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ABSTRACT 

Recent theoretical work on the nlicroscopic structure and surface tension of the l i qu i~  
vapour interlace of simple (argon-like) fluids is critically reviewed. In  particular, the form of 
pairwise intermolecular correlations in the liquid surface and the capillary wave treatment  
of the interface are examined in some detail. I t  is argued that conventional capillary wave 
theory, which leads to divergences in the width of the density profile, is unsatisfactory for 
describing all the equilibrium aspects of the interface. The density functional formalism 
which has been developed to study the liquid vapour interface can also be profitably 
applied to other problems in the statistical mechanics of non-uniform fluids; here a new 
generalization of the 'linear' theory of spinodal decomposition is formulated and by 
considering a 'nearly uniform' fluid, some useful results for the long-wavelength behaviour 
of the liquid structure factor of various monatomic liquids are obtained. Some other topics 
of current interest in this area are briefly discussed. 
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§ ]. INTRODUCTION 
Whilst considerable progress has been made over the last decade in understand- 

ing the equilibrium properties of uniform liquids, the microscopic structure and 
thermodynamical properties of non-uniform fluids, i.e. fluids for which the average 
number density exhibits spatial variation, are relatively less well understood. On the 
other hand many important physical phenomena are associated with strongly non- 
uniform situations. For example, at the surface of a liquid in equilibrium with its 
vapour in a gravitational field (fig. i), the density will vary extremely rapidly (see 
fig. 2) for temperatures close to the triple point. Consequently any proper treatment 
of the structure of the liqui~vapour interface and the corresponding surface tension 
requires a detailed theory fbr the statistical mechanics of non-uniform fluids. 
Similarly any theory of contact angle, wetting and other interfacial phenomena must 
concern itself with the highly non-uniform density distributions which arise as a 
result of the interactions between the liquid molecules and those of the solid surface. 
Phase separation is another subject which is concerned with non-uniform fluids: the 
theories of nucleation and of spinodal decomposition involve both the equilibrium 
and non-equilibrium behaviour of density fluctuations in inhomogeneous situations. 

Fig. 1 
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Geometry for the  liquid vapour  sys tem.  The Gibbs dividing surface is located at  z=0 .  
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Liquid~vapour interface 

Fig. 2 
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The equilibrimn density profile for a simple, monatomic fluid in the neighbourhood of its triple point 
(schematic). ~ is the molecular diameter. Pl and Pv are the co-existent liquid and vapour densities. 

During the last few years there have been significant developments in the formal 
theory of the statistical mechanics of  non-uniform classical fluids. Most applications 
of  this work have been aimed at  the problem of the l iquid-vapour  interface. I t  is the 
main purpose of the present article to assess critically our present understanding of 
the s tructure and surface tension of simple (argon-like) liquids near  their triple 
points. We will show tha t  ra ther  good progress has been achieved. The second 
purpose of this paper  is to show how the general formalism can be used to derive 
useful results for other problems. In  particular,  we develop a new and ra ther  general 
theory of the early stages of  spinodal decomposition and, by considering a 'nearly 
uniform'  fluid, we derive some t ractable  theories for the long-wavelength behaviour  
of the Ornstein-Zernike direct correlation function of a uniform liquid, or, 
equivalently,  the liquid s t ructure  factor. The lat ter  is the quant i ty  which is 
measured in diffraction experiments  on liquids. Other possible applications of the 
formalism to surface and interface problems are also discussed. 

Since it is our impression tha t  the general fbrmalism is not  widely known, the first 
pa r t  of this paper  gives a self-contained account of the statistical theory. The 
remainder  and bulk of the article is concerned with the topics ment ioned above. The 
statistical mechanics of non-uniform classical fluids was originally developed by  
Morita and Hiroike [1] and independent ly by  De Dominieis [2] using the techniques 
of functional differentiation and cluster expansion. A similar approach was later 
developed by Stillinger and Buff [3] and Lebowitz and Pereus [4] who derived 
explicit results for the various thermodynamic  potentials of  a non-uniform fluid in an 
external potential  in terms of integrals with respect to density of the Ornstein-  
Zernike direct correlation function. Whilst  the general formalism proved extremely 
fruitful for the development  of  approximate  integral equations for the pair  

K2 
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146 R. Evans 

distribution function of a unitorm fluid [5,6], it application to the statistical 
mechanics and thermodynamics of intrinsically non-uniform systems was not  
forthcoming until quite recently when several authors [7, 8, 9, 10, 11, 12] employed 
the formalism to develop theories of the l iquid-vapour interface. 

Our presentation of  the theory differs from that  of Morita and Hiroike and De 
Dominicis. Whereas these authors use cluster expansion techniques to derive the 
fundamental  variational principle for the grand potential,  we obtain the same 
principle more directly using an argument borrowed from the theory of the 
interacting electron gas [13, 14]. This approach also has the merit tha t  it readily 
yields useful approximation schemes. In particular the van der Waals expansion of 
the Helmholtz free energy of a fluid as a series of density gradients can be derived and 
the coefficients properly identified, for the ease where the density is slowly varying 
throughout  the fluid. A presentation of the theory which is similar to the present can 
be found in an appendix to a recent paper by Yang et al. [15]. 

Our article is arranged as follows. In § 2 we derive the variational principle for the 
grand potential  and this introduces two key quantities ~ [ p ]  and f~v[P] which are 
funetionals of the one-particle density p(r). For  a given interaction potential  and a 
fixed external potential, f~v[P] has a minimum value when p(r)=p0(r),  the 
equilibrium density of the system and this minimum value f~v[Po] is the grand 
potential; ~ [ p ]  is a unique functional, independent of the external potential; ~[Po]  
is the 'intrinsic' Helmholtz free energy of the fluid. In § 3 we show that  both ~,~ and f~v 
act as generating functionMs for hierarchies of correlation functions. The functional 
derivatives of ~ with respect to p(r) give rise to the direct correlation functions while 
the functional derivatives of ~v  with respect to the external potential yield the n 
particle distrib,ution functions. Some formal results for the various thermodynamic 
potentials of a non-uniform fluid as integrals with respect to density of the direct 
correlation functions are given in § 4. Although these results are identical to those of 
Stillinger and Buff [3] and Lebowitz and Pereus [4] our analysis dispels earlier 
uncertainty concerning their uniqueness. We also discuss the functional dependence 
of o~ on the interaction potential. For  systems in which the lat ter  can be represented 
as a sum of pairwise intermolecular potentials q~, J~[P0] can be usefully written in 
terms of the free energy of a reference system in which the molecules interact via a 
potential q~,, plus a 'perturbat ion '  contribution from the remainder of the  inter- 
molecular potential i.e. ~ - q~r. This result forms the starting point for the various 
thermodynamic perturbat ion theories of non-uniform fluids. In § 5 exact  integro- 
differential equations for the equilibrium density are presented. These were 
originally derived by Lovet t  et al. [9] and Wertheim [10] and they form the basis for 
much of the recent work on liquid surfaces. We discuss the ease of slowly varying 
density in some detail in § 6. The gradient expansion is derived and a procedure for 
calculating the coefficients is given. This procedure is only strictly valid when the 
density is both slowly varying and exhibits only small departures from its mean 
value, i t  is possible to effect a partial summation of the gradient expansion and 
recently Ebner  et al. [141 have used this to develop a practicable scheme for 
calculating the free energy of non-uniform systems. Their work is also described in 
this section. In  § 7 we describe a recent application of the formalism to the theory of 
uniform liquids; we show tha t  the results of §§ 3 and 4 can be employed to construct 
useful approximate theories for the long wavelength behaviour of l~he Ornstein- 
Zernike direct correlation function of a dense liquid in which the molecules interact 
via pairwise potentials [16, 17]. 
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Liquid-vapour interface 147 

Section 8 constitutes an extensive summary of recent work on the statistical 
mechanics of liquid surfaces. In § 8.1 we describe the van der Wants theory of the 
surface tension and density profile of a planar interface and compare this approach 
with the more sophisticated thermodynamic perturbation theories [18, 19]. We show 
tha t  these various t reatments  all give roughly the same monotonic density profile 
and qualitatively similar surface tensions for a Lennard-Jones  fluid near its triple 
point. The Kirkwood-Buff  [20] theory of surface tension and the use of closure 
approximations for solving the associated integro-differential equation for the 
density profile are briefly discussed in § 8.2. We derive a result for the surface tension 
in terms of the Ornstein-Zernike direct correlation function of the non-uniform fluid 
[7, 8] in § 8.3. The import of this result is discussed. By analysing two of the integro- 
differential equations for the equilibrium density, we show tha t  the density profile 
should decay exponentially into each bulk phase but  tha t  the decay length is much 
larger for the liquid side of the interface [11]. In § 8.4 we discuss the tbrm of pairwise 
correlations in the interface and review the interesting and important  work of  
Wertheim [10] which predicts the occurrence of long-ranged correlations parallel to 
the surface. We show that  such correlations are consistent with a description of the 
surface in terms of capillary waves [11, 12]. The possibility of building up the 
equilibrium density profile by 'unfreezing' capillary wave-like fluctuations in some 
hypothetical  'bare' interface is examined in §8.5. Conventional capillary wave 
theory is found to lead to unrealistic (divergent) results for the width of the density 
profile. We also comment on recent applications [8, 12, 21] of capillary wave models. 
In § 8.6 we compare the results of recent molecular dynamics simulations of the 
density profile and surface tension with those obtained from the van de Waals and 
related approximate theories. For  a Lennard-Jones fluid near its triple point the 
results for the density profile are found to be in good agreement; the '10-90' width of  
the profile is about  two molecular diameters. For  parameters appropriate to liquid 
argon the calculated surface tensions lie in the range 12 18 dyn c m - 1  

§ 9 we show tha t  the theory ofspinodal decomposition can be placed on a proper 
microscopic basis using the methods of this paper. Finally, in § l0 we briefly discuss 
some other topics of current interest and present some conclusions and perspectives. 

§ 2. THE VARIATIONAL PRINCIPLE FOR THE GRAND POTENTIAL AND THE EQUILIBRIUM 

DENSITY 

We consider a grand canonical ensemble of particles and define the equilibrium 
probabil i ty density fo for N particles at temperature T: 

fo = :a- 1 exp( - f l ( H  N - #N)), (1) 

where H N is the hamiltonian when there are N particles present,/~ is the chemical 
potential  and fl = 1/KBT. The grand parti t ion function E is given by 

E = Trc, exp ( - fi(H N - #N)), (2) 

where TI'cl denotes the usual 'classical' trace, i.e. 

+ 1 
Tr¢,------N~o ~ I d r ,  . . .drN~dpl . . .dpN, 

where rz, etc. denote position variables and Pl, etc. momentum variables. Following 
Mermin [13] we consider the functional 

n[:fl = Tr~ , f (H~ - # N  + B -  1 in f). (3) 
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148 R. Evans 

For  the equilibrium probabili ty density we clearly have 

f~[fo] = - fi- 1 in E = f~. (4) 

f~ is the grand potential. The functional f~[f] also satisfies the inequality 

f~[f] > f~[fo], f#fo (5) 

for all probabili ty densities with Tr¢lf= 1. This result is easily proved since from (1, 3 
and 4) it follows tha t  

fl~'] = fl[fo] + fl- ~(Trd flnf-- Tro~ f l n f o  ) 

and the term in brackets is positive if f¢f_ The latter follows from a Gibbs 
inequality (see e.g. [22]). 

We now restrict consideration to hamiltonians of the tbrm 

HN=T+ U+ V, (6) 

where 
N 

T = p /2m, 
i = 1  

and 

U -  U(r 1 . . . . .  rN), 

N 

v =  Voxt(r,). 
i = 1  

U is the potential energy of interaetion of the particles. Pairwise addit ivi ty of this 
function is not, in general, assumed. Vext(r) is an arbi t rary external potential and m is 
the mass of each particle. The system is assumed to be enelosed in a volume ~ .  The 
equilibrium density p0(r) for such a system is given by 

po(r) = (p( r ) }  (7) 
N 

where h(r) = ~ ~(r - r~) is the density operator and the eonfiguration average of any 
i = 1  

operator 0 is defined by 

(O)-Tr~,foO. 

Sincefo is a function of V~xt it follows that  po(r) is also a functional of Vex t. We can also 
prove the more useful result tha t fo  is a functional of Po (r). The proof (see Appendix 1 ) 
proceeds by showing that ,  for a given interaction potential  U, Vext(r ) is uniquely 
determined by po(r), i.e. only one Voxt(r) can determine a given po(r). The resultant 
Vext then determines fo. Thus, it follows that  fo is a functional of po(r). 

This result implies that,  for a given U, 

i f [p]  = T r c t f o ( T +  U+fl i lnfo ) (8) 

is a unique functional of the density p(r). The same form is valid for all external 
potentials. Y[p]  plays a key role in the development of the theory. The other key 
quant i ty  is the functional 

f~v[P] = S drp(r) Vext(r) + Y [ p ]  - # S dr p(r). (9) 
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Liquid~vapour interface 149 

When p(r)= po(r), the equilibrium density, fly[p] reduces to the grand potential ft. 
Furthermore,  this is the minimum value of the functional. In order to prove this we 
suppose p'(r) is the equilibrium density associated with another  probability density 
f '  of unit tI'ace,t then 

f~[f'] = 'l'rc~ f '  (H N - # N  + fl- ~ lnf ')  

= ~dr p'(r) Vext(r ) + g [ p ' ]  - -#  ~dr p'(r) 

=f~v[p'], (lO) 

where 

~ [ p ' ]  = T r c f f ' ( T +  U+fi  1 lnf ') .  

From (5) we have ~[fo] < ~ [ f ' ]  so it follows that  

~v[po] < f~v[P']. (11) 

Thus, the correct equilibrium density p0(r) minimizes the tunetional f~v[P] over all 
density funetions that  can be assoeiated with the potential V,xt(r). 

We can express these impor tant  results as follows: 

6f~v[P] =0  (12a) 
3p(r) po 

and 

f~v[Po] = fL  (12b) 

From (9) and (12 b) it is clear tha t  ~[Po]  is the 'intrinsic' Helmholtz free energy of the 
system. The total Helmholtz free energy F is 

F = ~ drpo(r ) Ve,t(r) + ff[P0], (13) 

which includes the contribution from the external potential. From (12a) we have 

Vext(r) + #in[PO; r] =# ,  (14) 

where we have defined an intrinsic chemieal potential 

a~ [p ]  
#in[P; r]= (15) 

cSp(r) 

Equat ion (14) is the fundamental  equation in the theory of non-uniform fluids. 
Given some means ofdeterming Y[p],  this is an explicit equation for the equilibrium 
density. For example, in an non-interacting system (U =  0), ~ [ p ]  reduces to 

~'~id~,l[P] = f i -  1 ~dr p(r)(ln (23p(r)) -- 1) (16) 

where 2 = (hzfl/2mg) 1/2 and the intrinsic chemical potential is fl-  a in (23p(r)). In this 
ease (14) yields the familiar result 

po(r) = z e x p  ( - f l  V~xt(r)), (17) 

where z = 2-  3 exp (tip) is the fugacity. When the effects of interactions between the 
particles are included, #i., and heuee #, are not simple functions of the local particle 

SThis proof assumes the existence of a potential V'ext (r) which gives rise to the density p'(r) st) that  the 
appropriate f '  exists. The existence of Y[p'], as given above, is then guaranteed. 
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150 R. Evans 

density and, in generM, Pin cannot be identified with the chemical potential of a 
uniform fluid with density equal to the local density. In § 6 we will see that  only in the 
limit of very slowly varying densities will such an identification become valid. 

§ 3. D I R E C T  CORRELATION FUNCTIONS AND MOLECULAR DISTRIBUTION FUNCTIONS 

The effects of interactions between particles are most readily incorporated by 
introducing a hierarchy of direct correlation functions. We define a functional ¢P[p] 
as the interaction part  of,~[p]:  

~ [ p ]  = ~idoa~[P] -- (I)[p]. (~8)  

For a given interaction potential U, ¢P is a unique functional of p(r). The intrinsic 
chemical potential can then be written as: 

fl#i.[P; r] = ln  (23p(r))-c[p; r] (19) 

where 

c [p,' r] _~f l~ ]~  (20) 
5p(r) 

is the contribution due to interactions. From (14) we find that  the equilibrium 
density is given by 

po(r) =z  exp ( - fl Vcxt(r) + c[po; r]). (21) 

The quanti ty - f l - i r [p0 ;  r] is the additional, effective one-body potential which 
determines, in a self-consistent fashion, the equilibrium density. I t  is completely 
analogous to the effective potential which appears in the one-electron SchrSdinger 
equation in the Kohn-Sham [23] theory of the inhomogeneous electron gas. 

c[p; r] is only the first member of the hierarchy of correlation functions generated 
by ¢P[p]. The higher order functions are obtained by further differentiation: 

6e[p; ri] f1626p[p] f162O[p] 
('[fl; ri, r2] = 6p(r2) --Ofl(r2)6p(rl) --Sp(rl)c~p(r2) 

fi2c[p; r i ]  
c[p; rl, r2, r3] -- @(r3)bp(r2 )=c[p; r2, rl, r3] etc. 

=tiff; r2, rl] 

t (22) 

The second derivative, evaluated at  the equilibrium density, is usually referred to as 
the Ornstcin-Zernike direct correlation function of the non-uniform fluid. The 
reason for this will become clear but  first we note tha t  Ftv[p] is also a generating 
functional. I f  we set 

u ( r ) - p -  Vext(r) (23) 

then (9) becomes 

f~v[p] = -- ~dr p(r)u(r)+~[p]  (24) 

Differentiating w. r. t. u(r) and recalling that  p(r) is a functional of u(r) we find 

(Sf~v[p] r , , (~p(r')//5~[p] u(r ')) 
~u(r~-- p(r)+ j a r  ~ - ~  6p(r') 
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Liquid~vapour interface 151 

F r o m  (14) it follows t ha t  when p ( r )=  po(r), the  te rm in brackets  vanishes and 

6ftv[po] 
- po(r). (25) ~u(r) 

Thus  ~v  is a generat ing funct ional ,  w.r.t ,  the  var iable  u(r), for the equil ibrium 
dens i ty  po(r). Since f2v[Po ] = f2, (25) could, of  course, have been der ived direct ly  f rom 
the grand par t i t ion  funct ion (see Appendix  2). Differentiat ing f2 a second t ime we can 
show (Appendix 2) t ha t  

__ j~- 15Po(rl) 
if(r1, r2 )=  6u--~2 ) = ( ( ~ ( r l ) -  p0(rl))(15(r2)-- Po(r2))}. (26) 

~(r  1, r2) is often referred to as the  dens i ty  f luctuat ion funct ion or the  dens i ty~ lens i ty  
corre la t ion funct ion and is p ropor t iona l  to the  stat ic linear dens i ty  response funct ion 
(see Appendix  3). I t  is a posit ive definite quan t i t y  which is closely related to the usual 
pairwise dis t r ibut ion funct ion p(2)(rl, r2): 

if(r1, r2) = p(2)(r 1, r2) + po(rl)h(rl  - r2) - po(rl)po(r2). (27) 

(This resul t  and the  definitions of  the  molecular  dis tr ibut ion funct ions are given in 
Appendix  2). The  higher  order  d is t r ibut ion  funct ions can he ob ta ined  by  fur ther  
different iat ion [4]. 

