Kompira Documentation
Release 1.6.7.post1

Kompira development team

Dec 09, 2022

CONTENTS

1 Administration Guide 1
1.1 Introduction L e e 1
1.2 Kompira package managementot e e e e e e e e e e e e e e 1
1.3 Kompira process management« . . it e ot e e e e e e e e e e e e e e e e 13
14 Nodesetting v i v i e e e e e e e e e e e e e 15
1.5 Kompira settings and log files L e 21
1.6 Databackupof Kompira 24
1.7 KompiraLicense o . e e e e e e e e 27
1.8 Private key management Lol e e e e 28
1.9 High Availability (HA) Management i, 29
.10 Auditlog management i it e e e e e e e e e e e e e e e e e 39
[.11 System packages managementttt e e e e e e e e e 49
2 Operation Guide 51
2.1 Introduction 51
2.2 Basicoperations e e e e e e 51
2.3 Kompirafilesystem 52
24 Kompiraobject e e e 54
2.5 Process Managemento e e e e e e e e e e 63
2.6 Scheduler 68
2.7 Settings e e e e e e e e e e e e 69
2.8 Troubleshooting L e 75
3 Kompira Tutorial 79
3.1 Introduction e e e 79
32 Initiatethejobflow L 79
3.3 Useavariable e e e e 81
34 Remotelyruncommands Lo e e e e e 85
3.5 Manipulating Jobs with Control Structures e 87
3.6 Manipulating objects L e e e e e e e e e e e 92
3.7 Waitingforanevent e 95
3.8 Accessexternally e 97
3.9 Controlling ProCeSSES . . . v v v v v i e 98
4 Kompira Jobflow Language Reference 103
4.1 Introduction L e e e e e e e 103
4.2 Lexical structure e e e e e 103
43 Valueand type e e e e e e e e e e e 107
44 Variables 114
45 EXPression e e e e e e e e e e e e e e e 117

4.6 AJOb . e e e e e e
477 Job flow eXPressions i e
4.8 Jobflow Program L e e e e e e e
5 Kompira Standard Library
5.1 Built-in functions /jobs L L e e e e e e e
5.2 Kompira objects e e e e e e e e e e e e e e
5.3 Built-inobjects e e e e e e
5.4 Special objects L e e e e e e
6 Coordination with other systems
6.1 Introduction L L e e e e e e e
6.2 Sendingeventsto Kompira L
6.3 Receivee-mailson Kompira e e e
6.4 Coordinating with monitoring Systems v i i i e e e e e e e e e e e
6.5 Coordinating with Redmine L
6.6 Receiving SNMP Traps o L o e e e e
7 Monitoring Kompira
7.1 Introduction e e e e
7.2 Monitoring using Zabbix L. e e e e e e
8 Kompira REST API Reference
8.1 Introduction e e e
8.2 Common Features e e e e e
8.3 Accessing Kompiraobjects e
84 ProCesS . . . v v e e e e e e
85 Schedule e
8.6 Incident L e e
87 Task. . . o o e e e e
8.8 User/Group Management ittt e e e e e e e e e e e e e
Index

133
133
140
150
183

191
191
191
192
193
195
196

199
199
199

203
203
203
210
213
215
216
218
219

223

CHAPTER
ONE

ADMINISTRATION GUIDE

Author
Kompira development team

1.1 Introduction

This manual contains useful information to help the user know how best to manage Kompira.
Please refer to this manual to learn about installation, updates, overall Kompira settings and logs etc.

In this manual, we use $ for general user and # for root user on Linux command prompt.

$ echo 'command execution by general user'
echo 'command execution by root privileged user'

1.2 Kompira package management

This manual will explain the installation and updates of Kompira related packages.

See also:

In this section, only the circumstances where the Kompira package is operated on a single server are explained. Please
refer to High Availability (HA) Management for details on how to run Kompira in a redundant configuration.

1.2.1 Type of installation package

Kompira has the following types of packages.

Package name | Description

Kompira Pack- | Packages containing Kompira itself. Including: Kompira core function group, job manager and
age event transmission script.

Job manager | Packages that includes a job manager and an event transmission script.

package

Send-Event Packages including Send-Event scripts

package

If you are using Kompira for the first time, please first install the Kompira package.

Use the job manager package when you want to start the job manager process, in addition to the server on which the
Kompira package is installed.

Kompira Documentation, Release 1.6.7.post1

The send-event package is used when you want to send an event to Kompira from another server. For integration
between systems using event sending, please refer to Coordination with other systems .

1.2.2 Install Script

By using install.sh, you can install Kompira’s various packages.

install.sh [options]

The installation process includes installation of middleware to be used by Kompira, construction of databases and
automatic startup of processes.

install.sh creates a log file named install. <process number>.log regardless of the success or failure of the command.

Note: Before installing on Red Hat, you need to subscribe in advance.

Limitation

install.sh is supported only for RHEL / CentOS installation.
Install.sh downloads various middleware used by Kompira. Please run it when you are able to connect to the Internet.

When connecting to the Internet via a proxy, run install.sh with the --proxy option as follows:

./install.sh --proxy proxy:3128

Note: Please set “proxy” and “3128” as the proxy server’s host name (or IP address) and port number.

For a proxy server with authentication, run install.sh with “user” as the user name and “password” as the password as
shown below.

./install.sh --proxy user:password@proxy:3128

Command Line Options

The options that can be specified for install.sh are as follows.

Options Description

--https Restricts access to only HTTPS to the Kompira server (default from Kom-
pira v1.5.0). When accessed with HTTP, it will automatically be redirected to
HTTPS.

--no-https Allows HTTP access to the Kompira server.

--no-backup Skips the database backup and restore processes.

--rhui Install in RHUI mode.

--rhel-option-repo Specify RHEL repository.

<repo>

--skip-python3-install Skip python3 installation.

--skip-cluster-start Skip pcs cluster start for update installations in redundant configurations.

--initdata Explicitly initialize the database.

continues on next page

2 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Table 1 - continued from previous page

Options

Description

--initfile

Explicitly initialize the storage destination of the attached file.

--secret-key
<secret-key>

The encryption key string for the password field. (The key must be at least 8
characters long.)

--force

Even if the major version of Kompira is different, it will force the installation.
Also, it will delete the database without confirmation when there is an existing
database, initialize the database and attempt installation.

--Proxy <proxy>

Specify the URL of the proxy server and install. The proxy server specified here
is set as the environment variable of the Kompira service, and it is also applied
when accessing external HTTP from the job flow.

--temp-proxy <proxy>

Specify the URL of the proxy server to be applied only during installation and
install.

--noproxy <hosts>

Specify a comma-separated list of hosts to be excluded from the proxy server.

--temp-noproxy <hosts>

Specify the proxy exclusion setting for installation only.

--locale-lang <LANG>

Specify the locale and install.

--locale-timezone
<ZONENAME>

Specify the time zone and install.

--jobmngr <kompira_ip>

Install and update the Job Manager package. It is necessary to specify the host
name or IP address of the server on which the Kompira package is installed.

--sendevt <kompira_ip>

This will install and update the send-event package. It is necessary to specify the
host name or IP address of the server on which the Kompira package is installed.

--with-rpm <rpms>

Install with additional rpm packages.

--with-whl <wheels>

Install with additional wheel packages.

--with-gdb Install tools necessary for debugging Kompira.
--offline Install in offline mode using the kompira-extra package.
--extra Create the kompira-extra package for offline install.

--extra-without-ha

Create the kompira-extra package without the HA packages.

--install-only

Installation only, each daemon is not started.

--dry-run

Runs in dry run mode. Only parameter check, no actual setup is performed.

--help

Print help message.

The jobmngr and sendevt options are exclusive.

1.2.3 Kompira Package

How to install and update the Kompira package itself.

Installation

Extract the Kompira package and run install.sh. Replace <version> with the version number of Kompira.

$ tar zxf kompira-<version>-bin.tar.gz

$ cd kompira-<version>-bin
./install.sh

[2020-09-17 02:00:24] **%*;

LR LR LR wded
—

[2020-09-17 02:00:24] ***
[2020-09-17 02:00:24] *
[2020-09-17 02:00:24] **=**;
[2020-09-17 02:00:24] INFO:

*

: Kompira-1.6.0:
: Start: Install the Kompira

SYSTEM = CENT

(continues on next page)

1.2. Kompira package management

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

[2020-09-17 02:00:24] INFO: SYSTEM_NAME = cent8

[2020-09-17 02:00:24] INFO: SYSTEM_RELEASE = CentOS Linux release 8.2.2004.
— (Core)

[2020-09-17 02:00:24] INFO: SYSTEM_RELEASEVER = 8.2.2004

[2020-09-17 02:00:24] INFO: PLATFORM_PYTHON = /usr/libexec/platform-python
[2020-09-17 02:00:24] INFO: PYTHON = /bin/python3.6

[2020-09-17 02:02:46] *##%: —
[2020-09-17 02:02:46] ****:
[2020-09-17 02:02:46] ****:
[2020-09-17 02:02:48] INFO: Access succeeded: <div class="brand-version">1.6.0</div>
[2020-09-17 02:02:48] ****;

[2020-09-17 02:02:48]
[2020-09-17 02:02:

Fededededhdhhhhn

—

Test access to kompira.

Finish: Install the Kompira (status=0)

The installer will automatically install the Kompira package. If “Finish: Install the Kompira (status=0)" is displayed,
the installation has been a success.

When installation is completed, please access the Kompira server from a Web browser with the following URL and
confirm that the login screen is displayed.

At this time, a warning about the server certificate is displayed. To prevent this warning, please install the SSL certificate
on Apache on the Kompira server.

https://<Hostname or ipaddress of Kompira server>/

Note: To access by HTTP, you will need to install it with the --no-https option.

For details on how to operate Kompira with a Web browser, see the operation guide manual.

Update

How to update the Kompira package when it is already installed:

Kompira’s version number format is specified as follows.

1l.<major-version>.<minor-version>

Updates where only minor version numbers are changed are called minor updates, and updates where major version
numbers are changed are called major updates.

For example, updating from version 1.5.0 to 1.5.2 is a minor update, updating from version 1.4.10 to 1.5.0 is a major
update.

Major updates are updates that may contain changes in architecture configuration and DB schema definition, so a
different process may be required.

Please check the current version and the Kompira version that you are updating.

Minor update

4 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

For minor updates, run install.sh without options.

$ tar zxf kompira-<version>-bin.tar.gz
$ cd kompira-<version>-bin

./install.sh

[2020-09-17 22:

56:32]

[2020-09-17 22:56:32] *: Kompira-1.6.0:
[2020-09-17 22:56:32] ****: Start: Install the Kompira
[2020-09-17 22:56:32] ****:

[2020-09-17 22:56:32] INFO: SYSTEM = CENT
[2020-09-17 22:56:32] INFO: SYSTEM_NAME = cent8
[2020-09-17 22:56:32] INFO: SYSTEM_RELEASE = CentOS Linux.
—release 8.2.2004 (Core)

[2020-09-17 22:56:33] INFO: SYSTEM_RELEASEVER = 8.2.2004
[2020-09-17 22:56:33] INFO: PLATFORM_PYTHON = /usr/libexec/
—platform-python

[2020-09-17 22:56:33] INFO: PYTHON = /bin/python3.6

[2020-09-17 22:57:00] %1 o
[2020-09-17 22:57:00] ****: Check version of Kompira installed.

[2020-09-17 22:57:00] ****:

[2020-09-17 22:57:00] INFO: VERSION=1.6.0b4 [pip=/opt/kompira/bin/pip]
[2020-09-17 22:57:00] INFO: A compatible version is installed.

[2020-09-17 22:58:18] ™™™ o
[2020-09-17 22:58:18] ****: Test access to kompira.

[2020-09-17 22:58:18] **%**:

[2020-09-17 22:58:19] INFO: Access succeeded: <div class="brand-version">1.6.
—0</div>

[2020-09-17 22:58:19] *%*%**:

[2020-09-17 22:58:19] ****: Finish: Install the Kompira (status=0)

[2020-09-17 22:58:19]

Fedededehhhhn

FeldANNn o e e e R R O R R R R R R R R R R R R

—

The installer will automatically update the Kompira package. If “Finish: Install the Kompira (status=0)"
is displayed, it has been successfully installed.

When the update is completed, please log in to Kompira from a web browser and confirm that the version
number of Kompira has been updated.

Major update
In the case of major update, update it using the following procedure.
» Use the export_data command to retrieve data from Kompira

* Install Kompira in database initialization mode with the --initdata option with the install.sh com-
mand

 Save the first data extracted to Kompira with the import_data command

1.2. Kompira package management 5

Kompira Documentation, Release 1.6.7.post1

Please note that the existing database will be initialized when you run the install.sh command.

$ cd kompira-<version>-bin

$ /opt/kompira/bin/manage.py export_data --owner-mode --virtual-mode / >.
—backup. json

./install.sh --force --initdata

§$ /opt/kompira/bin/manage.py import_data --owner-mode --overwrite-mode backup.
—json

[2018-04-09 21:44:15,936:30953:MainProcess] INFO: import data: start...
[2018-04-09 21:44:16,010:30953:MainProcess] INFO: import object: imported
- "system/types/TypeObject" to "/system/types/TypeObject” (updated)
[2018-04-09 21:44:16,022:30953:MainProcess] INFO: import object: imported
—"system/types/Directory"” to "/system/types/Directory" (updated)
[2018-04-09 21:44:16,033:30953:MainProcess] INFO: import object: imported
~"system" to "/system" (updated)

[2018-04-09 21:44:22,126:30953:MainProcess] INFO: import fields: /user/data: []
[2018-04-09 21:44:22,164:30953:MainProcess] INFO: import fields: /user/data/
—nodes: []

[2018-04-09 21:44:22,202:30953:MainProcess] INFO: import fields: /user/data/
—accounts: []

[2018-04-09 21:44:22,218:30953:MainProcess] INFO: import data: finished.

— (created=0, updated=59, skipped=0, error=0, warning=0)

When running install.sh, specify the --initdata and --force options to initialize the database.

When the import_data process is completed, please log in to Kompira from a Web browser, confirm that
the version number of Kompira has been updated, and that previously created Kompira objects still exists.

Note: If you are updating from version 1.5 or earlier to version 1.6, you cannot update by following the
above procedure. Please delete the previous version of Kompira and then reinstall version 1.6.

Note: When updating from Kompira to Ver. 1.6 from Ver. 1.5 or earlier, full compatibility is not guar-
anteed and the migrated job flow and library objects may not work as they are. If necessary, check the
operation of each Jobflow or Library object after modifying them.

6 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

1.2.4 Job manager package

Explanation of how to conduct an installation/package update including for job manager and send-event script.

Installation

Extract the Kompira package and run install.sh. Since the job manager communicates with the Kompira server, you
will need to specify the host name or IP address of the server on which the Kompira package is installed as an argument
to install.sh.

Replace <version> with the version number of Kompira.

<kompira_ip> is the host name or IP address of the Kompira server.

$ tar zxf kompira-<version>-bin.tar.gz
$ cd kompira-<version>-bin

./install.sh --jobmngr <kompira_ip>
[2020-09-18 00:42:54] **=*;

o e

[2020-09-18 00: : Kompira-1.6.0:
[2020-09-18 00: *: Start: Install the Kompira
[2020-09-18 00:42:54] ****;

[2020-09-18 00:42:54] INFO: SYSTEM = CENT

[2020-09-18 00:42:54] INFO: SYSTEM_NAME = cent8

[2020-09-18 00:42:54] INFO: SYSTEM_RELEASE = CentOS Linux release 8.2.2004.
— (Core)

[2020-09-18 00:42:54] INFO: SYSTEM_RELEASEVER = 8.2.2004

[2020-09-18 00:42:54] INFO: PLATFORM_PYTHON = /usr/libexec/platform-python

[2020-09-18 00:43:24] *H*% 1 oo

—

[2020-09-18 00:43:24] ¥
[2020-09-18 00:43:24] **¥*:

[2020-09-18 00:43:24]
[2020-09-18 00:43:24]
[2020-09-18 00:43:24]
[2020-09-18 00:43:24]

FTehdhhhhhhhhhhNNRNNNNNN NN NN NS S ddddedhhhhhnn
—

The installer will automatically install a new job manager package. If “Finish: Install the Kompira (status=0)" is
displayed, the installation has been a success.

For details on how to check that the job manager process is running correctly , see Starting / stopping the Kompira
daemon and Checking the status.

Also, you can check whether Kompira itself is communicating with the job manager correctly from Kompira’s “Man-
agement area setting page”. Please log in to Kompira with Web browser and go “Settings” > “Management area
settings” > “default” page. If the host name of the server that the job manager package is installed is displayed in the
“Job Manager Status” section, communication should be ok.

1.2. Kompira package management 7

Kompira Documentation, Release 1.6.7.post1

Update

You can update the job manager package by the same procedure as the installation.

1.2.5 Send-Event package

Installation /package updates including event transmission script will be explained here.

Send-Event packages are compatible with Linux and Windows.

Extract the Kompira package and run install.sh.

Exract Kompira packages and run install.sh

Since the Send-Event script sends data to Kompira itself, you need to specify the host name or IP address of the server
on which Kompira packages are installed as an argument to install.sh.

Replace <version> with the version number of Kompira. <kompira_ip> is the host name or IP address of the Kompira
server.

$ tar zxf kompira-<version>-bin.tar.gz
$ cd kompira-<version>-bin
./install.sh --sendevt <kompira_ip>
[2020-09-18 01:00:27] ****;

FeddedehhhhhNh NN hhNNn
—

[2020-09-18 01:00:27]

[2020-09-18 01: o
[2020-09-18 01: A
[2020-09-18 01:00:27] INFO: SYSTEM

TR AR NN S S S S S S dedededededededededededededededed NNk

: Kompira-1.6.0:
*: Start: Install the Kompira

= CENT
[2020-09-18 01:00:27] INFO: SYSTEM_NAME = cent8
[2020-09-18 01:00:27] INFO: SYSTEM_RELEASE = CentOS Linux release 8.2.2004.
— (Core)
[2020-09-18 01:00:27] INFO: SYSTEM_RELEASEVER = 8.2.2004
[2020-09-18 01:00:27] INFO: PLATFORM_PYTHON = /usr/libexec/platform-python

[2020-09-18 01:00:39] ****: -
[2020-09-18 01:00:39]
[2020-09-18 01:00:39] 1

[2020-09-18 01:00:39] INFO: Create log directory: /var/log/kompira

[2020-09-18 01:00:39] VERBOSE: run: install -g kompira -m 775 -d /var/log/kompira
[2020-09-18 01:00:39] VERBOSE: run: find /var/log/kompira -type f -user root -exec chown.
—kompira:kompira {} ;

[2020-09-18 01:00:39] INFO: Create Kompira/Kompira-sendevt configuration file.

[2020-09-18 01:00:39] VERBOSE: run: install -S .old -b /home/hattori/kompira-1.6.0rcl-
~bin/.tmp.install-20200918-0100.w27C/kompira.conf -m 644 /opt/kompira/kompira.conf
[2020-09-18 01:00:39] ****;

[2020-09-18 01:00:39] ****: Finish: Install the Kompira (status=0)

(continues on next page)

8 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

[2020-09-18 01:00:39]

Feddedehhhhhh NN NN NN n

—

R e e o e

If “Finish: Install the Kompira (status=0)" is displayed, the installation has been a success.

When the installation is completed, the kompira_sendevt will be placed under /opt/kompira/bin

$ /opt/kompira/bin/kompira_sendevt --version
kompira_sendevt (Kompira version 1.6.0)

Installation on Windows

1. Installing Python
Install Python 3.6 for Windows.
* https://www.python.org/downloads/

Download the latest Python 3.6 installer for Windows from the above mentioned official site and install
it on your Windows Operating System.

When the installation is completed, add the environment variable path so that Python can be called
from the command line.

Path Description
C:\Python36 Folder that Python commands are stored
C:\Python36\Scripts | Folder that pip and other command types are stored

2. Creating a Python virtual environment for Kompira

Create an independent Python virtual environment (virtuelenv) for Kompira in C: \Kompira.

C:\> pip install virtualenv
C:\> python -m virtualenv C:\Kompira

3. Create the directory for the log files

Create the directory C:\var\log\kompira as the log file output destination.

C:\> mkdir C:\var\log\kompira

4. Installation of the kompira_sendevt package

After downloading and unpacking the Kompira package on Windows, Install the Kompira_sendevt-
<version>-py3-none-any.whl package with plp.exe.

C:\> C:\Kompira\Scripts\pip.exe install Kompira_sendevt-1.6.0-py3-none-any.
—whl

Processing c:\users\kompira\documents\kompira-package\kompira_sendevt-1.6.0-
—py3-none-any.whl

Collecting amgp~=2.5.2 (from Kompira-sendevt==1.6.0)

Installing collected packages: amgp, decorator, Kompira-sendevt
Successfully installed Kompira-sendevt-1.6.0 amgp-2.5.2 decorator-4.4.2

1.2. Kompira package management 9

https://www.python.org/downloads/

Kompira Documentation, Release 1.6.7.post1

The Send-Event package installation is now complete. The kompira_sendevt will be placed under
C:\Kompira\Scripts. Try running the kompira_sendevt command as follows.

C:\> C:\Kompira\Scripts\kompira_sendevt.exe --version
kompira_sendevt (Kompira version 1.6.0)

If it is correctly installed, it will display the version number.

If you add C:\Kompira\Scripts to the environment variable PATH, you can omit the path and
execute it.

Update

With the same procedure as the installation you can update the Send-Event package.

1.2.6 Offline install

To perform an offline installation, you need to take the following steps.
* Create the kompira-extra package in an Internet-connected environment.

» Offline installation using the kompira-extra package.

Note: However, we have not been able to confirm that it works in all environments, so please let us know if there are
any problems.

Create the kompira-extra package in an Internet-connected environment.

The creation of the kompira-extra package must be performed on a server that meets the following conditions.

* A server with the same configuration as the target for offline installation (at least the OS and version should
match).

* A server with an Internet connection (if necessary, specify a proxy).

Note: For RHEL, please register a subscription if necessary.

Creating the kompira-extra package using install.sh

Run the install.sh included in the kompira package with the --extra option.

$ tar zxf kompira-<version>-bin.tar.gz
$ cd kompira-<version>-bin

./install.sh --extra
[2021-11-04 20:56:38] ****:

FTeddedehhhhhnn

—

: Kompira-1.6.3:
*: Start: Install the Kompira

[2021-11-04 20:
[2021-11-04 20:
[2021-11-04 20:

[2021-11-04 20: SYSTEM = CENT
[2021-11-04 20: SYSTEM_NAME = cent8
[2021-11-04 20: SYSTEM_RELEASE = CentOS Linux release 8.2.2004.

(continues on next page)

10 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

— (Core)

[2021-11-04 20:56:38] INFO: SYSTEM_RELEASEVER = 8.2.2004

[2021-11-04 20:56:38] INFO: PLATFORM_PYTHON = /usr/libexec/platform-python
[2021-11-04 20:56:38] INFO: PYTHON =

[2021-11-04 20:56:38] INFO: SYSTEMD = true

[2021-11-04 20:56:38] INFO: TMPDIR = /root/kompira-1.6.3-bin/.tmp.
—install-20211104-2056.P3fx

[2021-11-04 20:56:38] INFO: LOCALE_LANG = ja_JP.UTF-8

[2021-11-04 20:56:38] INFO: PATH = /usr/local/sbin:/usr/local/
—bin:/usr/sbin:/usr/bin:/root/bin

[2021-11-04 20:56:38] INFO: HTTPS_MODE = true

[2021-11-04 20:56:38] INFO: FORCE_MODE = false

[2021-11-04 20:56:38] INFO: BACKUP_MODE = true

[2021-11-04 20:56:38] INFO: BACKUP_PROCESS = false

[2021-11-04 20:56:38] INFO: INITDATA_MODE = false

[2021-11-04 20:56:38] INFO: INITFILE_MODE = false

[2021-11-04 20:56:38] INFO: OFFLINE_MODE = false

[2021-11-04 20:56:38] INFO: JOBMNGR_MODE = false

[2021-11-04 20:56:38] INFO: SENDEVT_MODE = false

[2021-11-04 20:56:38] INFO: PROXY_URL =

[2021-11-04 20:56:38] INFO: NO_PROXY = localhost,127.0.0.1
[2021-11-04 20:56:38] INFO: KOMPIRA_SERVER = localhost

[2021-11-04 20:56:38] INFO: DRY_RUN = false

[2021-11-04 20:56:38] *F¥%: o

—

opt/kompira/extra/1.6.3/cent8/wheelhouse/PyYAML-5.3.1-cp36-cp36m-linux_x86_64.whl
opt/kompira/extra/1.6.3/cent8/wheelhouse/pykerberos-1.2.1-cp36-cp36m-linux_x86_64.whl
opt/kompira/extra/1.6.3/cent8/wheelhouse/future-0.18.2-py3-none-any.whl
opt/kompira/extra/l1.6. 3/cent8/whee1house/PTab1e 0.9.2-py3-none-any.whl

[2021-11-04 21:08:58] *
[2021-11-04 21:08:58]
[2021 11- 04 21 ®8 58] k

O R ORORORORORORORORORON
—

Finish: Install the Kompira (status=0)

Fededehdedededededefdededehdedefddedefddefddedehddefdddhdd

Check the kompira-extra package

If there are no problems, a package file starting with kompira-extra- will be generated in about 10-20 minutes, so
check it.

