theory (see § 8.1) to the determination of the density profile for a hard-
sphere liquid in contact with a soft repulsive wall. While replacing the actual
‘structured’” wall by some average external potential may turn out to be a rather
crude approximation for a real solid-liquid interface [72] such model calculations
should prove useful for understanding interfacial tension, wetting, contact-angle,
etc. The molecular theory of such phenomena is still in its infancy; for a recent review
see Navascués [73].
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APPENDIX 1
THE PROOF THAT V. (r) IS UNIQUELY DETERMINED BY
THE EQUILTBRIUM DENSITY p¢(r)

We follow the Hohenberg—Kohn-Mermin argument which proceeds by reductio
ad absurdum. Suppose another potential exists which gives rise to the same density
po(r). Let this potential be Vi, (r) corresponding to the hamiltonian Hy=T+ U+ V"
The corresponding equilibrium probability density f' and the grand potential €
refer to the original temperature and chemical potential. It is easy to show that even
if the two external potentials differ by only a constant, the grand canonical
probability densities are different, i.e. f'#f,.

From (5) we have

QO =T f'(Hf—pN + I f)
<Tro fo(HY —pN+pnf,)
The r. h. s. of this inequality is Q+Tr  fo(V' — V) so
Q' <Q+ [dr po(r) (Ve (r) = Vex(r). (A1)
Interchanging primed and unprimed quantities we find
Q< +Tr, f(V-V),
but since f'is assumed to give rise to po(r) this can be written as
Q<Q + [dr po(0)(V ex (1) = Vi (1)) (A2)
Adding (A1) and (A 2) leads to a contradiction
Q+Q < +Q.

Consequently for a given chemical potential there is a unique V. (r) which will
determine a given equilibrium density. If we allow.the chemical potential in the
system with hamiltonian Hy to be different from u we can then prove that the
combination g — V., (r) =u(r) is a unique functional of the density. The proof that f,
is a functional of py(r) then follows straightforwardly and the subsequent analysis
follows that of §2.
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APPENDIX 2
DISTRIBUTION FUNCTIONS IN THE GRAND CANONICAL ENSEMBLE
The grand partition function (2) can be written in terms of u(r)=pu— V (r):

© —3N
E=Y i fdry .. .dryexp (B ]dru(r)p(r)—pU) (A3)
N=o V!
Thus
5Q - © /1 3N
s s e~
N=0
= —Trclfop(r)
=~
= —po(r),

which is (25). Differentiating again we have

5,00 rl) _f —0InE
5% rz) 5“("2)

rl’ 2 ﬁ !

Po(ry) + B Tre fop(r)p(r;) )

or
G(ry, 1) = — po(r2)po(ry) +<{P(r)p(ra)),
(A4)
which is equivalent to (26)

The hierarchy of conﬁgurational distribution functions is defined as usual by
Py e =57 Z jdr . dryexp (—B(V+U)) (A5)
Nzm

Clearly, p(r)=po(r) and it is sbralghtforward to show
PP > =X (r—r)o(r 1))+ 3 8(r—r)o(r —r,)>
i%f i
=p (1, 1) + po(r)d(r—r') (A6)
Combining this result with (A4) we obtain (27) for %(r(,r,).
If the interaction potential U can be written as a sum of pairwise potentials as in

(49) we can obtain p@(r,r) by functional differentiation of Z w.r.t. to the pairwise
potential ¢(r,r'). We write

o0
E= z
o

FREL

jdr1 dey exp< B ds u(r)b(r)—[g”drdr’f(r, ¥)(r,r) > ,
where

=) O(r—r)o(r' —r;).