The  inverse of  ~ is re la ted to  the Orns te in-Zernike  direct  correlat ion funct ion as 
defined above.  In  order  to demons t r a t e  this we re-write (21) as 

c[po; r l ]  = I n  (23po( r l ) ) -  flu(r1) (28) 

and different iate  w. r. t. po(r2): 

c(2)(rl, r2)-C[po;  rl,  r2] = 
cS(r~ -- r2) flcSu(r 1) 

po(rl) 5po(r2)" 
(29) 

The  second te rm on the r. h. s. o f  (29) is - N - 1 ( r l ,  r2) where the inverse is defined in 
the convent ional  way  by  

~dra (¢-  1(rl, ra)N(ra, ¢2) = 5 ( r l  - r2). (30) 

Subs t i tu t ing  from (27) and (29) into (30) we find t ha t  c(2)(rl, r2) and fl(2)(rl, r2) satist~¢ 
the integral  equat ion:  

p(2)(r 1, r2) -- po(rl)po(r2) = po(rl)flo(r2)('(2)(rl, r2) 

+po(r2) ~dr3 (P(2)(rl, r a ) -  po(rl)Po(r3))c(2)(¢ 3, r2) (31) 

Fo r  a uniform fluid of  dens i ty  Po, c(2)(r l , r2)-c(2)([r l - r2[)  and p(2)(rl,r2) 
-- po 2 g(lr~ - r2[), where g(r) is the  radial  d is t r ibut ion function,  and (31) reduces to the  
usual Orns te in-Zernike  equat ion:  

g(r) -- 1 = c(:)(r) + Po I dr' (g(r') - 1)cf2)([r - r'l). (32) 

Consequent ly ,  c(:)(rl, r2) can be legi t imate ly  described as the generalized Orns te in-  
Zernike correlat ion function.  
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152 R. Evans  

§4. THERMODYNAMIC POTENTIALS FOR ARBITRARY EXTERNAL POTENTIALS 
In this section we derive some formal expressions for the various thermodynamic  

potentials  by functional integration w. r. t. (1) the particle density, (2) the external 
potential  and (3) the interaction potential.  

4.1. Integration w. r. t. particle density 
We suppose tha t  for a given fl, U and Vex t w e  have some prescription for solving 

(14) for the equilibrium density of  the system. I f  we suppose fur ther  tha t  we can 
evaluate  the Ornstein-Zernike correlation function for a range of non-uniform 
densities then we can evaluate the thermodynamic  potentials of  our system by  
functional integrat ion w. r. t. density. We concentrate on the functional ¢P[p] and 
consider a pa th  in the space of density functions which is characterized by  a single 
pa ramete r  a: 

p~-  p(r; ~) = pi(r) at  a = 0  

=p(r)  a t  e = l  (33) 

where fli(r) is some initial (reference) density and a varies between 0 and I. 
In tegra t ing  (20) we have 

('~ (" ap(r; ~) aO[p~] 
¢[Pl=' EP'I+Jo"=y 

and if we choose 

(34) simplifies to 

p(r; ~) = pi(r) A- c((p(r) -- pi(r)) (35) 

; f  O[pl=OLpiJ+fi -1 de dr(p(r)-pi(r))c[p~;r]. (36) 
o 

A further  simplification is possible if the initial density pi(r) = 0. In  this ease (I)[pi] = 0 
since the effect of interactions become negligible a t  sutIieiently low densities (we 
assume finite range intermolecular potentials) and (36) reduces to 

O[p]= ~- l flod~ f dr p(r)c[c~p; r]. (37) 

Using (22) this can be integrated again ahmg the same pa th  (35): 

1 1  fdr~fdr2 r2]. (38) ' P(rl)p(r2)c[o:o~'P;rt, 

Since q)[p] is a unique functional of p(r) this result is independent  of the choice of 
integration pa th  i.e. paths other than (3"5) lead to the same value for (P. 

The Helmholtz  free energy of the equilibrium system of density p0(r) is given by  
(13) and (18): 

~J = I dl* D o ( t )  Vext(r)  -I- ~ i d e a l [ P 0 ]  - -  (I)[pO] • (39) 
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Liquid~apour interface 153 

This result is useful provided we can evaluate c[apo; rl, r2] for all density distri- 
butions aPo(q) with 0 ~< ~ ~<1. The Gibbs free energy G is simply 

G=#~dr Po(r) 
with a free energy density 

#po(r) =fl- lpo(r)(flVext(r ) + ln(23p0(r)) - c[p0; r]), (40) 

where we have used (28). The grand potential  then follows from (39, 40 and 16) by 
formally eliminating the chemical potential: 

~=F-G 
= fl- 1 ~ dr po(r)(c[po; r] - l) - @[Po]. (41) 

As stressed recently by Saam and Ebner  [24], these results for the thermody- 
namic potentials are unique and do not  depend on the particular choice of 
integration path. The expressions for ~ and F can be simplified by integrating by 
parts  in (38) 

~=fl- l ~ drl Po(rl)[ flo&ta f dr2 Po(r2)c[~po; r> r2]- l] (42) 

and 
F 

F = fi - 1 S dr l P o ( q )  I fl V"xt(r l) + in (23po ( q ) )  - 1 

; fldo~(o~-l)fdr2Po(,2)c[O~po;,1,,2]J. ( 4 3 )  

For  a uniform fluid (Vext =0;  po(r)= Po) these formulae for the thermodynamic 
potentials reduce to well-known results. In this limit the zeroth Fourier coefficient of 
the direct correlation function satisfies the Ornstein-Zernike compressibility 
equation: 

1 - Po S dr c(2)(r) = fl(PoZr)- 1 (44) 

where Zr is the isothermal compressibility at  the appropriate density and tempera 
ture. The chemical potential and pressure p are obtained by integration since 

(P0Zr) - 1 = Po = (45) 
T T 

and ~1= - p ~  for a uniform fluid. The Helmholtz fi'ee energy is just ~ + G .  
As (40), (42) and (43) were originally derived by Stillinger and Buff [3] using 

cluster expansion techniques, the validity of these formulae for dense liquids was 
queried. Later  Lebowitz and Percus [4] derived identical formulae using functional 
integration methods equivalent to the present and thus showed the results were also 
valid for liquids. These authors, however, had doubts concerning the uniqueness and 
hence, usefulness, of the results for the Helmho!tz free energy and the grand 
potential.  They noted that  of the three free energy densities only the Gibbs density is 
a 'local functional'  of the equilibrium density, (this follows since # depends solely on 
the effective one-body potential at  the equilibrium density) and argued that  it was 
not  possible to find path independent expressions for the other energy densities. For  
these reasons Lebowitz and Percus discussed only approximations for the Gibbs t~ee 
energy. Our present derivation should dispel such doubts [24]. The existence of the 
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154 R. Evans 

unique functional ~ [ p ]  (or equivalently O[p]) implies tha t  all three potentials should 
be generated from the same scheme. This point will be illustrated in § 6 where we 
derive approximations for the thermodynamic potentials of systems in which the 
density varies slowly. 

As noted at  the beginning of this section, any application of the general 
formalism described above requires the determination of Po(rl) plus some prescrip- 
tion for e[p; rl, r:] in a non-uniform fluid. Finding an exact solution of eqn. (21) for 
the equilibrium density is, of course, difficult. This equation can be transformed to an 
integro-differential equation (see § 5) involving the Ornstein-Zernike correlation 
function but  this remains a daunting task. For  practical purposes it is bet ter  to write 

~v[P] =f i -  1 ~dr p(r)(flVe~t(r) - fl# + In (St3p(r))- 1 ) -  O[p], (46) 

with ¢i)[p] given by (38) and parametrize the final density p(r). By minimizing the 
r. h. s. of  (46) w. r. t. the parameters  an approximate equilibrium density and grand 
potential  can he found directly. Saam and Ebner [24] have suggested tha t  it should 
be practicable to solve the Percus-Yevick equations for a non-uniform fluid over a 
wide range of densities and hence evaluate c[p; rl, r2]. This would make a calculation 
of ~ along these lines quite feasible. 

4.2. Integration w.r.t, an external potential 
~v is itself a generating functional for the equilibrium density so we can formally 

integrate (25) using the potential function 

u~ - u(r; o~) = ui(r ) + 0~(u(r) - ui(r)) (47) 

where ui(r ) is some initial (reference) value of the q u a n t i t y / l -  Vext(r). This yields 

~=f~i - -  dc~ drp(u~; r)(u(r)-ui(r)) ,  (48) 
0 

where f~i is the grand potential of the initial state. This procedure requires p(u~; r), 
the equilibrium density for an ' intermediate'  value of the potential function. While 
this could be expressed as an integral over N(r 1, r2) (see (26)) such a scheme does not  
appear to be useful for the purpose of calculation. 

4.3. Integration w.r.t, a pairwise interct¢'tion potential 
The grand potential  is, of course, a functional of the interaction potential U. I f  

the lat ter  can be written as a sum of pairwise potentials: 

U ( r l  . . "rN ) = 1 ~  gb(ri ' r j),  (49) 

it is easy to prove (see Appendix 2) tha t  

&~ ~v[po] (5o) fl(2)(r I , r2)= 2c~(~(rl, r2) = 25(~(rl, r2) 

tbr a fixed potential u(r). Thus, for pairwise intermolecular potentials, the grand 
potential is a convenient generating functional for the equilibrium pairwise 
distribution function. From (9), (18) and (50) it follows that  

p(2)(rl, r2) = 2 8~[P°]  = _5(I)[P°] (51) 
( ~ ( r l ,  r2) --26~(/)(r 1, r2)" 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
I
B
-
L
i
z
e
n
z
e
n
 
-
 
T
I
B
 
L
i
c
e
n
c
e
 
A
f
f
a
i
r
s
]
 
A
t
:
 
1
2
:
4
9
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Liquid~vapour interface 155 

These equations can be functionally integrated. For  example, 

; f f  ~ [ p O ] = ~ r [ P o ] - ~  -1 d0~ dr 1 dr2p(2)(qS~;rl,rz)(qS(rl,r2)-qSr(rl,r2)), (52) 
0 

where we have chosen a one-parameter  integration path: 

~ ~ q~(r 1, r2; 0~)= ~br(r 1, r2)-F 0~(~b(r 1 , r 2 ) -  qSr(rl, r2) ) . (53) 

~r[PO] corresponds to an initial (non-equilibrium) reference system in which the 
pairwise potential is ~br(rl, r2) and the density is po(r), p(2)(¢~; rl ' r2 ) is the pairwise 
distribution function for a system of density P0(r) in which the particles interact via a 
pairwise potential ~b~. I f  qSr(rl, r2 )=0  then ~~=~ide~l and (52) reduces to 

f g[P0]  = ~ideal[P0] + 1  d r l  d( 2 p(2)(~b~; r 1, r2)q~(r l, r2). (54) 

The grand potential can be derived in a similar fashion. This scheme avoids the 
need to calculate correlation functions at different densities (once the equilibrium 
density has been determined) and thus it might find useful applications, t For  
uniform fluids (52) reduces to the familiar coupling constant algorithm for the 
Helmholtz free energy of a system in terms of that  of a reference system at  the same 
density and temperature.  This algorithm forms the basis of the various thermody- 
namic perturbat ion theories of bulk liquids [22]. Equation (52) has been employed as 
the starting point for perturbat ion theories of the surface tension and density profile 
of the l iquid-vapour interface (see §8.1) and in § 7 we will use (52) to formulate a 
perturbat ion theory for the long-wavelength behaviour of the Ornstein-Zernike 
direct correlation function of a dense uniform fluid. 

§ 5. INTEGRO--DIFFERENTIAL EQUATIONS FOR THE EQUILIBRIUM DENSITY 
Here we present several exact  equations for the equilibrium density po(r) of the 

fluid in an external potential. We begin with eqn. (28) which is equivalent to the 
fundamental  result (14). Taking the gradient on each side we have 

fl- 1V 1 In po(ri) + Vi Vext(rl) = fl- iVlc[po; r l] 

=f l -1  ~dr2 C(2)(rl, rz)V2Po(¢2), (55) 

where we used (22) and (29). Equat ion (55) has a simple physical interpretation. I t  
states tha t  the effective force on a particle due to interactions with the other particles 
fl- 1Vlc[p0; rl] is exactly balanced by  the sum of the external force - V1 Vext(rl) and 
the kinetic term. Given some (approximate) means of evaluating the Ornstein- 
Zernike correlation function, (55) could, in principle, be solved for p0(rl). 

The manipulation involved in going from the first to the second line of (55) is not 
immediately t ransparent  and warrants  clarification. Since the potential  u(r) is a 
unique functional of the equilibrium density po(r) (see Appendix 1) it follows that  if 
p0(r) is displaced by a spatial distance s, then u(r) must be similarly displaced, i.e. if 
u(r~; [Po(r)]) = u(h),  where we have explicitly indicated the functional dependence on 

t For the interacting electron gas, the analogous procedure can be used to calculate the correlation 
energy. 
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156 g.  Evans 

po(r), then u(rx; [po(r + s)])= u(r i + s). We now make a functional Taylor  expansion 
in po(r): 

, 5 u ( r ~ ;  [Po] )  
u(rl;[po(r+s)])=u(rl;[Po(r)])+ jctt2 T---T,~ I (po(r2+s)--Po(t2)) -I-,.. 

Opo(r2) I$=o 

where the derivative is taken at the undisplaced density. I t  then follows that  

, 6 u ( r t ; [ p o ] )  s = o  u(rl+s)--u(ri)----  jar2 - - - -  ( P o ( r 2 + s ) - - p o ( r 2 ) ) +  . . .  
~po(r2 ) 

so that  in the limit s ~ O  we have 

5u(rl) 
VlU(¢l)---- ffdr 2 bpo(~z)VZPo(¢2) 

and (55) then follows directly using (28) and (29). 
Similarly, we can use the fact tha t  since u(r) is the only field which locates p0(r) in 

space, shifting u(t) by a distance s must cause a similar shift in po(t). Such an 
argument simply leads to the inverse of the last equation: 

VlPo(h) = fdr25p°(q) Vzu(r2), J 5u(r2) 

which, from (26) and (27), can be written as 

VlPo(r l)= -fi~drz(p(2)(rl,rz)+po(rl)5(rl-r2)-po(rl)po(r2))V2V¢,,t(r2). (56) 

Equat ions (55) and (56) were derived, independently, by Lovet t  et al. [9] and 
Wertheim [10]. Neither equation depends explicitly on the form of interaction 
potential; they are completely general. For  a fluid in which the particles interact via 
pairwise potentials (55) is equivalent to the first member of the Yvon-Born-Green  
hierarchy. In this ease the effective force acting on a particle at position r t due to 
interactions can be calculated explicitly from the pairwise potential ¢(ri, r2) and we 
have 

1 
fl- 1VlCfPo; r l ] -  

po(rl) 

Using (55) we find 

~dr2 Vi¢(rl,  r2)p(Z)(ri, r2). (57) 

ViP0(rt) + flp0(ri)Vl Vext(r i) = - fl ~dt 2 V l ~ ( r l ,  r2)p<2)(r i , r2), (58) 

which is the first YBG equation. This result is usually derived directly from the 
definitions of the distribution functions. Equations (55), (56) and (58) are important  
in the theory of liquid surfaces and we will make use of them in § 8. For  practical 
calculations on insulating fluids, (55) is probably the most useful since it involves 
only the direct correlation function. The latter is still short ranged in a non-uniform 
insulating fluid, i.e. c(2)(rl, r2)--*0 when ]r 1 -r2[ > l, the range ofintermolecular  forces 
in the fluid. Thus it may  be easier to construct approximations for c(2)(rl, r2) than for 
the long range function p(2)(r 1 , r2) [9]. Furthermore,  ifpo(r ) is slowly varying over the 
range of intermolecular forces so that  llVpo(r)[<<po(r) eqn. (55) reduces to the 
equation of hydrostatics. Under this condition 
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Liquid~vapour interface 157 

~dr2c(2)(ri, r2)V2Po(r2)--~Vlpo(rl)~dr2 e(2)(lr~- r2[) where c(2)(Ir i --r21) refers to a uni 
form fluid of density po(rl). Equat ion (55) can then be writ ten as 

fi- 1VlPo(rl)(1 -po ( r l )~d r  c(2)(r))= - po(ri)Vi Vcxt(rl), (59) 

The term in brackets is fi(PoXv)- 1 where ZT is the isothermal compressibility of the 
uniform fluid of density po(rl). From (45) it then follows 

Vlp(ri)--= ( (~-P-I) ~VlflO(rl)=-- -flo(rl)V1rext(ri) ( 6 0 )  
\ opo / 

where p(rl) is the local pressure. A more systematic t rea tment  of the c~se of slowly 
varying densities is presented in the next  section. 

§6. SLOWLY VARYING DENSiTiES 
In many  problems of interest we are concerned with density distributions 

which vary  slowly over the range of molecular correlations. Such distributions occur, 
for example, for fluids in gravitational or centrifugal fields. In such circumstances 
the various thermodynamic potentials possess energy densities which are equal to 
those of a hypothetical  uniform fluid whose density is everywhere po(r), the 
equilibrium density at position r in the real non-uniform system. When the density 
varies more rapidly it is natural  to expand the energy densities about  their local 
density values in a series of density gradients. 

6.1. The gradient expansion 
The formal development of gradient expansions is most easily accomplished 

by extending the arguments originally presented by Hohenberg and Kohn [25] for 
the interacting electron gas. We suppose tha t  a density distribution p(r) can be 
usefully written in the form p(r)=T(r/ro) where the scale parameter  r o - - ~ .  The 
function W can exhibit considerable, but  long-wavelength variation. We choose to 
expand the functional f [ p ]  but  we could equally well work with (I)[p]. For  large r o we 
assume tha t  the energy density f[p] can be expanded as a series of density gradients: 

i f [p]  = ~ drf[p] 

with 

3 3 

flpl =fo (p(r))+ ~ 3(p(r))Vip(r)+ ~ [fl~ (P(r))Vip(r)Vjp(r) 
i=1  i,j-1 

+ f l ~ ( p I r ) ) V ~ V ~ p ( r t ]  + . . . .  (6~) 

The coefficients f0(p(r)), fi(p(r)) etc., are functions of p(r) not functionals, and the 
subscripts i , j  denote cartesian components. Successive terms in (61) correspond to 
successive powers of the inverse scale parameter  r o 1. For  a finite %, this series does 
not strictly converge but, provided r o is large enough, it may  be useful in an 
asymptotic  sense. Sincef[p] is a unique functional ofp  independent of Vext(r), it must 
be invariant  under rotations about  r. The coeifieientsfo, f /etc. ,  are functions of scalar 
p(r) so these are invariant under rotations. I t  is straightforward to show that  f[p] 
must have the form 

f[P] =¢o(P) + f(2")(P) V2p + f(2b)(p)V p . V p + 0 (V~) 

where the subscript 2 now refers to the number of gradient operations. The term in V 2 
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158 R. Evans 

p can be written as 

V.  (f(2")(p)Vp) df~)(P) (p)Vp . Vp 
dp 

and it is clear tha t  the divergence term will vanish on integrating liP] over the 
volume of the system. Thus the energy density simplifies by symmetry arguments to 

f[P] =fo(P) +.f2(p)V p . V p + 0 (V~) 

and the appropriate expansion of ~ [p ]  must be of the form 

o~[p] = ~ dr (fo(p(r)) +f2(p(r))lVp(r)l 2 + 0 (V~)) (62) 

Clearlyfo(p ) is the Helmholtz free energy density of a uniform fluid of density p but  
the other coefficients f2(P) etc., are as yet, undetermined. 