1ls -1h kompira-extra-*.tar.gz
-rw-r--r--. 1 root root 290M Nov 4 21:08 kompira-extra-1.6.3.cent8.tar.gz

1.2. Kompira package management 11

Kompira Documentation, Release 1.6.7.post1

Offline installation using the kompira-extra package.

Prepare the kompira and kompira-extra packages

On the server where you want to perform the offline installation, place the kompira package and the kompira-extra
package created above.

1ls -1 kompira-*
-rw-r--r--. 1 root root 7555278 Nov 4 21:11 kompira-1.6.3-bin.tar.gz
-rw-r--r--. 1 root root 303772888 Nov 4 21:12 kompira-extra-1.6.3.cent8.tar.gz

Extract the kompira-extra package.

With root privileges, extract the kompira-extra package to the root directory.

tar zxf kompira-extra-1.6.3.cent8.tar.gz -C /

Make sure that the various packages required for offline installation have been extracted under /opt/kompira/extra/
1.6.x/${0S}/.

$ 1s -1 /opt/kompira/extra/1.6.3/*

total 40

drwxr-xr-x. 3 root root 24576 Nov 4 21:08 packages
drwxr-xr-x. 2 root root 6 Nov 4 20:57 pip
drwxr-xr-x. 2 root root 8192 Nov 4 21:08 wheelhouse

Run the kompira offline installation.

Extract the kompira package and run install.sh with the --offline option.

$ tar zxf kompira-<version>-bin.tar.gz
$ cd kompira-<version>-bin

./install.sh --offline

[2021-11-04 21:14:37]

Fededededhhhhhk

L

[2021-11-04 21:14:37] Kompira-1.6.3:

[2021-11-04 21:14:37] *: Start: Install the Kompira (offline-mode)
[2021-11-04 21:14:37] *%%*:
[2021-11-04 21:14:37] INFO:

SYSTEM = CENT

[2021-11-04 21:14:37] INFO:
[2021-11-04 21:14:37] INFO:
— (Core)

[2021-11-04 21:14:37] INFO:
[2021-11-04 21:14:37] INFO:

SYSTEM_NAME
SYSTEM_RELEASE

SYSTEM_RELEASEVER
PLATFORM_PYTHON

= cent8
= CentOS Linux release 8.2.2004.

= 8.2.2004
= /usr/libexec/platform-python

[2021-11-04 21:14:37] INFO: PYTHON
[2021-11-04 21:14:37] INFO: SYSTEMD = true
[2021-11-04 21:14:37] INFO: TMPDIR = /root/kompira-1.6.3-bin/.tmp.

—install-20211104-2114.7XV8
[2021-11-04 21:14:37] INFO:
[2021-11-04 21:14:37] INFO:

LOCALE_LANG
PATH

—bin:/usr/sbin:/usr/bin:/root/bin

= ja_JP.UTF-8
= /usr/local/sbin:/usr/local/

[2021-11-04 21:14:37] INFO: HTTPS_MODE = true
[2021-11-04 21:14:37] INFO: FORCE_MODE = false
[2021-11-04 21:14:37] INFO: BACKUP_MODE = true
[2021-11-04 21:14:37] INFO: BACKUP_PROCESS = false

(continues on next page)

12

Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

[2021-11-04 21:14:37] INFO: INITDATA_MODE = false

[2021-11-04 21:14:37] INFO: INITFILE_MODE = false

[2021-11-04 21:14:37] INFO: OFFLINE_MODE = true

[2021-11-04 21:14:37] INFO: JOBMNGR_VMODE = false

[2021-11-04 21:14:37] INFO: SENDEVT_MODE = false

[2021-11-04 21:14:37] INFO: PROXY_URL =

[2021-11-04 21:14:37] INFO: NO_PROXY = localhost,127.0.0.1
[2021-11-04 21:14:37] INFO: KOMPIRA_SERVER = localhost

[2021-11-04 21:14:37] INFO: DRY_RUN = false

[2021-11-04 21:14:37] %™ ™ — oo -

[2021-11-04 21:15:25] **%*%; -
[2021-11-04 21:15:25]
[2021-11-04 21:15:25]
[2021-11-04 21:15:26]
[2021-11-04 21:15:26]
[2021-11-04 21:15:26]
[2021-11-04 21:15:26]

FTedddAABANNNRNNRNNNNNNNNN NN NN S S S de ANt
—

**: Test access to kompira.
: Access succeeded: <div class="brand-version">1.6.3</div>

*: Finish: Install the Kompira (offline-mode) (status=0)

1.3 Kompira process management

The Kompira system has multiple processes working together. Kompira’s process structure will be explained below.

1.3.1 Structure of Kompira processes

The Kompira system structure processes are as follows:

Kompira daemon (kompirad)
Kompira Daemon process for executing and managing job flow.

Kompira Job Manager is requested to execute remote command and receives the result.

Kompira Job Manager (kompira_jobmngrd)
This is a daemon process for executing the remote command requested from the Kompira daemon.

Kompira Job Manager will connect to the remote host with the protocol specified by the connection type and
execute the command when receiving the remote command from the Kompira daemon. The command execution
result will be sent to the Kompira daemon.

Other processes required for the Kompira system are Apache (httpd), PostgreSQL (postgresql), RabbitMQ (rabbitmg-
server).

Each of these processes is set up by install.sh to start automatically at machine startup.

1.3. Kompira process management 13

Kompira Documentation, Release 1.6.7.post1

1.3.2 Starting / stopping the Kompira daemon and Checking the state

Please start and stop the Kompira daemon as root. The user running daemon will change to Kompira automatically
after startup.

For RHEL / CentOS 7x / 8x

Start the Kompira daemon on RHEL / CentOS 7x / 8x by the following command.

systemctl start kompirad

To abort, execute the following command.

systemctl stop kompirad

With the systemctl status command you can check the status of the Kompira daemon.

$ systemctl status kompirad.service
* kompirad.service - Kompira-daemon

Loaded: loaded (/usr/lib/systemd/system/kompirad.service; enabled; vendor preset:.
—disabled)

Active: active (running) since Thu 2018-07-05 16:33:02 JST; 2h 20min ago

Process: 5277 ExecStartPre=/opt/kompira/bin/prestart_kompirad.sh (code=exited,..
—status=0/SUCCESS)
Main PID: 5368 (kompirad)

CGroup: /system.slice/kompirad.service

"-5368 /opt/kompira/bin/python3.6 /opt/kompira/bin/kompirad

Jul 05 16:32:32 kompira-install-test3.dev.fixpoint.co.jp systemd[1]: Starting Kompira-
—daemon. . .

Jul 05 16:33:02 kompira-install-test3.dev.fixpoint.co.jp systemd[1]: Started Kompira-
—daemon.

When it is started, the Active: section is as active (running), and when it is aborted it displays as inactive (dead).

1.3.3 Starting / stopping the Kompira daemon and Checking the status.

Please start and stop the Kompira daemon as root. User to run daemon will be change to kompira are automatically
after startup.

For RHEL / CentOS 7x / 8x

Start the Kompira job manager on RHEL / CentOS 7x / 8x by the following command.

systemctl start kompira_jobmngrd.service

To abort, execute the following command.

systemctl stop kompira_jobmngrd.service

With the status command you can check the status of the Kompira job manager.

14 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

$ systemctl status kompira_jobmngrd.service
* kompira_jobmngrd.service - Kompira-jobmanager
Loaded: loaded (/usr/lib/systemd/system/kompira_jobmngrd.service; enabled; vendor.
—preset: disabled)
Active: active (running) since Thu 2018-07-05 16:32:22 JST; 2h 25min ago
Main PID: 5164 (kompira_jobmngr)
CGroup: /system.slice/kompira_jobmngrd.service
|-5164 /opt/kompira/bin/python3.6 /opt/kompira/bin/kompira_jobmngrd
*-5197 /opt/kompira/bin/python3.6 /opt/kompira/bin/kompira_jobmngrd

Jul 05 16:32:22 kompira-install-test3.dev.fixpoint.co.jp systemd[1]: Started Kompira-
—,jobmanager.

Jul 05 16:32:22 kompira-install-test3.dev.fixpoint.co.jp systemd[1]: Starting Kompira-
—»jobmanager. ..

When it is started, the Active: section is as active (running), and when it is aborted it displays as inactive (dead).

1.3.4 Port List used by Kompira

On the server on which the Kompira package is installed, the following ports need to be open to access from outside.

Port number | Description

80/TCP HTTP (it is unnecessary when accessing only HTTPS)

443/TCP HTTPS (it is unnecessary when accessing only HTTP)

5672/TCP AMQP (only when using the Job Manager package and Sned-Event package)

Otherwise, the port 5593/TCP is used in the loopback IF for the httpd server and the Kompira engine RPC.(No need
to make it externally connectable)

When building a redundant configuration, it is necessary to be able to communicate using the following ports between
each node (or between internal IFs when using internal IFs for heartbeat).

Port number | Description

2224/TCP pcs (high-availability middleware)

4369/TCP epmd (Erlang port mapper daemon)

5405/UDP corosync (for heartbeat)

5432/TCP PostgreSQL (for replication)

25672/TCP RabbitMQ Server (for inter-node communication)

Changed in version 1.6.4: Rsyncd has been removed from the port number list because it is no longer used.

1.4 Node setting

Kompira allows you to run remote jobs on the following types of nodes.
* Local node
* SSH node
* Windows node

¢ Network device node

1.4. Node setting 15

Kompira Documentation, Release 1.6.7.post1

The connection type to be specified for each type of node and the settings required on the node side in advance differ.

For details on how to specify the connection type, see Control variable.

1.4.1 Local node setting

There is one type of connection to Local nodes.

Connection type | Protocol Note
local Local execution | Runs jobs directly on the node where kompira_jobmngrd is running.

If a remote node is not explicitly specified in Kompira, the job is executed directly on the local node. The local node
here is the node where the kompira_jobmngrd service is running.

New in version 1.6.6: Description of local node is added.

1.4.2 SSH node setting

There is one type of connection to SSH nodes.

Connection type | Protocol | Note
ssh SSH Only SSH v2 is supported.

When executing commands from Kompira to an SSH node, you should log in with ssh version 2. As for recent Linux,
ssh login is ready by default so it is not necessary to configure. For details on how to enable ssh login on other nodes,
refer to the manual of each operation system.

Note: Supported version of SSH is only v2. SSH vl is not supported.

1.4.3 Windows node setting

For Windows nodes, there are four connection types to choose from.

Connection type Protocol Note
windows/https WS-Man HTTPS Requires the installation of an SSL certifi-
cate on the server side.
windows/ WS-Man HTTPS (ignore server certifi- | Self-signed certificates are available.
https-ignore-validationcate validation errors)
windows/http WS-Man HTTP (with message encryp-
tion)
windows/ WS-Man HTTP (without message en- | (Deprecated) Requires server-side allow
http-unencrypted cryption) unencrypted.

Note: For compatibility, the traditional connection type winrs can also be used. However, in this case, the protocol
used will be switched depending on whether or not a port number is specified. HTTPS will be used if the port number
is 5986 or 443, and HTTP will be used if the port number is 5985 or 80. If the port number is omitted, an HTTPS
connection will be attempted.

16 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

When executing commands from Kompira to the Windows node, WinRM setting is required on the Windows node.
The supported version of WinRM is 1.1, 2.0, 3.0.

Enabling remote management of WinRM

In order to enable WinRM, please run Windows Command Prompt as Administrator and execute winrm quickconfig
(or winrm gc). When you are prompted to select y/n, i.e. “Do you want to change [y / n]?” Please enter y. Note that
this operation is not needed from the second time.

The following is an example of Windows 7, but the details of the contents displayed can be different depending on the
version of Windows and the setting.

C:\>winrm quickconfig

Make these changes [y/n]? y

Changing WinRM connection settings

HTTPS connections are the most secure connection method, but require an SSL certificate to be installed on the Win-
dows node. The detailed procedure is not shown here, but you can refer to the Microsoft support page for more infor-
mation.

* https://docs.microsoft.com/en-us/search/ ?terms=winrm%?20https

Although deprecated, if you want to make HTTP connections without message encryption, you need to allow unen-
crypted communication in WinRM. You can allow unencrypted communication by executing the following command
from a command prompt run as administrator.

C:\> winrm set winrm/config/service @{AllowUnencrypted="true"}

HTTP connections with message encryption may be slower than those without message encryption. If slowdowns are
an issue, consider using unencrypted communications with an understanding of the risks.

By default, WinRM allows only privileged users who belong to the Administrators group to connect. If you want to
connect as an unprivileged user, you will need to do some additional configuration, try one of the following.

* Add the user to the “Remote Management Users” group.

 Execute the following command from a command prompt run as an administrator to give read and execute priv-
ileges to the user or one of the groups to which he or she belongs.

C:\> winrm configSDDL default

Changed in version 1.4.10: Since Kompira Ver.1.4.10 and later, NTLM authentication is supported by default, so
BASIC authentication is no longer needed.

Changed in version 1.6.4: Since message encryption is now supported in WinRM for HTTP connections, allowing un-
encrypted communication is no longer required. In addition, allowing unencrypted communication is now deprecated.

1.4. Node setting 17

https://docs.microsoft.com/en-us/search/?terms=winrm%20https

Kompira Documentation, Release 1.6.7.post1

Test job flow

Please create and run the following job flow in Kompira to see if you can execute commands to the Windows node.

[__host__ = '<IP address of Windows server>',
__user__ = '<Username of Windows account>',
__password__ = '<Password of Windows account>',
__conntype__ = 'windows/http']

-> ['ver']

-> print ($RESULT)

It is successful if the Windows version number is displayed on the console of the job flow process.

In WinRM 2.0 and later, TCP port 5985 is used by default, but in WinRM 1.1 such as Windows Server 2008, the port
number used is 80. In that case, add the port number setting __port__ = 80.

If you cannot connect properly, make sure that the firewall allows TCP port 5985 (or 80) to pass through, and check
whether the login account settings are correct or not.

1.4.4 Network device node setting

If you want to execute commands from Kompira to a network device node, you need to enable SSH or TELNET login
beforehand, depending on the network device. For details on how to enable SSH or TELNET login for each device,
please refer to the manual of each device.

New in version 1.6.4: Remote jobs with network device nodes are now supported.

List of supported devices

As of Kompira v1.6.4, remote jobs with the following network devices (connection protocols) are supported.
* Cisco IOS (SSH, TELNET)
* Cisco ASA (SSH)
* Yamaha (SSH, TELNET)
* Juniper ScreenOS (SSH)
e HP Procurve (SSH)

The following table shows the connection types that can be specified for each device and the devices whose operation
was checked.

18 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Network device | Connection type Proto- Devices confirmed to work | Note
col
Cisco IOS cisco_ios/ssh SSH Cisco 8921], Cisco | Support for
CSR1000V PUT/GET
cisco_ios/telnet TEL- Cisco 892J, Cisco | Support for
NET CSR1000V PUT/GET
Cisco ASA cisco_asa/ssh SSH Cisco ASA5505 Support for
PUT/GET
Yamaha yamaha/ssh SSH Yamaha RTX1200
yamaha/telnet TEL- Yamaha RTX1200
NET
Juniper juniper_screenos/ SSH Juniper SSG5
ScreenOS ssh
HP ProCurve hp_procurve/ssh SSH ProCurve 2510G

Note: Other models than the above can be selected as node types, but we have not been able to confirm their operation.

Restrictions on network devices
Not all functions of Remote Job are supported in cooperation with network devices. Please note that there are some
limitations as follows.

* The command job cannot determine the success or failure of a command. If the login is successful, $STATUS
will always be 0 regardless of the actual command success or failure. If error judgment is required, it is necessary
to check whether the standard output contains error messages or not in the job flow.

* Standard error output is not supported. Internally it is the same as PTY mode (__use_pty__=true) and all
output is taken as standard output.

 Specifying the shell or execution directory by control variables is not supported.
* Script jobs and reboot jobs are not supported.

* File transfer by PUT/GET is supported on some devices, but only single file transfer is possible. Wildcard
specification and recursive file transfer are not supported.

Information on the devices tested

The following table shows the version information for each device that we have tested.

Cisco 892]:

Cisco IOS Software, C890 Software (C890-UNIVERSALK9-M), Version 15.0(1)M3, RELEASE.
—SOFTWARE (fc2)

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2010 by Cisco Systems, Inc.

Compiled Sun 18-Jul-10 08:34 by prod_rel_team

ROM: System Bootstrap, Version 12.4(22r)YB3, RELEASE SOFTWARE (fcl)

Cisco CSR1000V:

1.4. Node setting 19

Kompira Documentation, Release 1.6.7.post1

Cisco IOS XE Software, Version 03.11.00.S - Standard Support Release

Cisco IOS Software, CSR1000V Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.
—4(1)S, RELEASE SOFTWARE (fc2)

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2013 by Cisco Systems, Inc.

Compiled Tue 19-Nov-13 21:00 by mcpre

Cisco ASA5505:

Cisco Adaptive Security Appliance Software Version 8.4(4)3
Device Manager Version 6.4(9)

Compiled on Wed 11-Jul-12 10:25 by builders

System image file is "disk®:/asa844-3-k8.bin"

Config file at boot was "startup-config"

Yamaha RTX1200:

RTX1200 BootROM Ver.1.01
RTX1200 Rev.10.01.78 (Wed Nov 13 16:29:42 2019)

Juniper SSGS:

Product Name: SSG5-Serial

Serial Number: XXXXXXXXXXXXXXXX, Control Number: 00000000

Hardware Version: 0710(0)-(00), FPGA checksum: 00000000, VLAN1 IP (0.0.0.0)
Flash Type: Samsung

Software Version: 6.2.0r8-cul.®, Type: Firewall+VPN

Feature: AV-K

Compiled by build_master at: Thu Nov 18 01:29:55 PST 2010

ProCurve 2510G:

Image stamp: /sw/code/build/cod(codl11)
Nov 17 2009 16:55:04
Y.11.16
43

Boot Image: Primary

20 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

1.5 Kompira settings and log files

The following is an explanation of the directory and configuration files on the server that are standard to Kompira.

1.5.1 Kompira standard directories.

The following is a list of directories and configuration files on the server that Kompira uses as standard.

Path Description

/opt/kompira/ bin/ Directory for Kompira executable file
kompira.conf | Kompira configuration files

/var/log/kompira/ Directory for engine and job manager log files

/var/opt/kompira/ Directory of Kompira variable files

kompira.lic

Kompira license

html/

Online help’s HTML file group

repository/

Working directory for repository link

/etc/httpd/conf.d/ | kompira.conf

Apache setting files

Deprecated since version 1.6.4: The /var/opt/kompira/upload directory has been deprecated because attachments are
now stored on the database.

1.5.2 Kompira logs

Kompira’s own log files are created by default under the following directory.

¢ /var/log/kompira/

For each log file created, the standard log rotation settings and the contents to be recorded are as follows.

Log file Log rotation settings Contents

kompira.log fixed (daily rotate 7) Request related log output (output by httpd)
kompirad.log fixed (daily rotate 7) Kompira daemon log output

process.log fixed (daily rotate unlimited) | Log output of Kompira job flow process
kompira_jobmngrd.log | kompira.conf (daily rotate 7) | Kompira Job Manager log output
kompira_sendevt.log kompira.conf (1GB rotate 10) | Log output of Send-Event command
audit-*.log logrotate (daily rotate 365) Audit log output for various operations

* The log files are automatically rotated, and the old log files are saved with the date added to the file name.

* For the above log files, kompira_jobmngrd.log and kompira_sendevt.log the settings of rotation, such as interval
and number of generations can be changed in /opt/kompira/kompira.conf.

e The audit-*.log 1is rotated by the logrotate service, and you can change
/etc/logrotate.d/kompira_audit.

its settings in

The various services that make up Kompira output their logs to the following directories. The standard log rotation
settings for each service are also shown below.

1.5. Kompira settings and log files

21

Kompira Documentation, Release 1.6.7.post1

Service Log output direc- | Log rotation settings Note
tory
httpd /var/log/httpd/ logrotate (daily rotate 30)
postgresql /var/log/postgres/ logrotate (daily rotate 30)
rabbitmg- /var/log/rabbitmq/ logrotate (weekly rotate
server 20)
pacemaker /var/log/ logrotate (weekly rotate | Only in cluster configuration (RHEL7 se-
(1.x) 99) ries)
pacemaker /var/log/pacemaker/ | logrotate (weekly rotate | Only in cluster configuration (RHELS se-
(2.x) 99) ries)
corosync /var/log/cluster/ logrotate (daily rotate 31) | Only in cluster configuration
pesd /var/log/pcsd/ logrotate (weekly rotate 5) | Only in cluster configuration

New in version 1.6.3: An audit log has been added.

1.5.3 Kompira configuration files

The setting items in /opt/kompira/kompira.conf are as follows.

kompirad: 0
kompira_jobmngrd: 0
kompira_sendevt:
1024*1024*1024

Section name Item name Default value Contents
kompira site_id 1 Not used in this version
logging Log output related settings
loglevel INFO Setting the log level (DEBUG, INFO,
WARNING, ERROR, CRITICAL)
logdir /var/log/kompira Directory of log files
logbackup Number of generations of log backup
kompirad: 7
kompira_jobmngrd: 7
kompira_sendevt: 10
logmaxsz

Maximum log file size (in bytes)
Set to O to rotate daily

amgp-connection

RabbitMQ connection information related settings

server localhost Connection host name

port 5672 Connection port number

user guest Connection user name

password guest Connection password

ssl false Enabling to connect with SSL or not

heartbeat_interval 10 Heartbeat interval (in seconds)

max_retry 3 Maximum number of attempts to recon-
nect at disconnection

retry_interval 30 Interval (in seconds) to reconnect at dis-

connection

agent Settings related to job manager operation
name | default | Name of job manager
continues on next page
22 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Table 2 - continued from previous page

Section name Item name Default value Contents
pool_size 8 Number of concurrent process workers
disable_cache false Disable remote connection cache
cache_duration 300 Remote connection cache expiration
date (in seconds)
event Settings of Send-Event
channel /system/channels/Alert Path on Kompira for event transmission

channel

Note: The remote connection cache is a function that speeds up the processing of successive remote command ex-
ecution on the same node and under the same account by reusing the remote connection during remote command
execution.

However, the remote connection cache will not be used for WinRS connections regardless of the disable_cache setting,
because the speedup effect is not available.

1.5.4 Kompira image files

The images displayed in the browser window are located on the Kompira server at the following locations.
¢ /var/opt/kompira/html/kompira/img/

The image files located here are as follows. You can change the appearance of the screen by directly replacing the
image files.

File name Purpose Size Description

favicon.svg Favicon (SVG) 16x16 This icon is used for browser tabs and fa-
vorite icons when registered.

favicon.ico Favicon (ICO) 16x16 Same as above (for use with browsers that do
not support SVG format)

brand-logo.svg Brand logo image 40x40 The logo image will be displayed in the up-
per left corner of the menu bar.

login-logo.svg Log-in logo image 128x128 | The logo is displayed in the center of the lo-
gin and logout screens.

console-loading.gif | Console loading image 20x20 Shown in the console while the process is
active on the process details screen.

Note: Size is shown as the number of pixels for reference when displayed on a typical resolution display.

1.5. Kompira settings and log files 23

Kompira Documentation, Release 1.6.7.post1

1.6 Data backup of Kompira

How to back up and restore data stored on Kompira.

The definitions of job flow and device information created on Kompira will be stored in the database. These data sets
can be exported and imported as a file in json format.

1.6.1 Export of Kompira objects

By executing the export_data command with the following format, specified data of Kompira file system will be dumped
in json format.

/opt/kompira/bin/manage.py export_data [options] <path>...

For example, to export all data under /home/guest created by Kompira to a file, execute the following command.

$ /opt/kompira/bin/manage.py export_data /home/guest > guest.json

Alternatively, by executing the export_dir command, you can dump the data below the path of the Kompira file system
specified by the argument as a YAML file on a per-object basis.

/opt/kompira/bin/manage.py export_dir [options] <path>...

Note that for objects of the following types, only the data in the fields they represent will be output as a file, and the
remaining fields will be output as .<object name> with property information.

Type name Representative field File format
Jobflow source text
ScriptJob source text

Library sourceText text
Template template text

Text text text

Wiki wikitext text
Environment environment YAML

New in version 1.6.7: The export_dir command has been changed to output the data in the attachment field as a separate
file.

1.6.2 Import of Kompira objects

You can import data with the exported file using the import_data command. The format of the import_data command
is as follows.

/opt/kompira/bin/manage.py import_data [options] <filename>...

For example, to import the file guest.json exporting the /home/guest directory, execute the following command:

$ /opt/kompira/bin/manage.py import_data guest.json

[2014-07-25 12:34:49,576] INFO: import data: start...

[2014-07-25 12:34:49,676] INFO: home/guest: import is skipped: "/home/guest" already.
—,exists.

(continues on next page)

24 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

[2014-07-25 12:34:49,710] INFO: home/guest/a: import is skipped: "/home/guest/a" already.
—.exists.

[2014-07-25 12:34:49,743] INFO: home/guest/b: import is skipped: "/home/guest/b" already.
—,exists.