iFj

Equation (50) then follows immediately since, for fixed wu(r)
0Q _, 6mE |

= =1 @

op(x,¥) b Sh(r,v) I, )y =2p%r, v),

where we have used (A 6).
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APPENDIX 3 -
RELATION TO LINEAR RESPONSE THEORY
Consider a non-uniform fluid of equilibrium density po(r) and potential uq(r).
Suppose this system is perturbed by an infinitesimal change in the external potential
so that the new equilibrium density is p(r) and the corresponding potential is u(r).
The (static) linear density response function y relates the change in density to the
change in external potential:

pir)=—[dr' x(r,')ur), (A7)
where p(r)=p(r) — po(r) and &(r) =wu(r) —uy(r) = — AV (r), if the chemical potential
is fixed. From (26) it follows that

G(r,e)=—Bxry,ry). (A8)

For a uniform fluid of density po, G(ry, r;)=pi(g(ri5) — 1)+ pod(r1,), so on Fourier
transforming we have

x(q)=—Bpo(1+ po f dr exp (iq . r)(g(r) — 1)) = — BpoS(a)- (A9)

where S(q) is the liquid structure factor. The direct correlation function of the
uniform fluid ¢'®(g) is related to the inverse of S(g):

pocP (@) =1-1/8(q), (A 10)

which follows from Fourier transforming (32), the Ornstein—Zernike equation.
Combining (A 9) and (A 10) we find

(@) —1/po=B/x(@),
which is the result quoted in (68).

APPENDIX 4
ANALYSIS OF CORRELATIONS IN THE INTERFACE
Equation (135) for the equilibrium density profile in a gravitational field can be
written as

dpo(21):
dzq

where %z, 2,)= [dRy, %(R1,,2,2,). This is the ‘inverse’ equation to (55). The
latter can be re-expressed as

—ﬁmgfdzz Yolz1,22), (All)

dpo(23)
%2
where Cy= [dR;; C®(R,,,2,2,). We recall that since C® is the inverse of % i.e.

fdrs OP(ry, v3)%(rs, 1) =0(r; —t,), (A13)

—Bmy = jdzz Co(zy,22), (A12)

their horizontal Fourier components also satisfy an inverse relation:
Jdzs OP(Q,21,23)9(Q, 23,25) = (2 —23) (A14)
and in particular the zeroth components satisfy

Jd23C0(21, 23)F o(23, 22) = 8(21 —23). (A15)
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This last result is, of course, consistent with (A11) and (A 12).

Tt is convenient to analyse (A 12) using matrix methods [10]. Since C@(r, r,) is
non-negative and symmetric w.r.t. the interchange of ry and r, (see (22)), Cy(z4,2,)
can be represented by a symmetric, non-negative, continuous matrix. Such a matrix
can be decomposed into its spectral form

0(21,22) Z/ls 21)8 (A 16)

where 4; are the eigenvalues and g(z) are an orthonormal set of eigenvectors.
Equation (A 12) asserts that, if g=0, dpy(z,)/dz, is an eigenvector of Cy(2,,2;) with
eigenvalue zero. Consequently, following Wertheim [10], we separate out the set of
eigenvalues which go to zero linearly with g. This set is denoted by A;=fmgv;. We
assume that all eigenvalues and eigenvectors go to a limit as g goes to zero and that no
eigenvalue goes to zero faster than g.

Equation (A 15) implies

ol21,22) 2,1 23) (A17)

which will have contributions which diverge as g~ ! for all 2, and z, so we write
Go(21,2,) Z (Pmgv;)~ 8 ¥(21)€4(2;) +less singular terms. (A 18)
Since (A11) indicates that the integral of %y(zy,2,) over z, has the same g~'
divergence, the long-ranged correlations cannot be in the z direction. Furthermore
since %(r,,t,) is not pointwise divergent, these correlations must originate from

integrating in the x and y directions.
Inserting (A 17) into (A11) we find

il ;(z“: — Bmy f dzy Y A7V eF(2y)ei(22)
21 i

and in the limit when ¢ goes to zero, this reduces to

@pole) _ _ v let (2)E.