The intrinsic chemical potential is readily evaluated 

#,n[P; r] -~ 5p(r) =Jo(P) -f£(P)IVP[ z - 2f~-(P)V2P + . . .  (63) 

where the prime denotes differentiation w. r . t .p .  From (14) it follows that  the 
equilibrium density p0(r) satisfies the differential equation 

p = Vext(r ) + #(p0(r)) -f£(po(r))lVpo(r)l 2 - 2f2(po(r))V:po(r) + . . . ,  (64) 

where #(p) =fo(P) is the chemical potential of the uniform fluid of density p. Given 
some procedure for evaluatingf2(p) etc., (64) can be solved for po(r) and the various 
thermodynamic potentials calculated. 

6.2. Evaluation of the coefficients in the gradient expansion 
Provided we restrict consideration to density distributions which vary slowly 

and exhibit only small departures from some mean value pu, the coeffieients.f 2 etc., 
can be expressed in terms of the density response functions of a uniform fluid of 
density p,. I f  Ip(r) I = Ip(r)- p,I <<p, the functional ~ [ p ]  can be expanded in powers of 
~(r). The existence of such a series then guarantees the existence of the gradient 
expansion. Here we derive the result for f2(P). This involves only linear response 
theory. The higher-order coefficients can also be evaluated but  they require, in 
general, higher-order, non-linear response functions [25] and are consequently more 
difficult to calculate. 

The functional Taylor expansion of ~ is 

c$~[p] (52g[P] p(r)p(r') + 
o~[p] =o~[p,] + Sdr 5p(r) ~P(r)+½.ISdrdr' 5p(r)Sp(r') . . . ,  (65) 

where I~ means the densities are to be set equal to Pu, a constant, after performing 
the functional differentiation. The second derivative of f f  is related to the Ornstein- 
Zernike correlation function (see (18), (19) and (22)): 

b2g[p] b(r--r') 
/~a ~')p(r)op(r = p(r) c[p; r, r'] (66) 
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and for a uniform system this can only depend on Ir-r']. Equation (65) can then be 
rewritten: 

t i p ]  = ~[p~] + ~ dr #(pu)P(r) 

1 , - -  +~fi j" j" dr dr ( ~(r~ r') c[pu; ,r - r'l] ) p(r),(r') 

+ O ( p  3) 

On Fourier transforming the term in p2 we have 

~ [ p ] = ~ [ p ~ ] +  ~drp(p~)p ( r ) -2~  e[p~; q]- P ( q ) p ( - q ) + O ( p  3) (67) 
q 

C[pu; q] is the Fourier transform of the Ornstein-Zernike direct correlation function 
of a uniform fluid and for a fluid in equilibrium is related (see Appendix 3) to the 
(static) linear density response function )i(q): 

1 
~'[p.; q] - - -  = ~/z(q)  (68) 

Pu 

Equat ion (67) is valid for any density distribution provided ]p(r)/p, I is small. If, in 
addition, p(r) is slowly varying only the low q Fourier components will be important 
in the expansion of the term in p2 and we can expand the direct correlation function 
in powers of q2: 

c[p.; q] = a(pu) + b(pu)q z + d(p~)q 4 + ... (69) 

Substituting into (67) and Fourier transforming we find 

Y[P] = ~[Pu] + ' dr #(pu)T)(r) - ~ [  ( a(pu)-~ ) ' drp(r) 2 
7 

+ b(pu) ~ dr IVp(r)l 2 + . . . /  + O ( p  3 ) (70) 
_t 

In order to compare this result with the original gradient expansion we expand fo(P) 
and f2(P) in (62) in Taylor series about  pu: 

. . . .  ) 
~ [ p ]  = ~dr fo(p~)+f'o(pu)~)(r)+ Jo(Pu (pu)~(r)2+ .. .  

2 

+ IV~(rtl2(f2(pu/+f~(p./~(r/+ . . . / +  0 (V~ q .  (71) 

Comparing coeNeients between (70) and (71) we find 

f~) (pu) =#(pu) (72a) 

f~  (p . )= - f l - l ( a ( p u ) -  1/pu) (72 b) 

-b(pu) 
fe(P")= 2 ~  (72c) 

Equat ion (72 a) is the standard thermodynamic identity and (72 b) is merely a 
s tatement  of the compressibility sum rule (see (44) and (45)). The non-triviM result is 
(72 c) which shows that  f2 is proportional to the coefficient ofq 2 in the expansion of 
the direct correlation function, i.e. 

A.P. L 
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160 R. Evans  

1 2 
f 2 ( p ) = ~ d t r  riP;r]. 

This result appears  to have been derived first by Yang et al. 
somewhat  different approach.  

(73) 

[15] who used a 

6.3. Energy densities in the slowly varying limit 
Having  made the above identification off2(p) we re turn to (64), the differential 

equation for the equilibrium density.  An equation of the same form as (64) appears  in 
the paper  of Lebowitz and Percus [4]. Whilst they correctly identii~7 the coefficient of  
V2p0, i.e. they showed this coefficient was -2f2(Po) with f2 given by  (73), it is not  
obvious tha t  their  expression tbr the coefficient of IVpol: is simply -f'2(Po) [151. As 
mentioned in § 4.1, Lebowitz and Percus did not  extend their analysis to the other 
free energy densities. These follow directly from our present  ana lys is  

The Hehnholtz t)'ee energy density is 

0[Po] = P0(r) V~xd r) +f[Po] 

= Po Voxt +fo(Po) +f2(Po) IVpo[ 2 + O (V~) (74) 

while tile grand potential has an energy density 

( ° [ P o ]  = 0 [ p o ]  - # p o ( r )  

=.fo(Po) + f :(Po)lV Po[ 2 - Po(J5 (Po)-fi(Po)]Vpo[ 2 - 2f 2(Po) V2 po) + 0 (V~), (75) 

where we have used (64) to eliminate p -  Vext(r). 
When f2 and all higher-order coefficients are set equal to zero it is easy to show 

tha t  
p! 

V~°[Po] = - P0 f 0(Po)Vpo 

= po(r)V Vext(r) (76) 

and it is reasonable to identify a local hydrostat ic  pressure p(r) with -og[p0] (see 
(60)). In  other words, the conventional thermodynamic  identification applies looally 
throughout  the non-uniform fluid. If, however, we include the first gradient 
correction f2 such an identification is no longer valid since in this case, 
Vco[po] # po(r)VVext(r). An expression for the pressure tensor a can be found [15] 

a = -- ~O[po] 1 +2fz(po)VpoVpo (77) 

which satisfies the equation of hydrostatics: 

V . a =  -flo(¢)VVext(¢) (78) 

This result forms the basis of  the van  der Waals theory of surface tension and we will 
return to it in § 8.1. 

6.4. A partial summation of the gradient expansion 
In  their work on the inhomogeneous electron gas Hohenberg  and Kohn  [25] and 

later Kohn  and Sham [23]_introduced an approximat ion scheme for the analogue of 
the functional ~ [ p ]  which should be valid when either the density has nearly the 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
I
B
-
L
i
z
e
n
z
e
n
 
-
 
T
I
B
 
L
i
c
e
n
c
e
 
A
f
f
a
i
r
s
]
 
A
t
:
 
1
2
:
4
9
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Liquid~vapour interface 161 

same value everywhere or is slowly varying. This approximation now permits short 
wavelength variation in p(r),provided the departure from the mean is small, and can 
therefore be used to t reat  certain oscillatory density distributions. Formally, the 
approximation corresponds to summing terms of the formfm(p)Vp n . Vp m-", where m 
and n are integers, in the gradient expansion but  it can easily be derived from the 
following argument. 

Suppose ~-[p] can be expressed in terms of a local energy density plus an 
expansion in powers of the difference between densities at  different points in the 
fluid. To second order in this ditierenee ~V[p] must have the tbrm 

1 / 
~ [ p ]  = j ' d r f o ( p ( r ) ) - ~ d r d r  K(r,  r ' ) (p(r ) -p(r ' ) )  2 zp  (79) 

(Any term linear in p ( r ) -p ( r ' )  will vanish by symmetry).  We further suppose that  
the kernel K can be written as 

K(r, r ' )=K[~ ;  Ir-  r'll 

where ~ is some average of the local densities, e.g. p = (p(r) + p(r'))/2. In  order to 
specify K further we insist tha t  (79) reduces to (67) in the limit I (r)l ; IP(r)-  Pul <<p, 
i.e. we ask tha t  o~[p] reproduce the linear response result. I t  is straightforward to 
show that ,  to order ~2, (67) and (79) are identical provided 

K[Pu; Ir-¢l]= ~ ~2~[p]  Ou 
cSp(r)6p(r') 

_½( cS(r-- r') Pu C[pu; Ir- r'H) (80) 

With this identification (79) clearly contains short wavelength (large q) contri 
butions but  it also reduces to the aforementioned series of gradient terms, with the 
coefficients given in § 6.2, for slowly varying densities. Combining (79) and (80) we 
have 

1 
~ [ p ]  = j" drfo(p(r)) + ~ j "  j' drdr' c[i); I r - r ' l ] ( p ( r )  - p(r'))2. (sl) 

All tha t  is required to use this approximation is some prescription for the direct 
correlation function of a uniform fluid at  arbi t rary  densities. 

Recently Ebner et al. [14] have carried out extensive calculations of the surface 
tension and equilibrium density profile of a Lennard-Jones fluid over a wide range of 
temperatures using this approximation. These authors also used the theory to 
calculate the oscillatory density profile for a fluid in the neighbourhood of a model 
container wall. All their calculations were based on the Percus-Yevick solution for 
the direct correlation function and suitably parametrized functions were chosen to 
represent p(r). I t  appears tha t  (81) is a useful and tractable approximation. Saam 
and Ebner  [24] have compared (81) with the exact expression for J~[p] as obtained 

L2 
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162 R. Evans 

by integrating the d4rect correlation function of the non-uniform system w.r.t. 
density. The lat~er can be written as 

~[P] ='-~id~.1[P] -- O[p] 

P(r) 2 s,r,'~ =f i -~dr (  p(r)(ln(kap(r))-l)- 2 ( ) )  (82) 

+ 1  ~ ~ drdr' ~(r, r')(p(r) - p(r')) 2 
~p 

where 

and 

11 I ~(r, r ' )=2 dora dot'c[o~g'p; r, r'] 
j o  do  

8(r) = J'dr' ~(r, r') 

and we have used (38) and the symmetry property (22). The nature of the two 
approximations made in (81) are now apparent. Firstly, c[:¢~'p; r, r'] is replaced by 
c[~;Ir-r'l] , the direct correlation function of a uniform fluid whose density is 
arbitrarily fixed at p. The second approximation replaces the quanti ty 

- p(r)2s(r)  

by the interaction part  of the local free energy density. This replacement would be 
exact for a uniform fluid so the second approximation simply assumes that  the 
equivalence applies locally. 

§ 7. THE LONG-WAVELESIGTH BEHAVIOUR OF THE DIRECT CORRELATION FUNCTION OF 

A UNIFORM FLUID 
Recently Evans and Schirmacher [17] have used the formalism described in the 

earlier sections of this paper to derive some useful approximations for the long- 
wavelength behaviour of the Ornstein-Zernike direct correlation function of a 
uniform fluid. Their analysis is appropriate to a fluid in which the particles interact 
via a central pairwise potential ~b(r). This potential is divided into a suitable 
'reference' part  ~b r and a 'perturbation' part gbp: 

¢(r)=¢r(~)+¢p(r). 

The free energy of the system with pair potential ~b can then be related to that  of a 
system with pair potential ~b r using (52). From (66) it follows that  

2fip(rl)3p(r2)fl~2 f ff r2)t~P(rl2) C(2)(T12)- C~2)(r12)= od~( drldr2,0(2)(0(; t l ,  
p(r)=p 

(83) 

where r12 = I r , -  r21,c(2)(r) is the direct correlation function for the uniform fluid of 
equilibrium density p (corresponding to pair potential ¢) and c~:)(r) is the 
corresponding function for the reference fluid at  the same density (pair potential ¢~). 
p(:)(a; q ,  r:) is the pairwise distribution function of a non-uniform fluid in which the 
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Liquid-vapour interface 163 

particles interact  via a pairwise potential ~b r +a~bp. While (83) is ibrmally exact its 
usefulness is restricted by the necessity of having to evaluate p(Z)(a; rl ' r:). 

The crudest approximation simply ignores all correlations between the particles 
and sets 

p(2)(a; rl ' r2 ) = p(rl)p(r2) ' (84) 

The functional differentiation in (83) is then trivial and leads to 

c ( 2 ) ( ~ )  - r~2)(r) = - ~ p ( ~ ' )  ( 8 5 )  

which is the well-known random phase approximation (RPA) [22]. In order to 
progress beyond the RPA we first expand p(Z)(a: rl, r/) in powers of ~bp(rx2). To the 
lowest order the integral in (83) is 

where p~Z)(rl, 'z) - P(2)( a = 0; r 1, r2) is the pairwise distribution function of the non- 
uniform reference fluid. The problem is now reduced to finding a suitable prescription 
for this quanti ty.  There is, however, no general theory for the pairwise distribution 
function in strongly inhomogeneous systems and so we are forced into approxim- 
ation schemes which apply only to weakly non-uniform fluids. We expand p~/)(rl, '2) 
about  its uniform density value p~Z)(r12): 

~p~Z)(rt2 ) 
P~Z)(rt, '2)= P~2)(rlz) +½(P(r 1) -- P + P(r:) -- P) ap 

. . . . .  02P~2)(r12) 
+½(P(rl)--P)(P(r2)--P) ~p2 ~- . . . ,  (86) 

with p~e)(r)=-p2gr(r ), where (A(r) is the radial distribution function of the uniform 
reference system of density p. The derivatives in (86) are to be evaluated at density p. 
Using this expansion we find 

c(Z)(r)- c~2)(r)-- -~bp(r)- ~2p~2)(r) (87) Op 2 

This result was first obtained by Henderson and Ashcroft [16] from a rather  different 
derivation. These authors named it the mean density approximation (MDA) and 
used it to study phase separation in binary metallic alloys. 

On Fourier transforming, we have 

82 
fi I dk ~(k)~pz  p~:)(lq-kl), (88) c(2)(q)_(.~Z)(q)_ 2(2u) 3 

which can be re-written in terms of the liquid structure factor S~(q) of the reference 
fluid: 

c(2)(q)-c~Z)(q) = -fi~bp(q)- fl~_,3 ~dk~bp(k) 0Sr( kl) + 2~p2 
(2u) 

since the structure factor and radial distribution thnction are related by the usual 
equation: 

Sr(q) - 1 = p ~ dr exp (iq. t)(gr(r ) - 1). (90) 
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164 R. Evans 

We can only expect (89) to be a realistic approximat ion at  small wave vectors 
because the expansion in (86) is only appropriate  when p(r) varies slowly and exhibits 
small departures  from the mean value. At q = 0  (89) is exact,  to first order in q%p. In  
this limit the result can be derived [17], without recourse to the theory of non- 
uniform fluids, using the compressibil i ty sum rule (72 b) and the coupling constant  
algorithm for uniform fluids mentioned in § 4.2. 

Given some procedure for calculating S~(q) at  different densities (89) can be used 
to obtain explicit corrections to the RPA results. Evans  and Schirmacher [17] have 
suggested a further  simplifying approximat ion which is to neglect the density 
dependence of gr(r). Equat ion (87) then reduces to 

( ' (2) ( r )  - -  ( '~2)(r)  = - -  f l ( ~ p ( r ) y r ( r  ) ( 9 1 )  

and (89) becomes 

fl ~ d k O , ( k ) ( S r ( i q - k ] ) - l )  (92) c(2)(q)-c~2)(q)= - fl~)p (q) p(2~)3 

The second te rm in (92) should yield an est imate of the importance of  correlations a t  
small q. Equations (91) and (92) are referred to as the extended random phase 
approximat ion  (ERPA).  

The E R P A  and the R P A  have been used to calculate the q = 0 limit of the direct 
correlation function and, hence the isothermal compressibili ty of  several simple 
fluids and a wide var ie ty  of  liquid metals at  temperatures  close to their  triple points 
[17]. In these calculations the pairwise potential  was divided into a reference par t  ~b r 
and a per turbat ion par t  ~bp according to the Weeks, Chandler, Andersen (WCA) [26] 
prescription, i.e. ~br retbrs to the short-range repulsive force par t  while ~bp represents 
the remainder  of the intermolecular pair potential.  S,.(q) can then be calculated using 
the WCA per turbat ion theory based on the hard-sphere structure factor. The 
compressibilities calculated from the E R P A  differ by  only a few per cent from those 
obtained from the RPA and are in good agreement  with the results of  computer  
simulations based on the same potent ia l - -where  these are available. Thus it appears  
tha t  with the WCA division of the potential,  correlation effects are ra ther  small a t  
q = 0. I t  would be interesting to examine the accuracy of all three approximat ion 
schemes for small but  finite values of q. 

§ 8. APPLICATIONS TO LIQUID SURFACES 
In this section we apply the formalism developed earlier in the paper to the 

statistical thermodynamics of liquid surfaces. For simplicity we first consider a 
monatomic fluid in zero external potential. We assume this fluid possesses a planar 
surface of area A = L 2 parallel to the x~j plane (see figure I). The volume of the fluid 
is ~--L 3 and L is macroscopic. We assume further that the equilibrium density 
profile po(¢)=--po(z) and at temperatures close to the triple point has the form 
sketched in fig. 2. po(z) is expected to vary rapidly (typically over two or three 
molecular diameters) between the co-existent densities Pl and Pv. As the temperature 
is increased Pl will decrease, Pv will increase and the density profile will become less 
'sharp', i.e. the interfacial width will increase. At the critical temperature the 
interfacial width will diverge with the same exponent as the bulk correlation length 
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Liquid~vapour interface 165 

in either of the bulk phases [27]. In  general, the equilibrium profile should satisfy the 
following boundary  conditions: 

Po(L/2)=pv, po( -L /2) - -p l ,  
(93) 

dP° =0, dP° =0, 
dz r/2 dz -L/2 

provided L is macroscopic. 
Of course, planar  interfaces of  this kind do not exist in the absence of  an external 

field (e.g. gravity).  I f  the gravi ta t ional  acceleration g is zero one fluid phase would 
form in one or more spherical regions embedded in the second phase. I t  is the external 
field which determines the location of the interface in space. Thus, if we set g = 0 
initially we should strictly work with spherical interfaces. We m a y  suppose, 
however, tha t  one phase tbrms a sphere of essentially infinite radius so tha t  its 
surface is effectively planar. The gravi ta t ional  field plays another  more subtle role in 
surface problems [28, 27, 10, 12, 21] by surpressing capillary wave-like fluctuations 
in the position of the Gibbs dividing surface. We will return to this later in § 8.4, 
where we consider such fluctuations in some detail. 

In  the absence of an external field, the thermodynamics  of  liquid surfaces is 
s t ra ightforward [29]. By considering the Helmholtz free energy as a function F(T, 
7/, A, N) it is easy to show tha t  the l iquid-vapour  surface tension is given by  

~ =  ~ T, I ,N' 

where N is the total  number  of  molecules. Often it is more convenient to work with 
the grand potential  f2(T, ~i/, A, #) from which it follows tha t  

= (951 
T, I ,  g 

The grand potential  can also be explicitly decomposed into bulk and surface 
contributions: 

= -p~f"  + 7A, (96) 

where p is the pressure of the co-existing bulk phases. Another useful formula ibr the 
surface tension relates this quant i ty  to the integral through the interface of the 
difference between the normal and the tangential  components of  the stress tensor: 

I 
L/2 

? = dz (aN(Z) --aT(Z)). (97) 
, I  - L /  2 

The component  normal to the interface fiN(Z) =~0 is constant  for a fluid in hydrostat ic  
equilibrium in zero external field. The tangential  component  aT(z ) reduces to p for z 
in either bulk phase but  varies for z in the interface region. Consequently it is possible 
to replace L/2 by ~ and - L / 2  by - ~  in the limits of (97). This equation is often 
referred to as the 'mechanical '  definition of surface tension. 