[2014-07-25 12:34:49,743] INFO: import data: finished (created=0, updated=0, skipped=3,.
—error=0)

If the imported json file contains an object of a path that already exists, the import of that object will be skipped. In the
above case, all three files to be imported were skipped.

You can overwrite by using the overwrite-mode option.

$ /opt/kompira/bin/manage.py import_data --overwrite-mode guest.json

[2014-07-25 12:39:15,685] INFO: import data: start...

[2014-07-25 12:39:15,821] INFO: import object: imported "home/guest" to "/home/guest".

< (updated)

[2014-07-25 12:39:15,904] INFO: import object: imported "home/guest/a" to "/home/guest/a
" (updated)

[2014-07-25 12:39:15,971] INFO: import object: imported "home/guest/b" to "/home/guest/b
" (updated)

[2014-07-25 12:39:15,991] INFO: import fields: /home/guest: []

[2014-07-25 12:39:16,015] INFO: import fields: /home/guest/a: ['wikitext']

[2014-07-25 12:39:16,046] INFO: import fields: /home/guest/b: ['wikitext']

[2014-07-25 12:39:16,046] INFO: import data: finished (created=0, updated=3, skipped=0,..
—.error=0)

Files dumped with the export_dir command can be imported using the import_dir command.

/opt/kompira/bin/manage.py import_dir [options] <dirname>...

1.6.3 Backup

The Kompira backup procedure.

Kompira will use data from the paths listed in Kompira standard directories. on the server, in addition to those in
the database. When backing up Kompira data, in addition to backing up the Kompira objects with the export_data
command, you should also back up the files on the server if necessary.

This is an example of backing up the Kompira object and license files.

mkdir -p /tmp/kompira_backup

cd /tmp/kompira_backup

/opt/kompira/bin/manage.py export_data / --virtual-mode > backup.json
cp /var/opt/kompira/kompira.lic ./

cd /tmp

tar zcf kompira_backup.tar.gz ./kompira_backup

LR A R G

1.6. Data backup of Kompira 25

Kompira Documentation, Release 1.6.7.post1

1.6.4 export_data options

The export_data command has the following options:

Options

Description

--directory=DIRECTORY

Specify the directory as the starting point of the exported path. (Default is */*)

--virtual-mode

This also outputs data contained in the virtual file system.

--owner-mode

This also outputs the exported user object owned by that user and the group
object belonging to that user.

--zip-mode

Output in ZIP format.

--without-attachments

Do not output attachment data.

-h, --help

Print help message.

New in version 1.6.7: The —zip-mode and —without-attachments options have been added.

1.6.5 export_dir options

The export_dir command has the following options:

Options

Description

--directory=DIRECTORY

Specify the directory as the starting point of the exported path. (Default is */*)

--property-mode

Attributes such as ‘display_name’ are also output.

--datetime-mode

The ‘created’ and ‘updated’ are also output.

--current=CURRENT_DIR

Specify the output directory.

--without-attachments

Do not output attachment data.

--inline-attachments

Include attachment data in the YAML file and output it.

-h, --help

Print help message.

New in version 1.6.7: The —without-attachments and —inline-attachments options have been added.

1.6.6 import_data options

The import_data command has the following options:

Options

Description

--user=USER

Set the owner of the data to be imported to USER (specify user ID).

--directory=0ORIGIN-DIR

Specify the directory as the starting point of the import destination. (Default is
K/?)

--overwrite-mode

Overwrite existing objects if any.

--owner-mode

Set the owner of the data to be imported to the export owner.

--update-config-mode

Also overwrites the configuration data of Config type objects. (The —overwrite-
mode option must also be specified at the same time.)

--now-updated-mode

Sets the current time as the ‘updated’ of the object.

-h, --help

Print help message.

New in version 1.6.7: The —update-config-mode option has been added.

26

Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

1.6.7 import_dir options

The import_dir command has the following options:

Options Description

--user=USER Set the owner of the data to be imported to USER (specify user ID).

--directory=ORIGIN-DIR Specify the directory as the starting point of the import destination. (Default is
)

--overwrite-mode Overwrite existing objects if any.

--owner-mode Set the owner of the data to be imported to the export owner.

--update-config-mode Also overwrites the configuration data of Config type objects. (The —overwrite-
mode option must also be specified at the same time.)

--now-updated-mode Sets the current time as the ‘updated’ of the object.

-h, --help Print help message.

New in version 1.6.7: The —update-config-mode option has been added.

1.7 Kompira License

You can check the license status of Kompira using the license_info command. The format of the license_info command
is as follows.

/opt/kompira/bin/manage.py license_info

The following is an example of when a license is registered.

$ /opt/kompira/bin/manage.py license_info

#*%* Kompira License Information ***

License ID: KP-REGLMO-0000000001

Edition: REGL

Hardware ID: NODE : 000C29FB949E

Expire date: 2015-12-31

The number of registered nodes: ® / 100

The number of registered jobflows: 2 / 100

The number of registered scripts: 0 / 100

Licensee: fixpoint,inc.

Signature: dwyWvG9eKbnGxcpWfVr 1IHOWSybLKkGL7UqB2E6d5£0jYapfTx/AABI66W3sRpKObyk+9Y724

NuEZ9Rh90ySU8f2GRsIyujuVrgPloajokbdZrPFIq0lyvLkak8MAWcGIxiioPHPNd2Tv2BN
0sq6bs5Zf£]J1CReEJhYyyngnXjelLBM=

If the license is not registered, the temporary license information will be printed.

$ /opt/kompira/bin/manage.py license_info
#*%* Kompira License Information ***

License ID: KP-TEMP-0000000000

Edition: temporary

Hardware ID: NODE : 000C29FB949E

Expire date: 2015-01-22

The number of registered nodes: ® / 100

The number of registered jobflows: 2 / 100
The number of registered scripts: 0 / 100

(continues on next page)

1.7. Kompira License 27

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

Licensee:
Signature: None

Kompira is running with temporary license.

The license file path is /var/opt/kompira/kompira.lic.
You can place or update the license file in the above path using the license_update command.

The format of the license_update command is as follows.

/opt/kompira/bin/manage.py license_update <LICENSE_FILE>

The license_update command has the following options:

Options Description
--no-backup | Does not make a backup of the license file.
--force Force renewal if the license file validation fails.

New in version 1.6.2: license_update command
See also:

License Management: You can also check and register licenses from the browser.

1.8 Private key management

1.8.1 changing the private key

To change the private key used to encrypt the password field, run the command change_secretkey with root privileges.
By running the command, all password data stored encrypted in the database will be re-encrypted and stored again
with the new private key.

The change_secretkey command is of the following format

/opt/kompira/bin/manage.py change_secretkey [options] <new_secretkey>

The options are as follows

Options Description

--no-backup | Does not back up the keys before the change.

--force Continue with re-encryption even if there is password data that failed to be re-encrypted along the
way.

Note: The secret key string is stored in /var/opt/kompira/.secret_key.

Note: Restart the httpd and kompirad services after running change_secretkey. In a redundant configuration, execute
change_secretkey on the active side before switching to the standby side.

28 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

1.9 High Availability (HA) Management

Kompira can be operated on two servers with active-standby redundant configuration using Pacemaker / corosync. The
following is an explanation of its installation, state check, failover, etc.

1.9.1 Introduction

Pacemaker monitors the resources (applications) necessary for Kompira and failover when an error is detected for the
redundancy.

The list of resources Pacemaker monitors is as follows.

httpd, kompirad, kompira_jobmngrd
This is a necessary process for Kompira and can only run on an active server.

RabbitMQ
RabbitMQ is also a necessary process for Kompira. A process on the active server is a ‘Master’, and a process
on the standby server is a ‘Slave’.

IPaddr2
A resource for managing virtual IP addresses.

PostgreSQL
This is a PostgreSQL database process. A process on the active server is Master, and a process on the standby
server is Slave. PostgreSQL replication is configured so the data on the primary server and the data on the
secondary server are synchronized.

1.9.2 Installation

When building a redundant configuration of Kompira, after installing Kompira on each of the two servers, set up the
redundant configuration on the primary server and then the secondary server.

Two servers require two network interfaces. Depending on the OS version, the network interface name may be eth0,
ethl, ..., orens192, ens224,

From the following, we call the primary server (ha-kompiral), and the secondary server (ha-kompira2), and each
server has network interfaces ethQ, snd eth1. ethQ is connected to the service provisioning network and eth1 is used for
heartbeat so that two servers are connected by an independent network.

When the redundant configuration is established, the primary server is in the active state and the secondary server is in
the standby state.

To build a redundant configuration of Kompira, use setup_cluster.sh included in the package. In the following, the
procedure for installing redundant Kompira on 2 servers after OS installation is explained.

Note: setup_cluster.sh downloads various middleware from the outside like install.sh. Please run it while you have an
Internet connection available.

1.9. High Availability (HA) Management 29

Kompira Documentation, Release 1.6.7.post1

Setting of the primary server

After installing the Kompira package, set up the primary server by running setup_cluster.sh with the --primary option.
When executing setup_cluster.sh, specify the following information as an argument.

 Heartbeat network device name

e The virtual IP address (VIP) assigned to the cluster and its subnet mask prefix size

For example, to specify ethl as the heartbeat network device, 192.168.0.100 as the virtual IP address and 24 as the
subnet mask prefix size, execute the following commands.

$ tar zxf kompira-<version>-bin.tar.gz

$ cd kompira-<version>-bin

./install.sh

./setup_cluster.sh --primary --heartbeat-device ethl 192.168.0.100/24

Note: Internally, each node in the redundant configuration needs to be able to resolve names, so it registers aliases
such as ha-kompiral (primary machine) and ha-kompira2 (secondary machine) in /etc/hosts. setup_cluster.sh does
not change the hostname of the server.

Setting of the secondary server
After installing the Kompira package, set up the secondary server by executing setup_cluster.sh with the --secondary
option.

When executing setup_cluster.sh, specify the following information as an argument. It is not necessary to specify a
virtual IP address.

¢ Heartbeat network device name

Heartbeat network device name

$ tar zxf kompira-<version>-bin.tar.gz

$ cd kompira-<version>-bin

./install.sh

./setup_cluster.sh --secondary --heartbeat-device ethl

Note: For example, to specify ethl as the heartbeat network device, execute the following commands.

Status check

When the installation of the primary server and the secondary server are completed, please access the following URL
from a Web browser and confirm that the login screen is displayed.

http://192.168.0.100/

The URL is the virtual IP address that was set when installing the primary server. This URL will be maintained even
if the primary machine fails and a failover occurs.

Also, to check the status of each resource in the redundant configuration, use the crm_mon command on the primary
server or the secondary server.

30 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

crm_mon -Al
Cluster Summary:
* Stack: corosync
* Current DC: ha-kompiral (version 2.1.0-8.el18-7c3f660707) - partition with quorum
* Last updated: Wed Sep 8 22:21:02 2021
* Last change: Wed Sep 8 22:19:56 2021 by hacluster via crmd on ha-kompiral
* 2 nodes configured
* 10 resource instances configured

Node List:
* Online: [ha-kompiral ha-kompira2]

Active Resources:
* Resource Group: webserver:

* res_memcached (systemd:memcached) : Started ha-kompiral
* res_httpd (ocf::heartbeat:apache): Started ha-kompiral
* res_kompirad (systemd:kompirad) : Started ha-kompiral
* res_kompira_jobmngrd (systemd:kompira_jobmngrd) : Started ha-kompiral
* res_vip (ocf::heartbeat:IPaddr2): Started ha-kompiral

* Clone Set: res_pgsql-clone [res_pgsql] (promotable):
* Masters: [ha-kompiral]
* Slaves: [ha-kompira2]

* Clone Set: res_rabbitmg-clone [res_rabbitmq]:
* Started: [ha-kompiral ha-kompira2]

Node Attributes:
* Node: ha-kompiral:

* master-res_pgsql : 1001
* rmg-node-attr-last-known-res_rabbitmg : rabbit@ha-kompiral
* rmq-node-attr-res_rabbitmg : rabbit@ha-kompiral

* Node: ha-kompira2:
* master-res_pgsql : 1000
* rmg-node-attr-last-known-res_rabbitmq : rabbit@ha-kompira?2
* rmg-node-attr-res_rabbitmg : rabbit@ha-kompira2

Here is the points to check in the output of the crm_mon command.
¢ Resource Group

Only resources that are running on the active machine are printed. Everything is normal if “Started
<host name of active machine>" is printed.

¢ Clone Set

Resources running on both servers are printed. In the case of Promotable resources, it is normal if the
host name of the active machine is displayed in Masters and the host name of the standby machine is
displayed in Slaves.

¢ Node Attributes

Detailed status of the PostgreSQL process is printed. If replication has been performed correctly, it
prints in the res_pgsql-data-status line as 1001 on the active server and 1000 on the standby server.

1.9. High Availability (HA) Management 31

Kompira Documentation, Release 1.6.7.post1

License Registration

In a redundant configuration, you will need to register license files for both active and standby servers.

Please follow the procedure in Kompira License and register the license file for each server.

1.9.3 Update

First, here are some points to keep in mind when updating the redundant configuration.

* Before updating, please make sure that both the active and standby systems are working properly. If only one
system is working properly, the update may not be possible.

* Please make sure that there is no abnormality in each step, and that the update has not failed.

* In any of the update procedures, jobs running on the active system will be terminated. Please note that the
operation of the terminated jobs will not be resumed by starting or switching the system after the update.

 Please note that there may be version-specific precautions regarding the update procedure. Please check the
release notes beforehand.

When updating a redundant configuration, there are two main update procedures. Depending on the procedure, you
can choose a method that involves switching Master/Slave or a method that does not involve switching. The following
is a brief description of the procedure for your reference.

Update procedure with both systems stopped (without failover)

1. Stop the standby system. (pcs cluster stop)

2. Stop the active system. (pcs cluster stop —force) (*) The running jobs will be killed here.
3. Update the active system. (./install.sh) (*) The auto-startup job will start.

4. Update the standby system. (./install.sh)

Instead of failover occurring, both systems will be stopped, resulting in a longer period of time when jobs are stopped.

Update procedure with single systems stopped (with failover)

1. Stop the standby system. (pcs cluster stop)
2. Update the standby system. (./install.sh)

3. Stop the active system. (pcs cluster stop —force) (*) At this point, failover occurs and the updated standby system
becomes active. Jobs that were running on the old active system will be terminated and auto-startup jobs will be
started on the new active system.

4. Update the old active system. (./install.sh)

It involves failover, but one system is still running, so the period of time when jobs are stopped is shorter.

Warning: Please note that if the —skip-cluster-start option of install.sh is specified in step 3 for updating both
systems stop and in step 2 for updating one system stop, the redundant configuration settings may not be updated
correctly.

Changed in version 1.6.6: pcs cluster start is now automatically executed after install.sh is run in redundant configura-
tion. The update procedure for redundant configurations has been changed accordingly.

32 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

1.9.4 HA stop and start

How to stop and start Kompira operating in a HA:

First of all, use the crm_mon command to see which of the two servers is acting as active. In the resource part of the
crm_mon command result the active server shows, “Started” and “Masters”.

The following explanation assumes that ha-kompiral is in the active state.

In principle, to stop servers, stop the standby server first and then stop the active server, to start servers, start the active
server first and then start the standby server second.

This is because if the active server is stopped first, the standby server judges that an error has occurred in the active
server and a failover process will be performed. If it fails over by mistake , refer to Failover and fail back behavior.

Stop HA configurtion

First, stop the Pacemaker process on the secondary server (ha-kompira2).

pcs cluster stop
Stopping Cluster (pacemaker)...
Stopping Cluster (corosync)...

After confirming that the service has stopped, do the same thing on the primary server (ha-kompiral). The --force
option is required to stop the last one of the HA configuration.

pcs cluster stop --force
Stopping Cluster (pacemaker)...
Stopping Cluster (corosync)...

This stops monitoring resources by Pacemaker/corosync. Please note that the crm_mon command can not be executed
when the pacemaker process is stopped.

To not only stop the process but to also shut down the server OS, the above process is not needed. However, please shut
down the standby server first and then the active server.

Start HA configuration

To start up, follow the procedure opposite to stop. First, start the Pacemaker process on the primary server (ha-
kompiral).

pcs cluster start
Starting Cluster...

Note: In a Pacemaker (1.x) environment such as RHEL?7, the following message will be displayed when executing pcs
cluster start.

pcs cluster start
Starting Cluster (corosync)...
Starting Cluster (pacemaker)...

When the pacemaker process started up, the resources registered in pacemaker will start sequentially. Execute the
crm_mon command and wait until all resources are started.

When the resources were started, start the Pacemaker process on the secondary server (ha-kompira2).

1.9. High Availability (HA) Management 33

Kompira Documentation, Release 1.6.7.post1

pcs cluster start
Starting Cluster...

This completes start up of the HA configuration.

When you boot server OS not only starting processes, the above processing is not needed. The Pacemaker service is
set to auto start up.

Please start the active server first and after confirming startup is completed, then start the standby server.

1.9.5 Failover and fail back behavior
If any failure occurs on the active server, the failover will be automatically performed and the standby server will be
promoted to the active status.

Below is the crm_mon command result on ha-kompira2 after shutting down of ha-kompiral which was in the active
state.

crm_mon -Al

Cluster Summary:
* Stack: corosync
* Current DC: ha-kompira2 (version 2.1.0-8.e18-7c3f660707) - partition with quorum
* Last updated: Wed Sep 8 22:27:37 2021
* Last change: Wed Sep 8 22:27:09 2021 by root via crm_attribute on ha-kompira2
* 2 nodes configured
* 10 resource instances configured

Node List:
* Online: [ha-kompira2]
* OFFLINE: [ha-kompiral]

Active Resources:
* Resource Group: webserver:

* res_memcached (systemd:memcached) : Started ha-kompira?2
* res_httpd (ocf::heartbeat:apache): Started ha-kompira?2
* res_kompirad (systemd:kompirad) : Started ha-kompira?2
* res_kompira_jobmngrd (systemd:kompira_jobmngrd) : Started ha-kompira2
* res_vip (ocf: :heartbeat:IPaddr2): Started ha-kompira2

* Clone Set: res_pgsql-clone [res_pgsql] (promotable):
* Masters: [ha-kompira2]

* Clone Set: res_rabbitmg-clone [res_rabbitmq]:
* Started: [ha-kompira2]

Node Attributes:
* Node: ha-kompira2:

* master-res_pgsql : 1001
* rmg-node-attr-last-known-res_rabbitmq : rabbit@ha-kompira?2
* rmg-node-attr-res_rabbitmg : rabbit@ha-kompira?2

You can see ha-kompiral is OFFLINE, and each of the resources are running on ha-kompira2.

In the following, the procedures when ha-kompiral is recoverable, and unrecoverable separately will be explained.

34 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

When the server is recoverable

Here is the procedure when the ha-kompiral can be started normally.

When you have started ha-kompiral, the status will be as follows

crm_mon -Al

Cluster Summary:
* Stack: corosync
* Current DC: ha-kompira2 (version 2.1.0-8.e18-7c3f660707) - partition with quorum
* Last updated: Wed Sep 8 22:35:16 2021
* Last change: Wed Sep 8 22:34:57 2021 by root via crm_attribute on ha-kompira?2
* 2 nodes configured
* 10 resource instances configured

Node List:
* Online: [ha-kompiral ha-kompira2]

Active Resources:
* Resource Group: webserver:

* res_memcached (systemd:memcached) : Started ha-kompira?2
* res_httpd (ocf::heartbeat:apache): Started ha-kompira?2
* res_kompirad (systemd:kompirad) : Started ha-kompira?2
* res_kompira_jobmngrd (systemd:kompira_jobmngrd) : Started ha-kompira2
* res_vip (ocf::heartbeat:IPaddr2): Started ha-kompira?2

* Clone Set: res_pgsql-clone [res_pgsql] (promotable):
* Masters: [ha-kompira2]
* Slaves: [ha-kompiral]

* Clone Set: res_rabbitmg-clone [res_rabbitmq]:
* Started: [ha-kompiral ha-kompira2]

Node Attributes:
* Node: ha-kompiral:

* master-res_pgsql -1
* rmg-node-attr-last-known-res rabbltmq : rabbitGha-kompiral
* rmg-node-attr-res_rabbitmg : rabbit@ha-kompiral

* Node: ha-kompira2:
* master-res_pgsql : 1001
* rmg-node-attr-last-known-res_rabbitmg : rabbit@ha-kompira?2
* rmg-node-attr-res_rabbitmg : rabbit@ha-kompira?2

In ha-kompiral, the database is not synchronized correctly and it is not in a normal state as a standby server.

In order to complete the setup as a standby server, use sync_master.sh in the kompira package on the standby server.
sync_master.sh will copy the database of the active server to the standby server, sets up replication, and starts the
database process.

/opt/kompira/bin/sync_master.sh
[2®21 09 09 ®®:3®:5®]

e e e e Y

edededededededededeN NN NN NNNN

R R R R R R R LR L

[2®21—®9—®9 00:30:50]
[2021-09-09 00:30:50]

Kompira-1.6.2.post7
*: Start: Sync with the Master

[2021-09-09 00:30:54] INFO: Waiting for the resources to stabilize.
PostgreSQL | RabbitMQ

(continues on next page)

1.9. High Availability (HA) Management 35

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

-1, 1001 | rabbit@ha-kompiral, rabbit@ha-kompira2
-1, 1001 | rabbit@ha-kompiral, rabbit@ha-kompira?2
1000, 1001 | rabbit@ha-kompiral, rabbit@ha-kompira2

[2021-09-09 00:30:56] INFO: Resources stabilized.

[2021 09-09 00:30:56] INFO: Display state of resources.
* Resource Group: webserver:

* res_memcached (systemd:memcached) : Started ha-kompira2
* res_httpd (ocf::heartbeat:apache): Started ha-kompira?2
* res_kompirad (systemd:kompirad) : Started ha-kompira?2
* res_kompira_jobmngrd (systemd:kompira_jobmngrd) : Started ha-kompira2
* res_vip (ocf::heartbeat:IPaddr2): Started ha-kompira?2

* Clone Set: res_pgsql-clone [res_pgsql] (promotable):
* Masters: [ha-kompira2]
* Slaves: [ha-kompiral]
* Clone Set: res_rabbitmg-clone [res_rabbitmq]:
* Started: [ha- komplral ha-kompira2]
[2021-09-09 00:30:56] ****
[2021-09-09 00:30:56]
[2021—09 09 ®®'3®'56] o

Tk hhhhh NN NN NN NN NS dddddddehhhhhhk

*: Finish: Sync with the Master (status=0)

Note: sync_master.sh saves all data related to the database to /var/lib/pgsql/12/data.old and gets the data of the active
server. (Including log files)If the synchronization succeeds, /var/lib/pgsql/12/data.old will be deleted automatically. In
case of failure, /var/lib/pgsql/12/data.old will be moved back to /var/lig/pgsql/12/data.

After executing sync_master.sh, if you call the crm_mon command, you can confirm that state of res_pgsql-data-status
of ha-kompiral has become 1000.

crm_mon -Al

Cluster Summary:
* Stack: corosync
* Current DC: ha-kompira2 (version 2.1.0-8.e18-7c3f660707) - partition with quorum
* Last updated: Thu Sep 9 00:35:55 2021
* Last change: Thu Sep 9 00:30:55 2021 by root via crm_attribute on ha-kompira2
* 2 nodes configured
* 10 resource instances configured

Node List:
* Online: [ha-kompiral ha-kompira2]

Active Resources:
* Resource Group: webserver:

* res_memcached (systemd:memcached) : Started ha-kompira?2
* res_httpd (ocf::heartbeat:apache): Started ha-kompira?2
* res_kompirad (systemd:kompirad) : Started ha-kompira?2
* res_kompira_jobmngrd (systemd:kompira_jobmngrd) : Started ha-kompira2
* res_vip (ocf::heartbeat:IPaddr2): Started ha-kompira?2

* Clone Set: res_pgsql-clone [res_pgsql] (promotable):
* Masters: [ha-kompira2]
* Slaves: [ha-kompiral]

(continues on next page)

36 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

* Clone Set: res_rabbitmg-clone [res_rabbitmq]:
* Started: [ha-kompiral ha-kompira2]

Node Attributes:
* Node: ha-kompiral:

* master-res_pgsql : 1000
* rmg-node-attr-last-known-res_rabbitmg : rabbit@ha-kompiral
* rmq-node-attr-res_rabbitmg : rabbit@ha-kompiral

* Node: ha-kompira2:
* master-res_pgsql : 1001
* rmg-node-attr-last-known-res_rabbitmg : rabbit@ha-kompira?2
* rmg-node-attr-res_rabbitmg : rabbit@ha-kompira?2

When the server is unrecoverable
This is the procedure when you need to shutdown the server and replace failing hardwarelure, prepare the server with
OS installed and set it as a standby state.

In a HA configuration, it is necessary to register a license file on each of the active server and the standby server.
Execute install.sh, then use the license_info command to check the hardware ID and register the license file.

$ tar zxf kompira-<version>-bin.tar.gz
cd kompira-<version>-bin
./install.sh

H o

cp kompira_ KP-EVALM100-0000000001.lic /var/opt/kompira/kompira.lic
cd /var/opt/kompira

chown apache:apache kompira.lic

/opt/kompira/bin/manage.py license_info

A A o

-

./setup_cluster.sh --primary --slave-mode

The above command is an example of setting up ha-kompiral in a standby state.