J J J
dz 5

(A19)

o0

where £ ;= dzej(z) and the g;(z) are to be evaluated at g=0.
Integrating (A 19) through the fluid we obtain
—py=2v; B (A20)
J

and using the orthonormality of the g;(z) we find

* apo(2) ?
d —_— —
J o

- 0

Zv;2|Ej|2. (A21)
J

Wertheim points out that while there may be large continuum contributions to the
summation in (A 19) it is more likely, since dp,(2)/dz is a sharply peaked function,
that the eigenvalues form a discrete spectrum and that the contribution from the
smallest value v, is the dominant one. If we make this conjecture and retain only the
lowest term in each of (A 18), (A 19) and (A 20) we find, in the limit g goes to zero,
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d d
Go(21,22) zi;ﬁl_)_ﬁ;lﬁz_)((pl —p)Bmg)” ' +less sine ilar terms,
31 Z2

which is the result quoted in (136).
A similar analysis can be carried through for 9(4),2,, z,) at small finite Q. We
suppose that

COQ,21,22)= L AQ)ex (@ 21)e@, 22), (A22)

where the eigenvalues 4;(¢}) and the eigenvectors g€, z) now depend on the wave
vector @. The inverse quantity is then given by

Y(Q,21,22) Z’l 3* (@,21)6,(@, 22)- (A23)

The idea is to use perturbation theory to express ,(@) in terms of 4;, the eigenvalue
corresponding to ) =0. We begin by expanding C®(Q, z,, z,) for small @ as in (125) so
that

AQ) = ”d21d22 &6,z )ef (@, 22)0(2)(@ 21,%7)
= ”d21d22 Q. 21)eT (Q.22)(Colz1,2) + Q%C (24, 25) + ... ).

To lowest order we can replace g(@,z) by &(z), the eigenvector corresponding to
@ =0, and we then obtain

Q)=+ Q | [ dzydzy £,z )t (2,)C (24 2,). (A24)

Substituting into (A 23) we note that the eigenvalues of interest are those associated
with 4;=Bmgv; so we separate these out

Q thZ ZS Q zl Q:ZZ)(ﬁmgvj+Q2jjdzleZSj(Q’zl)gT (Q:“Z)C (21,22)) !

+less singular terms.

If we make the same one eigenvalue conjecture as previously we find

dpo(z1) dpolz,) dpo(z1) dpo(z,) . !
G(Q.21,2) ~— —;Z—L((pl—pv)ﬂmngndzldzz i) eles c2<z1,z2>)
1 2 1 2

dpo (1) dpolzs)
dz, dz,

=Bt ((py— py)ymg +7@*) ™ ' + less singular terms,

where we have used (128) for the surface tension y and worked to O (Q?). This result
(138) has been derived by Weeks [12] and with g=0, by Kalos ef al. [11] and is
implicit in Wertheim’s paper. It is consistent with an exact result for %,(z(, 2,), the
coefficient of Q% in the expansion of %(Q, z;,2,). To prove this we use (A 14):

_fdz3 o(21,23) + Q705 (2, 23)+ .. ) (Fol23,22) + Q7G5 (23, 25) + ... ) =0(2, —2,)
Equating coefficients of Q% implies
jdzsoz(zl, 23)9 o(23,22) = — jdz3 0(21,23)%3(23,2;)

which, on using (A 15), yields two equivalent symmetrical forms [10]
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Gy(21,22)=— ”dz4dz3 Go(21,24)02(24,23)% 023, 22) (A 25)
and

Cy(z1,22)= — _”d%dZs Col(21,23)% (23, 24)C0(24, 22)- (A 26)
If we substitute (136) for %, into the r. h. s. of (A25) we find

dpo 21) dpo(zz)

N -2
L g (mmpma) (A27)

gZ(zlzzZ ﬁ !

which is identical to %, as obtained from (138).
We can use (A 26) to transform the r. h. s. of (128) into

dpo(z1)

dpo(z,)
00(21a23)jd 22 ;( 2

2

—B_lHdz3dz4{€2(z3,z4)§dz1 Colz4,25)
which, using (A 12), reduces to — f(mg)> [{dzydz, %1(21,2,). We must now ask
whether it is valid to identify this quantity with the surface tension, i.e. if

= —1in(1) Bmg)* | [ dzydz, 9,(2y, 25). (A28)

g—?