8.1. The van der Waals and related approximate theories 
The approximat ion schemes developed in § 6 are readily applied to the strictly 

planar  model of an interface. I f  the expansion of the Helmholtz  free energy is 
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166 g .  Evans  

terminated af ter  the second term, i.e. 

~[Pl = ~dr(fo(p(r)+f2(p(r))]Vp(r)[2), (98) 

then it follows from (64) t ha t  the equilibrium density profile should satisfy 

# = #(Po(Z)) -f'2(Po(Z)) ~ 2_ 2f2(Po(Z)) d2po(z) (99) 
dz 2 

This equat ion has been analysed in some detail by  Y&ng et al. [15] who have 
concluded tha t  a solution po(z) does exist and has the form indicated in fig. 1 t .  These 
authors have also shown tha t  this solution is identical to the one which would be 
obtained by solving (64) in zero external field for spherical geometry  in the limit of  a 
sphere of infinite radius. 

The surface tension can be obtained using the prescription of either (96) or (97). 
F rom (77) the tangential  and normal  components of  the stress tensor are given by  

a T ( Z )  = - -  ( / ) [ P O ]  (100) 
and 

aN(Z) = --(9[Po] +2f2(Po(Z)) ~ 2. 
So from (07) it follows 

? = 2  dzf2(Po(Z)) (101) 
--o0 

Since the pressure of the co-existing bulk phases is p = a N, the same result follows 
immediately from (96). 

The results embodied by  (99) and (101) represent what  is probably  the simplest 
microscopic t r ea tmen t  of the l iquid-vapour  interfaee. This type of approach was 
introdueed by  van der Waals in 1894 [30] who suggested a free energy of the form 
given in (98) but  t reated f2 as a constant  positive parameter .  (Incidentally a formula 
similar to (101) was derived in 1892 by Lord Rayleigh [31] using a different 
approach.) For  an excellent account  of the van  der Waals theory of interfaces and its 
application to critical phenomena see the artiele by Widom [27]. In  order to make the 
theory quant i ta t ive  some prescription forf2(p ) is required. The obvious choice is tha t  
given by  (73). One then has a well-defined procedure for calculating both the density 
profile and surface tension from a given intermolecular potential.  Clearly sueh a 
theory should not be accurate near  the triple point since here the density is varying 
too rapidly to meet  the conditions required in § 6. Thus, for low tempera tures  a van  
der Waals type  of approach can be expected to be useful only in an asymptot ic  sense. 
At  high tempera tures  approaching the critical point the density profile varies slowly 
over the range of intermoleeular  forces and the departures from the mean value are 
everywhere small, so a gradient  expansion of the kind described in § 6 should be valid. 
There is, however, no reason to expect a theory based on t runeat ing the expansion 
after  the second te rm to be espeeially accurate even a t  high temperatures  [27]. 

The same authors [74] later demonstrated that a solution also exists when the gravitational field is 
included and that this solution approaches the solution of (99) as the gravitational acceleration 
approaches zero. 
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Liquid~vapour interface 167 

It is necessary to mention another caveat concerning the van der Waals theory. 
In applying (98) to the surface problem we are forced to consider the free energy 
density f0(p ) and the function f2(P) for densities p in the range pv<p<pl , i.e. for 
densities corresponding to a two-phase system. The theory implicitly assumes that 
fo(P) andfe(P) are given by analytic continuation of these functions from the bulk 
equilibrium phases into the two-phase region [27 ]. Similar assumptions are inherent 
in all the approximate theories of liquid surfaces and we will return to this important 
point in § 8.4. 

One obvious extension of the van der Waals theory is to perform a partial 
summation of the gradient expansion and use (81) for ~ [ p ]  rather  than (98). This is 
the scheme employed by Ebner  et al. [14] which was described in § 6.4. A different 
modification of the van der Waals theory has been proposed by Bongiorno and Davis 
[32]. 

Thermodynamic perturbat ion theories have been developed ibr the study of the 
planar interface [18, 33, 34, 35]. These methods can also be considered as 
generalizations of the van der Waals theory. They are, however, primarily intended 
for triple point studies since they are based on the successful perturbat ion theories of 
dense liquids. All these theories start  from (52) which expresses the free energy ~-[p] 
of the actual non-uniform fluid, in which the intermolecular pair potential is ~b, in 
terms of the free energy ~r[P] of a suitable reference system in which the particles 
interact  via a reference potential (b r. I f  ¢ p = ~b - (b r is the per turbat ion potential, then 
(52) can be expanded as: 

~[f l ]  = Yr[P] +½ j" j" drldr2 fl~2)(r 1, r2)qSp(rl2) + 0 (~p2), (102) 

where fl~2)(r 1, r2) is the pairwise distribution function of the reference system (see also 
§ 7). I t  is then assumed that  ~-dP] and p~2)(rl, r2) can be approximated as tbllows: 

~r[P]  ~ ydrfro(P(r)) (103 a) 

p~2)(rl, r2)~p(rl)p(r2)gr(P;r12), (103 b) 

where fro(P) is the free energy density of the uniform reference fluid and ,qr(P; r12) is 
the radial distribution function of the uniform reference fluid evaluated at some 
mean density, e.g. p =  (p(r l )+ p(r2))/2. Equations (103 a, b) constitute the simplest 
'local density'  ansatz. Two prescriptions for the division of the pairwise potential 
into reference and perturbat ion parts have been used. These are the B a r k e ~  
Henderson (BH) [361 and Weeks-Chandler-Andersen (WCA) [26] schemes. In the 
former the reference system is chosen to be that  of hard spheres While in the latter ~b r 
is the 'repulsive force' part  of the pairwise potential. Since the free energy and radial 
distribution function of the uniform hard-sphere system are readily available it is 
then straightforward to calculate ~ [ p ]  for a suitably parametrized (exponential or 
tanh) density profile p(z). The chemical potential p and the co-existing bulk densities 
Pl and p~ are obtained by solving the simultaneous equations 

P =P(P,)=P(Pv) (104 a) 

P =P(P0 =P(Pv). ~ 104 b) 

The grand potential ~[p] = ~ [ p ] -  S dr pp(z) can then be minimized with respect to 
the parameters which specify p(z) to obtain both the equilibrium profile and the 
surface tension. 
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Table 1. 

R .  E v a n s  

Interfaeial  '10-90'  widths (w) and  surface tensions (?) calculated from v a n  der Waals  and  
related theories for a Lenna rd - Jones  12 6 fluid near  its triple point.-]" 

Theory  Reference T(K) w/a ?(dyn c m -  l) 

BH per turbat ion theory [18] 90 2'3 14 
BH per turbat ion theory [381 84 2"2 16 
BH per turbat ion theory [33] 90 1"5 17 
WCA per turbat ion theory [33] 90 1"8 17 
WCA per turbat ion theory (simplified) [37] 85 2'8 14 
WCA per turbat ion theory (extended) [19] 84 1-4 18 
Partial summatiou of gradient expansion [14] 84 1'7 18 
van der Waals (eqn. 98) [39] 84 2"7 25 

t i n  order to compare with 'real' argon, the  parameters  of the Lennard  Jones  
a =  3'405 A and e/l% = 119"8 K.  The exper imental  results are 7 = 13"1 dyn cm-1  at 
em 1 at 9 0 K  [40]. 

potential  are taken as 
85 K and 7 =  11"9 dyn 

For  a Lennard-Jones  12-6 fluid at  temperatures  close to the triple point the 
density profiles calculated t~om the per turbat ion theories have the form indicated in 
fig. 2. The calculated interfacial '10-90'  widths w (defined as the distance over which 
the density changes from 0'9pl to 0"lpL ) are listed in table 1. w results from a balance 
between the a t t rac t ive  forces (the t e rm in ~bp) which favour  a sharp transit ion and the 
repulsive forces (~r)  which favour  a broad transition region [37]. The corresponding 
results for the surface tension are also given in table 1. The per turbat ion theories 
predict  an increase ofw with an accompanying linear decrease in ? as the tempera ture  
is increased [18, 37, 38]. 

Recently Singh and Abraham [19] have a t t empted  to improve upon the 
approximat ions  (103a, b) by  adding what  are essentially gradient corrections or 
partial  summations  of  gradient expansions. The results of  calculations incorporating 
these modifications are not substant ial ly different from those based on the local 
density ansatz.  These authors find w is slightly smaller and 7 is reduced by about  
2 dyn c m -  1. In  table 1 we include the results of Ebner  et al. [14] which are based on 
the more direct extension of the van  der Waals theory (see § 6.4). We also present 
results calculated using (98) and the Percus-Yevick solutions for fo and f2 [39]. 

I t  is clear tha t  all versions of the van  der Waals theory predict an interfacial 
width of  about  two atomic diameters  a t  the triple point, and a surface tension which 
is in rough agreement  with experiment.  

8.2. The Kirkwood Buff theory 
Another theory which is frequently employed in the s tudy of the l iquid-vapour  

surface is tha t  due originally to Kirkwood and Buff [20]. In  this approach,  it is 
assumed from the outset  tha t  the potential  energy of the fluid can be expressed as a 
sum of pairwise intermolecular potentials and the stress tensor is evaluated in terms 
of the intermolecular virial. For  the planar surface the tangential  and normal 
components  can be writ ten as: 

1 r x~2 dq~(rl2) ~ 
aT(zl )=f i - lpo(z l ) - -~|dt l2--  . da p(2)(rl - ~rl2, rl + (1 - o~)rl2) 

,j r12 dr12 Jo 
(105 a) 
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Liquid~vapour interface 169 

and 

(7N(Zl)=fl-lflo(Zl)_I (' Z22 dq~(r12 ) f l  0 Jdr%.~ dq2 d°~p(2)(rl-°~r12'ri +(i-°:)r12)" 

(1055) 

The condition of hydrostatic equilibrium (a  N : a constant) then implies 

dpo(zi) _ f l  rdrl2 zi2 d~)(r12) 
dzl ~ rl2 driz p(2)(ri,r2) , (106) 

which is identical to the first YBG equation (58) for planar geometry and zero 
external field. This means tha t  the stress tensor in (105) is consistent with the 
requirements of thermodynamic equilibrium. The surface tension follows from the 
mechanical definition (97): 

~oo /" X 2 __ Z2 
7= ½ dz 1 [drl 2 i 2  121d~b(~'12)p(2)(r21,r2) ' (107) 

-~o J r12 drt2 

where use is made of the fact tha t  p(2) is invariant under a renumbering of the 
particles. The formula for the surface tension can also be derived from the grand 
part i t ion function using (95) [41] or from the eanonieM partit ion function using (94). 
These methods are equivalent to the following argument which makes use of the fact 
tha t  the grand potential is a functional of the pairwise potential q$. From (50) we 
have tha t  the infinitesimal change in grand potential due to an infinitesmM change in 
the pairwise potential is 

A~t=½~dr ldr  2 p(2)(ri, r2)A(b(ri, r2) , (108) 

for a fixed chemical potential. Suppose A~b corresponds to the following transform- 
ation which increases the surface area by AA = ¢L z but keeps the volume fixed 

qb(Xl, Yl, Zl, X2, Y2, Z2, )-+~(Xl(1 + {), Yl, Z1(1 + ~)- 1, X2(1 + ¢), Y2, 2:2(1 + ~)- l) 
where ¢ is an infinitesimal, then Aq~ is of the form 

Afl) = ~ l Xl N~-I-X2 ~_~- z l T ~ -  z2~-- I + 0  (~2). 
\ uxl uxz ezl uz2 / 

I f  ~(q ,  r2)=~o(ri2) then this reduces to 

X 2 -z22)dgb(r12 ) aq~= ¢( i2 ~o(¢2). 
r12 drl2 

(109) 

Combining (108) arid (109) and using ~ = Af~/AA we rederive (107). Although (106) 
and (107) are tbrmMly exact results for a planar interface, they are not useful unless 
some prescription can be found for the equilibrium distribution functions po(z) and 
p(2)(rt, r2). Several a t tempts  have been made to produce approximate solutions of 
the first YBG equation (see the review by Toxvaerd [42]). These usually assume that  
p(2) can be approximated by some suitable weighted mean of the bulk radial 
distribution functions and solve (106) by iteration. I t  now seems to be well 
established (see, however, [43]) tha t  these methods give rise to monatomie density 
profiles whose interfaeiM widths are similar to those calculated from the van der 
Waals types of theory and surface tensions which are somewhat smaller than those 
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170 R. Evans 

reported in § 8.1. Recently Toxvaerd [44] has extended his analysis by approximat- 
ing p(2)(rl, r2)~Po(zl)Po(Z2)g(~;rl2 ) with ~=po((Zl+Z2)/2) and used a thermody- 
namic perturbation theory to calculate the radial distribution function at  the 
required densities p. The profiles which he obtained by iterating (106) are again 
similar to those obtained from the calculations described in § 8.1. 

Local density approximations to p(2) will be accurate in the 'wings' of the density 
profile where po(z) is close to Pl or Pv and in these regions we can use the first YBG 
equation to evaluate the functional form of po(z) [11]. We set p(2) (r~,r2)= 
flO(Z2),q(flb;rl2), where fib refers to either Pl or pv, and integrate (106) from the 
bulk into the interface: 

/3_1 ln(PO(Z)~= fzdz 1 tdrlzz12 d~9(r12) \ Pb / ,J r12 dr-~l-2 Po(Zl+Zl2)g(pb;rlz) (110) 

I f  po(z) is slowly varying over the range of the intermolecular three d~b/dr then 
po(zl + z12 ) may  be usefully expanded in a Taylor series about zl. The integration 
over drl2 can be performed using cylindrical coordinates 

f f de 12-~27~ dr12 r12 dZl2 
0 ~ --  r l  2 

and after some straightforward algebra we find 

dZpo(z) 
ln(  "°(z) ~ =~o(Po(Z)--pb)+a2-~us+higher derivatives, (111) 

\ P b  / 

where 

d do ar 

r , 

and we have assumed that  all derivatives of po(z) vanish when Po = Pb. Multiplying 
each side of (111) by dPo(Z)/dz and integrating we obtain 

/ dPo(Z) ~ 2 
2Po(z)ln(~b )q-2(Pb--Po(Z))=OtO(PO(Z)--pb)2q-Ot2~Z ) , 

which can be further simplified by expanding in ~(z)= po(z)- Pb tO give 

& /  (,12) 

This predicts that  p(z) has exponential behaviour as the bulk liquid or vapour is 
approached from the interface region. The decay length 2 associated with this 
behaviour is given by 

2=  ( 1 - - 0 ~ 0 )  /0~2 -1/2 (113) 

and it follows that  near the triple point 2 is much larger for the liquid side of the 
interface than for the vapour, i.e. there is a more rapid decrease in po(z) for z 
approaching the bulk vapour region. 
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Liquid-vapour  interface 171 

8.3. Theory based on the direct correlation funct ion 
Rather  than focusing at tent ion on the pairwise distribution function in the 

interface, it may  be more convenient to work with the direct correlation function and 
seek realistic approximations for this quanti ty.  For  a planar surface in the limit of 
zero external field we have from (55) 

d l n p ° ( z l )  ~dr2c(Z)(rl,r2) dp°(z2~) (114) 
dzl dz2 ' 

which is an exact equation for the equilibrium density profile and, as stressed in § 5, is 
equivalent to the first YBG equation, i.e. (106). 

The surface tension can be evaluated with this approach by either calculating the 
change in grand potential due to the increase in surface area caused by a fluctuation 
in density [7] or calculating the pressure difference across a spherical surface with a 
large radius of curvature [8]. These yield identical results so here we present a 
derivation using the former method only. We consider the zero-field functional (see 
(9)) 

ftv = 0[P] ~- ~ [P ]  -- # S dr p(r) (115) 

and calculate the change in grand potential due to a change in density p(r) at fixed 
chemical potential  #. Using (14) we find 

At)=F~v=o[Po + p]_F~v= • . 1 c r • • , (52°~[fl] po ° [P°J=2J jarar  3p(r)~p(r') ~( r )~ ( r ' )+ . . . ,  (116) 

where p0(r) is the equilibrium density distribution. Thus to lowest order the change 
in grand potential is quadratic in the density fluctuations and depends on 

~]r~[P~]r po ~(r--r') (.(2)(t, r') (117) C(2)(r, r') - fig ,) Po(r) 

For  the planar interface it is convenient to introduce the variable R which refers to 
the x~] plane, i.e. r ~ (R, z) - (x, y, z) so that  two-point functions such as c(E)(rl, rE) 
and p(ri,  r2) depend only on the variables zl ,z  2 and R12 = ((x 2 - x l )  2 + (y2 --yl)2) I/E. 
I t  is also useful to introduce the two dimensional Fourier transforms 

~(O, z)= SdR exp (iQ. R)~(R, z) (118 a) 

and 

C(2)(Q, zl, z2)= ~dR12 exp (it~.. R12)C(2)(Ri2, Zl, z2), (118 b) 

so tha t  (116) can be expressed as 

A f ~ = 2 ~  ~ ~ dzldz2 ~ C(2)(Q' zl '  z)p(O'  z i )~ ) ( -O ' z2 )  + O (119) 

where A is the area of the planar (unperturbed) surface. In order to proceed, we 
consider a fluctuation which changes the location of the Gibbs dividing surface from z 
= 0  at  equilibrium to z=zc(R).  The lat ter  is given by 

dz(p(a,z)-p~)+ (p(a,z)-pv)=0 
- - c O  

(120) 
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172 R. Evans 

where Pl and Pv are, as usual, the co-existing bulk densities. After a straightforward 
manipulation it follows that  

Zc,(R)=(pl--p~) -1 dz~(R,z) (121) 
-oo 

This new dividing surface will have an area 

A'=  J'dR (1 + IV  o(R)I:) (122) 

where the integral is over the original surface. Thus for a given p(R, z) we can 
calculate both A~ and AA = A ' - A .  Equation (119) is only useful, however, if the 
amplitude of p is small and if the summation over wave vectors can be restricted. 
With this aim in mind, we consider a long wavelength small amplitude fluctuation in 
the position of  the dividing surface. The surface then deviates only slightly from 
planari ty and the per turbed density should correspond to a rigid shit~ of the 
equilibrium profile, i.e. 

p(R, z) = po(z - ZG(R)) 

o r  

p(R, z)=p(R,  z) -po(z)~ --ZG(R ) dT~z)n~t (123) 

which certainly satisfies (121). The corresponding change in area is then 

AA =½ dR rVRzo(R)I 2. (124) 

Parallel to the surface p has only long wavelength components so we need only 
consider the small Q expansion of C(2): 

C(:)(Q, Z1, Z2) : C0(Z1, Z2) ~- Q2C2(z1 ,  z2) -[- . . . .  (125) 

Substituting into (119) and Fourier  transforming back to real space we find 

AFt = l  ~ ~ dzldz2 (Co(z1, z2) ~ dR }~(R, zl)p(R , %) ~p 

-~- C2( z  1 , z2) SdR VRp(R, zl) .  VRP(R , Z2) + . . .  ) 

which simplifies on using (123) for the fluctuation to 

A~=~fll S ~dzldz2 dP°(Zldz~ )dP°(Z2)dz 2 (C°(z~' %) j'dRIz~(R)12 

+C2(z t, %)~dR ]VRzG(R)[ 2 + . . .  ) (126) 

The first term on the r. h. s. of  (126) is zero. This follows from (114) for the equilibrium 
profile which can be re-written as 

~dr dP°(Z2) ~(2)'r Sdz: dP°(z2) 
2 ~ Z 2  w ~ 1 , r2)  = dz  2 C o ( z l , z 2 ) = 0  (127) 

This result implies tha t  shifting the Gibbs dividing surface vertically by a constant 
requires zero energy provided the external field is zero--an  eminently reasonable 
conclusion. The second term of (126) yields the surface tension since it is proportional 
to AA, i.e. 
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Liquid~vapour interface 173 

• • d p o ( z ~ )  d,_~2 )On(z C2(zl,z2), (128) 
y=f l -  a j j r ~zl az2 

where, ~om (125) and (117), 

C2(2~1, z2)= --¼ f dR12 R22C(2)(R12, zl, z2) 

=¼ S S dx12dy~2 (x2z + y~2)c(2)(rl, r2). (129) 

To complete the derivation we must  check tha t  the chemical potential p' doe.~ n()f 
change i~om its equilibrium value # as a result of the fluctuation described by (123). 
Clearly 

e ,  ~Su(rl) [ 
# ' = # +  j a r 2 - - 1  p(r2) + 0 (/9 2 ) 

6p(r2) [po 

,. ,~ . dDo(.:2) ,,(2~t, z z.~ = # _ f l - 1  j dr 2 ZG(KZ)__~Z2 L ~ t~q2, 1, ~ ,+O (~2), (130) 

where we have used (29) ~md (117). The integral vanishes and p remains constant to 
the ~ppropriate order. 