In a HA configuration, it is necessary to register a license file on each of the active servers and standby servers, so you
will need to register the license file before running setup_cluster.sh.

When you run setup_cluster.sh to add ha-kompira2 instead of ha-kompiral, use the --secondary option instead of
the --primary option.

When the process of setup_cluster.sh is completed, please refer to Starus check to know how to check the status.
See also:

Kompira License

1.9. High Availability (HA) Management 37

Kompira Documentation, Release 1.6.7.post1

1.9.6 setup_cluster.sh Options

Below is a list of instructions on how to setup_cluster.sh.

Options Default value Description
--primary true (specified) Start setup as a primary
--secondary false (not specified) | Start setup as secondary

--heartbeat-device=
DEVICE

Specify the network device for heartbeat.

--master-mode

Setup as an active state.

--slave-mode

Set up as a standby state.

--without-vip

Setup without VIP configuration. (You will need to
setup LB with ACT/SBY monitoring separately.)

--without-jobmanager

Setup without job manager configuration.

ha-kompira Specify the host name prefix.
--hostname-prefix=
PREFIX_NAME
192.168.99.0 Specify the network address to be set for the heartbeat
--heartbeat-netaddr= interface.
NETWORK_ADDRESS

--manual Setup parameters manually.

--manual-heartbeat Manually configure the network for heartbeat.
You will need to specify --heartbeat-primary
and --heartbeat-secondary and ignore
--heartbeat-netaddr. Heartbeat runs in unicast
mode.

Specify the primary IP address.

--heartbeat-primary=

NETWORK_ADDRESS
Specify the IP address of the secondary.
--heartbeat-secondary=
NETWORK_ADDRESS

--cluster-name=NAME Specify the cluster name (up to 15 characters).

Specify the network device to be assigned the VIP.

--cluster-device=

DEVICE
--token=TOKEN 30000 Specify token timeout (milliseconds).

--consensus=CONSENSUS

Specify consensus timeout (milliseconds).

--proxy=PROXY

Specify the proxy server in the following format.
[user:passwd@]proxy.server:port

--noproxy=HOSTS

Specify the hosts to be excluded from the proxy in a
comma-separated list.

--offline

Setup in offline mode.

continues on next page

38

Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Table 9 — continued from previous page

Options Default value Description

--dry-run Runs in dry run mode. It only checks the parameters and
does not perform the actual setup.

--help Print help message.

Changed in version 1.6.7: The default value of the —token option has been changed to 30000.

1.10 Audit log management

1.10.1 Introduction

When a user performs various operations on Kompira, it logs information such as the type of operation, whether it was
permitted or not, and whether it was succeeded or not.

Operations covered by the audit log
The audit log records browser operations, operations using APIs, and operations using management commands on the
server.
On the other hand, the following will not be recorded in the audit log.
* Data manipulation and process manipulation by job flow operation.
» QOperations outside the Kompira system (such as direct data manipulation using DB management commands).

¢ Access to static content.

Operation level and logging level

Whether or not an operation to be recorded is actually recorded in the audit log depends on the “operation level value”
calculated from the type and result of the operation, and the “logging level value” which is a configuration item. When
the calculated operation level value is greater than or equal to the logging level value of the setting item, the entry will
be output to the audit log.

Conditions for recording audit logs: Operation level value >= Logging level value

The operation level value is calculated from several items in the operation. Each item has its own set of operation level
criteria, and the maximum value is the final operation level value. Usually, this value is between 1 and 3. See Details
of audit log items for the default value of the operation level threshold for each item.

For example, “Edited an existing JobFlow object in the browser (allowed and successful)” would result in the following
per-item operation level criteria values being applied, with a final operation level value of 2.

ltem Value Operation level (reference value)
interface | "web" 1
class "object" 1
type "update" 2
permit "allowed" 1
result "succeeded" | 1

The default logging level value is 2. See Configuration file for more information.

1.10. Audit log management 39

Kompira Documentation, Release 1.6.7.post1

1.10.2 Audit log file

Destination of audit log

The audit log file will be created in the following directory.

/var/log/kompira/

The name of the log file to be created will be as follows.

audit-${USERNAME}.1log

Here, the ${USERNAME} part is the user name on the operating system that executed the process that processed the
operation. For example, if you perform the operation in a browser, the Apache service on the server is doing the actual
processing, and the { SUSERNAME} part will be apache. Note that this is not the same as the user name you use to log
in to Kompira in your browser.

The audit log file is not rotated by Kompira itself, but is configured at installation time to be rotated by a standard OS
service.

The audit log file is created with a umask value of 027. The owner of the log file will be the same as ${USERNAME},
groups will have their write permissions masked, and other users will have their full access permissions masked.

File format of audit log

The audit log is a UTF-8 encoded text file that outputs one entry as one line in JSON format.

Items recorded in audit log

The items that are recorded in one entry of the audit log are shown below.

Item Name Type Description

Operation level level Integer | Operation level value

Operation started | Date- The date and time the operation was started.

started time time

Operation fin- | finished | Date- The date and time the operation was finished.

ished time time

Execution infor- | exec Dictio- | Information on the execution Linux process (dictionary format)
mation nary

Operation user user String The name of the Kompira user who performed the operation.
Operation inter- | interface| String Indicates the interface, such as whether it is operated by a browser or
face by management commands.

Operation class class String Indicates the classification of session operations, object operations, etc.

Operation target | target_patitring Object path (during non-session operations)
target_typé&tring Type object (during object operations)

Operation type type String Indicates the type of operation, such as “reference” or “delete”.
Operation permit | permit String Indicates whether the operation has been “allowed” or “denied”.
Operation result | result String Indicates whether the operation “succeeded” or “failed”.

Reasons for re- | reason String Indicates the cause of the failure (if known).

sult

Detail informa- | detail Dictio- | Detailed information about the operation (in a different dictionary for-
tion nary mat for each operation)

40 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Sample of audit log

The following is a sample audit log file /var/log/kompira/audit-apache.log from a browser operation. The log
is output as one entry and one line, but here it is formatted for easy understanding.

{

"level": 3,
"started": "2021-10-05T15:51:31.403016+09:00",
"finished": "2021-10-05T15:51:31.452097+09:00",
"exec": {

"pid": 1286192,

"name": "/usr/sbin/httpd",

"user": "apache",

"remote": "10.10.0.110"

1,

"user": "root",
"interface": "web",
"class": "session",

"target_path": null,
"target_type": null,
"type": llloginll,

"permit": "allowed",
"result": "succeeded",
"reason": null,
"detail": {
"next_page": "/"

}

}

{
"level": 2,

"started": "2021-10-05T15:51:43.447941+09:00",
"finished": "2021-10-05T15:51:43.486984+09:00",
"exec": {

"pid": 1285426,

"name": "/usr/sbin/httpd",

"user": "apache",

"remote": "10.10.0.110"

1,

"user": "root",
"interface": "web",
"class": "object",

"target_path": "/config/license",
"target_type": "/system/types/License",
lltypell: llreadll’

"permit": "allowed",
"result": "succeeded",
"reason": null,
"detail": {

"http_method": "GET",
"http_status": 200
}
}

1.10. Audit log management 41

Kompira Documentation, Release 1.6.7.post1

1.10.3 Details of audit log items

This section provides details about the items that are recorded in the audit log. In the table in the following sections,
“operation level” indicates the default operation level reference value.

Operation level (level)
The operation level calculated based on the type of operation, result, etc. is shown as a numerical value. When this

operation level value is greater than or equal to the logging level value of the setting item, the entry will be output to
the audit log.

Operation date and time (started, finished)

The item started indicates the start date and time of the operation, and the item finished indicates the end date and
time of the operation. These are recorded in ISO8601 format in local time, as shown below.

"2021-10-01T11:45:08.977356+09:00"

Execution information (exec)

The following information is recorded in the dictionary that indicates execution information.

ltem Name Type | Description
Process id of execution exec["pid"] Inte- Process id on the Kompira server.
ger

Process name of execu- | exec["name"] String | Process name on the Kompira server.
tion
User name of execution exec["user"] String | User name of the execution process on the Kompira server.
Remote address exec["remote"]| String | IP address of the operation source. (during browser oper-
ation)

Operation user (user)
Record the name of the Kompira user who performed the operation. If the operation was performed by logging in to

Kompira in a browser, this will be the login user name. If the operation was performed using management command
on the server console, it will be an empty string because it is not accompanied by Kompira authentication.

Operation interface (interface)

Record the classification of what interface was used to perform the operation.

Value | Operation level | Description

"web" | 1 Operation by web browser.

"api" | 1 Operation by REST-APL

"mng" | 2 Operation by management commands (e.g. manage.py).

42 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Operation class (class)

Indicates the classification of what kind of operation was performed.

Value Operation Description
level
"session" | 3 Session operations (login, logout)
"user" 3 User information operations (adding and deleting users, changing passwords,
etc.)
"group" 3 Group information operations
"object" 1 Object operations
"task" 1 Task operations
"incident" | 1 Incident operations
"process" 1 Process operations
"schedule" | 1 Schedule operations
"packages" | 1 System packages information operations

Operation target (target_path, target_type)

Indicates what was manipulated and its specific target.

If the operation class is other than session, the operation target can be identified by its path. The path is recorded as

an entry target_path as follows.

"/system/user/id_1"

Additionally, in the case of object operations, the path of the type object is recorded in the entry target_type.

"/system/types/Directory"”

Operation type (type)

It records the type of the operation that was performed.

1.10. Audit log management

43

Kompira Documentation, Release 1.6.7.post1

Some operation types are only used for specific operation class. For example, login and logout are only used when the

Value Operation level | Example of operations

"login" 3 logged in to kompira

"logout" 3 Logged out of kompira

"create" 3 Create a new object

"rename" 3 Rename object

"copy" 3 Copy objects

"move" 3 Move objects

"export" 3 Export data

"import" 3 Import data

"execute" 3 Execute job flows and script jobs.
"suspend" 3 Suspend the process

"resume" 3 Resume the process

"terminate" | 3 Terminate the process

"read" 1 Display the content of an object.
"list" 1 Display a list of objects.

"search" 1 Search for objects.

"new" 1 Edit a new object (before create).
"edit" 1 Edit an existing object (before update).
"confirm" 1 Confirm object operation (before delete).
"update" 2 Update object

"clear" 2 Erase messages from a channel. Clear status of management area.
"recv" 2 Receive a message from a channel.
"send" 2 Send a message to a channel.
"delete" 3 Delete object

operation class is session.

Although an operation type may be used in multiple operation classes, it is not possible to set different operation level

criteria values for each operation class.

Operation result (permit, result)

As a result of the operation, its allowed or denied and succeeded or failed will be recorded.

The item permit indicates whether the operation is allowed or not. For example, in object operations, the operation is

allowed or denied depending on the permissions set.

Value Operation level | Description
"allowed" | 1 Operation allowed.
"denied" 3 Operation denied.

The item result indicates whether the operation was succeeded or not.

Value Operation level | Description
"succeeded" | 1 Operation succeeded.
"failed" 1 Operation failed.

44

Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Detail information (detail)

Additional detail information for each type of operation is recorded in a dictionary format.

(*) However, please note that the detail information may be adjusted even after the release of the audit log feature.

Login
Item Description
next_page Pages to which you will be redirected after logging in.
invalid_password | Invalid password. (in case of authentication error)
REST-API
Item Description
invalid_token | Invalid API token. (in case of authentication error)
Export
Item Description
export_format Export format. (‘json’ or ‘dir’)
export_options Options specified during export.
export_paths The path to export.
export_counters | Counter information for export results.
Import
Item Description
import_format Import format. (‘json’ or ‘dir’)

import_options Options specified during import.
import_sources Imported file names.
import_counters | Counter information for import results.

Search for objects

Item Description
search_params | Search parameters

Create a new object

Item Description
create_name | Name of the new object to be created.
create_type | The path of the type object of the new object to be created.

Execute job flows and script jobs

ltem Description

execute_pid Process ID that was executed.

execute_params | Parameters specified at execute.

execute_form Path of the form used for execution (if executed from a form object).
execute_table Path of the table used for execution (if executed from a table object).

1.10. Audit log management

45

Kompira Documentation, Release 1.6.7.post1

Rename object

Item Description
rename_to | Name to be changed.

Copy objects

Item Description
copy_objects | List of objects to be copied.
copy_rename Name of the object specified when copying.

Move objects

ltem Description
move_objects | List of objects to be moved.
move_rename Name of the object specified when moving.

Delete object

ltem Description
delete_objects | List of deleted paths or object IDs.
delete_file File name of the deleted attachment.
Send a message to a channel
ltem Description

send_form | Path of the form used for send (if send from a form object).

Management command: compile_jobflow / compile_library

Item Description
compile_paths List of paths specified as compile targets.
compile_result | Compilation result (count information)

Management command: license_info / license_update

Item Description
license_id License ID
license_path | The name of the license file you installed (for license_update)

Management command: process

Item Description

process_query Search query for process objects.
process_count Number of processes searched.
process_listed Number of processes displayed.
process_deleted Number of processes deleted.

process_terminated | Number of processes terminated.
process_suspended | Number of processes suspended.
process_resumed Number of processes resumed.

46 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

Other detailed information

Item Description

http_method | Method name of the HTTP request.
http_status Status code of the HTTP response.
target_attr Attribute name of the operation target.
target_index | Index value of the operation target
bulk_deleted | Detail information for bulk deletion.

1.10.4 Configuration file

You can configure settings related to the audit log in the following file.

/opt/kompira/kompira_audit.yaml

Configuration file format

The configuration file kompira_audit.yaml is written in YAML format. The whole thing is a dictionary structure,
and the following configuration items are required.

Name Type Description
logging_level Integer Logging level value for audit log.
operation_levels Dictio- Operation level reference value table for each operation.
nary
target_levels Array Operation level reference value table for each operation target in object manipu-
lation, etc.

Auto reloading of configuration file

When the audit log configuration file is updated on the server, it will be automatically reloaded at the timing of the next
audit log recording. There is no need to restart the service.

Default configuration file

kompira_audit.yaml

Configuration file to control audit log output.
logging_level: recording level value

#
#
#
If the calculated operation level value is less than the recording
level value, no audit log will be recorded.

#

1

ogging_level: 2

(continues on next page)

1.10. Audit log management 47

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

operation_levels: basic operation level table

#
#
Table of operation level reference values for each operation.
The operation level value for an operation is the maximum of
several operation level criteria values.

#

operation_levels:
interface:
web: 1
api: 1
mng: 2
class:
session: 3
user: 3
group: 3
object: 1
task: 1
incident: 1
process: 1
schedule: 1
packages: 1
type:
login: 3
logout: 3
create: 3
rename: 3
copy: 3
move: 3
export: 3
import: 3
execute: 3
suspend: 3
resume: 3
terminate: 3
read: 1
list: 1
search: 1
edit: 1
confirm: 1
update: 2
clear: 2
recv: 2
send: 2
delete: 3
permit:
allowed: 1
denied: 3
result:
succeeded: 1
failed: 1

(continues on next page)

48 Chapter 1. Administration Guide

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

target_levels: operation level table for object operation
#
Operation level reference value to be applied to each target
during object manipulation.
#
target_levels:
- {path: '/config/*', type: null, level: 2}
- {path: '/system/*', type: '/system/types/Config', level: 2}

1.11 System packages management

Information about the Python and web packages installed in the Kompira environment can be viewed below. For each
package type, you can see information about the installed package version and license.

Path Description

/system/packages/PIP Information about the Python packages managed by PIP in the Kompira envi-
ronment.

/system/packages/Web Information about packages for the web that are managed as static content in the
Kompira environment.

Note: System package information is automatically collected and updated when kompirad is started after installing or
updating Kompira.

1.11.1 Manage command for packages information

You can use the following commands on the Kompira server to manage packages information.

$ /opt/kompira/bin/manage.py packages_info [options...]

Show pacakges information

If the option is omitted or the --show option is specified, packages information that has already been collected will be
listed in the console.

$ /opt/kompira/bin/manage.py packages_info --show

An example of the package information listing is shown below.

N B T T o Fmm e +
| Type | Name | Installed | Latest | License |
e - o Fmm - +
| pip | APScheduler | 3.6.3 | 3.8.1 | MIT License |
| pip | Creoleparser | 0.7.5 | None | MIT License [
| pip | Django | 3.0.5 | 3.2.8 | BSD License |
| pip | Genshi | ©.7.5 | None | BSD License |

(continues on next page)

1.11. System packages management 49

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

| pip | GitPython | 3.1.18 | None | BSD License [

Collect packages information

If the --collect option is specified, it will collect information about the installed packages. However, only the root
or kompira user on the Kompira server can do this.

$ /opt/kompira/bin/manage.py packages_info --collect

At this time, an Internet connection is required to collect the latest version information for each package. If a proxy
connection is required, specify it with the --proxy option (or the https_proxy environment variable).

If you don’t want to collect the latest version information, for example because you don’t have an Internet con-
nection, you can additionally specify the --no-collect-latest option. Alternatively, you can specify the
--collect-latest option to explicitly collect the latest version information.

Note: Note that the collected packages information will be stored in the /var/opt/kompira/packages/ directory
on the server.

Update packages information

If the --update option is specified, the system packages information object (of type Wiki) on Kompira will be updated
based on the collected packages information. However, only the root or kompira user on the Kompira server can do
this.

$ /opt/kompira/bin/manage.py packages_info --update

If the --update and --collect options are used together, the system package information object will be updated
following the collection of package information.

50 Chapter 1. Administration Guide

CHAPTER
TWO

OPERATION GUIDE

Author
Kompira development team

2.1 Introduction

In this manual, information about using Kompira’s functions through the web user interface (WebUI) provided by
Kompira, will be explained.

2.2 Basic operations

2.2.1 Login and logout

You can access the login screen of Kompira by accessing the following URL.

https://<Hostname or ipaddress of Kompira server>/

Please enter your user name and password to login to the Kompira login screen.
For a list of available default users, refert to: User management.

When you log in, your logged in user name will appear in the upper right hand corner of the screen. Click on the user
name and a drop-down menu will appear, from which you can log out by selecting “Logout”.

Note: The login information will be saved in the browser’s cookies. Login information cookies expire after 2 weeks.
So after the expiry date, you will need to log in again.

2.2.2 Menu operations
When logged in, you can navigate to Home, File System, Task List, Incident List, Process Management, Scheduler,
Settings and Help from the menu at the top of the screen.

The logo image and the “Kompira” notation on the left side of the menu are links to the Home page, which takes the
user to the page of the object (usually a directory) that has been set as Home for each user.

The menu “File System” is a shortcut to several typical directories and their child objects.

51

Kompira Documentation, Release 1.6.7.post1

2.2.3 Keyboard operations

Kompira also allows keyboard operation of some of the functions that correspond to each page you are viewing. Com-
mon keyboard operations are listed below.

Key bindings Operation Note

? Display the help Display a list of keyboard shortcuts in a dialog.

/ Focus on search box If the search box is present.

~ Go to home object

A Go to parent directory

Ctrl-Left Go to previous page If the object has multiple page views.
Ctrl-Right Go to next page If the object has multiple page views.

Alt-E Edit object If the object is editable in the object detail screen.
Alt-S Save object If the object’s edit screen is open.

Note: Some key bindings such as A1t-E may differ from actual key operations such as Al1t-Shift-E depending on
the OS or browser.

New in version 1.6.6: Added description of keyboard operations.

2.3 Kompira file system

Kompira defined Information, such as job flow definitions and node information, are centrally managed on the Kompira
file system as Kompira objects.

Below, we explain the settings and values not dependent on Kompira object type.

2.3.1 Names of object

The name of the Kompira object can be freely named within the following rules.

[T3E1]

* You can use alphabetical and numerical characters, as well as underscores (““_"), and Japanese characters.

¢ The first character must be a number
¢ Itis case-sensitive
* Object name length must be within 128 characters

* Absolute path length must be within 1024 characters

2.3.2 Object Properties

All Kompira objects have properties, and the object owner or root users can edit each item of the property.

Here is the list of items that can be set in the properties.

52 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Field Description

Display name Name used to display the object. (It is different from the object name)
Description A description of the object.

Owner Owner of the object

User permissions | Access permission list given to users.

Group permission | The permission list given to the group.

In the section on user permissions and group permissions, you can set access permissions for each user and group.

If you want to set common access permissions for all users, it is a good idea to use the other group to which all users

belong.

If the target of property editing is a directory or a table, the “Apply changes to descendant objects” checkbox will appear
on the property edit screen for the Owner, User Permissions, and Group Permissions items, respectively. By checking
these checkboxes and saving the changes, the corresponding property settings will be reflected in the descendant objects.

Note: Properties can be edited only by the owner of the object or root users, regardless of the permission setting. A
user with writing permission can edit the contents of an object, but be aware that properties cannot be edited.

Note: Note that if a directory contains many descendant objects, applying property changes to the descendant objects
may take a long time to complete.

2.3.3 Object permissions

All Kompira objects have permission settings.

Here is a list of access permission types that the Kompira objects have.

Permission Description

type

Read Grants the capability to read the contents of the object. An attempt to move to the path of an
unauthorized object will result in an error.

Write Grants the capability to edit the contents of the object. If you do not have writing permission on
a directory or table object, you can not add new objects.

Execute Grants the capability to execute objects. It is a permission type valid only for executable objects
(job flow and script job).

For root users, all access is allowed, even if they are not explicitly specified.

Object permission settings can be edited from Object Properties .

Note: When adding an object to a directory or table object, permission settings are not inherited.

2.3. Kompira file system 53

Kompira Documentation, Release 1.6.7.post1

2.4 Kompira object

There are various kinds of objects created on the Kompira file system, such as job flow and node information. These
are specified by the type object on the Kompira file system. For predefined type objects, you can refer to the list in
/system/types.

In the current version, the type objects shown below are defined as standard.

Type name Description

TypeObject An object for defining type objects. When you create a type object, you can
create an object of the type you created.

Directory An object that can store multiple objects.

License An object for registering a license file. This is a special object used in the system,
it will not be created anew.

Virtual Object for defining virtual objects. Process list (/process) and task list (/task) are
defined as virtual objects. This is not used in general.

Jobflow An object that can write and execute job flow.

Channel An object with a queue that can store messages. It can be used for sending and
receiving messages.

Wiki An object that can create Creole format Wiki pages.

ScriptJob An object that can write and execute scripts.

Environment An object that can store environment information in key-value format.

Template An object that can store template text used in tasks.

Table An object that can store multiple objects of the same type.

Realm An object for defining the area managed by the job manager. This will be created

under the management area list object, and this will not be created under the
normal directory or table.

AttachedFile An object that can save arbitrary files.

Nodelnfo An object that can store information for specifying a node, such as server IP
address or SSH port number.

AccountInfo An object that can store account information for remote login.

Repository An object that defines information for linking with the version control system.

MailChannel A channel that can receive email from the IMAP server.

Form An object that can create a user input form.

Config An object that can create a setting form.

Library An object that defines a Python library that can be called from a job flow.

MailTemplate An object that can store the template text used for sending mail.

Text An object that holds text information such as plain text and HTML text.

SystemlInfo An object that provides Kompira system information.

NodeType An object that defines the connection peer information available for remote jobs.

CustomStyle An object that sets the color scheme and other settings for the screen displayed
by the browser.

OAuth2Provider This object defines the service provider information for OAuth2 authentication.

SmtpServer This object defines the SMTP server information to be used when sending mail.

Each type object defines its own field and its type. For details on what fields are defined , please refer to: Built-in
objects

In the following we will introduce some typical Kompira objects and explain how to use them.

54 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

2.4.1 Directory

A directory is a Kompira object that can contain several different types of objects. When you open the Directory Objects
page, you will see a list of objects stored in that directory.

If there are a large number of stored objects, they will be displayed over multiple pages. Use the paginate buttons
located in the upper right corner of the object list to navigate to the previous or next page, or to the first or last page.
The menu to the left of the paginate button allows you to change the number of objects displayed per page (page size).

The sort order of the list view can be changed by clicking on the header row of the object list where the column names
are displayed. Clicking the same column again toggles between ascending and descending order.

For the sort order of object listings and page size, their default values can be set for each directory object. Select “Edit
this directory” from the menu button located in the upper right corner of the object list to go to the edit directory screen,
where you can save your settings.

From the directory object, you can do the following operations. These operations can be performed from the buttons
located in the upper left corner of the object list and from the “More actions” menu. They can also be operated from
the context menu that appears by right-clicking on the object list.

Operation Description

Create New Create an object. When creating, you need to specify a type object.
Brows Move to the page of the stored object.

Edit Edit the contents of the object.

Change name

Change the name of the object. If the display name of the property is the same as the object
name, the display name will be also be changed at the same time.

Move Move the object.

Copy Copy the object to another directory.

Delete Delete the object.

Export Export the selected object. When an object is not selected, all objects under the directory
will be exported.

Import Import the object into the selected directory from the file. When the directory is not selected,
the object will be imported under the current directory.

Property Edit the properties of the object.

Search Searches for descendant objects under a directory.

In addition to the common key operations, the following key operations are supported on the detailed screen of directory

objects.
Key bindings | Operation
n Create new object
Select type object
j Move cursor to next object
k Move cursor to previous object
Space Toggle the object selection
a Toggle selection of all objects
Delete Delete objects
F2 Rename object
C Copy objects
Move objects
p Edit property

New in version 1.6.6: Key operation description added.