For y to be finite and independent of g, %, (24, z,) must therefore diverge as ¢~ 2, Since
this is precisely the behaviour indicated in (A 27), eqn. (A 28) would appear to be a
valid result for the surface tension [10].

APPENDIX 5
THE CAPILLARY WAVE MODEL
This model is based on the analysis leading to (140) except now we consider
fluctuations about some ‘bare’ density profile (not the equilibrium density) which is
characterized by a surface tension yy,... We set V., =0. The free energy functional
associated with the distortion zg of the Gibbs surface is conventionally taken to be

FCW[ZG] =%j‘dR (ybare‘VRzG(R)lz + (pl _pv)m{]IZG(R)IZ)7 (A 29)

ie. as in §8.4, it is assumed that p(R, 2) = pu,e (2—26(R)) and that all higher-order
terms in the expansion of both the gravitational and ‘surface’ terms can be ignored.
The partition function for this model is given by the functional integral

Z= |6z (R)exp (—BFcwlzg)) (A30)

where .# is a normalization factor. Equation (A 29) is of the form of the gaussian
model which is employed in field theoretical formulations of statistical mechanics.
Consequently the partition function can be evaluated by Fourier transform
techniques. We set

z(R Za Jexp (—iQ .R),

where A is the area of the interface and the partition function becomes

At [aa @ exs| —L Tl @ - | a3
Q Q
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Since the different Fourier coeflicients decouple, the integrals can be immediately
solved:

- + are 2 my2
Zzﬂn[ﬂ((pl pV)ng b Q)] ' (A32)
o K
The Helmboltz free energy is given by
- “+ Voare ?
ﬁFz—ln,/%+§Zln[ﬁ((pl pv;w;gn Phare® )J. (A33)
Q !

The average value of |¢(Q)|? is easily obtained from (A 32):
@) >=A[B((or1— p)mg +7pare@®) ] -

Itis possible to calculate the capillary wave contribution to the surface tension using
the formula y,,, = (0F/0A)r. Since each wave vector @ scales with area as 4~ Y2 we
find from (A 33) that

1 (01— py)my
= -2 1. A34
YW 254 %[(m—p»mgwm@z ] (A4.34)

Thus, in the absence of the gravitational field, each normal mode ‘reduces’ the
‘surface’ free energy by an amount kg7’. When ¢ is finite there is an additional
positive contribution representing the work which must be done against the external
field. This contribution is proportional to ¢, the mean square fluctuation in the
average location of the dividing surface (see (154)) so that the surface tension in this
model of the interface can be written

(Qaax— Qia) L mpomy

dnfp 2 G (435)

Y ="7bare —
where @, and @, are the upper and lower cut-off as described in §8.5. If we set
A=00 and let g—0 we find

Qr%nax ln (612381'5 g‘lax)

4nfs 81 Cpare

where the last term goes to zero as g Ing. Consequently the surface tension goes to a
well-defined limit in a vanishing external field. There remains, of course, the problem
of choosing @, but if we take, as earlier, Q,,,, = 27/0 where ¢ is a molecular diameter
we can estimate the magnitude of the various terms in (A 86). Using parameters
appropriate to argon near its triple point and in the earth’s gravitational field (see
§8.5) we find

Y ="Vbare — (A 36)

y=14—319+8x 10" "*dyncem 1.

Clearly the surface tension depends crucially on the choice of y,,.. and Q,,,! More
sophisticated versions of the capillary wave model [12, 21] attempt to provide proper
prescriptions for these quantities.

We should note that attempts to improve upon the model of (A 29) by including
higher-order terms rapidly run into difficulties and only approproximate solutions

are available [76].
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