We believe (128) to be an exact result for the surfhee tension of the planar 
intertgce. Tim validity of this assertion has been queried (see Leng et al. [45] for a 
recent discussion) since it has not  yet  proved possible to show that  (1281 reduces to 
the Kirkwood-Buff  result (1071 when only pairwise interactions are considered (see 
§ 10, however). The difficulty lies in finding a suitable representation for the stress 
tensor in terms of the direct correlation ihnction, i.e. performing an integration of 
equation (57) which expresses the equivalence of the two representations for the 
force acting on a particle. Leng et al. [45] have demonstrated the equivalence of the 
Kirkwood-Buff  and direct correlation function approach for a 'penetrable sphere 
model' but  only within a mean-field approximation. Lekner and Henderson [46] 
have shown the two approaches lead to identical results in the low density limit, i.e. 
with p(e}(r D r21 =po(zl)Po(Z2) exp (--flO(r12)) and c(Z)(rl, 1'21 = e x p  ( - f lO(r ,2) ) -  1. I t  
is also possible to show that  for a van der Waals free energy density (see (98)) the 
surface tension as obtained from (128) is identical to tha t  of ( 101 ), i.e. tha t  calculated 
from the stress tensor or via (96). In this case C(2)(r 1, r21 can be evaluated explicitly 
by functional differentiation and we find 

II I f  2 P 2 

C(2)(rl, r2)=fi(f o(Po)- f  2(Po)~Tpol - 2f2(Po)V Po 

--2f 2(Po)Vpo.,V-2f2(Po)V2)a(q - -  r2). (131) 

Only the last term of this expression makes a finite contribution to C2(zl, zz) and this 
is an amount  2fZ(po(zl))a(zl-z2) as required. Furthermore,  on substituting (131) 
into (127) we regain (99) for the equilibrium density profile. This exercise shows that  
the formula for y in terms of the direct correlation function is not a linear response 
approximation as one might (erroneously) suspect from the derivation. 

As in § 8.2 we can determine the functional form of po(z) in the 'wings' of the 
distribution by integrating (114) using a local density ~pproximation for the direct 
correlation function [11]. Setting C(2)(¢1, r2)=c(Z)(pb; r12), where Pb again refers to 
bulk liquid or bulk vapour,  we have 

(p°(z) ~-- I~dzl fdq2 dp°(zl +z12) In \ ~ - b  ./-- ,J O d,~l ~ C(2)(flb; r12 ). (132) 
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174 R. Evans 

I f  po(zl -~Z12 ) is Taylor  expanded about  z 1 we find 

where 

and 

( ~ b )  ) ' .d2po(z)+higherderivatives ' In =~'(po(z)--pb)+~ dz 2 

f 
oo 

c( = 4~ dr r2('(2) (,Oh; r) 
0 

~" 2~ I ~° = 3  Jo dr r%~2>(pb; r), 

(133) 

which has exactly the same form as (111) from the first YBG equation. 
Consequently, this theory also predicts an exponential decay of po(z) as the bulk 
phases are approached. The decay length is given by 

(134) 

which differs from 2 of (113). This is to be expected since the local density 
approximations for p(2) and c (2), which were employed in these analyses, are not 
strictly equivalent. (The Ornstein-Zernike relation of (31) is not satisfied to the 
appropriate order.) Exponential  decay characterized by the length 2' is predicted by 
the van der Waals theory. Equat ion (133) follows from (99) providedf0(p ) andf2(p) 
are identified as in § 6.2 and the direct correlation function of the uniform fluid is 
assumed density independent. 

8.4. Correlations in the interface 
At this stage the reader might be under the impression that  the statistical 

mechanics of the liquid surface is reasonably well understood. The modern theories 
appear to have merely put  the classical van der Waals theory on a sounder 
microscopic basis. They seem to confirm the physical picture of a ra ther  uninterest- 
ing, monotonic transition from the liquid to the vapour and give, at  least, a good 
qualitative account of the surface tension. Recent computer  simulations of the 
l iquid-vapour interface [47, 48, 49] yield similar density profiles and surface tensions 
and would appear to reinforce the above viewpoint. 

In fact the modern formalism is much richer and makes impor tant  predictions 
concerning the form of intermoleeular correlations in the interface. To be more 
specific, the formalism shows that  while a local density approximation to p(2)(q, r2 ) 
may  be reasonably accurate when one considers vertical correlations (i.e. corre- 
lations along the z axis, perpendicular to the interface) it cannot give a proper 
description of horizontal correlations (i.e. correlation parallel to the interface) since 
the latter are of macroscopic range when z 1 and z 2 lie in the interface region. 

The existence of long-ranged correlations was first pointed out in an elegant and 
important  paper by Wertheim [10]. He noticed that  (56) for the equilibrium density 
in an external field exhibits an interesting feature in the limit of the field going to 
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Liquid~apour interface 175 

zero. I f  we specialize, as usual, to planar  geometry but retain the gravitat ional  
potential  so tha t  Vext(r)==-mgz, (56) reduces to 

dP°(Zi)- fim.q~dr2 (p(2)(r l, r 2) +P0(Zi)5(r i - r : ) -po(z i )Po(Z2))  
dzi 

= -flmg~dr2 ~¢(rl, r2), (135) 

where we have re-introduced the density fluctuation function 
(¢(r i, r2)=N(R12, Zl, z2) defined in (27). Above the critical t empera ture  in the single 
phase region we expect dpo(z)/dz to go to zero as g tends to zero. This implies the 
integral in (135) is finite. At an a rb i t ra ry  tempera ture  below the critical tempera ture  
we suppose tha t  as g tends to zero po(z) approaches a limit representing two co- 
existing phases so tha t  dpo(z)/dz is finite. (We have assumed such behaviour 
throughout  the present article.) We are led to conclude tha t  the integral in (135) 
diverges as .q- 1 in this range of temperature .  This, in turn, indicates the growth of 
long-ranged correlations. 

Wer the im [10] has analysed the correlations in some detail using matr ix  
techniques (see Appendix 4 for a resum6 of his analysis) and shown tha t  the long- 
ranged behaviour  occurs only in the x and y directions and is restricted to the 
interface region. The divergence of the integral in (135) reflects a pointwise 
divergence of ~o(Zl, z2) = ~dRi2 N(Ri2 ' Zl ' Z2 ) and this function can be approximated  
by 

dpo(zl) dpo(z2) 
~0(zl, z 2 ) - - - -  ((pl--Pv)flmg)-i+less singular terms. (136) 

dzl dz2 

This result indicates that the long-ranged correlations are rapidly damped  as either 
z i or z 2 moves out of the interface. N0(zl, z2) is the Q = 0 limit of  the Fourier t ransform 
with respect to horizontal coordinates of  the density fluctuation function. For an 
a rb i t ra ry  wave vector  Q we define 

N(Q, z 1, z2) = ~dRi2 exp (iO. R12)(¢(Ri2, z l, z2) (137) 

and in Appendix 4 we show tha t  for small finite Q 

N(Q, zi, z2)~fl- ldP°(Zi)dP°(Z2)((Pl-  Pv)mg+yQ 2) -1 +less singular terms, (138) 
dzl dz2 

where y is the surface tension as given by (128). This approximat ion is valid to O (02). 
Equat ion (138) represents Ornstein-Zernike-like behaviour of the horizontal 
dens i ty~lens i ty  correlation function. The correlation length is 

¢ = (Y/(Pl -- p,,)mg)1/2 (139) 

which for liquid argon near its triple point  in the earth 's  gravi ty  is ~ 1 ram. Since 
(¢(r, ( )  is also a measure of the densi ty response of a system to the change in an 
applied external  field (see Appendix 3) it is clear tha t  ~ is a horizontal decay length 
ibr the interface. In  other words, if  the interface is disturbed by  an external force 
there will be a displacement o f  the interface which decays horizontally with decay 
length 4. The derivation leading to (138) is ra ther  general but  still approximate .  The 
form of the result suggests tha t  the horizontal correlations correspond to surface 
modes (capillary waves) thermally  excited against  surface tension and gravi ty.  This 
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176 R. Evans 

interpretation can be made explicit using a slight extension of an argument due to 
Kalos et al. [ l l ] .  

We consider a fluid in a gravitational field with, initially, a planar Gibbs dividing 
surface of area A located at z = 0. The corresponding density profile is po(z) and the 
surface tension is ?. Suppose an external potential AVCxt(r) is applied and this 
produces a distortion of the Gibbs dividing surface of amplitude zG(R ). Provided the 
amplitude of the distortion is small and the wavelength is long (see § 8.3) the 
perturbed density profile will be p(R,z)=po(z-z~(R)) .  The change in energy 
associated with such a perturbat ion is 

AE= 7 S dR (1 + IVR  (R)I2) + ~ dr po(z- z~(R))mgz 

- ~ dr po(z)mgz + ~ dr po(z - ZG(R))A Vext(r), 

where we have assumed the surface contribution can be obtained macroscopically as 
yAA. Expanding in za we find tha t  the gravitational contribution which is linear in zc 
vanishes because of our choice of the initial dividing surface, and 

AE-- ~ ~ dR [ VRz~(R)I z + ½(p,- pv)mg S dR [zG(R)[ 2 + ~ drpo(z)A Vext(r) 

- ~ dr ~ zG(R)A V~xt(r) + higher order terms 

We Fourier expand: 

so that 

(140) 

zc(R) = A -  1 ~ a ( Q ) e x p  ( - i Q .  R) (141) 
Q 

AE = ~  ~ a(Q)a( - Q)((Pl - p,)mg + yQ2) + ~ dr po(z)A Vex,(r) 
zA  Q 

- A -  1 ~ a ( Q ) ~  dr ~ e x p  ( - i Q .  R)A Vcxt(r)+ . . .  
0 5 b z  

Completing the square we have 

a (Q)a ( -Q) ( (p l -pv)mg- t -TQ)  

I Idr~exp(- iQ.  R)A gext(r)l 2 
7 

- (Pl - pv)mg + ?Q2 J 

+ ~drpo(z)AVext(r)+ . . . .  

where 

(142) 

a'(Q) = a ( 0 )  - S d r ~ e x p  ( - i Q .  R)AVext(r)((pl- pv)mg + ?Q 2) 1. 

AE refers to a particular amplitude ZG(R ). In order to calculate the free energy due to 
thermal fluctuations we must perform the appropriate statistical average over all 
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Liquid-vapour inteTface 177 

values of z~(r). This type  of averaging is described in Appendix 5. I f  we ignore all the 
higher order contributions in (142) we find 

(a'(O)a'(-O)}=A[fi((pl-p~)m~.l+ yQ2)] a (143) 

and the free energy 

) A#- -  ~ l n  fl((Pl-Pv)mg+YQ2) 
2 A ~ X  

1 I f d r ~ e x p ( - i O . R ) A V e x t ( r ) 2  1 

2A (PI - pv)mg + ?Q2 

+ ~ dr Po(Z)A Vextff). (l 44) 

is a normMization factor. I f  the chemical potential  remains unchanged by the 
per turbat ion  (see § 8.3) the change in grand potential A~ = AF and can be expressed 
in te rms  of Au(r) = A# - A V~t = - A V,~t: 

Y [  1 , (fl((pl-pv)mg+yQ 2) 
. n .  : - -  

QL2# \ 2A=  

~((Pl--Pv)  9 7Q ) drdr'd z) dP°(Z') 
2A Q dz' 

x exp ( - i Q .  ( R -  R'))Au(r)Au(F). (145) 

Since 

1 (~2~ 
~(r, r')= 

fl 6u(r)6u(r') 

(see (25) and (26)), the coefficient of (Au) / yields the density fluctuation fhnction fbr 
the unper turbed  planar  surface 

1 dpo(z ) dpo(z' ) ~((pl_pv),rn(l+yQZ ) l e x p ( _ / O  ' ( R - R ' ) ) .  (146) 
~(r,r')=flA dz dz' o 

On Fourier  t ransforming with respect to horizontal variables we regain precisely 
(138). The present derivation is only valid for long wavelength fluctuations so we can 
only expect  the result to be accurate for wave vectors Q<<2~/a where a is a typical 
molecular diameter.  

Kalos et al. [11] have performed a detailed molecular dynamics simulation of the 
l iquid-vapour  interface of a Lenna rd - J  ones fluid in zero external field (9 = 0). They 
calculated the correlation function ~(Q, z 1, zl) at  various values of  zl. For  z a in the 
interface region they found ~(Q, zl, z1)~ Q- 2 for Q ~ l '4/a.  (The finite size of their 
periodic box restricts the calculation to Q >0 '5 /a . )  For  z I in the bulk liquid or bulk 
vapour,  where dpo(z)/dz ~ O, they find no such behaviour in ~(Q, 21, zl). These results 
provide direct evidence for the val idi ty  of (138). 

I t  is clear tha t  local density approximat ions  for the pairwise distribution 
function, p(Z)(r 1, r2) as introduced in (103 b) or in § 8.2, cannot  generate singular low Q 
behaviour  since there is no reason to expect  g(~; r), as obtained by extrapolat ion fi'om 
physical (one-phase) densities, to exhibit  special features. This failing of the local 
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178 IZ. Evans 

density approximation has impor tant  consequences:It  casts doubt  on the validity of 
those theories of  the interface which are based on this assumption, i.e. thermody- 
namic perturbat ion theories as described in § 8.1 and theories which a t t empt  closure 
of the first YBG equation as outlined in§ 8.2. However, these theories are primarily 
concerned with the density profile and the surface tension which involve averages 
over both horizontal and vertical correlations of all wavelengths, so the shortcom- 
ings at low Q may not  be too important.  Indeed, there are some preliminary 
indications [11] tha t  the local density approximation may  be reasonably accurate for 
vertical correlations. The more fundamental  question concerns the implications for 
the detailed microscopic structure of the interface. 

The occurrence of long-ranged horizontal correlations is a consequence of  
spontaneous symmetry  breaking of a two-phase system [ 10]. Since the local density 
approximation to p(2) fails to account  for such behaviour, we are forced to re-examine 
the two-phase aspect of the interface problem. Whilst it may  be reasonable to 
suppose tha t  the analytic continuation of the free energy density f0(P) into the two- 
phase region can be realized in the interface, as in the van der Waals theory,  it is not 
obvious tha t  any extrapolation procedure will be valid for the pairwise or, indeed, 
the higher order distribution functions. A promising star t  in the search for a realistic 
model of correlations in the interface has been made by Kalos et al. [11]. These 
authors base their model on experience with a bulk two-phase system. In discussing 
the statistical mechanics of the lat ter  [50] it is usually implied that  liquid and vapour 
are predominantly present only in very  large clusters so tha t  at  any given time all 
points r l . . . r ,  (relevant to a n-body distribution function) can be regarded as 
internal to the same single phase cluster. Kalos et al. then assume the two-phase 
interface system "can be viewed as a temporal sequence, or phase space ensemble of 
configurations sharply divided into gas and liquid regions. The geometic form of the 
dividing surface is, however, open.".  

At the crudest level they take the dividing surface to be planar and assume that  
for a given plane located at height Z there is pure vapour  for z > Z and pure liquid 
uncorrelated with vapour for z < Z. The conditional distribution functions for this 
particular dividing surface are then 

p(Z;z)=pl, z<Z 

Pv, z>Z (147) 

and 

p(2)(Z;ri,r2)-=pl 2gl(Irl-r2]), Z i < Z ; z  2 < Z  

PlPv" z~ >Z;  z 2 < Z  

or zi <Z;z2>Z 

pv:gv(irl -'21) ~l>z;~2>z.  (14s) 

I f  Z is distributed with a probabil i ty density P(Z) the equilibrium distribution 
functions are given by 

po(z) = S dZ p(Z; z)P(Z) 

p(2)(r i, r2)---- fdZ fl(x)(z; rl, r2)P(Z) (149) 
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Liquid~vapour interface 179 

These equations can be integrated and P(Z) eliminated to give a relationship 
between p<2) and P0 [11]. Here, for simplicity, we set the density of the vapour  to zero 
and it is easy to prove tha t  

p(2)(ri, r2) = p]p0(Max (zi, z2))g,([r i - r2 [  ) (150) 

This approximat ion  should be compared with the local density approximat ion 
which, we recall, sets p(2)(rl, r2) = po(zl)Po(Z2)g(p; ]r i - r21 ). 

For  vertical correlations, R 12 = 0, both approximations yield a good quali tat ive 
account  of the computer  generated p(Z) [11]. For  horizontal correlations with z i = z 2 
the approximat ions  are significantly differen, t. Equation (150) gives 

~(R12; zl,z~)= ( ~ )p2 (gl(R12)- l )+ po(zi)(P,- Po(Zi))+ Po(Zl)b(ti -t2), 
(151) 

while the local density approximat ion yields 

~(R12 , zl, zl) =p~(zl)(g(po(zl); R12 ) - 1) + p0(zl)b(ri - r2). (152) 

On Fourier  t ransforming w.r.t. R12 we expect  (151) and (152) to give quali tat ively 
similar behaviour  at  finite wave vectors Q. At Q = 0  however, the local density 
approximat ion  will lead to regular behaviour  as mentioned above while (151) gives 
rise to a g-function singularity. This a rgument  o fKatos  et al. shows how it is possible 
to construct  a simple microscopic model of the interface which generates a Q = 0  
divergence in the horizontal correlations. The approximat ion of  (150) cannot  be 
accurate  since as I r l -  r2[--*~, fl(2) m u s t  satisfy the asymptot ic  relation 

p¢Z~(r 1, r2)--+po(zl)po(z2). 
The lat ter  is, of course, consistent with the local density approximation.  
Fur thermore ,  the true N(Q, zi, z 1) does not  have a b-function singularity but  exhibits 
a weaker small Q divergence (see (138)). The restriction to strictly planar  interfaces is 
responsible for the b=function singularity. I f  this is lifted and the location of the 
dividing surface is permit ted to show long wavelength variat ion with R as considered 
in earlier sections, presumably the divergence will be weakened appropriately.  
Recently,  Weeks [12] has developed a model ahmg these lines. His  model can be 
solved explicitly in certain limiting cases and he finds tha t  for z i = z 2 = 0 the zeroth 
Fourier component  of if(Q, zl, z2) agrees, to within a trivial numerical factor, with 
the general result of (136). 