2.4. Kompira object

55

Kompira Documentation, Release 1.6.7.post1

Create new object

New objects can be created in the directory screen.
¢ In the “Type” column on the bottom line, select the type of object you wish to create.
* Enter the name of the object you wish to create in the input form in the “Name” column on the bottom line.

¢ Click the button with the “+” sign to the right of the form in which you have entered the name, and you will be
taken to the editing screen corresponding to the type you have selected.

* Enter the necessary information on the edit screen and click the “Save” button to create the object.

Note that for some types, such as directory type, a new object is created without moving to the edit screen.

Viewing and editing object
Clicking on a link of an object listed in the directory screen, or selecting one of the objects and pressing enter or
choosing “Open” from the menu, will take you to the page (detail screen) of that object.

You can also select an object and choose “Edit” from the menu to go directly to the object’s editing page.

Rename object

You can rename an object by selecting one and choosing “Rename” from the menu. An input form will appear above
the “Name” column of the selected row, with the current name of the object entered. The name can be changed by
entering a new name and pressing enter. Alternatively, the ESC key can be used to cancel.

Moving and copying objects

Select one or more objects and choose “Move” or “Copy” from the menu to move or copy the selected objects. A dialog
box will appear to select the move or copy destination. Select the desired location and press the “Move” or “Copy”
button.

Note that if only one object is selected, the name form in the dialog will be inputtable, and you can also specify a new
name for the move or copy destination.

Note: Please note that copying operations with a very large number of target objects may take a long time to complete.

Delete objects

Select one or more objects and choose “Delete” from the menu to delete the selected objects. A dialog box will appear
asking you to confirm that you really want to delete the object, so choose “Delete” or “Cancel”.

56 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Editing object properties

Select one or more objects and choose “Properties” from the menu to edit the properties of the selected objects.

If only one object is selected, you will be taken to the edit properties screen for that object. Edit the properties you
want to change and then click the “Save” button to update the properties of that object.

Selecting the Properties menu with two or more multiple objects selected will bring up the Edit Properties dialog.
In this dialog, you can change the owner and user permissions, group permissions, and items with “Apply Changes”
checked can be applied to the selected objects at once. Note that if the selected objects include directories or tables,
the property changes will not be reflected in their descendant objects.

Importing objects

You can import exported JSON files into Kompira by selecting “Import” from the menu. A dialog will appear, select
the file you want to import, and then click the “Import” button to start the import process. At this time, you can also
specify whether or not the import will overwrite existing objects.

Note that if no objects are selected in the directory screen, the import will be performed in that directory. If a directory
or table is selected, the import will be performed in the selected directory or table.

When an object that cannot be imported is selected, or when two or more objects are selected, it cannot be imported.

Importing objects can only be done by the owner of the directory or root users.

Note: Note that if the JSON file to be imported is large or contains a very large number of objects, the import process
may take a long time or require a lot of memory.

Exporting objects

You can export the data of a Kompira object as a JSON file by selecting “Export” from the menu. In the dialog that
appears, press the “Export” button to start the export process. When the export file is ready, a system dialog will appear
asking you where you want to save the file. At this time, you can also specify whether to include virtual objects in the
export target. Check this box if you wish to include virtual objects such as process information, users, groups, etc.
Translated with www.DeepL.com/Translator (free version)

Exporting objects can only be done by the owner of the directory or root users.

Note: Note that if the number of objects to be exported is very large, or if the size of the included field data is huge,
the export process may take a long time or require a lot of memory.

Searching for objects

Enter a search key in the search box at the upper right of the directory listing screen and click the search button to go
to the search result listing screen.

If you prefix the search key with #, the search will be performed using the display name of the type. For example,
specifying #JobFlow as the search key will search for objects of type JobFlow. Similarly, @ will search by owner. For
example, a search key of @guest will search for objects owned by the guest user. If the first character is not # or @, the
search key will search for objects whose display name contains the specified string. If you want to search for display
names that start with # or @, you can do so by adding a backslash, like \# or \@.

2.4. Kompira object 57

Kompira Documentation, Release 1.6.7.post1

If more than one type of search key is specified at the same time, the search will be performed using AND conditions.
Multiple search keys are generally separated by whitespace, but consecutive display names are treated as a single
display name including whitespace. For example, typing some display name @root #directory will return a
display name that contains the string some display name and is owned by the user root. For example, typing some
display name @root #directory will search for objects with a display name containing the string some display
name and whose owner is the user root and whose type is directory.

If you specify multiple search keys of the same type, the last one will be used.

2.4.2 Table

A table is a Kompira object that can store multiple objects like a directory. However, it differs from the directory in
that only one type of object can be stored.

When creating a table object, first select the type object and the fields in that type object. In the created table object, in
addition to the information displayed in the directory object, the field information selected at the time of creation will
be displayed.

By using the table object you can view all bundled fields of stored objects.

The table object detail screen supports the same key operations as the directory object. However, type object selection
by # is not available.

2.4.3 Job flow

The job flow can be described and executed from the job flow object. For details on syntax of the job flow, refer to:
Kompira Tutorial . For details on the job flow language, refer to: Kompira Jobflow Language Reference

In addition to the common key operations, the following key operations are supported on the job flow object detail
screen.

Key bindings | Operation
Alt-X Job flow execution

Job flow execution

When you write and save the job flow, the execution button of the job flow becomes effective. When you press the
execute button, the job flow starts and the process details screen will be displayed.

Note: If there is a syntax error in the job flow or the Kompira engine is stopped, the execution button of the job flow
will be invalid.

The following options can be selected to run a job flow.

Option name Contents

Step mode This mode is used when debugging a job flow. Before the command is exe-
cuted, the job flow is paused and the contents of the execution command can be
confirmed.

Checkpoint mode Checkpoint mode is a mode for saving the execution status of job flow. If the
Kompira server stopped abnormally during job flow execution, the job flow pro-
cess can be resumed from the saved checkpoint status.

continues on next page

58 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Table 5 - continued from previous page
Option name Contents
Monitoring mode Specify the execution monitoring mode of the job flow. When the job flow is
completed or abnormally stopped, a mail is sent to the mail address of the user
who executed the job flow.

2.4.4 Script job

When you create a script job, you can run scripts written in languages such as Bash, Perl, Ruby, Python on a remote
Server.

In addition to the common key operations, the following key operations are supported on the script job object detail
screen.

Key bindings | Operation
Alt-X Script job execution

Script edit

Pressing the Edit button will take you to the script edit screen. Write a script to execute it in the text area of the source.
When running a script on a Unix type OS such as Linux, please write (shebang) as the top line of the script.

Example

#!/bin/bash
echo hello

When executing a script on a Windows OS, you need to specify an extension. Please specify the following extensions
according to the type of script.

Script Extension
Batch file bat
VBScript vbs
JScript js
PowerShell script | psl

How to execute a script

When you press the execute button, the script’s execution will be started and the process details screen is displayed.
When the script is completed, the results of the exit status, standard output, and standard error output are printed on
the console.

Command parameters can be entered in the text field to the right of the execute button. Multiple command arguments
can be passed by separating them with spaces.

For the execution node specify the remote server on which the script is executed. If not specified, the script is executed
on the local server on which the job manager is running.

For the execution account, specify the user’s credential when logging in to the remote server.

New in version 1.4.0: The function to execute script jobs directly from the browser has been added.

2.4. Kompira object 59

Kompira Documentation, Release 1.6.7.post1

2.4.5 Mail channel

A mail channel is an object that works with an external IMAP4/POP3 server to receive mail from a job flow. As shown
below, the message receiving function of JobFlow can be used for the created mail channel object to receive and process
mail. (The following example assumes reception from a mail channel created in /home/guest/test_mchan.)

</home/guest/test_mchan> ->
[mail = mail_parse($RESULT)] ->
print('Received mail:', mail['Subject'])

How to set up mail channels

On the mail channel object edit screen, set the following items and save them.

Setting items

Contents

Server name

Set the host name or IP address of the IMAP4/POP3 server to connect to.

Protocol

Set either IMAP4 or POP3 as the protocol for receiving mail.

SSL

Check this box if you wish to use SSL for communication.

Port number

Sets the port number of the IMAP server. If not specified, the default port number is
used.

Mailbox Sets the mailbox to receive. The default is “INBOX”.

User name Set the user name to connect to the IMAP4/POP3 server.

Password Set the password for connecting to the IMAP4/POP3 server.

Interval Specify the interval to check for new messages to the IMAP4/POP3 server in minutes.

Timeout Specify the connection timeout to the IMAP4/POP3 server in seconds.

Use OAuth2 Check this box if you wish to authenticate using OAuth2. In this case, a password is
not required.

OAuth2 provider Select the OAuth2 service provider; required if OAuth2 authentication is used.

Disabled Disables connections to IMAP4/POP3 servers.

Log size Specify the maximum size of the log. If the maximum size is exceeded, the oldest log

messages are deleted first.

Connection test

Click the “Test Connection” button to the right of the server name to connect to the configured IMAP4/POP3 server,
authenticate with a user name and password, and check the mailbox.

Setup procedure when using OAuth2 authentication

To connect using OAuth2 authentication, set the user name, select the OAuth2 provider that supports the mail service
you are connecting to, and check Use OAuth2.

Then, click the “Start authorization” button displayed to the right of OAuth2 use to start the approval flow. The OAuth2
provider’s authentication screen will appear in a separate window. After logging in with the user name you have set,
confirm the contents and click the Approve button. If the redirection fails and the window displays “Cannot access
this site,” copy the URL displayed in the address bar portion of the window, paste it into the dialog box for entering
the redirection URL displayed on the original Kompira screen, and click the “Submit” button. Kompira uses the
authorization code contained in the redirect URL entered to obtain an access token.

If the token is successfully obtained, a new token expiration date will appear on the mail channel screen.

60 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

If you have changed the provider’s settings, for example, click the “Clear Token” button to clear the token stored inside
Kompira, and then re-create the token by performing the “Start Authorization” again.

Note: With a refresh token, an expired access token is automatically refreshed and its expiration date extended when
sending/receiving mail or performing a connection test. Refresh tokens generally have a longer expiration time than
access tokens, but if a refresh token expires, token refresh will fail. In that case, please “Start Authentication” to obtain
the token again. Since the refresh token is also updated upon refresh, regular mail sending/receiving and connection
tests can be performed to prevent the refresh token from expiring.

Note: The user must register the Kompira application with the OAuth2 provider and define an OAuth2 provider
type object based on the configuration information there. Please refer to the technical documentation of each OAuth2
provider for information on how to register your application.

2.4.6 SMTP server

The SMTP server is an object that defines information about the SMTP server to be used when sending mail.

How to set up an SMTP server

On the edit screen of the SMTP server object, set each of the following items and save them.

Setting items Contents

Host name Set the host name or IP address of the SMTP server to be followed.

Port number Sets the port number of the SMTP server. If not specified, the default port number is
used.

User name Sets the user name when connecting to an SMTP server that requires authentication.

Password Sets the password when connecting to an SMTP server that requires authentication.

Timeout Specifies the connection timeout to the SMTP server in seconds.

Use TLS Check this box if you want to connect to the SMTP server using TLS.

Use SSL Check this box if you want to connect to the SMTP server using SSL.

Use OAuth2 Check this box if you wish to authenticate using OAuth2. In this case, a password is
not required.

OAuth?2 provider Select the OAuth?2 service provider; required if OAuth2 authentication is used.

Click the “Connection Test” button to check the connection to the SMTP server. It also confirms user authentication if
a user name and password have been set.

The procedure for setting up OAuth2 authentication is the same as for the mail channel. (Setup procedure when using
OAuth2 authentication)

2.4. Kompira object 61

Kompira Documentation, Release 1.6.7.post1

2.4.7 Form

A form is an object that allows you to create a user input form. The functions that a form can perform depend on the
type of object set as the submission object.

« Ifachannel type object is set as the submission object, the message entered in the form can be sent to that channel.

* If a job flow type object is set as the submission object, then the job flow can be executed with the parameters
entered in the form.

In addition to the common key operations, the following key operations are supported on the form object detail screen.

Key bindings | Operation | Note
Alt-S Send If the submission object is a channel type.
Execute If the submission object is a job flow type.

How to set up a form

On the form object edit screen, set each of the following items and save them.

Setting items Contents
Submit object Set up a channel type or job flow type object to be submitted from this form.
Type fields Sets the structure of the data to be submitted in the submission object.

Send message

If a channel type object is set as the submission object, a “Send” button will appear below the input form.

Enter a value in the form and press the send button, and the entered value will be sent to the channel object set as the
submission object as dictionary type data.

Run job flow

If a job flow type object is set as the submission object, an “Run” button will appear below the input form.

Enter a value in the form and pressing the run button executes the job flow object set in the submitted object with the
entered value as a parameter.

2.4.8 Repository

It is possible to synchronize the Kompira directory and the repository on the distributed version control system (DVCS)
by creating repository objects. You can import objects from the remote repository into the specified Kompira directory,
or conversely save the created Kompira objects on the remote repository. This enables version control of Kompira’s
job flow and script jobs. It also makes it easy to share job flows across multiple Kompira.

62 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

How to set up repository

On the repository object edit screen, set the following items and save them.

Setting items

Contents

URL

Specify the URL of the remote repository.

Repository type

Specify the type of remote repository. (In the current version, only git or mercurial
can be selected.)

Port number

Specify this when the port number of the repository server is different from the default.

User name Specify the user name of the account accessing the remote repository.
Password Specify the password for the account that will access the remote repository.
Directory Specify the directory object of Kompira to be synchronized.

Note: Remote repository must be created in advance.

Initialization

When necessary repository setting items are entered, the initialization button will be activated from the repository
screen. Pressing the Initialize button initializes the local repository on the Kompira server and populates the Kompira
directory object with the contents of the remote repository.

Push

The push button will be effective after initialization. To send updated information of the Kompira directory to the
remote repository, press the push button.

Pull

The pull button will be effective after initialization. To update information on the remote repository to Kompira, press

the pull button.

2.5 Process Management

We will explain the process for managing the execution state of job flows and script jobs.

A process is created when a job flow and a script job are executed. For details on starting execution, please refer to:

Job flow and Script job

2.5. Process Management 63

Kompira Documentation, Release 1.6.7.post1

2.5.1 Process list

On the process list screen, you can check the list of processes that are being executed or were executed in the past.

By default, processes with process statuses NEW (New), READY (Executable), RUNNING (Running), WAITING
(Waiting for Input or Command Completion) are displayed with [Running Process] selected.

When process status is DONE (completed) or ABORTED (abnormal termination), the process has already ended. If

you want to check these, please select [All processes].

For processes that have already been executed, you can delete them from the list screen.

Note: Normal users can view only the processes that they themselves executed. Root users can view all processes.

2.5.2 Process details

On the process details screen, you can check and control the execution status of processes.

Button operations and displayed tabs in the process details screen are described in the next and subsequent sections.

In addition to the common key operations, the following key operations are supported on the process detail screen.

Key bindings | Operation Note

F6 Terminate processes A confirmation dialog will appear.

F7 Suspend processes Not supported for script jobs.

F8 Resume processes Not supported for script jobs.

CTRL-[Switch to previous tab

CTRL-] Switch to next tab

a Toggle text selection Can be operated in the console tab or the result tab.

New in version 1.6.6: Key operations are now available on the process detail screen.

Terminate

Stop execution of the process. Terminated processes will show an ABORTED (abnormal termination) status and cannot

be restarted.

If there is a child process running, the status of the child process will also be ABORTED (abnormal termination).

Suspend

Temporarily suspend execution of the process.

If there is a child process running, the child process will also be paused.

64

Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Resume

Resume the suspended process.

If there is a stopped child process, the child process also restarts.

Console

Output shown during process execution.

In the case of a job flow, messages of print statement, execution result of a remote command, a stack trace at error, etc.
are displayed.

For script jobs, the exit status of the script, standard output, and standard error output are displayed.

Note: The maximum console buffer size is limited to 64 KB. Please note that if there is output of 64 KB or more, only
the first 64 KB message can be printed.

Job flow / Script

The job flow and script executed will be displayed.

In the case of a job flow, the line currently being executed is also displayed.
Result

The contents of the result $SRESULT at the end of the process will be displayed in JSON format.

Child processes

You can check the list of child processes on the screen that is displayed only when the job flow is executed.

A child process is created when you execute a job flow that creates a child process using fork or pfor syntax.

Settings
This screen is displayed only when a job flow is executed, and allows you to check the settings of the process. You can
also change the settings when it is stopped.

What you can see or change here are the options for job flow execution shown in Job flow execution.

2.5.3 Process operation by management command
On kompira server, you can use the management command /opt/kompira/bin/manage.py process [options.
. .] to perform the following operations on Kompira processes.

* Display process list

* Display process count

* Delete processes

* Terminate processes

2.5. Process Management 65

Kompira Documentation, Release 1.6.7.post1

 Suspend processes
* Resume processes
At this time, you can specify the conditions for filtering the processes to be operated on.
¢ The status of the process.
* The job flow that the process is executing.
* Whether the process was started by a schedule.
* Whether the invoker object is a specified process or not.
* The user who executed the process.
* Started datetime and finished datetime.
* The elapsed time during which the process is running.

* A string included in the console output.

Process operation options

The following options specify the operations to be performed on the Kompira process.

Option Description

-L, --1list Displays a list of processes. By default, it shows the processes in the active state.

-C, --count Displays the number of processes. By default, it displays the number of processes in
all states.

-D, --delete Deletes processes. Processes in the active state will be excluded.

-T, --terminate Terminates processes. Processes that have already been terminated will excluded.

-S, --suspend Suspends processes. Processes that have already been terminated or have been sus-
pended are excluded.

-R, --resume Resumes processes. Processes that have already been terminated or have not been
suspended will be excluded.

Only one of the options specifying the operation can be specified, and if more than one is specified, the last option will
be applied. If none of the above options are specified, a list of processes will be displayed.

Note: Please note that when a large number of processes are to be processed, the load on memory, CPU, and other
resources may increase.

When an operation involving a change in process information (delete, terminate, suspend, resume) is specified, a con-
firmation (yes/no input) will be given to actually apply the control. If you want to apply the control without any con-
firmation, specify the -y option. If you want to check the behavior without applying the control, use the --dry-run
option.

Option Description
-y, --noinput Apply operation without confirmation.
--dry-run It does not actually apply the change.

66 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Process filtering options

The following options allow you to specify conditions for filtering the Kompira processes to be operated on.

Option

Description

-i PID, --pid PID

processes whose process ID is PID (more than one can be spec-
ified)

-a, --all processes whose with any status.

--active processes in active state (NEW, READY, RUNNING, or
WAITING)

--finish processes in finished state (ABORTED or DONE)

--status {NEW,READY,RUNNING,WAITING,
ABORTED,DONE}

processes in the specified state (more than one can be speci-
fied)

--suspended

processes in suspended state

--not-suspended

processes not in suspended state

--parent PARENT

processes whose parent process ID is PARENT (more than one
can be specified)

--anyones-child

processes whose with an arbitrary parent process.

--min-children MIN_CHILDREN

Processes whose with equal or more than MIN_CHILDREN
child processes.

--job JOB

processes whose job flow at the start matches JOB in the regu-
lar expression.

--current-job CURRENT_JOB

processes whose running job flow matches CURRENT_JOB with
a regular expression.

--scheduled

Processes started by the schedule.

--not-scheduled

Processes started by other than the schedule.

--scheduler-id SCHEDULER_ID

Processes started by the schedule whose ID is SCHEDULER_ID
(more than one can be specified)

--scheduler-name SCHEDULER_NAME

Processes started by the schedule whose name matches
SCHEDULER_NAUNME in a regular expression.

--invoked

Processes executed in a manner in which the invoker object is
recorded.

--not-invoked

Processes executed in a way that does not record the invoker
object.

--invoker INVOKER

Processes whose invoker object is INVOKER (abspath; more
than one can be specified).

--invoker-type INVOKER_TYPE

Processes whose invoker object has type INVOKER_TYPE (ab-
spath; more than one can be specified).

--user USER

Processes whose executing user name matches USER (more
than one can be specified)

--started-since STARTED_SINCE

processes whose start date and time is since STARTED_SINCE.

--started-before STARTED_BEFORE Processes whose start date and time is before
STARTED_BEFORE.
--finished-since FINISHED_SINCE processes whose finish date and time is since

FINISHED_SINCE.

--finished-before FINISHED_BEFORE

Processes whose finish date and time is before
FINISHED_BEFORE.

--elapsed-more ELAPSED_MORE

processes whose elapsed time is longer than or equal to
ELAPSED_MORE (in seconds).

--elapsed-less ELAPSED_LESS

Processes whose elapsed time is shorter than ELAPSED_LESS
(in seconds).

--console CONSOLE

Processes that include CONSOLE in their console output.

continues on next page

2.5. Process Management

67

Kompira Documentation, Release 1.6.7.post1

Table 12 — continued from previous page

Option Description

--head HEAD The first HEAD of the filtered results will be operated.
--tail TAIL The last TAIL of the filtered results will be operated.
-r, --reverse Reverse the sort order.

--order ORDER The sort order is specified by ORDER.

* If you specify multiple filtering options that can be specified more than once, they will be filtered as OR condi-
tions.

* If you specify multiple filtering options of different types, they will be filtered as AND conditions.

* The optional date and time can be specified in a format that is recognized by the datetime () built-in function
of the job flow.

Other options

Option Description
--format {table, json,export} The format for listing processes.
--datetime-format DATETIME_FORMAT The format for displaying date and time.

2.6 Scheduler

By adding the job flow and script job created on Kompira in the scheduler, you can run the job periodically.

Here is the list of items that can be set with the scheduler.

Field Default value Description

Schedule name Nil Name of schedule

Description Nil A description about the schedule

User User who runs the job

Job Job run by the scheduler

Year * Scheduled year (4 digit number)

Month * Scheduled month (1-12)

Date * Scheduled date (1-31)

ISO week number * Scheduled week number (1-53) Week number de-
fied in ISO 8601

Day or day number * Day of the week (0 (Monday) - 6 (Sunday), or mon,
tue, wed, thu, fri, sat, sun)

Hour * Scheduled hour (0-23)

Minute * Schduled minute (0-59)

Disable schedule false (unchecked) If true (checked), it will not run job

68 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

2.6.1 Date and time setting field format

The date and time setting field can be used the same format as Unix cron as follows.

Format | Field | Description

* All Run on each value
*a All Run every (a).
a-b All Run every (a-b)

a-b/c All Run every (a-b) and (c).

xthy Day Run at the (x)th y (day) of the month.

last x Day | Run on the last (x) day of the month.

last Day Run on the last day of the month.

X,Y,Z All Run with condition x, y or z (any combination of the above formats can be used)

Note: In the above format, be careful not to put a space next to *,, */’, *-*.

Example 1: Run at 0:00 on the first Monday and last Friday of December every year:

Month: 12
Day: 1st mon,last fri

Example 2: Run at 12:30 of 15th-20th in April and August 2012:

Year: 2012
Month: 4,8
Day: 15-20
Hour: 12

Minute: 30

Example 3: Run every hour on weekdays:

Day of week: mon-fri

K8

Hour: *

Example 4: Run at 0:00 on January 1st every year:

*

Year:

2.7 Settings

Below is an explanation of various settings that you can set from the “Settings” tab at the top of the Kompira screen.

2.7. Settings 69

Kompira Documentation, Release 1.6.7.post1

2.7.1 User management

You can check the list of users registered on Kompira.

Here is the list of initial users.

User name Password Description

guest guest Guest user

root root root user

admin admin Administrative user. All objects are accessible regardless of access
permission settings. By default it is a disabled user.

When creating a new user, /home/<username> directory is created automatically as the home directory.
General users can only edit their own user information. Only root users can edit all users information.

Here is the list of items that can be set for each user.

Field Description

User name Name used to identify users in the system

Surname User’s surname

Name User’s first name

Email User’s email address

Group Group user belongs to.

Active If false (unchecked), it will not allow user login

Home The page that displays first when the user logs in

Environment variable | Environment variable object automatically loaded when running a job flow

Note: Guest, root, and admin users can not be deleted.

2.7.2 Group management

You can check the list of groups registered on Kompira.

Here is the initial group list.

Group name | Description
other All users on Kompira belong to other
wheel Users with root privilege belong to wheel.

Group information can only be edited by root users.

Note:
* You can not delete other and wheel groups.

* As mentioned above, to be able to see what group other users belong to can be done regardless of their settings.
That means that user settings belonging to the other group are ignored.

70 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

2.7.3 Management area setting

A management area is a network area managed by each job manager.

When using multiple job managers in Kompira, Each Job Manager can specify the area, such as the job manager A will
access 192.168.1.x and the Job Manager B will access 192.168.2.x.

Here is the list of items that can be set for each management area.

Field Description

Display name Specify the display name of the management area

Description Describe the management area

Disable Set this to temporarily disable the target management area

Range Specify the range of the management area by IP address or host name. You can specify more
than one, and wildcard (*) can also be used.

Only root users can edit the management area information.

By default, there is a management area named default that has it’s range set to “*’. In this case, all remote commands
are executed by the job manager of the default management area.

If you use Kompira with only one job manager, or if you do not need to set a management area for each job manager,
you do not need to change the management area setting.