Fur the r  support  for a very sharp liquid vapour  interface but  which fluctuates in 
position and t ime is provided by  the computer  simulation of Kalos et al. [11 I. These 
calculations also show a tendency for a toms to cluster in the surface-forming regions 
of high and low density. 

Before concluding this section it is instructive to examine the general impli- 
cations of (138) for the density fluctuation function ff(Q, zl,z2) when the gravi- 
tat ional field is zero. Provided the tempera ture  is below the critical point T c so tha t  
dpo(z)/dz is finite, this function diverges as Q-2.  Above To dpo(z)/dz is zero and there 
is no divergence. Such behaviour in a static correlation function is usually associated 
with spontaneous symmet ry  breaking. For  example,  in a ferromagnet  below the 
Curie t empera ture  all the spins lie parallel to a preferred direction, say the z axis, and 
the average magnetizat ion <Mz} is finite. Above the Curie t empera ture  in the 
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180 R. Evans  

paramagnet ic  state-the spins are randomly oriented, {Mz} = 0 and there is no long- 
range order. Thus there is a breakdown of rotational symmet ry  associated with the 
preferred direction of the ferromagnetic state. The corresponding long-range order is 
characterized by the non-vanishing order paramete r  {Mz} and by  a static transverse 
susceptibility (i.e. the correlation fhnction corresponding to variables Mx or Ms) 
which diverges as q 2. In  the interface problem it is natural  to t rea t  dpo(z)/dz as the 
order parameter .  Below T¢ we have a non-uniform, two-phase system and the order 
parameter  is finite due to the breakdown of translational symmetry .  Thus, by 
analogy we would expect to find a long-wavelength divergence in the static 
correlation function of some associated dynamical  variable. 

Very recently Jhon  et al. [75] have shown tha t  the appropr ia te  variable is za (R, t), 
the t ime-dependent  normal displacement of the Gibbs dividing surface, and have 
demonstrated,  using arguments  based on sum rules and dynamical  correlation 
functions, tha t  the static correlation function {zo(R i, 0)z(;(R 2, 0)} exhibits long 
range order below T c. To be more specific, they have shown tha t  the Fourier 
t ransform of  this correlation function w.r.t. (2 behaves as (fi?O2)-1 as Q tends to 
zero. Their result is equivalent to (138). In  order to show this, we recall tha t  for long 
wavelength, small ampli tude distortions of the Gibbs surface p(R,z)-po(z)= 
-z(~(R) dpo(z)/dz so tha t  the (time-dependent) densi ty~lensi ty  correlation function 
in this limit is simply 

dpo(zl) dP°(Z2){z(~(R1, ti)zo(R2, t2)}. 
dzl dz2 

Thus, setting t 1 = t2 = 0  and Fourier  transforming, we find 

if(q,  zi, z2)= dP;J~ i) dpo(z2) (fiTQ2) - 1 

dz2 

fbr small Q, which is identical to (138) with g=0 .  
Jhon  et al. have also developed a detailed memory  ihnction approach for 

interracial dynamics.  They find tha t  associated with the symmet ry  breaking 
variable zc(R , t) are propagat ing modes whose long-wavelength dispersion relation is 
identical to the classical hydrodynamic  result fbr capillary waves, i.e. 

( ~ ~1/2Q3/2. 
~(Q) = \ re(p, - pv) / 

I t  then follows tha t  capillary waves arise fi'om the spatial symmet ry  breaking which 
occurs at an interface, i.e. from having a non-uniform density distribution. 
Propagating modes of this kind are well known in uniform systems where they are 
called zero-mass bosons or Goldstone bosons. Spontaneous symmet ry  breaking in 
uniform condensed systems is accompanied by the appearance of Bose-type 
excitations whose energy tends to zero as the wave vector tends to zero. For  example, 
the transit ion from the paramagnet ic  state to the ferromagnetic s tate  leads to spin 
waves. Since these are associated with local deviations of  the atomic spins from 
perfect alignment, it requires no energy to excite them in the long-wavelength limit. 
The propagat ing modes in the interface problem are associated with local distortions 
of the Gibbs dividing surface. Shifting this surface vertically by a constant  then 
corresponds to taking the long wavelength limit. This process mus t  require zero 
energy in the absence of an external field (see also 127)). In the light of these 
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Liquid-vapour interface 181 

considerations it would seem reasonable to describe capillary waves as Goldstone 
bosons for non-uniform fluids [75]. 

Clearly the study of correlations in the interface is an important  area of current 
and future research. One obvious question which has been discussed at some length 
in several papers [28, 27, 8, 11, 12, 21] concerns the role of the capillary wave like 
fluctuations of the dividing surface in determining the width of the density profile. 
We discuss this in the next section. 

8.5. The width of the density profile 
I t  is tempting to use the capillary wave model to investigate the form of the 

equilibrium density profile. We suppose there exists some 'bare'  density profile 
Pbar~(Z) referred to a planar Gibbs dividing surface located at z = 0. This profile may 
not  necessarily have infinite gradient as in (147) but will, in general, be very sharp. 
Let  the corresponding surface tension be ~)bare and the area of the interface be A = L :  
with L--*~.  We consider fluctuations in the location of the dividing surface of 
amplitude zG(R). I f  their wavelength is sufficiently long and their amplitude 
sufficiently small we can use the analysis leading to (144) (see Appendix 5) and 
calculate the mean square fluctuation in the average location of the dividing surface. 
The latter is defined as 

where 

and 

m __ 

z(2; = A -1  yd R z 2 ( R )  = A  - 2  ~ a (Q)a (  - Q) 
0 

zc, = A - 1 ~ dR z(~(R) = A - la(0). 

Since z G is linear in a, its expectation value is zero and from (143) it follows that  

2 1 
O'G ---- f lA ~ ((/91 -- pv)m,q -[- ~bareQ 2 ) -1 (154) 

Transforming the summation to an integral we have 

l ('Qmax 
0"2 = 2 ~  __-J Qmin dQ Q( (P l -  pv)mg + ?bareQ:) - 1 

- 2  2 
~bare q- Qmax ~ (155) _ 1 In ~ ~  , 

47~fl~bare ~bare + Qmin / 

where ~bare=(Tbare/'rrtg(fll--,Ov)) 1/2 is the 'bare'  correlation length. I t  remains to 
specify the upper and lower limits of integration, i.e. Qmax and Qmin. We ean take Qmi, 
= 2~/L since this is the smallest wave vector which can sensibly be defined. The 
choice of Qmax is, however, somewhat arbitrary and the present continuum treatment  
cannot make a rigorous identification of this quantity. In  their original capillary 
wave treatment  of the l iquid-vapout interface Buff et al [28] assumed a Qmax 
inversely proportional to the width of the equilibrium density profile which depends 
of course, on ac. This procedure leads to a transcendental equation tbr ~ .  For  
simplicity we take Qmax = 2~/~, where ~ is a molecular diameter. 
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182 g .  Evans  

I t  is clear f rom (154) t h a t  the ma jo r  cont r ibut ion  to a~ comes fl 'om fluctuat ions 
with small values of  Q. This implies t h a t  the bare densi ty  profile is b roadened  by  long 
wavelength  capi l lary waves. Fo r  the  idealized bare profile Pb~(Z)= PlO(- Z), where 
O(z) is the Heavis ide  function,  an explicit  formula  for  the equil ibrium densi ty  can be 
obta ined  [11, 12]. I n  this case 

Po(Z)=(flbare(Z--Za(R)))=pl (O(ZG(R)--Z)) 
which gives, on differentiating, 

dpo(Z) 
dz - -  pI(5(ZG(R)--Z)) 

_ Pl ( ~ dsexp(is(zG(R)_z))~ 
/ 

(156) 

(157) 

The re levant  expec ta t ion  value is 

I--8 =exp 2~A~o ((pl--Pv)~n(]+,bareQ2)-l], 
where we have  used the  methods  of  Appendix  5. F r o m  (157) and  (154) it then follows 
t h a t  

_ (-+) dpo(z) Pl exp (158) 
dz (2n)ma~ 

and  hence 

p0!z) =~erfc (z/~/2ao). (159) 

The '10-90 '  wid th  of  this densi ty  profile is 2"56a~ and thus  depends explici t ly on both  
the area of  the interface and  the s t rength  of  the g rav i t a t iona l  field. 

I n  the  absence of  g rav i ty  - 1 2 - 1 ~bare = 0 and a G = (2nflYbare) in (L/a). As the area of  the 
interface becomes infinite a~ diverges logari thmically.  Long-wave leng th  diver- 
gences o f  this kind are c o m m o n  in the s tudy  of  s t r ic t ly  two-dimensional  sys tems t 
(e.g. [51]). We  note  t h a t  this divergence is ex t remely  slow; choosing parameters  
appropr ia te  to liquid argon near  its triple point,  i.e. 7b, re = 14 dyn  c m -  I 'T  = 85 K and 
a = 3"4 A, we find for L = I mm,  a(~ = 1"32a. The corresponding result  for L = 1 m is 
1-59a. 

For  stat ist ical  mechanical  appl icat ion it is na tm'a l  to take  the l imit  L-~ ~ first 
and  then  examine the  sys tem as g-~0. I n  this case Qmi,=O and a~=(4nfiTb,ro) -1 
In (I+~Lo Qma×) and for a rgon in the ear th ' s  gravi t ional  field aG ~ 1"39a. As g-*0, 
however,  a G diverges as ( - l u g )  ~/2. 

Al though these divergences are ext remely  weak t h e y  have  i m p o r t a n t  repercus- 
sions. The  last result, when inserted into (158), implies dpo(z)/dz~O as ( - i n  g) -  1/2 in 

t in  two dimensions long-wavelength fluctuations (Goldstone modes) have sufficient density to 
destroy the ordered state; in the present case the capillary waves force dpo(z)/dz to zero. 
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Liquid--vapour interface 183 

the limit g-+0 and indicates that ,  in general, the equilibrium density should not have 
a finite width in zero gravi ta t ional  field [28]. Since this result is contrary  to what  we 
have supposed throughout  this paper  we examine both it s ta tus  and its implications. 

Earlier we demonstra ted tha t  the van der Waals and related approximate  
theories yield equilibrium profiles of finite width in the limit of  infinite interfacial 
area and zero gravi ty .  We also indicated in § 8.2 and § 8.3 how the exact  integro 
differential equations imply exponential-l ike profiles of finite decay length in the 
Same limit. The corresponding interfaeial widths are clearly intrinsic to the phase 
equilibrium itself. Equat ions (155) and (159), on the other hand, predict  a density 
profile which depends on A or g or both  and hence its width cannot  be an intrinsic 
proper ty  of the fluid. To quote Wer the im [10]¢: "Such behaviour is completely at  
odds with what  is usually held.".  We are of  the opinion tha t  the true equilibrium 
profile cannot  be rigorously constructed by  simply 'unfreezing' capillary waves in the 
hypothet ical  bare interface. The ditfieulty lies ult imately in the fact  tha t  the liquid 
vapour  interface is a three-dimensional system. In  applying capillary wave theory 
we are forced to (a) select a part icular  bare profile with a corresponding surface 
tension and (b) make some s ta tement  about  the number  of  'surface'  atoms, i.e. we 
mus t  specify Qmax and Qmin. Although there is no unique procedure for doing either of 
these, this may  not  be the major  problem. We suspect the capillary wave model, as 
described in Appendix 5, is inapplicable to the real surface problem when the 
ampl i tude zc(R ) becomes finite or develops short-wavelength Fourier components or 
has a large gradient.  Under  these circumstances (A 29) is not a valid free-energy 
functional for a proper three-dimensional interface and something more realistic is 
required. We note tha t  merely including a term Izc(R)l 4 in the functional does not 
appear  to remove the logarithmic divergence in aG[76]. (We should stress tha t  this 
objection to the use of capillary wave ideas does not apply to the analysis leading to 
(14=6) for the density fluctuation function of the equilibrium system. The lat ter  is a 
linear response function and is, therefore, solely concerned with infinitesimal 
changes in the ampli tude zG. Fur thermore  tha t  analysis was specifically aimed at  the 
long-wavelength limit.) 

I t  is now appropr ia te  to comment  on some recent papers on this topic. Lovet t  et 
al. [8] imply tha t  the width of the equilibrium profile can be calculated using a model 
based on capillary wave theory (with L = oo and finite g) and tha t  the result can be 
legit imately compared with the width obtained from a van  der Waals type of 
approach.  I t  is clear from the a rgument  of the previous paragraph tha t  such a 
procedure cannot  be strictly correct. The widths which Love t t  et al. obtained from 
the capillary wave route appear  to be quite reasonable but  this is probably 

for tu i tous ;  we recall tha t  aG~  1"39a for parameters  appropr ia te  to liquid argon 
which would yield a '10-90'  width of  ~< 40. Davis [21 ], on the other hand, has argued 
tha t  the density profile should be determined by  unfreezing capillary waves on a bare 
planar  interface whose underlying form is tha t  given by a van der Waals type of 
theory. He  then compares the resul tant  total  width, which is now dependent  on L 
and g and hence not  an intrinsic proper ty ,  with the results of computer  simulations. 
This would seem to be inconsistent. I t  would make more sense to compare  the van 
der Waals widths directly with those obtained from computer  s imulat ion--provided 

¢ Wertheim also shows that dpo(z)/dz having a finite limit as 9--+0 is consistent with the invarianee 
properties of a system in a gravitational field provided po(z) can be assoeiated with the usual Gibbs 
dividing surface. 
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184 l~. Evans  

the la t ter  are sui tably modified to take into account the finite size of the interface (see 

below). 
Another model of  the interface has been proposed by Weeks [12]. He divides the 

fluid into an ar ray  of vertical columns whose horizontal width is of the order of a bulk 
correlation length and then considers fluctuations in the number  of particles in each 
column. These fluctuations can be related to changes in the location of the local 
Gibbs dividing surface. The free energy associated with such distortions is then 
calculated using macroscopic arguments  which are essentially equivalent to those of  
capillary wave theory. Weeks suggests tha t  the local interface width, i.e. the width 
relevant  to a single column, should be identified with the width as calculated from 
a van der Waals type of approach.  Not  surprisingly he finds that ,  as a result of the 
capillary wave-like fluctuations, the total  interlace width diverges in the same 
fashion as we described above. In  part icular  he finds that ,  for infinite interfacial area, 
the derivat ive of the equilibrium density dpo(z)/dz should go to zero as ( - I n  g)1/2 in 
the limit g-~0 and shows t h a t  within his model, this divergence is due to " the same 
fluctuations which lead to the long-ranged horizontal correlations"¢. Whilst we 
accept tha t  Weeks'  model is p robably  the best microscopic model which is presently 
available for describing density correlations in the interface, we are not convinced 
tha t  it gives a good description of the equilibrium density profile. As we argued 
earlier, it is impor tan t  to distinguish between theories for the density response of the 
equilibrium system (this being characterized by .the long-ranged horizontal corre- 
lations) and theories fer the equilibrium density itself. For  the sake of clarity we 
summarize our arguments.  

In zero gravi ty  the densi ty~tens i ty  correlation function N(O,Zl,Z2) of the 
equilibrium fluid exhibits a Q-2 divergence as O-+0 for zl and z 2 in the interface 
region. This result (see Appendix 4) was derived using ra ther  general arguments  by  
Wer the im [10], Kalos et al. [11] and indeed Weeks [12]. In  § 8.4, we showed that ,  since 

is directly proportional  to the density response of the equilibrium system to an 
infinitesimal change in the external potential,  the long-wavelength behaviour of 
(~(Q, Z1, Z2) can be calculated by generating capillary wave-like fluctuations of the 
Gibbs dividing surface. The Q-2_divergence, which is the indicator of  long-ranged 
horizontal correlations, then has a natural  and rigorous interpretat ion in terms of 
these fluctuations. The equilibrium density profile itself has nothing to do with these 
flu etuations; it forms the underlying structure and determines the surface tension of 
the interface whose long-wavelength density response has capillary wave-like 
behaviour.  In  a diffraction exper iment  one measures a ' s t ructure factor '  correspond- 
ing to (138) and y is the usual 'equilibrium' surface tension. This point of view would 
appear  to be the same as tha t  of Widom [27]. 

On the other hand, we have shown tha t  a t t empts  to build up the equilibrium 
profile by unfreezing capillary waves on some 'bare '  non-equilibrium interface are 
unsatisfactory.  They produce profiles which depend on the area of the interface and 
on g and thus cannot  be intrinsic to the phase equilibrium. (The surface tension has a 
bounded anomaly  and can be considered as intr insic--see Appendix 5.) 

We do not  wish to imply tha t  capillary wave theory is not usetul. Indeed, the 
basic idea tha t  the density profile is broadened by capillary wave-like fluctuations in 

SWe should recall that the argument of §8.4 which predicted long-ranged horizontal correla- 
tions assumed that dpo(z)/dz was finite foc g=0. The same argument goes through, however, provided 
dpo(z)/dz-+O more slowly than g. 
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some ' b a r e '  in te r face  m u s t  be q u a l i t a t i v e l y  correct .  However ,  a p r o p e r  t h e o r y  m u s t  
be ab le  to  t r e a t  bo th  f ini te  a m p l i t u d e  a n d  sho r t -wave l eng th  f luc tua t ions .  W e  are  no t  
aware  of  such a t heo ry  b u t  work  a long  these  lines is in progress  [21]. C lea r ly  a t heo ry  
of  th is  k i n d  would  be useful for e x t r a p o l a t i n g  the  resul ts  of  c o m p u t e r  s imula t ions  on 
sy s t ems  o f  f ini te  in te r rac ia l  a rea  to  inf ini te  area.  The  shor te s t  ho r i zon ta l  wave  vec to r  
which can  be a l lowed in a c o m p u t e r  s imu la t i on  is 2rt/L = 0r . i .  where  L is t yp i ca l l y  
5-20~.  Consequen t ly ,  f luc tua t ions  wi th  wave  vec to rs  < Q~i. are n o t  p e r m i t t e d  and  
we can  e x p e c t  t he  dens i t y  profi le  ca l cu l a t ed  for a small  f ini te  sy s t em to be r a t h e r  
sha rpe r  t h a n  for the  case of  inf ini te  in te r rac ia l  area.  The  resul ts  o f C h a p e l a  eta/.  [491 
for a L e n n a r d - J o n e s  mode l  of  a rgon  i l l u s t r a t e  th is  qui te  nicely.  As  the  n u m b e r  of  
a t o m s  in t he i r  mo lecu la r  d y n a m i c s  s imu la t i on  was increased  from 255 to 1020, the  
w id th  o f  the  in te r face  increased  b y  a b o u t  19%,  while the i r  4080-a tom s imula t ion  
gave  a w id th  4To g rea t e r  t h a n  the  1020-a tom s imula t ion .  The  va lues  of  L 
co r r e spond ing  to these  th ree  s imu la t i ons  are  5~, 10~ a n d  20~ respec t ive ly .  The  
increase  in the  w id th  of ' the  d e n s i t y  profi le  c lea r ly  s a tu ra t e s  for  L in t h e  region of  20~;. 