Job manager status check

In the management area setting screen, you can check the operation status of the job manager registered in each man-
agement area.

The following items are displayed as job manager status.

Value Description

Host name | Name of the host on which the job manager is running

Process ID | The process ID of the job manager process (kompira_jobmngrd)
Version Job Manager’s Kompira Version

Status Job manager’s operating status (‘Active’ or ‘Down’)

When the status is [active], the job manager can communicate with Kompira, and remote command can be executed.

2.7.4 System Settings

On the system setting screen, you can configure the entire Kompira system.

Here is the list of setting items.

Item name (Key name) Description
Server URL (serverUrl) URL of Kompira server

Set the mail address of the administrator of the Kompira server. It is
Administrator email address used as the default ‘from’ address when sending mail.
(adminEmail)

continues on next page

2.7. Settings 71

Kompira Documentation, Release 1.6.7.post1

Table 17 — continued from previous page

ltem name (Key name) Description

The email template used when the job flow completed normally.
Successful email template
(doneMailTemplate)

The email template used when the job flow completed unsuccessfuly.
Unsuccessful email template
(abortMailTemplate)

Select the SMTP server for sending e-mail. If abbreviated, the
SMTP Server (smtpServer) SMTP server on localhost is used.

Check if you want the console to display information about the com-
Show command enabled mand or job to be executed when executing a command or script by
(showCommandEnabled) an executing job, when starting a session block, and when executing

a reboot job.

Specifies the format for displaying information about the command
Show command format or job to be executed.
(showCommandFormat)

Check to display standard output from command execution on the
Show stdout enabled console.
(showStdoutEnabled)

Sets how much of the standard output is displayed on the console
Show stdout filter when it is allowed.
(showStdoutFilter)

Check to display standard error output from command execution on
Show stderr enabled the console.
(showStderrEnabled)

Sets how much of the standard error output is displayed on the con-
Show stderr filter sole when it is allowed.
(showStderrFilter)

Check if you want the console to display output received while the
Show session enabled session is executing.
(showSessionEnabled)

Sets how much of the session is displayed on the console when it is
Show session filter allowed.
(showSessionFilter)

Select a custom style with settings such as the color scheme of the
Custom style screen displayed in the browser. This makes it easier to distinguish
(customStyle) between multiple Kompira servers.

continues on next page

72 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Table 17 — continued from previous page

ltem name (Key name) Description
You can set a string of brand tag that will be displayed following the
Brand tag brand name notation in the upper left corner of the menu bar. If a
(brandTag) brand tag is specified, it will appear between [and] with a space
after the brand name.

Note: Since the system setting (/system/config) is a setting type object (Config), it can refer to the data dictionary of
setting’s dictionary data from the job flow with key name.

Show command format

Specifies the display format for command display as a string. The item name can be enclosed in {} to embed the
information at the time of execution and display it on the console. The default values for the command display format
are as follows.

[{fusername}@{hostname}] {sudomark} {command}

The following items can be specified in the command display format. If you specify an item name that is not specified,
it will be ignored.

[tem name Description

now Current date and time

jobtype Job type (one of “COMMAND?”, “SCRIPT”, “SESSION”, “REBOOT"”)

conntype Connection type specified by control variable (“ssh”, “windows/http”, etc.)

hostname Remote host name or IP address specified in the control variable (“localhost” if local)

port Port number specified in the control variable (" if not specified)

username User name for remote access specified in the control variable (“kompira” if local)

sudomark Usually $, or #if __sudo___=true.

command A string indicating the command line, which varies for each job type. Detailed formatting
for each job type cannot be specified.

Of these, the item command is expanded as follows for each job type.
* For command execution (jobtype="COMMAND”)
— Entire command line specified for the job to be executed
* For script job execution (jobtype="SCRIPT”)
— {script_job.abspath}.{script_jop["ext"]} {args}

— where script_job refers to the script job object passed to the executing job and args refers to the parameters
passed to the executing job.

* For session block (jobtype="SESSION")
— <SESSION: {session_id}>
* for reboot job (jobtype="REBOOT”)

— reboot

2.7. Settings 73

Kompira Documentation, Release 1.6.7.post1

The same format as Python3’s str.format() can be used for the command display format. If an error occurs due to an
incorrect format, the default format will be used.

console display filter
The standard output display filter, standard error output display filter, and session display filter allow you to set filter
conditions for console display in a common format.”

Depending on the format set, there are several types of filters, with different behaviors, such as whether or not the
output is displayed on the console when it is obtained.”

If the filter is empty, an unlimited number of entries will be displayed.
* All obtained output is displayed on the console.

If you set the filter in the format <number><unit>, only the specified amount will be displayed. For example, 10L will
display only the first 10 lines.

» From the start of the job up to the specified quantity is displayed on the console, after which it is suppressed and
no longer displayed.

e <number> can be specified as an integer.

* <unit> is optional and can be one of the following It is case-insensitive.
— If L or LINES is specified, count by lines. If the output is binary, the count is separated by 0x0A.
— If the unit is omitted, the number of characters is counted. If the output is binary, it is counted in bytes.
— If an undefined unit is specified, count in characters or bytes.

* If <number> is O (or a negative value), it will not be displayed at all.

* If you get more than one character of output after the specified quantity is reached, you will get a one-time ™"...
> and a new line will be printed to the console.

2.7.5 Startup job flow

In the startup directory (/system/startup), you can set a startup job flow that starts automatically when the Kompira
server starts up.

2.7.6 License Management

You can check the Kompira license

Here is the list of items that can be checked on the license management screen.

74 Chapter 2. Operation Guide

Kompira Documentation, Release 1.6.7.post1

Field Description

License ID Unique ID of license file

Edition License type

Hardware 1D Kompira server’s Hardware unique ID
Expiration date License expiration date

Number of registered nodes

The number of nodes that have been connected from
the job flow

Select Reset to delete connection history

Number of job flows Number of job flows registered as objects
Number of scripts Number of script jobs registered as objects
User licensed user

signature License file signature

The number of registered nodes, the number of job flows, and the number of scripts are displayed together with the
maximum number according to the license.

If the license file is not registered, Kompira will operate using a temporary license. You can use a temporary license
for up to one week after Kompira installation.

License of registration

Press the edit button on the right side of the license management screen to go to the license file upload screen.

Select the license file by pressing “Select file”, and press the “Save” button to register the license.

Note: The license file is saved in /var/opt/kompira/kompira.lic. By placing the license file directly in the above path,
you can register the license without accessing the license management screen.

2.8 Troubleshooting

A list of errors, causes and ways to troubleshoot them when you operate Kompira via a browser.

2.8.1 “The number of Jobflows has exceeded the limit”, “The number of ScriptJobs
has exceeded the limit”

The number of job flows and script job objects that can be created are controlled by the Kompira license.

If you attempt to create an object beyond the limit set by the license, an error message will be displayed and the creation
of the object will fail.

Please check the available object numbers from the license management page.

2.8. Troubleshooting 75

Kompira Documentation, Release 1.6.7.post1

2.8.2 “Kompira engine has stopped”

When the kompirad process has stopped this message is displayed.
Please check the log file under /var/log/kompira and start the kompirad process.
See also:

Starting / stopping the Kompira daemon and Checking the state, Kompira logs

2.8.3 Database connection error

This message is displayed when the database cannot be connected to.

You can check the status of the database process and restart it by the following commands.

systemctl status postgresql-12.service
systemctl restart postgresql-12.service

2.8.4 Internal error

This will be displayed when an unexpected error occurs inside Kompira.

Check the logs under /var/log/kompira and then please contact us at support@kompira.jp

2.8.5 kompira_dump.sh Information collection and support inquiries

In order to solve any problems you are having on Kompira, it may be necessary to check various information sources
such as various log files and setting files.

Run /opt/kompira/bin/kompira_dump. sh as root on the Kompira server and this will automatically collect useful
information to solve the problem. In addition, since the database dump is included, the file size can be large. Please
make sure there is enough free space to run the script.

$ sudo /opt/kompira/bin/kompira_dump.sh

2014-11-18 15:18:52 # mkdir /home/ec2-user/kompira_dump-20141118-151852
###

kompira_dump ver 1.0.0

dump started: 2014-11-18 15:18:52

###

========== system ==========

2014-11-18 15:18:52 # mkdir /home/ec2-user/kompira_dump-20141118-151852/system
2014-11-18 15:18:52 # cp -a /etc/os-release /etc/system-release ./
2014-11-18 15:18:52 # printenv

2014-11-18 15:18:52 # who -aH

========== kompira ==========

2014-11-18 15:19:09 # mkdir /home/ec2-user/kompira_dump-20141118-151852/kompira
2014-11-18 15:19:09 # /opt/kompira/bin/kompirad --version

2014-11-18 15:19:09 # /opt/kompira/bin/manage.py license_info

2014-11-18 15:19:10 # /opt/kompira/bin/manage.py dumpdata -a

(continues on next page)

76 Chapter 2. Operation Guide

mailto:support@kompira.jp

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

2014-11-18 15:19:16 # cp -a /opt/kompira/kompira.conf ./
2014-11-18 15:19:16 # cp -a /var/opt/kompira/kompira.lic ./
2014-11-18 15:19:16 # tar -cf - /var/log/kompira

tar: Removing leading /' from member names

—————————— kompira ----------

#it#

dump finished: 2014-11-18 15:19:16

#Ht#

compressing...
/home/ec2-user/kompira_dump-20141118-151852.tar.gz

In the last line you will see a file that summarizes the collection results (kompira_dump-20141118-151852.tar.gz in the
example above). Please attach this file along with a description of the problem and email it to: support@kompira.jp

Please note that this .tar.gz file is not encrypted, so please treat it according to your security policy.
Information not collected
kompira_dump.sh does not collect confidential information such as the following.
* Account password information set in Kompira server
Information collected

kompira_dump.sh collects the following information.
¢ System information

— Process information (ps, top, etc.)

Service information (service, chkconfig, etc.)

Installed package information (yum, rpm, pip etc)

Kernel information (sysctl, Ismod, /proc/{ version,*info,*stat}, etc.)

Log files (/var/log/{dmesg,messages} etc)
* Network information
— Interface information (ip link, ip addr, ip route, etc.)
— Firewall information (iptables -L etc)
— Network status (netstat, traceroute, etc.)
* Information on Apache
— Service state (service httpd status, etc.)
— Log files (/var/log/httpd/)
— Configuration files (/etc/httpd)
¢ Information on RabbitMQ
— Service status (service rabbitmg-server status)
— Log files (/var/log/rabbitmg/)

* Information on PostgreSQL

2.8. Troubleshooting 77

mailto:support@kompira.jp

Kompira Documentation, Release 1.6.7.post1

— Service status (service postgresql-<pgver> status)
— Log files (/var/lib/pgsql/<pgver>/data/{pg_log,pgstartup.log})

¢ Information on Kompira

Version (kompirad —version)

License information (manage.py license_info, etc.)

Database dump (manage.py dumpdata -a)

Configuration file (/opt/kompira/kompira.conf)

Log files (/var/log/kompira/)

Note: Please note that because it contains a Kompira database dump, node information and account / password

information stored on Kompira objects and job flows are included.

78

Chapter 2. Operation Guide

CHAPTER
THREE

KOMPIRA TUTORIAL

Author
Kompira development team

3.1 Introduction

In this tutorial, the language used by Kompira to describe the job flow will be introduced.

For specifications of the Kompira standard object, refer to Kompira Standard Library. Alternatively, Kompira Jobflow
Language Reference can also be used and contains more accurate definitions of the terminology.

This tutorial is not an exhaustive guide describing all the functions of Kompira. However, if you have a simple job flow
then by reading this tutorial you will likely be able to understand and learn about Kompira’s main functions, usage and
special features.

3.2 Initiate the job flow

3.2.1 Hello World

The first job flow is simple. It is to display “Hello World” on the console.

print("Hello World")

When you run this job flow, you should see the following output in the console.

Hello World

Note: If there is a syntax error in the job flow, you will not be able to run it even when you save it. If the Run button
has not been pressed, correct the error in the job flow and save it again.

In Kompira’s job flow language, job represents a singular process in a typical execution.

In the above example, print () is one of the built-in jobs of the job flow, and outputs the character string given as an
argument in the parentheses to the console. For details, see print.

79

Kompira Documentation, Release 1.6.7.post1

3.2.2 How to write a comment

In the job flow, anything written from a hash tag # until the end of the line becomes a comment. A comment can be
written at the beginning of a line, or even after a job. However, hash tags appearing in the middle of character strings
will be excluded.

This would be recognised as a comment in a job flow
print("# This would NOT be a comment.") # This would be a comment

3.2.3 Execute the command

By writing the command you want to execute between [] these parenthesis as a character string, it becomes an execution
job that can be executed as a command.

Note: If putinside [] parenthesis, the character string will be interpreted as a command. If the variable which is in the
character string is substituted, it is possible to re-write what is in between those parenthesis to change the command.
Variable substitution will be explained later in further detail.

The following is an example of how the command will be shown.

['whoami'] ->
print ($RESULT)

If you run this job flow, the whoami command will be executed and as a result, the standard output will show in the
console as a print () job. Usually it will show in the console as shown below.

[localhost] local: whoami

kompira

Note: Unless otherwise specified, as a result of executing the whoami command, the command will be executed on a
host run by the job manager on the kompira account and it will display as kompira.

A character string beginning with [localhost] local: indicates which command was executed on which node.
When the command is executed remotely, it will be displayed as [<Host name>] run: <command> or [<IP
Address>] run: <command>.

3.2.4 $RESULT

$RESULT contains the execution result of the previous job. It is a special variable (status variable). The result of the
command whoami will be stored in the character string ‘“kompira”.

Note: The format of the value stored in $RESULT depends on the type of job. For command jobs, the standard output
is stored as a character string, but depending on the job it may be written numerically or alphabetically.

80 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

3.2.5 Linking jobs together
The arrow -> between jobs means that if the previous job was successful, subsequent jobs are to be executed. Therefore,
you can run jobs in order by connecting jobs with a -> command.

If the job fails (even if the execution status of the command returns as anything other than 0), use the double arrow =>
to continue to the next process. The execution status of the previous command can be referred to by the $STATUS status
variable.

The arrow linking these jobs is called Connectors, and there are 4 kinds in the job flow.

3.3 Use a variable

3.3.1 Variable definition

Variables can be defined using the syntax {<variable definition> | <job>}. <Variable definition> is
written in the form variable name = value (or expression). Multiple variable definitions can be described
by separating them with a comma.

{ x = 'what do you get if you multiply six by nine?', y =6 * 9 |
print(x) -> print(y) }

In this case, the variable x is initialized with the string 'what do you get if you multiply six by nine?’
And the variable y is replaced with 6 * 9 It is initialized with the calculation result of the expression. You can write
a job that refers to that variable, separated by a vertical bar | after the variable definition.

When you execute the above job flow, it will be displayed on the console as follows.

what do you get if you multiply six by nine?
54

3.3.2 Identifier

Characters written alphabetically as words or phrases in Unicode can be used for identifiers, variable names and so on.
Japanese kanji, hiragana and English characters and underscores can be used (symbols other than underscores cannot
be). However, you can not use the numbers [0-9] at the beginning of the identifier.

Therefore, the following character strings can be used as identifiers.

x, fool23, RESULT reserved_variable__

The following character strings can not be used as an identifier.

1st, foo-bar, @id, #hash

In addition, the following words are used as keywords and therefore cannot be used as variable names.

and break case choice
continue elif else false
for fork if in

not null or pfor
then true while

3.3. Use a variable 81

Kompira Documentation, Release 1.6.7.post1

3.3.3 Scope

The valid range (scope) of the variable is the range enclosed in { } parenthesis. Variables that are not defined within
the scope can not be referenced, so the following job flow will result in an error during execution.

{ x = '"hello"' | # Scope of variable x is ...
print(x) } # ... up to here.
-> print(x) # This is outside the scope.

It is possible to nest scopes as follows.

{ x = 'outer', y = 999 |
print(x) -> print(y)
-> { x = '"inner' |
print(x) -> print(y) }
-> print(x) -> print(y)
}

Execution of this job flow leads to the following, the scopes of x = 'inner' are the 3rd to 4th lines, and the 5th line
reveals the outer scope.

outer
999
inner
999
outer
999

That is, the scoping rules of variables in the job flow are the same as in C and Java.

3.3.4 Assigning Variables

To change the value of the defined variable, substitute the variable as follows [variable = value (or equation)].

{ x = 'outer', y = "foo' |
print(x) -> print(y) ->
{ x="1st' |
print(x)

-> [x = '2nd'] -> print(x)
-> [x = "3rd'] -> print(x)
-> [y = 'bar']
-> [z = 'baz'] }
-> print(x) -> print(y) }
-> print(z)

When the scope is nested, the inner most scope is assigned to what was once the outer most scope, taking on its variable
definition as well as its original location.

If you assign a value to an undefined variable, the variable is newly defined as the outermost scope (job flow scope)
and set to that value. In the above example, since the variable z which is assigned a value in line 8 is undefined at that
point, it is newly defined in the outermost scope and is displayed in line 10.

The outermost scope is not explicitly surrounded by {}, but you should imagine that there is a scope enclosing the
entire job flow.

The execution result of the above job flow is as follows.

82 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

outer
foo
1st
2nd
3rd
outer
bar
baz

Note: Status variables such as $RESULT and $STATUS are internally set values by Kompira and as such, status variables

cannot be assigned values in the job flow.

3.3.5 Array and Dictionary

Array

If you want to keep multiple values at once, use an array or dictionary. An array is described by separating multiple
values or expressions with commas in square brackets as follows [expression, ...]. To access array elements,
you can define them using square brackets using an index that starts with 0. You can also rewrite array elements with

[value >> array element].

[arr = [1, true, 'foo' ,['nested', 'array'l]]l] ->
print(arr[1]) -> # get array elements

[false >> arr[1]] -> # set array elements

[arr = arr + ['added']] -> # add array elements
print(arr[3][1]) —> # get nested array elements
print(arr) # print() can print array

When this job flow is executed, it executes as follows.

true
array
[1, false, 'foo', ['nested', 'array'], 'added']

If a negative value is specified as an index, elements are accessed from the back of the array.

[arr = [1, true, 'foo']] -> print(arr[-1])

The execution result of this job flow is as follows.

foo

3.3. Use a variable

83

Kompira Documentation, Release 1.6.7.post1

Dictionary

The dictionary describes {identifier = expression, ...} with a comma in the brackets delimiting multiple
identifier = value. Access to dictionary elements is possible by specifying dot notation or by placing an iden-
tifier in square brackets. Also, rewriting dictionary elements is possible by changing it to [value >> dictionary
element].

[dic = {foo=1, bar=true, baz={a=123, b=456}}] ->

print(dic.foo) -> # get dictionary elements (dot notation)

[false >> dic.bar] -> set dictionary elements

print(dic['bar']) -> get dictionary elements (square bracket notation)
[[1,2,3] >> dic.arr] -> add dictionary elements

print(dic.baz.a) -> get nested dictionary elements

[777 >> dic.baz.a] -> set nested dictionary elements

[999 >> dic['baz']['b']] -> set nested dictionary elements

print(dic) print() can print dictionary

H H K H H H R

When this job flow is executed, it executes as follows.

1

false

123

{foo=1, bar=false, baz={a=777, b=999}, arr=[1, 2, 3]}

3.3.6 Template character string

In the job flow, you can expand the value of a variable in a character string. If there is a placeholder consisting of $ and
an identifier in the string as shown below, that part can be replaced with the variable value indicated by the identifier.

[service = 'http', port = 80] ->
print('Port $port is used by $service')

When this job flow is executed, it executes as follows.

Port 80 is used by http

In place of $identifier, placeholders can also be written with the notation ${identifier}. So when identifiers
are not delimited in strings, please use ${identifier} instead.

[w=640, h=480] ->
print("width=${w}px, height=${h}px")

You can also expand the value contained in the following dictionary by writing % after the string. In that case, write a
placeholder of % and an identifier in the string.

print('Port %port is used by %service' % {service = 'http', port = 80})

The dictionary that follows % is ok to be a variable, such as shown below.

[ctx = {service = 'http', port = 80}] ->
print('Port %port is used by %service' % ctx)

In any of the notations, if the variable or dictionary element specified by the placeholder is undefined, it remains in the
string as is, including $ and %.

84 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

3.3.7 Parameters

The job flow can receive parameters at the time of execution.

You can define a variable as a parameter with the notation |variable name| enclosing the variable name at the
beginning of the job flow with vertical bars. You can also define default values for parameters by writing |variable
name = value (or expression) |. Please note that parameters that do not have default values need to specify
values (can not be omitted) when executing the job flow.

In the following job flow, we define two parameters command and wait, and wait has a default value of 10.

| command |
| wait = 10 |

print ('Execute the command "$command" after $wait seconds.') ->
["sleep $wait"] ->

[command] ->

print ($RESULT)

Note: Parameters are evaluated in order from top to bottom, at the start of the job flow’s execution. Therefore, you
can also use expressions that refer to the values of the parameters that appeared earlier.

3.4 Remotely run commands

The next step is to try executing the command on a different host, from the host where the job manager is running next.

3.4.1 Specified by the control variable

Firstly, this is how to designate hosts and accounts to execute commands with control variables.

[__host__ = '<Hostname or IP-Address>',
__user__ = '<Username>',
__password__ = '<Password>']

-> ['hostname'] -> print ($RESULT)
-> ['whoami'] -> print($RESULT)
-> ['echo Hello World'] -> print($RESULT)

Note: Please re-write your <host name>, <user name> and <password>.

__host__, __user__ and __password__ are the reserved variables in Kompira and these variables are the host
name (or IP address), user name, and password. After setting the password , you can execute it using the host and user
name you want to process subsequent remotes on.

If successful, the execution results should be displayed as follows

<Hostname>
<Username>
Hello World

If the host name is incorrect, or the user name or password are incorrect, the job flow fails and processing is aborted.

3.4. Remotely run commands 85

Kompira Documentation, Release 1.6.7.post1

3.4.2 Node information and account information settings

If you create a node information object and an account information object on the Kompira file system, you can designate
them from the job flow as the target server for command execution.

Suppose now that you create a node information object test_node and an account information object, test_account
and that the host name, user name, and password information are set appropriately. Then, you can describe the command
from the job flow in the same directory concisely as follows by using the control variable __node__ for specifying the
node information object, and __account__ for specifying the account information object.

[__node__ = ./test_node, __account__ = ./test_account]
-> ['hostname'] -> print($RESULT)

-> ['whoami'] -> print($RESULT)

-> ['echo Hello World'] -> print($RESULT)

Note: Referencing to a Kompira object from the job flow can be done by describing it as relative path or absolute
path. In the above example, we specify the objects in the same directory starting with . /, but you can specify the path
starting with ../ or / relative to the parent directory or root directory.

You can also omit the __account__ specification if you have set a default account for test_node.

[__node__ = ./test_node]
-> ['hostname'] -> print ($RESULT)
-> ['whoami'] -> print($RESULT)

In addition, you can specify the control variable as a parameter of the job flow, so you can also create a job flow that
specifies the controlled node at run time.

| __node__ = ./test_node]|
-> ['hostname'] -> print($RESULT)

3.4.3 Execution by sudo

If root privilege is required for command execution, set the control variable __sudo__ to true and set the settings to
sudo mode.

| __node__ = ./test_node]|
-> ['whoami'] -> print($RESULT)
-> [__sudo__ = true]

-> ['whoami'] -> print($RESULT)

When this job flow is executed, it is displayed on the console as follows:

<Username>
root

Warning: In order to execute the command correctly in sudo mode, the user must be registered in the sudoers file.
Otherwise, processing will fail (abort) when executing the remote command in sudo mode. For details, refer to the
manual sudoers(5).

86 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

Note: When executing a command execution job that does not specify a host in sudo mode, you need to register the
user of the server (usually the server on which Kompira is installed) that is running the job manager in the sudoers file.
In addition, it is necessary to add a setting to invalidate the requiretty flag to the sudoers file as follows:

Defaults:kompira lrequiretty

3.5 Manipulating Jobs with Control Structures

3.5.1 Conditional branch

To branch processing according to the execution result of the previous job or the contents of the variable , use an if
block or case block.

If block

If you use an if block, you can branch the process according to the result of the conditional expression.

['echo $$RANDOM'] ->

[x = int($RESULT)] ->

{ifx% 2 ==0 |
then: print('$x is an even number')
else: print('$x is an odd number')

¥

In the above, the then clause is executed if the remainder of the variable x divided by 2 equals 0, otherwise the else
clause is executed. ['Echo $$ RANDOM'] shows the environment variable RANDOM that returns a random number and
[x = int($RESULT)] converts the result string to an integer x.

In addition to true / false, if you wish to further branch processing use the elif clause.

{ifx %3 ==0and x %5 == 0 |
then: print('FizzBuzz')
elif x % 3 == 0: print('Fizz')
elif x % 5 == 0: print('Buzz')
else: print(x)

Alternatively, you can omit the else clause, or you can omit the then keyword.

[command] =>
{ if $STATUS != 0 | print('An error occurred: ' + $ERROR) }

In the example above, if you execute the command indicated by the contents of the command variable and the value of
the $STATUS status is not 0, the print job will print the standard error output ($ERROR).