W e  conc lude  this  sec t ion b y  p re sen t ing  in t ab l e  2 resul ts  for the  ' 10-90 '  wid th  of  
the  d e n s i t y  profile a n d  the  surface t ens ion  as o b t a i n e d  by  recen t  mo lecu l a r  d y n a m i c s  
s imu la t i ons  of  the  in ter face  o f  a L e n n a r d - J o n e s  fluid. Severa l  Monte-Car lo  
s imu la t ions  have  been pe r fo rmed  (see A b r a h a m  et al. [52] for references  to ear l ier  
work)  some of  which p r o d u c e d  n o n - m o n o t o n i c  dens i ty  profiles,  i.e. osc i l la t ions  in the  
l iquid  side o f  the  in ter face .  The p r e s e n t  consensus  [49] is t h a t  these  osc i l la t ions  are  an 
a r t e f a c t  of  over  cons t ra in ing  the  sy s t em or no t  ave rag ing  over  enough 
conf igura t ions .  

]'able 2. Intert~reial '10~0' widths w and surigee tensions ? obtained from molecular dynamics 
simulations of a Lennard-Jones 12-6 fluid at various temperatures T% The experimental results 
yelp are for argon [401. 

Reference T(K) w/a ?(dyn em- t) y~xp(dyn era- t) 

a 84 ~2"0 ~ 12 12"9 
b 84 2'0 15"7 12.9 
b 94 2.2 11"8 10"4 
b lO0 2"7 10'6 9.4 

(a) Rao and Levesque [48], (b) Chapela et al. [49] using 1020 atoms. 
In order to eompai'e with 'real' argon the parameters of the Lennard-&mes potential are taken as 

= 3"405 A and ~/K B = 119"8 K. 

I t  ('an be seen t h a t  the  two i n d e p e n d e n t  s imu la t ions  a t  84 K agree  on the  wid th  of  
the  profi le  w ~ 2cr. This  resul t  is e s sen t i a l ly  t he  med ian  of  t he  w id th s  o b t a i n e d  from 

the  van  der  W a a l s  and  re l a t ed  theor ies  (see t a b l e  1 ). The  surface t ens ions  ca lcu la t ed  
in these  two s imula t ions  differ. This  m a y  be due  to  different  t r e a t m e n t s  of  t r unca t ion  
of  t he  L e n n a r d - J o n e s  po ten t i a l  [ 19]. Expe r i enc e  wi th  t h e r m o d y n a m i c  p e r t u r b a t i o n  
theor ies  for the  surface  tens ion [38, 47] ind ica tes  t h a t  rep lac ing  t h e  L e n n a r d - J o n e s  
po t en t i a l  b y  a more  a c c u r a t e  a rgon  p o t e n t i a l  func t ion  ( including t r i p l e t  in te rac t ions )  
reduces  ? b y  ~ 3 d y n  c m -  1 in t he  t e m p e r a t u r e  range  of  t ab le  2. This  suggests  t h a t  the  
resul t s  o f  Chape la  et al. [49] give a r a t h e r  good desc r ip t ion  o f  the  surface tens ion  of  
a rgon  n e a r  i ts  t r ip le  p o i n t  and  therefore ,  b y  inference,  so do the  a p p r o x i m a t e  theor ies  
desc r ibed  in § 8.1. 
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186 1~. Evans  

§9. SPINODAL DECOMPOSITION 

The l iquid-vapour  interface is not the only problem of interest in the statistical 
physics of non-uniform fluids. One closely related topic, where the general formalism 
can make a useful contribution, is the theory of spinodal decomposition. This is the 
name given to the process of phase separation which occurs in the 'unstable '  region of 
the phase diagram (see fig. 3). (For a recent discussion and references to earlier work 
see Abraham [53].) The equilibrium and kinetic aspects of this problem have 
tradit ionally been t reated in terms of the empirical van der Waals square-gradient 
approximat ion  to the Helmholtz  free energy of a non-uniform fluid [54]. A general 
t r ea tment  of  the equilibrium aspects can now be given. 

We consider an initially uniform fluid of density p~ and examine the stabili ty of 
this fluid to infinitesimal density fluctuations p ( r ) = p ( r ) - p ~ .  Expanding  the free 
energy as in (65) we have 

g [ p ]  = g i v e ]  + ~(p~) j 'dr p(r) 

where #(p~) is the chemicM potential  of the uniform fluid and c[p~; I t - r ' [ ]  is the 
corresponding Ornstein-Zernike direct correlation function. We assume tha t  the 
number  of molecules is unchanged by the fluctuation so tha t  the second term in the 
expansion vanishes. I t  then follows tha t  

1 , [~(r- -r ' )  [r_ r,[]) p(r)p(r, ) Ag=glpl- Ipul= IId,d, [ ,,Ip.; 
1 

= 2fl~/f ~ ( ~ -  tips; q] ) ~(q)p( - q). (161) 

Fig .3 

Density 0 

Temperature 

Critical point 

Phase diagram tbr a simple monatomie fluid (schematic). The solid curve denotes the liquid-vapour co- 
existence curve and the dashed curve the spinodal f~(fl) = 0. In the unstable region f'~(p) < 0 phase 
separation occurs by spinodal decomposition. In the metastable regionf~(p) > 0 phase separation 
occurs by nucleation and growth. 
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Liquid~vapour interface 187 

I f  A~- > 0 the fluid is stable with respect to infinitesimal density fluctuations. For  an 
arb i t ra ry  fluctuation A ~  may  be ra ther  complicated but  if we restrict consideration 
to long wavelength fluctuations we can profitably expand c[pu; q] as in (69)and we 
find 

1 tt A~ ( -q), = ~  ~ +q2f2(Pu)+ ...)p(q)p( (162) 
q 

where we have used (72) to re-introduce the free energy density fo(Pu) and the 
coefficient of the square-gradient  te rm f2(Pu)- I f  we consider a fluctuation of 
ampli tude ~ with a single Fourier component,  i.e. p(r) = ~exp ( - i q  r) then to O (q2) 

(163) 

Henceforward,  we assume f2(Pu)> 0 for any  density Pu of interest. (This should be 
valid for any  potential  with a reasonable a t t rac t ive  ta i l - -see  (73).) I f  f'~(pu)>0 
(positive isothermal compressibility) then A~- in (163) is positive for all wave vectors 
q and it follows tha t  the fluid is stable against  long-wavelength fluctuations. On the 
other hand i f f~ (pu )<0  (negative compressibility) A ~  in (163) will be negative for 
q < q2, where 

q2 = ( -- f'o(Pu)/2f 2(Pu) ) 1/2 (164) 

is the 'critical '  wave vector  and the fluid will be unstable against  such fluctuations. 
Whilst  these results are of precisely the same form as those obtained by  Cahn~ [54] in 
his classic analysis we have now made a rigorous microscopic identification off2. In  
Cahn's  theory, as in the van  der Waals  t r ea tmen t  of surface tension, there is usually 
no a t t e m p t  to relate the coefficient of  the square-gradient term to a particular 
microscopic quant i ty .  The present analysis also shows tha t  a proper  generalization of 
Cahn's  theory, which is not  restricted to long wavelengths, exists and leads to a 
different critical wave vector q~. The lat ter  is the solution of 

1 = p,r[pu; q~ ]. (165) 

The existence o fa  spinodal (the locus of points in the p - T plane where f  ~(pu) = 0; 
(see fig. (3)) is, of course, dependent  on the idea tha t  the free energy density in the 
single-phase region has an analytic continuation into the two-phase region. This idea 
has not  been proved [27]. In  fact the argument  [27, 53] in favour of  it depends to a 
large extent  on the strong experimental  evidence for spinodal decomposition (see 
below). The analysis we have described above also requires tha t  the Ornstein 
Zernike direct correlation function has an analytic continuation into the two-phase 
region. There exist practical procedures for performing such a continuation [14]. 

The kinetics ofspinodal  decomposition m a y  be analysed in an analogous fashion. 
We assume tha t  the density satisfies the continuity equation 

~p(r, t) 
- -  - V .  J ,  (166) 

~t 

where J is the current density. I f  the departures  from equilibrium are small, J should 

~-Cahn considered concentration fluctuations in binary systems rather than density fluctuations in a 
single-component system. His free energy functional was of the Cahn Hilliard square gradient type which 
is analogous to the van der Waals approximation. 
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188 R. Evans 

be proportional to some driving force which will .be associated with the effective one- 
body potential in the fluid, i.e. 

d = - -  B p ( ¢ ,  t)V#in[p(r, t)], (167) 

where B is a positive constant of proportionality and #in[P] is the intrinsic chemical 
potential defined in (15). In general, we require some prescription for #i,[P] or 
equivalently ~[p] .  One way of proceeding is to assume p(r,t) is slowly varying in 
space and use the gradient expansion (see (63)) 

- ~ ~ 2 2 

#i,[P] =f0(P)-fz(P)[VPl -2fz(P)V P + . . .  

Substituting the resultant J into (166) will give an explicit, but non-linear, partial 
differential equation for p(r, t). This could then be linearized. I t  is preferable, 
however, to linearize directly, i.e. Taylor expand Y[p] about some initial uniform 
density p, as in (160) and then differentiate so tha t  

#in[P] = #(pu) + fi- l , d(  ( & ( L  r') -c[p~; lr-r',] ) ~((. t) + .. 

1 1 )~(q . t )exp  - i q  r )+ = #(Po) r. ( F .  - ql / m ~ 

where 

p(q, t)= Sdr exp (iq. r)p(r,t). 

Thus, to first order in p, the current density is 

B p . _  / 1 \ 
J = ~ - ~ q  iq~ ~u-C[pu; q] ) ~ ( q . t ) e x p ( - i q  .r) 

and substituting into (166) we have 

@(q,t) B ( fl p~q2 

The solution of (169) is of the form 

p(q, t) = p(q, 0) exp (R(q)t) 

with 

(16s) 

(169) 

(17o) 

s 2(~_~[pu;q]) (171) R(q) = - ~  Puq 

For long-wavelength fluctuations we can again expand the direct correlation 
function in powers ofq  2 and it follows that  to 0 (q4): 

R(q ) = - Bpu(q~f ~(pu) + 2q4f ~ (pu) ). (172) 

I f  the fluid is in the unstable region, i.e. f~(Pu)< 0 (see fig. 3), the amplitude of the 
fluctuations will increase exponentially with time provided q ~s smaller than the 
critical wave vector qz as defined in (164). When q> qz the amplitude will decay 
exponentially with time. Equation (172) is identical in form to tha t  derived by Cahn 
[54]. We now find, from our more general analysis, tha t  R(q) will be positive and the 
amplitude of the~ fluctuations will increase with time, provided q < qc where qc is 
defined by (165). 
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Liquid~vapour interface 189 

I t  is possible, in principle, to test the predictions of this theory experimentally. 
X-ray  or light scattering experiments measure an intensity I(q, t)oclp(q, t)] 2. The 
present theory predicts that  the time derivative of the logarithm of the intensity 
should be time independent and equal to 2R(q). The quant i ty  which is conveniently 
extracted from an experiment is 

D 2d  (q) =q- dtln I(q, t)=2q-2R(q). (173) 

Thus for very  small wave vectors q, D(q) should vary  linearly with q:. This would 
correspond to the light-scattering situation. For  wave vectors corresponding to 
wavelengths ~< 20a, where a is a molecular diameter, (171 ) predicts deviations from a 
linear behaviour, since higher order terms in the expansion of c[pu; q] then become 
important .  The critical wave vectors q2 and qc will lie in this range. Cahn's theory 
predicts tha t  D(q) varies linearly with q2 for all q. Recently Abraham [33, 55] has 
used an approximate thermodynamic perturbat ion theory to t rea t  this problem. He 
calculates substantial deviations from linear behaviour for q~q2. Our analysis 
provides a general explanation for such behavionr. 

We stress tha t  the theory of spinodal decomposition as described above is only 
valid for the initial stages of the decomposition when the amplitudes of the 
fluctuations are small. As the amplitudes grow non-linear effects become important  
and the present linear theory will be invalid [56, 57]. I t  has also been suggested [58, 
57] tha t  even in the early stages of decomposition the above theory is incomplete and 
tha t  there should be a 'random-force' contribution to the current density in (167). 
The addition o f  such a term modifies the subsequent analysis and can lead to 
additional curvature effects in D(q)i i.e. this separate mechanism also acts to produce 
deviations from a linear variation with q2. Abraham [55, 53] has commented on the 
present experimental and theoretical situations. Experiments are usually performed 
on binary alloys rapidly quenched from the melt into the unstable, solid-solution 
region. Consequently the relevant order parameter  is not  the density but  the 
concentration. Whilst these experiments provide ample evidence that  the early 
stages of spinodal decomposition are well described by the Cahn theory they 
frequently yield a D(q) which is not  proportional to q2 for q>~qc. Hence the current 
interest in this problem. Cahn's theory has also given a satisfactory explanation of 
light scattering measurements on some binary-fluids (see e.g. [53]). The interpre- 
tat ion of the various experiments and, in particular, the role of the non-linear terms 
and the 'random force' remain the subject of current investigation. 

§ 10. CONCLUSIONS, PERSPECTIVES AND OTHER TOPICS 

In this paper we have reviewed the general theory of the equilibrium statistical 
mechanics of non-uniform classical fluids and we have described the application of 
this theory to three different problems-- the  long-wavelength behaviour of the direct 
correlation function of a uniform fluid, the early stages of spinodal decomposition 
and the l iquid-vapour  interface. I t  might be useful to summarize some of our main 
conclusions and mention possible topics for future research in these areas. 

The approximations described in § 7 for the long-wavelength behaviour of the 
direct correlation function or, equivalently, the liquid structure factor S(q) are both 
physically revealing and suificiently sim]ole to warrant  application in more complex 
fluids, s(q) at  small q contains information concerning the long-range part  of the 
interatomic potential. Consequently we might expect S(q ~ 0) to differ considerably 
between metals and insulators, reflecting the long-range oscillations and van der 
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190 R. Evans  

Waals a t t rac t ion  of the dittbrent pair  potentials. Exper imenta l ly  most  liquid metMs 
at  their triple points are considerably less compressible than their equivalent  hard- 
sphere reference system while insulators are roughly twice as compressible as their 
equivalent  hard-sphere reference systems. Calculations based on the RPA and 
E R P A  of § 7 give a good account  of this t rend in the compressibili ty [17]. The 
approximat ion  schemes m a y  also prove useful for the interpretat ion of small q 
diffraction da ta  in both  metals and insulators. The extension of the general theory to 
binary mixtures  is s t raightforward [16] and the RPA and MDA have been used in a 
s tudy of phase separation in binary alloys [16]. (Phase separation is concerned with 
the q = 0 divergence of the part ial  structures factors.) The results for a single alloy 
system, Li -Na,  are encouraging and this would appear  to be a promising approach to 
what  is t radit ionally regarded as a difl3eult problem. In  a related, but  somewhat  less 
ambitious,  vein the various approximat ions  should throw considerable insight into 
the long-wavelength behaviour of  the measured partial  s tructure factors of binary 
systems near the triple point. We note tha t  the q = 0 limits of  the part ial  s tructure 
factors are related to impor tan t  thermodynamic  quantities,  i.e. the isothermal 
compressibility, partial  molar  volumes and activities (e.g., Bhat ia  [59]). 

Our present  t rea tment  of  spinodM decomposition has put  Cahn's  classic work on 
a proper  theoretical basis and showed how to properly extend his approach to finite 
wavelengths. We have not a t t e m p t e d  to go beyond the linear aspeets of the problem 
or to deal with all the ra ther  controversial aspects of the kinetics of spinodal 
decomposition. Calculations of  the critical wave vectors q2, qo and the function R(q) 
of§ 9 have  recently been performed for a Lennard~Jones fluid a t  various points in the 
unstable region [77]. We find t h a t  the smM1 q expansion is inaccurate for q ~qc. The 
formal extension of our analysis to binary mixtures appears  to be quite straightfor- 
ward and it would be useful to develop traetabte approximat ion schemes for this ease 
since spinodal decomposition appears  to be observed in various binary systems (see 
§9t 

In  §8 we saw tha t  the general theory has proved extremely fruitful in its 
application to the l iquid-vapour  interface. I t  is probably  safe to argue tha t  the 
density profile and surface tension of simple, argon-like liquids is now quite well 
understood. One major  theoretical problem remains, however, and this concerns the 
search for a proper microscopic model which will describe correlations in the 
interface. As discussed in § 8.4 and §8.5, while there is impor tan t  recent work in this 
area, most  existing models are based on capillary wave theory and lead to what  we 
believe are unrealistic divergences in the width of the equilibrium density profile 
under certain limiting conditions. A second more technical problem concerns the 
relationship between the K i r k w o o & B u f f  result (107) for the surface tension and the 
corresponding result in terms of the direct correlation function (128). As we 
mentioned in § 8.3 no direct proof  of  their equivalence has been given. Very recently, 
however, Jhon  et al. 1160] have shown tha t  the Ki rkwood-Buf f  result can be 
t ransformed to a formula involving a force-force correlation function and tha t  the 
lat ter  is equivalent  to (128). Whilst  this does not consti tute a direct demonstrat ion of 
the equivalence of the two approaches it certainly implies tha t  a direct derivation 
should exist.$ 

Relat ively little work has been done on the statistical theory of the l iquid-vapour  
interface for more complex fluids (for a recent review see Croxton [61]). The formal 

$ Schofield [79] has shown that the Kirwood Buff result can be directly transformed to the formula 
involving the direct correlation function. 
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extension of the theory to mult i-component systems is straightforward [291 but  
there have been few calculations. Chapela et al. [49] have carried out a computer 
simulation of the surface ofa  Lennard Jones binary mixture. This calculation shows 
the expected adsorption of the component  of higher vapour pressure. I t  is clear tha t  
in binary fluids the surface tension is very  sensitive to the form of the density profiles 
of each component,  so one requires fairly accurate; yet  tractable, approximate 
theories in order to understand experimental  data. Recently Pastor  and Goodisman 
[62] have stressed this point for molten salts;-there is little theoretical understanding 
of these important  systems. For  mixtures of neutral atoms, thermodynamic 
perturbat ion theories would appear  to be useful and Abraham [63] has discussed 
this. While liquid metals lie outside the scope of this paper we should mention tha t  
Lu and Rice [78] have recently reported experimental results for the ion-density 
profile of liquid Hg using X-ray techniques. This would appear to be the first 
successful experimental determination of a density profile for any liquid near its 
triple point. The width of the measured profile is about two or three atomic 
diameters, i.e. similar to tha t  which would be expected from theoretical work on 
insulating, liquids. However, this width is much larger than that  predicted by the 
theoretical work of Rice and co-workers (see [78] for details) on metals. I t  is also 
larger than widths predicted by the present author  [64] who developed a 
'pseudoatom' model to describe the free surface of a liquid metal. This model takes 
into account both electronic and ionic contributions to  the surface tension and 
involves both the averaged conduction electron density and the ion-density profile. 
Calculations for a few metals near their melting points yiel d surface tensions which 
are in fair agreement with experiment and predict ion-density profiles with 
substantially smaller widths than those obtained for insulating, argon-like liquids at 
their triple points [35]. I t  might also be interesting to examine the horizontal 
correlation functions at  the surface of binary liquids--especially for charged fluids. 
Gray and Gubbins [65] have generalized the Kirkwood-Buff  theory to molecular 
fluids in which the interaction potential  depends on the relative orientation of the 
molecules and Haile et al. [66] have developed a thermodynamic perturbat ion theory 
for the surface properties of such fluids. 

The statistical thermodynamics of the surface of superfluid 4He has received a 
great deal of at tention in recent years. Much of the theoretical work in this field is 
based on density functional techniques which are quantum-mechanical analogues of 
those described in this paper (see, e.g. Ebner  and Saam [67] and references therein). 
There are also models which build up the equilibrium density profile and calculate 
the surface tension by unfreezing 'ripplons' in a 'bare' surface [68, 67]. These 
'ripplons' are analogous to capillary waves but  possess a large zero-point energy. 
They lead to a considerable broadening of the surface profile and give a very  large 
contribution to the surface tension. I t  would also appear tha t  these models should 
lead to troublesome divergences in the limit g-*0 or A, the area of the interface, ~ oc. 

One impor tant  area of research, where the general theory of non-uniform fluids 
can make an impact is tha t  concerned with the liquid-solid interface. Several 
authors have developed theories of the density profile of a simple liquid in contact  
with a structureless, repulsive wall (see, e.g. Sullivan and Stell [69] and references 
therein). These theories solve the appropriate Ornstein-Zernike equation, usually 
within a Percus-Yevick type of approximation.  Saam and Ebner  [70] have criticized 
some aspects of the approximation scheme. In particular they argue it cannot 
predict the formation and growth of unsaturated liquid films near the fluid-solid 

A.P.  N 
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192 R. Evans 

interfi~ce and that  the density functional technique of Ebner  et al. (see § 6.4) is much 
superior in this respect. Singh and Abraham [71] have applied their thermodynamic 
perturbat ion theory (see § 8. l) to the determination of the density profile for a hard 
sphere liquid in contact  with a soft repulsive wall. While replacing the actual 
'structured'  wall by some average external potential may  turn out  to be a rather  
crude approximation for a real solid-liquid interface [72] such model calculations 
should prove usetul for understanding interfacial tension, wetting, contact-angle, 
etc. The molecular theory of such phenomena is still in its infancy; for a recent review 
see Navascu~s [73]. 
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A P P E N D I X  1 
THE PROOF THAT Vext(r ) IS UNIQUELY DETERMINED BY 

THE EQUILIBRIUM DENSITY p0(r )  

We follow the Hohenberg-Kohn-Mermin  argument which proceeds by reductio 
ad absurdum. Suppose another  potential exists which gives rise to the same density 
p0(r). Le t  this potential be V'¢xt(r) corresponding to the hamiltonian H i = T + U + V'. 
The corresponding equilibrium probabil i ty density f '  and the grand potential ~ '  
refer to the original temperature  and chemical potential. I t  is easy to show tha t  even 
if the two external potentials differ by only a constant,  the grand canonical 
probabili ty densities are different, i.e. f ' ¢ f o .  

From (5) we have 

~ '  = Trctf'(H(~ - pN + fi- lln f') 

< r;rctfo(H ~ - p N ÷ f l -  1 lnfo ) 

The I'. h. s. of this inequality is ~+Tr¢lfo(V'--  V) so 

~ ' < g t +  ~drpo(r)(V'¢xt(r)- V+xt(r)). (A 1) 

Interchanging primed and unprimed quantities we find 

~ < ~ '  + Trolf'( V - V'), 

but  since f ' i s  assumed to give rise to po(r) this can be writ ten as 

~t < f~' + ~dr p0(r)( Vext(r)- V'¢xt(r)). (A2) 

Adding (A l) and (A2) leads to a contradiction 

~ + ft' < gt' + ft. 

Consequently for a given chemical potential there is a unique V~t(r) which will 
determine a given equilibrium density. I f  we allow, the chemical potential in the 
system with hamiltonian H~ to be different from /~ we can then prove that  the 
combination # -  Vcxt(r) =u(r)  is a unique functional of  the density. The proof tha t fo  
is a functional of p0(r) then follows straightforwardly and the subsequent analysis 
follows that  of § 2. 
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A P P E N D I X  2 
D I S T R I B U T I O N  F U N C T I O N S  I N  T t I E  G R A N D  C A N O N I C A L  E N S E M B L E  

The grand partition function (2) can be written in terms of u ( r ) = / 1 -  V~xt(r): 
0o }c - 3 N 

= ~ j ' d r ~  j'dr u(r)~)(r)-flU) (A3) ~--o "'" drN exp (fl 
iV! 

Thus 
/~-3N 

an_  E_~N~o~_. ~dr;...drN~)(r)exp(fi~dru(r)~)(r)_~U) 
5u(r) = . 

= -- TI' lfo~)(r ) 

= -- (h(r)} 

= - po(r), 

which is (25). Differentiating again we have 

3P°(rx)--fl 1(  - 3 ] n E  ) 
f#(rl, re ) =_fl- 1 3u(r2) ~Su(r2) po(rl) +flTrolfo~(rl)jb(r2 ) 

o r  

( ~ ( r l ,  r2)  = _ p o ( r 2 ) P o ( r l )  + (~ ) ( r  1 ) f i ( r2 ) } ,  
(A4) 

where we have used (A 6). 

~2 

which is equivalent to (26) 

The hierarchy of configurational distribution functions is defined as usual by 

oo ZIg  

;(m)(rl... rm)= ~-1N~m (N_~m)! ~drm÷l... drN ~xp (--/h V+ U)) (A5) 

Clearly, p(1)(r) --- po(r) and it is straightforward to show 

(.k(r)k(r')) = ( 2 5 (r -  ri)6(r'- r j)) + ( 2 6 (r -  ri)6(r'- r~)) 
i:~J i 

= p(2)(r, r') + P0(r)~(r-- r') (A 6) 

Combining this result with (A 4) we obtain (27) for N(rl, r2). 
I f  the interaction potentiM U e~n be written as a sum of pairwise pogentiMs as in 

(49) we can obtain p(2)(r, r') by funetionM differentiation of E w.r.t, to the pairwise 
potential ~b(r, r'). We write 

E =  N~__ 0 2N~3.~s ' dr1. .  • drN exp ( ~  ~ dr u ( r ) ~ ( r ) - ~ '  ~ drdr'I(r, ")~b(', r') ) ,  

where 

J?(r, r ')  = y '  3 ( r  - -  r~)c~(r' - -  r j ) .  
i.:~j 

Equation (50) then follows immediately since, for fixed u(r) 

3 n  _ j ~ - t  3 l n :  = ½ ( , 7 ( r , r , ) } = ½ p ( 2 ) ( r , r , ) ,  
&b(r, r') be(r, r') 
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194 g .  Evans  

A P P E N D I X  3.  
R E L A T I O N  TO L I N E A R  R E S P O N S E  T H E O R Y  

Consider a non-uniform fluid of  equilibrium density po(r) and potential  uo(r ). 
Suppose this system is per turbed by  an infinitesimal change in the external  potential  
so tha t  the new equilibrium density is p(r) and the corresponding potential  is u(r). 

The (static) linear density response function )/relates the change in density to the 
change in external potential:  

p(r) ~ - j'dr' z(r, r')~(r'), (AT) 

where ~(r) = p(r) - po(r) and ~(r) = u(r) - u0(r ) = - A Vext(r), if the chemical potential  
is fixed. F rom (26) it follows tha t  

~(rx, r2)= - f i -  Xz(rl, r2). (A 8) 

For  a uniform fluid of  density Po, if(r1, r / ) =  p2o(g(rl2 ) - 1 ) +  poCk(r12), so on Fourier 
t ransforming we have 

z(q) = - flpo(1 + Po ~ dr exp (iq. r)(g(r) - 1 )) = - flPoS(q), (A 9) 

where S(q) is the liquid s t ructure  factor. The direct correlation function of the 
uniform fluid c(2)(q) is related to the inverse of S(q): 

poc(2)(q) = 1 - US(q), (A 10) 

which follows from Fourier  t ransforming (32), the Ornstein-Zernike equation. 
Combining (A 9) and (A 10) we find 

c~2~(q) - 1 / p o  =/~/z(q), 

which is the result quoted in (68). 

A P P E N D I X  4 
ANALYSIS OF C O R R E L A T I O N S  IN T H E  I N T E R F A C E  

Equat ion (135) for the equilibrium density profile in a gravi ta t ional  field can be 
wri t ten as 

dP°(Z~) flmg~dz2~o(Zl,Z2) , ( A l l )  
dZl 

where ~6o(Zl, Zz)= ~dRlz~¢(Rlz, zl, za). This is the ' inverse '  equation to (55). The 
la t ter  can be re-expressed as 

-fling = ~ dz2 ~ C o ( z  1, z2), (n 12) 

where Co = j'dR12 C(2)(R12, Zl, z2). We recall tha t  since C (2) is the inverse of ff i.e. 

j'dr3 C(2)(r;, r3)ff(r3, r2)=6(rl -r2), (A 13) 

their horizontal Fourier components  also satisfy an inverse relation: 

~dz 3 C(2)(Q, zl, z3 )(¢(Q, z3, Z2)~-(~(Z 1 - - Z 2 )  (A 14) 

~nd in part icular  the zeroth components  satisfy 

dz3Co(zl~ z 3)~0(Z3, z2) = (~(z 1 - z2) .  (A 15) 
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Liquid~apour interface 195 

This last result is, of course, consistent with (A 11) and (A 12). 
I t  is convenient to analyse (A 12) using mat r ix  methods [10]. Since C(2)ffl, ¢2) is 

non-negat ive and symmetr ic  w.r.t, the interchange of ¢ 1 and ¢ 2 (see (22)), C0(zl, z2) 
can be represented by  a symmetric ,  non-negative,  continuous matr ix .  Such a matr ix  
can be decomposed into its spectral form 

Co(zl, z2) = ~ 2i~(z 1)edz2), (A 16) 
i 

where 2i are the eigenvalues and edz) are an orthonormal  set of eigenvectors. 
Equat ion  (A 12) asserts that ,  if g = 0, dpo(zl)/dz 1 is an eigenvector of  Co(zl, z2) with 
eigenvalue zero. Consequently, following Wertheim [10], we separate out  the set of 
eigenvalues which go to zero linearly with g. This set is denoted by  2j = flmyvj. We 
assume tha t  all eigenvalues and eigenvectors go to a limit as g goes to zero and tha t  no 
eigenvalue goes to zero faster than  g. 

Equat ion  (A 15) implies 

(¢0(zl, zz) = ~ 2F 1 e,(z 1)ei(z2 ) (A 17) 
i 

which will have contributions which diverge as g-1 ibr all z 1 and z2 so we write 

(¢0(zi, z2) = ~  (flmgvj)- le?(Zl)ej(Z2) +less singular terms. (A 18) 
J 

Since ( A l l )  indicates tha t  the integral of ffo(Zi,Z2) over z 2 has the same g-1 
divergence, the long-ranged correlations cannot  be in the z direction. Fur thermore  
since ~(rx, r/) is not pointwise divergent,  these correlations mus t  originate from 
integrat ing in the x and y directions. 

Inser t ing (A 17) into (A 11) we find 

? dP°(Zl)- fimg dz 2 ~ 2:~1 ~,(zl)ei(z2) 
dZl - ~ i 

and in the limit when 8 goes to zero, this reduces to 

dP°(z) - 2 y j  1 e? (z)E j (A 19) 
dz j 

where E j =  dz ej(z) and the ej(z) are to be evaluated a t  g =  0. 
- o o  

In tegra t ing  (A 19) through the fluid we obtain 

p , -  pv = Y~ v ;  ~ [E j[ 2 (A 2O) 
J 

and using the or thonormMity of the gj(z) we find 

& = Zv;2 IE j l  2. (A21) 
- c o  j 

Wertheim points out tha t  while there m a y  be large continuum contributions to the 
summat ion  in (A 19) it is more likely, since dPo(Z)/dz is a sharply peaked function, 
t ha t  the eigenvalues form a discrete spectrum and tha t  the contr ibution from the 
smallest value v o is the dominant  one. I f  we make  this conjecture and retain only the 
lowest te rm in each of (A 18), (A 19) and (A20) we find, in the limit ,q goes to zero, 
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196 1~. Evans 

dpo(zl) dpo(z2) . . . . . .  
~o(Zl,, z2) ~ ~z i ~2z2 ((Pl -- Pv)Pmg) 1 +less sin~ Aar terms, 

which is the result quoted in (136). 
A similar analysis can be carried through for ~(Q, zl, z2) at small finite Q. We 

suppose that  

C(2)(Q, zl, z2)= ~ 2i(Q)e* (Q, zi)ei(Q, z:), (A 22) 
i 

where the eigenvalues 2i(Q) and the eigenvectors ei(Q, z) now depend on the wave 
vector Q. The inverse quant i ty  is then given by 

~(Q '  ZI' Z2) = 2  ~i(Q)- 1~[ (Q, Zl)t~i(Q ' z2). (A23)  
i 

The idea is to use per turbat ion theory to express 2~(Q) in terms of ;~i, the eigenvalue 
corresponding to Q = 0. We begin by expanding C(2)(Q, zi, z2) for small Q as in (125) so 
that  

= ~ d z l d z  2 ei(Q, zl)e* (Q, zz)(Co(z l, z:)+ QZCz(zi, z:) + . . .  ). 

To lowest order we can replace ~i(Q, z) by ~i(z), the eigenvector corresponding to 
Q=0,  and we then obtain 

2i(Q) = 2¢ + Q2 j j" dzldz2 ~i(z 1)~, (z 2)C2(zl ' z2). (A 24) 

Substituting into (A 23) we note that  the eigenvalues of interest are those associated 
with 2j=flmgv i so we separate these out 

~(Q, z~, z2)= ~ (Q, z~)ej(Q, z2)(fimgvj+Q 2 j jdz~dz 2 e;(Q, Zl)e* (Q, Zz)C2(z 1, z2) )-1 
J 

+ less singular terms. 

I f  we m~ke the same one eigenvalue conjecture as previously we find 

dP°(zl)dp°(z2).( ~ d d  dfl°(Zl)dP~zZ22)C'2(zl,z2))-i 
~(O'z"z2)  dz, dz2 \ (p'-p~)fim(J+Q2~J z~ z2 dz~ 

= fl- 1 dpo(zi ) dpo(z2) ( (pl_ p~)zml + TQ2)- l + less singular terms, 
dz I clz 2 

where we have used (128) for the surface tension 7 and worked to 0 (Q2). This result 
(138) has been derived by Weeks [12] and with 9=0~ by Kalos et al. [1l] and is 
implicit in Wertheim's paper. I t  is consistent with an exact  result for f62(zl, z2), the 
coefficient of Q2 in the expansion of (#(Q, zi, z2). To prove this we use (A 14): 

~dz3 (Co(Z1, z3) + Q 2 C z ( z  1, z3) + . . .  ) ((~o(Z3,z2) +QZf~2(z3,z2) q- . . .  ) = (~(z 1 - z 2 )  

Equating coefficients of Qz implies 

S dz3C2(z1, Z3)~o(Z3, Z2) = -- ~ dz3 Co(z1, z3)~2(z3, z2) 

which, on using (A 15), yields two equivalent symmetrical forms [10] 
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~ 2  (Z 1' 2;2 ) = -- ~ S dz4dz3 (~o (zi, z4)C2 (2;4, z3 )'(fro (z3, z2 ) 

197 

(A25) 

C2(z1, z2 ) = - ~ ~ dzadz 3 C0(z1, z3)~2(z3,  z4)Co(z4, z2). (A 26) 

I f  we subst i tute (136) for ~0 into the r. h. s. of (A25) we find 

dpo(zi) dpo(z2) 
ff2(zl,z2)~--Tfi -1 dzl dz2 ((pi-pv)mq) -2 (A27) 

which is identical to N2 as obtained from (138). 

We can use (A26) to t ransform the r. h. s. of (128) into 

which, using (A 12), reduces to -fi(mff): ~dzldz:  ~:(zl,z:). We mus t  now ask 
whether  it is valid to identify this quant i ty  with the surface tension, i.e. if 

7 = - lim fl(mg) 2 ~ ~ dz ldZ2 ~2 (zi, z2). (A 28) 
0-~0 

For  7 to be finite and independent of q, ~2(zi, z2) must  therefore diverge as g-  2. Since 
this is precisely the behaviour indicated in (A 27), eqn. (A 28) would appear  to be a 
valid result for the surface tension [10]. 

A P P E N D I X  5 
TUE CAPILLARY WAVE MODEL 

This model is based on the analysis leading to (140) except now we consider 
fluctuations about  some 'bare '  density profile (not the equilibrium density) which is 
characterized by a surface tension ?bare" We set Vcxt = 0. The free energy functional 
associated with the distortion zc of the Gibbs surface is conventionally taken to be 

Fcw[zc, l=½SdR(?ba,¢lVRzc(R)]2 +(pl--p,)mglzG(R)12), (A29) 

i.e. as in § 8.4, it is assumed tha t  p(R, z )=  Pba,e (z--ZG(R)) and tha t  all higher-order 
terms in the expansion of both the gravi ta t ional  and 'surface' te rms can be ignored. 

The part i t ion function for this model is given by the ihnctional integral 

Z = /g  ~ 6z~ (R) exp ( - fiFcw[Z~] ) (A 30) 

where ,/g is a normalization factor. Equat ion  (A 29) is of the form of the gaussian 
model which is employed in field theoretical formulations of statistical mechanics. 
Consequently the parti t ion function can be evaluated by Fourier  t ransform 
techniques. We set 

1 
z(~(R) = ~ - ~  a (O)exp  ( - i O .  R), 

where A is the area of the interface and the part i t ion function becomes 
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Since the different Fourier coefficients @couple, khe integrals can be immediately 
solved: 

Z=~[l--[[fl((fll--flv)mfl+TbareQ2)]-l/20 L 2Au (A32) 

The Helmhol tz  free energy is given by 

] 
L d (A33) 

The average value of  la(Q)l 2 is easily obtained from (A32): 

([a(O )12}= A[fl( (p~-- p~)mg + Tb,roQ:) [ - ~. 

I t  is possible to calculate the capillary wave contribution to the surface tension using 
the formula ?~w = (OF/OA)v. Since each wave vector  Q scales with area as A-1/2 we 
find from (A 33) tha t  

1 wF (Pl--pv)mg I 
~)CW--- -2~A-- ) , |+  ~ - - r , 2  2 . j  (A34) 

]J O b (PI-- Pv) 9 ~)bare~ 

Thus, in the absence of the gravi ta t ional  field, each normal  mode 'reduces' the 
'surface'  free energy by an amount  kBT. When g is finite there is an additional 
positive contribution representing the work which mus t  be done against  the external 
field. This contr ibution is proport ional  to a 2, the mean square fluctuation in the 
average location of the dividing surface (see (154)) so tha t  the surface tension in this 
model of  the interface can be writ ten 

2 2 (Pl - -  Pv)~9'tg (7" (Qmax-Qmin) ~ 2 , (A35) 
? =~bare 47rfl 2 

where Qmaxand Qmin are the upper  and lower cut-off as described in § 8.5. I f  we set 
A = oo and let g-~0 we find 

2 2 2 
Qmax In (~bare Qmax) 

= Ybaro-- 4Uf l  -~ 8~fl ~2ar , ' (A 36) 

where the last term goes to zero as g Ing. Consequently the surface tension goes to a 
well-defined limit in a vanishing external field. There remains, of course, the problem 
of choosing Qm~x but  if we take,  as earlier, Qmax = 27:/0 where a is a molecular diameter  
we can est imate the magni tude of the various terms in (A 36). Using parameters  
appropr ia te  to argon near its triple point and in the ear th 's  gravi ta t ional  field (see 
§ 8.5) we find 

7 = 1 4 - 3 1 ' 9 + 8 x  10 - 1 3 d y n c m  -1 

Clearly the surface tension depends crucially on the choice of  ?u,r~ and Qm,x! More 
sophisticated versions of the capillary wave model [12, 21] a t t emp t  to provide proper 
prescriptions for these quantities. 

We should note t ha t  a t t empt s  to improve upon the model of (A 29) by including 
higher-order terms rapidly run into difficulties and only approproximate  solutions 
are available [76]. 
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