3.5. Manipulating Jobs with Control Structures 87

Kompira Documentation, Release 1.6.7.post1

Case block

A conditional branch with a case block can be written as

['cat /etc/redhat-release'] ->

{ case $RESULT |
'CentOS*release 7.*': print("This is Cent0S")
'Red Hat*release 7.*': print("This is Red Hat")
else: print("CentOS/Red Hat 7.x is required")

}

In this example, a conditional branch is made to determine the type of the OS with the contents of the file /etc/
redhat-release, and the pattern string may contain * or ? for which Unix wired cards can be used.

The mapping of strings in the case block is done sequentially from the first pattern and only the job flow series following
the first matched pattern is executed.

If none of the patterns match, the following will appear:
* If the else clause is included, the job flow sequence is executed.

¢ If the else clause is not included, the whole case block will fail(§STATUS is set to 1).

Note: Note that unlike the if block, the else clause is omitted in the case block, and the entire block fails if you do
not match any of the conditions. If you do not do anything in the case block and not even an error occurs, try writing
else: [] and a skip job in the else clause.

3.5.2 Repetition

Repetition uses the for block or the while block.

for blocking

Some objects that Kompira can handle include complex data such as arrays and dictionaries or child elements such
as directories. Use a for block if you want to perform the same processing on child elements (values and objects)
contained in an object . The for block should be expressed as below

{ for <loop variable> in <object containing child elements> | job... }

For example, in the in clause, you can refer to the list of objects in the directory by writing a <directoryprefix> ::.

{ for t in /system/types | print(t) }

In this example, all the objects in the /system/types directory are referenced one by one with the loop variable t and
are output to the console by the print () job. If you pass a Kompira object to the print () job, its absolute path is
output to the console and the result is as follows.

/system/types/TypeObject
/system/types/Directory
/system/types/License
/system/types/Virtual
/system/types/Jobflow

(continues on next page)

88 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

/system/types/Channel

In the in clause it is also possible to write a direct array as follows.

{ sum = 0 |
{ for i in [1,2,3,4,5,6,7,8,9,10] |
[sum = sum + i]
} >
print('The total of 1 to 10 is ${sum}.')
}

This job flow calculates and outputs the total value, from numbers 1 to 10.

The total of 1 to 10 is 55.

Also, if you write a dictionary following the in clause, you can refer to the list of identifiers contained in that dictionary
sequentially.

[dic = {a=10, b=20, c=30}]1 >
{ for k in dic |

print("$k = %{$k}" % dic)
}

When this job flow is executed, it is displayed on the console as follows:

a =10
b =20
c = 30

Note: Before template expansion with % , In %{$k}, The $k part is replaced by the identifier of the dictionary.
Therefore, each time it repeats, it expands to %a, %b, %c and that is the value of each element of the dictionary dic.
The template is expanded and displayed as 10, 20, 30.

While block

If you want to iterate through the job while satisfying certain conditions, use the while block instead. The syntax of
the while block is as follows.

{ while <expression> | job... }

For example, an “Euclidean algorithm” which finds the greatest common divisor of two given numbers, is an algorithm
that iterates until the remainder becomes 0, but when it is described using a while block, shows as follows

| x 165]
|y = 105]
[m=x, n=y] >
{ while n !'= 0 |
[r =m % n] ->
print("The remainder of $m and $n is $r.") ->

(continues on next page)

3.5. Manipulating Jobs with Control Structures 89

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

[m =n, n=r]
} >

print("The greatest common divisor of $x and $y is $m.")

In this while block, n is n while n is not 0, n for m, m for n and the job of substituting (and displaying) the remainder
of n is repeated. When executed, it displays as follows.

The remainder of 165 and 105 is 60.

The remainder of 105 and 60 is 45.

The remainder of 60 and 45 is 15.

The remainder of 45 and 15 is O.

The greatest common divisor of 165 and 105 is 15.

3.5.3 Calling a job

Calling a job flow

To call another job flow from one job flow, use the following syntax.

[<Jobflow object>]

Here is an example of creating a job called “sub job” and calling it. First, define the sub job as follows, under the
appropriate directory.

print("This is subjob.") ->
return("Succeeded.")

The return job terminates the sub job and returns the result to the calling job.

Next, create a main job that calls this sub job under the same directory.

print("Call the subjob.")
-> [./SublJob] # call the subjob
-> print ($RESULT) # return the result of subjob

Note that “./” is added to the beginning of the string at the point of specifying the call of the “sub job”. This indicates
that “sub job” is defined in the same directory as the directory in which the current job flow is defined.

The execution result of the sub job can be received as $SRESULT. When the above main job is executed, it is displayed
as follows.

Call the subjob.
This is subjob.
Succeeded.

90 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

Passing parameters to job flows

When invoking a job flow, you can also pass parameters using the following syntax:

[<Jobflow object> : <parameter list> ...]

First, extend the sub job and add the parameters as follows.

'Hello'|
'World' |

| parameterl
| parameter?2

print("This is subjob.")
-> print(parameterl)
-> print(parameter2)
-> return("Succeeded.")

In this state, if you execute the main job as it is, the following will be displayed. Since no parameters are specified at
the time of invocation, you can see that the default parameters defined on the sub job side are used.

Call the subjob.
This is subjob.
Hello

World

Succeeded.

To pass parameters to this sub job and call it, extend the main job as follows. When calling a sub job, you can write
values following : so that you can pass them to the sub job as parameter values.

print("Call the subjob with parameter.')
-> [./SubJob: 'HELLO', 'WORLD']
-> print ($RESULT)

When you do this, the result is as follows.

Call the subjob with parameter.
This is subjob.

HELLO

WORLD

Succeeded.

It is also possible to specify the parameter name defined on the side of the called job flow and pass the parameter value.
This is convenient when you want to specify only some parameters.

[./SubJob: parameter2='WORLD']

Note: Please be aware that specifying a parameter name that is not defined on the called side, or trying to pass more
parameter values than defined, will result in an error.

3.5. Manipulating Jobs with Control Structures 91

Kompira Documentation, Release 1.6.7.post1

Execution of a script job

If you want to create more complicated jobs, it would be better to combine existing scripting languages such as bash,
perl, ruby, python, etc. than to use the Kompira job flow language. By creating a script job on the Kompira file system,
it becomes possible to call these script language programs from the job flow.

Let’s look at an example of writing a script job using a shell script and calling it from a job flow. First, save a simple
shell script as shown below as a script job.

#! /bin/sh
echo Hello world from shell script

For scripts to be executed in a Unix environment, please describe the shebang line beginning with #! on the first line
appropriately. For scripts running on a Windows environment, you will need to specify the extension (eg bat/vbs/ps1)
appropriately.

If you save this script job as “sample_script”, the job flow for executing this script job is as follows.

print('Execute the ScriptlJob') ->
[./SampleScript] ->
print ($RESULT)

If you do not specify __node__ or __host__, this script will be executed after being transferred to the machine on
which the job manager is running. The output of the execution result is stored in $RESULT like the execution result of
the remote command.

Note: The script is transferred to the host specified at runtime as a temporary file and deleted after it is executed.

Parameters can also be passed to script jobs. The script job side receives parameters as command line arguments.

On the caller side of the script, pass parameters as keyword-less arguments as follows.

[./SampleScript: 'parameterl', 'parameter2']

3.6 Manipulating objects

3.6.1 Referencing objects

Information handled by Kompira, such as job flow and environment variable definitions, are managed as a Kompira
object in a unified manner on the Kompira file system. These objects can then be accessed from the job flow by
specifying a path like a Unix file system.

In previous examples, references to Kompira objects were specified by relative paths. In this case, the path of the object
is specified based on the directory in which the job flow being executed is defined.

For example, if the running job is /some/path/jobflow, referencing the object with the relative path /subdir/
object will result in /some/path/subdir/object being accessed.

Also, referring to the relative path ../object will access /some/object.Relative paths starting with ../ refer to
objects in parent directories.

Of course you can also reference the object directly as an absolute path like /some/path/object.

92 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

Warning: Do not forget to add ./, ../ or / to the beginning of Kompira object references. Kompira recognizes
a character string beginning with ./, ../ or / as a path identification, otherwise it recognizes it as an identifier
of a variable.

If you want to concatenate paths and reference objects, use the path () built-in function. For example, when preparing a
job flow for “resource information acquisition” for each type of node, if you want to execute the job flow by designating
the node and the node type, you can refer to the job flow by assembling the path.

|node |

|node_type = 'Linux'|

| job_name = 'GetResourcelInfo']|

[job = path(./DefinitionsByNodeType, node_type, job_name)] ->
[job: node]

Here, if the default argument is passed to the path() function as it is, refer to the job flow named ./node
definition/Linux/resource information acquisition by using the variable job and node as a parameter.

3.6.2 Browse and update properties

Each Kompira object has a “property” defined in the system. For example, properties are the name and path of the
object, creation date and time, and so on. For details on the properties of Kompira objects, see Properties.

To refer to the properties of a Kompira object, use the dot notation object.property name. In the following job
flow, it lists the Kompira objects in the directory which was the parameter dir and its properties ‘Owner (owner)’,
‘Updated date (update)’, ‘Type name (type_name)’, ‘Display name (display_name)’ is displayed by dot notation.

| dir = / |
{ for obj in dir |
[attr = {
owner = obj.owner,
updated = obj.updated,
type = obj.type_name,
name = obj.display_name
>

print ("%owner %updated <%type> %name" % attr)

To update the property value of a Kompira object, use the output job [value >> object.properties].

["Description of the Object" >> obj.description]

Note: However, please note that some of the properties can not be updated from the job flow and some are not writable.
See Properties for details.

3.6. Manipulating objects 93

Kompira Documentation, Release 1.6.7.post1

3.6.3 Referencing and updating fields

Each Kompira object has a “field” defined for each type. You can see what fields are defined for each type defined in
the system by looking at the definition information of each type under /system/types/.

Fields of Kompira objects can be referenced by object['field_name'] or object.field _name.

Note: Please note that the property of the object can also be accessed by dot notation. You can also define a field with
the same name as the property, but dot notation refers to the property value in preference.

For example, in the node information object, fields such as “host name (hostname)” and “IP address (ipaddr)” are
defined. To refer to these values in the job flow, you write as follows.

|node = ./node|
print(node['hostname'], node.ipaddr)

Since values of fields can be referenced like dictionaries, template expansion with % is also possible.

|node = ./node]
print('%hostname: %ipaddr' % node)

Also, to update the field value of the Kompira object, use the notation [value >> object['field_name']] or
[value >> object.field_name] in the output job. For example, to update the “Wiki text” field (‘wikitext’) of
Wiki page type, write as follows.

['= Sample Wiki\n' >> ./wiki['wikitext']]

You can also write the result of an expression in an output job, so you can modify the referenced field value and rewrite
it as follows.

|wiki = ./wiki|
| types = /system/types|
"= Type list\n" >> wiki.wikitext] ->
{ for type in types |
[wiki.wikitext + "* $type: (" + type.description + ")\n" >> wiki.wikitext]

}

In the example above, we create a wiki page that lists the system standard type objects in /system/types, listing their
paths and descriptions.

3.6.4 Calling methods

Some Kompira objects have methods. To invoke a method on an object we use the following syntax:

[<object> . <method name> : <parameter list> ...]

For example, to add an object, the directory type object has a method called add. The add method is called by spec-
ifying three parameters name, type_obj, and data. In the following example, create an environment variable type
(/system/types/Environment) object with the name ‘ENV’ in the same directory as the job flow and put the {k1 =
'valuel', k2 = 'value2'} as given.

[./.add: "ENV', /system/types/Environment, {
environment={kl="valuel', k2="value2'}

]

94 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

Here, the relative path identification ./ refers to the Kompira object indicating the directory to where this job flow
resides. You can also pass object references as variables, so you can write:

[dir = ./, type=/system/types/Environment] ->
[dir.add: 'ENV', type, {environment={kl='valuel',6 k2='value2'}}]

In the parameter string, you can pass a value by specifying the parameter name.

[dir = ./, type=/system/types/Environment] ->
[dir.add: 'ENV', type_obj=type, data={environment={kl='valuel', k2='value2'}}]

3.7 Waiting for an event

Job synchronization and event waiting processing can be described in the job flow using the channel.

3.7.1 Transmission of messages

To send a message to the created channel, use the send method. A new channel can be created as “/home/guest/test
channel”.

The job flow for sending a message to a channel is as follows.

[/home/guest/TestChannel.send: 'Hello']
-> print('Sent a message.')

Next, define the job flow to receive messages from the channel as follows.

</home/guest/TestChannel>
-> [mesg = $RESULT]
-> print('Message "$mesg" was received.')

Please execute the above job flow. It is deemed successful if a message is output to the process console of the job flow
execution on the receiving side as follows.

Message "Hello" was received.

If you execute the sender job flow more than once, messages will be accumulated on that channel by that amount. Every
time the receiver’s job flow is executed, it extracts one message from that channel and outputs it. If the message on the
channel is empty, the receiving job flow waits until a new message arrives.

Note: Using the kompira_sendevt command you can send arbitrary information to the channel from an external
system. For example, by transmitting alert information from the monitoring system to the channel, it is possible to
process the procedure at the time of failure by the job flow. For information on how to use the kompira_sendevt
command, see Coordination with other systems.

3.7. Waiting for an event 95

Kompira Documentation, Release 1.6.7.post1

3.7.2 About event jobs

A job enclosed by < and > is called an event job. Event jobs can be used in combination in the job flow in the same
way as other jobs.

The format of an event job is as follows.

< <object> : <parameter list> ... >

For object names, specify objects of channel type (and similar type: mail channel type etc). Other events that specify
an object that can not be queued, result in a runtime error.

3.7.3 Specify a timeout for message retreival

Wait for the arrival of the message from the channel, specify the parameter timeout for the event job to time out and
continue the process if it does not arrive within the fixed time.

print('Wait for a message from channel.')
-> <./TestChannel: timeout=10>
=> { if $STATUS==0 |
then: [mesg=$RESULT]
-> print('Message "$mesg" was received.')
else: print('Timeout occurred.') }

Note that if the message does not arrive within the number of seconds specified by timeout, the event job will fail, so
be aware that => binds the next job.

Note: If a channel is deleted while awaiting arrival from a message, the event job fails and sets $STATUS to -1. The
mail channel also sets $STATUS to -1 when the detect_error=true parameter is passed to the event job, if the mail fetch
fails or if the disable flag is set.

3.7.4 Selective reception from multiple channels

It is also possible to wait for the arrival of messages from multiple channels by using the choice block. In this case,
the processing of the channel on which the message arrived earlier continues.

Example of choice block usage:

print('Wait for message from channell and channel2.')
-> { choice |
<./Channell> -> [mesg=$RESULT]
-> print('Message "$mesg" was received from Channell.')
<./Channel2> -> [mesg=$RESULT]
-> print('Message "$mesg" was received from Channel2.')

}
-> print('OK")

96 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

3.8 Access externally

3.8.1 Send mail

To send the mail, use the built-in mailto job.

[subject = 'Test mail',

body = 'Send a test mail.']

-> mailto(to="taro@example.com', from='hanako@example.com',
subject=subject, body=body)

-> print('Sent a mail.")

Arguments of the mailto job include to (destination mail address), from (source mail address), subject (mail title),
body (mail body text).

When sending mail to multiple addresses, pass the list of mail address strings to the to argument as follows.

mailto(to=['taro@example.com', 'jiro@example.com'], from='hanako@example.com',
subject=subject, body=body)

Note: When sending mail, Kompira connects to the specified SMTP server to send the mail. If mail cannot be sent
successfully, please check if the settings of the specified SmtpServer type object are correct, as well as the settings and
logs on the SMTP server side.

3.8.2 HTTP Access

For HTTP access to web servers etc., use the built-in urlopen job. Simply passing URL only to urlopen() will result
in GET access.

|url = 'http://www.kompira.jp'|
urlopen(url)
=> [status = $STATUS, result = $RESULT]
-> { if status != 0 |
then:
print ('HTTP access failed.')
elif result.code != 200:
print ('HTTP status code is %code.' % result)
else:
print(result.body)
}

The result of successful access with urlopen() is returned in the dictionary. code contains the HTTP status code,
and body contains the contents of the response.

As Kompira at version 1.5.0 does not have the function to parse HTML, we create a simple script job like the following,
html_parse. This script extracts the part specified by the parameter as text from the HTML passed to standard input.

#! /usr/bin/python

import sys;

from lxml import html;

if __name__ == '__main__"':

(continues on next page)

3.8. Access externally 97

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

doc = html.fromstring(sys.stdin.read() .decode("utf-8"))
for e in doc.xpath(sys.argv[1l]):
print html.tostring(e, method="text", encoding="utf-8")

urlopen() can also pass POST access by passing dictionary data to parameter data. As an example, consider a job
flow of checking the product vendor from the first half (OUI) of the MAC address assigned to the network interface. OUI
is managed by the organization called IEEE, (see weblink) http://standards.ieee.org/develop/regauth/oui/public.html.
There is a form on this page, so that OUI is entered in the entry field named x. Also, since CGI called /cgi-bin/
ouisearch is executed when searching, you need to POST access to pass OUI as data x to that CGI as data .

|loui = '00-00-00"|
urlopen('http://standards.ieee.org/cgi-bin/ouisearch', data={x=oui})
-> [./html_parse << $RESULT.body: '//pre']

-> print ($RESULT)

Since there is a result in the <pre> tag on the search result page, we pass the parameter //pre to the html_parse
script to extract it. This parameter is specified by the syntax for specifying part of an XML document called XPath.

By executing this job flow, you can see that vendor information can be acquired from an external web page as follows.

[localhost] local: (/tmp/tmpxal7DG //pre) < /tmp/tmpktOTMU

OUI/MA-L Organization
company_id Organization
Address
00-00-00 (hex) XEROX CORPORATION
000000 (base 16) XEROX CORPORATION
M/S 105-50C

800 PHILLIPS ROAD
WEBSTER NY 14580
UNITED STATES

3.9 Controlling processes

When a job flow is executed, it is managed in Kompira as a process execution unit until the end of the job flow, and the
process will sequentially execute the jobs described in the job flow sequentially.

3.9.1 Process Termination

If there are no more jobs to continue, such as reaching the end of the job flow, or if you join the job using -> when the
executed command fails, the process will automatically finish.

Otherwise, you can use an exit job or abort job to explicitly terminate a running process.

98 Chapter 3. Kompira Tutorial

http://standards.ieee.org/develop/regauth/oui/public.html

Kompira Documentation, Release 1.6.7.post1

exit

To terminate a running process, use the built-in exit job. If you call exit () without specifying arguments, the process
terminates normally immediately.

exit(Q)

You can also specify the exit status code with the argument of the exit job. In the following example, after executing the
command specified by the parameter command, the standard error output and standard output are displayed regardless
of the result (success / failure), and then the command execution result is processed as a status code.

| command |

[command]

=> [status=$STATUS, stderr=$ERROR, stdout=$RESULT]
-> { if stderr | print(stderr) }

-> { if stdout | print(stdout) }

-> exit(status)

Please note the difference between exit and return. For example, calling the exit job at a sub job called from the
main job will terminate the running process (control will not be returned to the main job and will end immediately).
On the other hand, if you call the return job at a sub job, control is returned to the main job rather than terminating
the process, and processing continues immediately after the execution job that invoked the sub job.

However, if the caller does not exist, for example, if you call the return job from the job flow you pressed by pressing
the “execute button” directly, the job will be terminated at that point and the process will terminate.

abort

You can abnormally end a running process by calling the built-in abort job, for example, when the job can not be
continued. In the example below, when accessing the URL specified by the parameter with urlopen, if the HTTP
access fails or if the HTTP status code is not 200, abnormally terminate (abort) the process.

|url]

urlopen(url)

=> [result = $RESULT, status = $STATUS]

-> { if status != 0 | abort('HTTP access failed.') }

-> { if result.code != 200 | abort('HTTP status code is %code.' % result) }
-> return(result.body)

The abort () job is almost identical to exit(status=1) because it automatically terminates the process with an exit
status code set to 1.

3.9.2 Child Process Activation

Kompira’s concurrent behavior of multiple processes can be used in a job flow by starting a “child process”.

A child process is a copy of a parent process (that is, a process that started a child process) at the time of activation,
local variables and special variables have the same value, but since it can not share or reference between processes,
Please note that it is not possible to rewrite the variables of the parent process from the process (the same is true for
the reverse direction).

3.9. Controlling processes 99

Kompira Documentation, Release 1.6.7.post1

fork

It is possible to start multiple child processes at once using the fork block. Below is an example of a job flow that
causes the execution results of the sub job “processing A” to be processed in parallel with the sub jobs “processing B”
and “processing C”, respectively.

[./ProcessA] -> [result = $RESULT] ->
{ fork |
[./ProcessB: result] -> print('ProcessB is finished.')
[./ProcessC: result] -> print('ProcessC is finished."')
} -> print('All child processes have terminated.')

There are places where jobs are not connected by connectors in the fork block, but this is a “job flow expression”
delimiter, and in the above example they are two job flow expressions. When these two job flow expression parts
operate in parallel as child processes and their execution is completed, the job of the parent process continues to be
output to the console “all the child processes have ended” .

When starting a child process in the job flow, the child process started is displayed on the “child process list” tab of
the process details screen of that process. Conversely, please be aware that child processes are not displayed on the
“process list” screen.

pfor

By using the pfor block instead of the for block, iterations can be executed as a parallel process all at once.

For example, if you want to manage the managed nodes in the “node list” and want to execute the same job “config-
uration information collection” on all managed nodes, you can write as follows using the for block (Assume that the
configuration information collection specifies the node to be processed with parameters).

|job = ./CollectConfigurationInformation|
{ for node in ./NodeList |
[job: node]
} -> print("Processing of all nodes has ended.")

If this “configuration information gathering” job is submitting a command which takes time to process to the remote
node, this process is “waiting” more often. As a result, the load is low, but it will take a long time to finish processing
for all nodes.

If you use pfor instead of for then you will invoke the child process on each node and execute the ‘gather configuration
information’ job for that child process. Then, processing can be executed in parallel by another node even if it is in the
“waiting state” due to the processing on a certain node, so it is possible to shorten the processing time by increasing
the job execution efficiency as a whole.

|job = ./CollectConfigurationInformation|
{ pfor node in ./NodeList |
[job: node]
} -> print("Processing of all nodes has ended.")

100 Chapter 3. Kompira Tutorial

Kompira Documentation, Release 1.6.7.post1

3.9.3 Detaching from the parent process

The parent process that started the child process using fork or pfor will wait for all child processes to finish, so the
parent process will not be able to run the new job during that time. However, there are cases where you want to continue
processing on the parent process side without waiting for the child process to finish. In that case we can deal with it by
detaching it from the parent process using detach().

detach

For example, you often want to execute the same job flow each time you receive a message from a channel. In the
following, every time a message is received, it is called by passing a message as a parameter to the job flow “message
processing”.

|chan = /system/channels/Alert|
|proc = ./MessageProcessing|
{ while true |

<chan>

-> [msg = $RESULT]

-> [proc: msg]

If there is no relevance between multiple messages received from the channel, by simultaneously executing the message
processing, when the messages arrive consecutively, the processing efficiency of the whole can be improved. To that
end, it is necessary to operate the job flow that receives the message and “message processing” as a separate process.
This is “message processing” in a child process using “fork .

|chan = /system/channels/Alert|
|proc = ./MessageProcessing|
{ while true |

<chan>

-> [msg = $RESULT]

-> { fork | [proc: msg] }

However, since the parent process waits until the “message processing” job is completed, even if a new message arrives
during message processing, it can not be processed at the same time. So we use a detach() built-in job on the child
process to separate the child process from the parent process.

|chan = /system/channels/Alert|
|proc = ./MessageProcessing|
{ while true |
<chan>
-> [msg = $RESULT]
-> { fork | detach() -> [proc: msg] }

By detaching child process using detach(), the parent process will have no child processes to wait for processing
completion, so the next job can be continued at that point. That is, the next message is received from the channel, and
a new “‘message processing” can be activated even if “Message processing” started earlier is not completed yet.

The child process becomes a normal process instead of a child process by using detach() and it will be displayed on
the ‘Process List’ screen instead of the ‘Child Process List’ of the parent process.

By combining fork and pfor with detach(), you can easily write somewhat complicated parallel processing in this
way.

3.9. Controlling processes 101

Kompira Documentation, Release 1.6.7.post1

102 Chapter 3. Kompira Tutorial

CHAPTER
FOUR

KOMPIRA JOBFLOW LANGUAGE REFERENCE

Author
Kompira development team

4.1 Introduction

This document explains the tokens and syntax and meanings of the job flow language. A description of built-in functions
and embedded jobs can be found in Kompira Standard Library.

4.1.1 Syntax Notation

In this document, the syntax is shown using extended BNF. Extended BNF uses symbols such as “*” representing zero
or more repetitions, “+” representing one or more repetitions, “?” Representing an optional element, in addition to
normal BNF. The parentheses “(” and ““)” are also used to group multiple elements together.

4.2 Lexical structure

This chapter specifies the lexical structure of the job flow language. The program text of the job flow language is written
in Unicode. The text is delimited by vocabulary units called tokens by Kompira’s lexical analyzer.

Note: The maximum number of characters that can be written as program text for a job flow is 65536.

4.2.1 Comment

Comments begin with a hash character (#) that is not included in a string literal, and end at the end of the line. Comments
are skipped by the lexical analyzer.

103

Kompira Documentation, Release 1.6.7.post1

4.2.2 Blanks

Newline characters, spaces, tabs, and form feeds are treated as blanks. Whitespace is skipped by the lexical analyzer.

4.2.3 ldentifiers

The identifier IDENTIFIER) is defined by the following regular expression.

IDENTIFIER = [A\WO-9]\w*

\w matches any Unicode word character. This includes letters, numbers, and underscores that can be part of a word in
any language. \W means [*w]. The length of the identifier is unlimited. Identifiers are case-sensitive.

Keywords

The following character sequences are reserved as keywords and can not be used as identifiers.

and break case choice
continue elif else false
for fork if in

not null or pfor
session then true try
while

Reserved identifier Class

Identifiers of the form __*__ are reserved in the system for control variables and have special meanings. Since it is
possible that unexpected behavior of the job flow may occur, it is better to avoid users using these names as identifiers.

Special identifiers

An identifier starting with $ is a special identifier used for special variables as defined below.

SPECTAL_IDENTIFIER = "$" IDENTIFIER

4.2.4 Object Path

The object path points to the location of the object on the Kompira file system. It is defined as follows:

OBJECT_PATH = RELATIVE_PATH

("/" | RELATIVE_PATH) PATH_ELEMENT* LAST_PATH_ELEMENT
RELATIVE_PATH = "./" | "../"

PATH_ELEMENT = RELATIVE_PATH | IDENTIFIER "/"

LAST_PATH_ELEMENT = RELATIVE_PATH | IDENTIFIER

Note: Although a single ““/” is also treated as an object path, it is not included in OBJECT_PATH as a token, because
it is indistinguishable from the division operator “/” in terms of lexical analysis.

104 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

4.2.5 Literal

A literal is a source code representation of values of type String, Binary, Integer, Float, Boolean, Null, and Pattern.

String literal (STRING)

A string literal consists of zero or more characters enclosed in single quotation marks (*) or double quotation marks (‘)

empty string

LLLI | # "
I\II # T
"This is a string" # String containing 16 characters.

It can also be surrounded by corresponding triple quotes or double quotes. In this case, you can write non-escaped
newlines and quotes.

Trrrrruna # T
"""String containing

line feed code""" # String containing line feed code

Within a string literal, you can use escape sequences to represent certain non-expressable characters, such as newline
characters and tab characters.

The list of escape sequences is shown below.

Escape sequence | Meaning

\ backslash()

' Single quotations (‘)

" double quotations(*)

a ASCII terminal bell (BEL)
b ASCII backspace (BS)

f ASCII form feed (FF)

n ASCII line feed (LF)

r ASCII return (CR)

t ASCII horizontal tab (TAB)
v ASCII vertical tab (VT)
000 Characters with octal ooo
xhh Characters with hexadecimal value hh

Binary literal (BINARY)

A binary literal consists of zero or more characters enclosed in single quotation marks (*) or double quotation marks
() with the prefix sign b.

b"" # empty binary

b||ll # mn

bl\ll # 1

b"This is a string" # binary containing 16 bytes.

Unlike string literals, you cannot use multi-line descriptions with a corresponding triplet of quotation marks. Nor can
you include non-ASCII characters such as Japanese. Escape sequences can be used in the same way as string literals.

4.2. Lexical structure 105

Kompira Documentation, Release 1.6.7.post1

Integer literal (INTEGER)

Integer literals can be expressed in decimal. It is described by the following lexical definition.

INTEGER = NONZERO_DIGIT DIGIT* | "@"
DIGIT = [0-9]
NONZERO_DIGIT = [1-9]

Floating-point literal (FLOAT)

A floating-point literal is a representation of a floating-point number consisting of mantissa and exponential parts
consisting of integer and decimal parts. It is described by a lexical definition.

FLOAT DIGIT+ "." DIGIT* ([eE] [+-]? DIGIT+)?
DIGIT = [0-9]

An example is shown below:

3.1415926

0.5e-3 # 0.0005
12.3e+2 # 1230.0
9.E5 # 900000.0

Boolean literal (BOOLEAN)

A boolean literal has two boolean expressions of true (true) and false (false).

BOOLEAN = "true" | "false"

Null literal (NULL)

A null literal is a value indicating that there is no value, and it is written as null.

NULL = "null"

Pattern literal (PATTERN)

After the characters a pattern literal makes up, (‘¢’ ‘g’ or ‘r’ making a pattern), more than O characters are surrounded
with a single quotation mark () or double quotation marks (”’) (pattern string). The ‘i’ which indicates a mode at the
end is sometimes added as an option.

"

r" (From|Subject): # regular expression pattern

g'*.txt' # glob pattern

e'kompira'i # case-insensitive exact match pattern
r"windows(95|nt|2000)"i # case-insensitive regular expression pattern

Within a pattern character string, the escape sequence is invalid and it is handled as it is. String substitution by ${iden-
tifier} is valid.

106 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

4.2.6 Symbols

Symbols are classified as operator symbol (OPERATOR), connector symbol (COMBINATOR), and delimiter.

Operators

The following tokens are operators:

+ - * / %
< > <= >= == 1= =~ I~
Connectors

The following tokens are connectors:

-> => ->> =>>

Delimiter

The following tokens are delimiters:

c >y { 3 [1 | s L= >> << 7?7 ??

4.3 Value and type

Kompira’s job flow language can handle various values (data) such as integers, character strings and dates.

4.3.1 Primitive types
Primitive type is a generic name of basic data types of Kompira’s job flow language, which are four types: integer type,

character type, boolean type, and null type. Values of primitive types are never shared with values of other primitive
types.

Integer type (Integer)

The integer type handles types of values representing integers such as 0, 1, 1000, -9999. The integer type of Kompira
is not limited in scope (as far as memory allows).

Note: Since the range of the Integer type field of the Kompira object is limited, writing data outside the range from
the job flow to the Integer type field will result in a runtime error.

4.3. Value and type 107

Kompira Documentation, Release 1.6.7.post1

String type (String)

String type is a type for string values like “kompira” or “today is sunny”. Each element of the string is a letter. There is
no character type in Kompira’s job flow language. A single character is represented as a string with only one element.
Each character is expressed internally as Unicode.

If you write the value of a string representing an integer, such as “123” or “-999”, into an integer field, it will be
implicitly converted to the corresponding integer value.

(13L]

When the value of the string type is converted to Boolean type, the empty string (‘”’) corresponds to false, and the other
string corresponds to true. Therefore, be aware that the string “false” corresponds to Boolean true.

The string type data has the following methods:

String. format (*args, **kwargs) : String
Perform a string formatting operation. The string on which this method is called can contain literal text or re-
placement fields delimited by braces { }. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is
replaced with the string value of the corresponding argument.

String.join(list) : String
Return a string which is the concatenation of the strings in list. The separator between elements is the string
providing this method.

String. find(sub[, start[, end]]) : Integer
Return the lowest index in the string where substring sub is found within the slice s[start:end]. Optional arguments
start and end are interpreted as in slice notation. Return -1 if sub is not found.

String .rfind(sub[, start[, end]]) : Integer
Return the highest index in the string where substring sub is found, such that sub is contained within s[start:end].
Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

String. Startswith(preﬁx[, start[, end]]) : Boolean
Return true if string starts with the prefix, otherwise return false. prefix can also be a tuple of prefixes to look
for. With optional start, test string beginning at that position. With optional end, stop comparing string at that
position.

String.encode([encoding]) : Binary
Converts the string to a byte string encoded with the specified encoding. If encoding is not specified, the string
is encoded as ‘utf-8’.

String.endswith(prefix|, start[, end]]) : Boolean
Return true if the string ends with the specified suffix, otherwise return false. suffix can also be a tuple of suffixes
to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position.

String.lower() : String
Return a copy of the string with all the cased characters converted to lowercase.

String.upper() : String
Return a copy of the string with all the cased characters converted to uppercase.

String.replace(old, new[, count]) : String
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

String.split([sep [maxsplit]]) : Array<String>

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done.

108 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

String.rsplit([sep[, maxsplit]]) : Array<String>

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones.

String.splitlines([keepends]) : Array<String>

Return a list of the lines in the string, breaking at line boundaries.

String.strip([chars]) : String

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed.

Binary type (Binary)

A binary type is a type whose value is a sequence of bytes. A sequence of bytes is similar to a string of characters, but
the units of a sequence of bytes are not characters, but rather byte values (8-bit integers between 0 and 255).

The binary type data has the following methods:

Binary.decode([encoding]) : String

A byte sequence is interpreted with the encoding specified by the encoding and converted into a string. If the
encoding is omitted, it will be interpreted as ‘utf-8’.

Binary.hex() : String
Converts each byte value in a string of bytes into a string of 2-digit hexadecimal notations.

Floating-point type (Float)

A floating-point type is a type that takes a floating point number as a value.

Boolean (Boolean)

Boolean type is a type that takes two values of truth - 1. value true (true) and 2. false (false)

Null type (Null)

A null type is a type that has only null values.

Pattern type (Pattern)

A pattern type is a type of a value that represents a pattern for matching with a character string. There are three types
of patterns: ‘r’ (regular expression pattern), ‘g’ (glob pattern), ‘e’ (perfect match pattern). Also, you can combine
capitalized and lowercase non-discriminating mode (‘i’) as pattern matching mode.

The regular expression pattern conforms to the regular expression of the re module of the programming language
Python.

In the glob pattern, you can use Unix shell-style wildcards and correspond to the following special characters.

Pattern | Meaning

* Matches everything

? Matches any single character
[seq] Matches any character in seq
[!seq] Matches any character not in seq

4.3. Value and type 109

Kompira Documentation, Release 1.6.7.post1

An exact match pattern is simply a comparison of character strings.
Pattern type data has the following methods:

Pattern.match(s) : Boolean | Dictionary

Attempts to match the string s with the pattern. If a match is true, or if the pattern is a regular expression pattern,
it returns a dictionary containing matched information. If it does not match, it returns false.

The dictionary data returned when the regular expression pattern matches includes the following entries

Key Meaning

group String matched with regular expression
groups List containing strings of all subgroups
groupdict | Named group dictionary

start Start position of match

end End position of match

4.3.2 Complex data type

A complex data type is a generic name of data types that can hold multiple elements of other types, and there are two
types: array type and dictionary type.

Array type (Array)

Array type data is a data structure in which elements are arranged in one dimension, and elements can be accessed with
an integer index. If the length of the array is n, the index is 0, 1, ..., n - 1. Element i of array can be referenced by a[i].
If index i is negative, a[i] refers to element n + i.

If you access elements outside the range of the array, a run-time error occurs. Also, arrays can not be extended.
The array type data has the following methods:
Array.add_item(value)
Add data value to the end of array a.
Array.del_item(index)
Delete the element a[index] of the array a.
Array.pop_item([index])
Delete the element a[index] of the array a. If index is not specified, the last element is deleted.

Dictionary type (Dictionary)

Dictionary type data is a data structure that allows elements to access elements associated with any type of key except
for complex data types. Elements associated with key k of dictionary d can be referenced by d[k]. If the key k is a
string type value and it is a character string satisfying the lexical requirement of the identifier IDENTIFIER), it can be
referred to as d.k.

If you attempt to refer to an element with a key that is not included in the dictionary, it will result in an execution error.
You can add new keys and elements by writing job (described later).

Dictionary type data has the following methods:

Dictionary.del_item(key)
Delete element d[key] of dictionary d.

110 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

Dictionary.get_item(key [default])

Get the element d[key] of dictionary d. If element d[key] does not exist, it returns default. The default value of
default is null.

Dictionary.pop_item(key [, default])

Delete element d[key] of dictionary d. If element d[key] does not exist, it returns default. If default is not given
and the element d[key] does not exist, an error occurs.

Dictionary.get_keys()
Return a copy of the dictionary d list of keys.

4.3.3 Opaque data type

The opaque data type is a generic term for data types whose internal structure of data is hidden. Also, since it does not
have a corresponding data constructor, it can not directly generate data by notation in the source code of the job flow
program like a complex data type.

Object type (Object)

The value of the object type represents a reference to the object on the Kompira file system. The string representation
of the value of the object type is the absolute path of that object. The property p of the object o can be accessed with
op, and the field f can be accessed with the notation o[f]. If there is no property name or method name with the same
name as the field f, the field can be referenced with the notation of o.f.

Kompira’s object have fields and methods defined by a type object (TypeObject). For details, refer to the Kompira
Object Reference (Kompira Standard Library)

File type (File)

The value of the file type represents the file data attached to the object with the file type field.

The following fields are defined in the file type value.

Field name

name Attachment (file) name
data Attached file data

size Data size (read only)

url Download URL (read only)

It is possible to write a value to a file type field (i.e., create a file from a job flow) by passing dictionary data with name
and data as keys to an update job as follows

[{'name': 'binary.txt', 'data': b'\xde\xad\xbe\xef \xca\xfe'} >> ./some_obj['attachedl']]

Basically, data is binary data, but it can also be a string, as shown below.

[{'name': 'some.txt', 'data': 'Hello'} >> ./some_obj['attachedl']]

In this case, the data will be encoded as UTF-8 and written to the file as binary data.

It is also possible to update only the name or data of an existing file, as shown below.

4.3. Value and type 111

Kompira Documentation, Release 1.6.7.post1

['update.txt' >> ./some_obj['attachedl']['name']] -> # Update the file name to
~"update.txt"

['new text' >> ./some_obj['attachedl']['data']] # Update the file data to "new.
~text"

To delete a file by a job flow, pass a null value to the update job as follows

[null >> ./some_obj['attachedl']]

Date and time data (Datetime)

A datetime value represents data that contains both the date and the time.

Date-time type values have the following read-only properties:

Datetime.year : Integer
Year
Datetime.month : Integer

Month (values from 1 to 12)

Datetime.day : Integer
Day (value from 1 to the number of days in the given month and year)

Datetime.hour : Integer
Time (value from 0 to 23)

Datetime.minute : Integer
Minute (value from 0 to 59)

Datetime.second : Integer

Seconds (values from O to 59)

Datetime.weekday : Integer
With Monday as 0, Sunday as 6, a value representing the day of the week as an integer

Datetime.date : Date
Date portion of datetime type data

Datetime.time : Time
Time portion of datetime type data

Datetime data has the following methods:

Datetime.format(dr_fint) : String

Converts the date / time data to a character string in the format specified by dt_fmt. Format specification of this
format conforms to C language strftime() function.

An example is shown below:

[dt = now()] -> print(dt.format('%Y-%m-%d %H:%M:%S"'))

Datetime.isoformat() : String

Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:mm:ssZ. The time zone
is always UTC and has a suffix of Z.

112 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

Date data (Date)

A date value represents date data.
Date type values have the following read-only properties:

Date.year : Integer
Year

Date.month : Integer
Month (values from 1 to 12)

Date.day : Integer

Day (value from 1 to the number of days in the given month and year)

Date.weekday : Integer
With Monday as 0, Sunday as 6, a value representing the day of the week as an integer

Date data has the following methods:
Date.format(d:_fmt) : String

Converts the date data to a character string in the format specified by dt_fmt. Format specification of this format
conforms to C language strftime() function.

Time data (Time)

A time value represents time data.
Time type values have the following read-only properties:

Time.hour : Integer
Time (value from 0 to 23)

Time.minute : Integer
Minute (value from 0 to 59)

Time.second : Integer

Seconds (values from 0 to 59)
Time data has the following methods:

Time.format(dr fmt) : String

Converts the time data to a character string in the format specified by dt_fmt. Format specification of this format
conforms to C language strftime() function.

Elapsed time type (Timedelta)

The value of elapsed time type data represents the difference between date and time type values. Addition and subtrac-
tion are possible between the date-time type value and the elapsed time type value. Also, the difference between date
and time type values will be elapsed time type.

The elapsed time value has the following read-only properties:
Timedelta.days : Integer
Days

Timedelta.seconds : Integer
Seconds

4.3. Value and type 113

Kompira Documentation, Release 1.6.7.post1

Timedelta.microseconds : Integer
Microseconds
Timedelta.total_seconds : Float

The total number of seconds contained in the duration.

4.4 Variables

A variable is a name given to a storage area that holds a value. Variables in the Kompira job flow language can hold
values of any type.

Note: Variables are not shared between child processes generated by fork and pfor blocks, or between parent processes
and child processes, even if they have the same scope. However, it is possible to reference (read) the variable of the
scope of the parent process from the child process when the child process is generated.

4.4.1 Local variables

Local variables are introduced by job flow parameters, assignment jobs. Local variables have different scopes depend-
ing on the position on the source code where the variables are introduced.

Job Flow Scope
A job flow scope is a scope that can be referred to from any subsequent job following the job in which the variable

is introduced. The job flow parameter has a job flow scope. Also, if an undefined variable is newly introduced by an
assignment job, that variable has a job flow scope.

Job flow scope variables are hidden if variables of the same name are redefined in inner block scope.

Block scope

Block scope is a scope that can only be referenced from within that block. Variables defined by simple blocks and loop
variables introduced by for and pfor blocks have block scope.

4.4.2 Environment variable

Deprecated since version 1.6: Environment variables have been deprecated in version 1.6.0. Use the SENV state
variable instead.

4.4.3 Special variable

A special variable is a variable with special meaning defined in advance by the system.

114 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

Status variable

A status variable is a reserved variable for temporarily storing of execution results such as remote jobs, status codes,
etc., and starts with $. These variables are those whose values are set automatically by the Kompira engine and can not
be explicitly assigned in the job flow.

There are the following types of status variables:

Variable name | Meaning

$RESULT Job execution result (standard output)

$STATUS Job execution status

$ERROR Job execution error message (standard error output)
$DEBUG Debug information

$ENV Environment variable dictionary

Note: The character code of the execution result of the job is automatically determined and converted into an ap-
propriate character string. If conversion to a character string fails, job execution is regarded as failed and an error is
returned.

The $ENV state variable contains a dictionary of environment variable fields in an environment variable type (Envi-
ronment) object set by the JobFlow user.

Control variable

The control variable is a variable for specifying the host name, login name, etc. when executing the remote job, and it
is a variable in the form of two consecutive underscores (_) appended before and after, such as __*__ . Itis a variable.
The control variable can be defined as a local variable or it can be set as an environment variable.

There are the following types of control variables:

Variable name Meaning

__realm__ Specify the management area to execute the remote command

__host__ Specify the execution host name of the remote command

__conntype__ Specify the host’s connection type of remote command execution. (See Node setting
for the connection types that can be specified)

_user__ Specify the execution user name of the remote command

__password__ Specify a password

__node__ Specify the node information object to execute the remote command

__account__ Specify the account information object necessary for executing the remote command

__sudo___ When executing in sudo mode, set it to true

_ dir__ Specify the execution directory of the remote command

__port__ Specify ssh port number

__keyfile__ Specify ssh key file path

__passphrase__ Specify the passphrase of the ssh key file (it can be omitted if there is no passphrase
or same as __password__)

__timeout___ Specify the number of seconds before the remote command times out

__proxy__ Specify the proxy host when connecting to the execution host

__shell__ Specify the shell to use when executing the remote command (default: “/bin/bash’)

__use_shell__ Set to false if shell is not used when executing remote command

__use_pty__ Set to true to use PTY when executing remote command

continues on next page

4.4. Variables

115

Kompira Documentation, Release 1.6.7.post1

Table 1 - continued from previous page

Variable name Meaning

__use_cache Set to false if the remote connection cache is not used

__raw_stdout__ Set to true to receive standard output as binary

__raw_stderr__ Set to true to receive standard error output as binary

__winrs_auth_type__ Specify the authentication method of WinRS connection from “ntlm” (default) and
“credssp”.

__winrs_scheme__ Specify the scheme of WinRS connection from “https” (default) and “http”.

__winrs_use_tlsvl_0__ Set to true to use TLS 1.0 when performing CredSSP authentication with a WinRS
connection. (For environments where TLS 1.2 can not be used, such as Windows
Server 2008)

Deprecated since version 1.4: The control variable __via__has been removed in version 1.4.0. Use __proxy__ instead.
New in version 1.6.0: The control variables __raw_stdout_ , raw_stderr__ have been added.
New in version 1.6.2.post6: The control variable __use_cache__ has been added.

Changed in version 1.6.4: The control variable __conntype__ has been extended to allow the specification of network
devices.

Changed in version 1.6.4: The value of the control variable __conntype__ to specify a Windows device has been
changed.

Note: For WinRS connections, the remote connection cache is always not used, regardless of the setting of
__use_cache .

Note: If the directory string specified by __dir__ contains shell metacharacters such as (and) and “and” etc., it must
be properly escaped as follows:

[__dir__ = "somedir\\(foo\\)']

Note: __dir__can’t be specified when __sudo__=true and __use_shell__=false.

Note: If you do not specify __timeout__ or set a value of 0, timeout does not occur when executing remote command.
The operation when __timeout__ is set to a negative value is undefined.

Changed in version 1.4.9.

In winrs mode, as long as the remote command being executed continues to output, it does not time out. In other words,
it will time out if there is no output for the number of seconds specified by __timeout__.

Changed in version 1.5.4.post5.

Even when there is command output in winrs mode, it now timeouts in seconds specified by __timeout__.

Note: Changed in version 1.4.8.post6.

For remote command execution in winrs mode, the smaller value of the value specified by __timeout__ and the value
set by MaxTimeoutms from WinRM is applied.

Changed in version 1.5.4.post5.

116 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

In command execution in winrs mode, the timeout specification by __timeout__ is now prioritized over MaxTimeoutms.

4.5 Expression

Expressions in the job flow program are evaluated during the execution of the job flow and have some value as a result.

4.5.1 Atomic formula

An atomic expression is the basic unit that constitutes an expression. Identifiers, object paths, literals are included in
atomic expressions. Also, the format enclosed in parentheses is also grammatically classified as an atomic expression.

atomic_expression := IDENTIFIER | OBJECT_PATH | SPECIAL_IDENTIFIER
| literal
| parenth_form
| array_expression
| dict_expression

Identifier (IDENTIFIER)

An identifier as an atomic expression represents a variable name. When evaluating the variable name, it returns the
value bound to that variable name under the execution environment at the time of evaluation.

Object Path

The object path returns the value of the Kompira object pointed to by that path.

If the object does not exist, a run-time error occurs.

Special identifiers

The special identifier represents a status variable after job execution. At the start of the job flow, $STATUS is initialized
to 0 and SRESULT and $ERROR are initialized to the empty string (‘”"), respectively.

Literal

Literals are strings, binary, integers, floating-point numbers, booleans, and nulls.

literal := STRING | BINARY | INTEGER | FLOAT | BOOLEAN | NULL

When evaluating a literal, it becomes the value indicated by that literal.
In the case of a string literal, the variable prefixed by $ in that string is expanded. The following rules will be observed:

* A Sidentifier is a replacement placeholder specification and corresponds to mapping to the key “identifier”. By
default, the “identifier”” part must contain Kompira’s identifier. If a character that can not be used as an identifier
appears after $, specification of the placeholder name ends.

4.5. Expression 117

Kompira Documentation, Release 1.6.7.post1

* ${identifier} is the same as $identifier. It is a necessary writing method if the placeholder name is followed by a
character string that can be used as an identifier and you do not want to treat it as part of the placeholder name.

For example, if you execute the following job flow, “Hello Kompira™” will be output to the console.

[name = 'Kompira']
-> print('Hello $name')

Parentheses format

The parenthesis format evaluates the enclosed expression and returns its value.

parenth_form := "(" expression ")"

Array expression

Array expressions are a comma-separated list of expressions enclosed in square brackets. It is also possible to omit the
sequence of expressions.

"

array_expression = "[" expression_list? "]

expression_list n= expression ("," expression_list)¥*
When evaluating an array expression, it returns the data of the newly created array type as a value. Each element of the
array is evaluated from left to right.

Dictionary expression

A dictionary expression is a comma-separated sequence of key-value pairs enclosed in curly brackets. It is possible to
omit the list of pairs. If the pair is connected with an equal sign, the key must be an identifier. If the key is duplicated,
it will report an error at the time of compilation. If it is bound by a colon, the key can describe arbitrary expressions.
In this case key duplication is not checked.

dict_expression := "{" (binding_list | key_val_list)7 "}"
binding_list = binding ("," binding list)*

binding = IDENTIFIER "=" expression

key_val_list = key_val ("," key_val_list)*

key_val = expression ":" expression

When evaluating a dictionary expression, it returns the newly created dictionary type data as a value. Given a set of
comma-delimited key-value pairs, the expression will be evaluated from left to right to define the dictionary’s entry.
Giving a duplicate key, results in a syntax error.

118 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

4.5.2 Postfix expressions

Postfix expressions have the highest connectivity among expressions.

postfix_expression = attribute_reference
| subscript_reference
| function_call
| atomic_expression

Attribute reference

Attribute references are formats in which the postfix expression has a dot followed by an identifier.

attribute_reference := postfix_expression "." IDENTIFIER

The evaluation result of the postfix expression must be an object type. The value specified by the identifier of the object
of the post evaluation result is the value of the evaluation result. If the specified attribute does not exist, it becomes the
field value of the object with the identifier string as the key. If no such field exists, a runtime error will result.

Subscript Reference

A postfix expression followed by an expression enclosed in square brackets represents an expression that retrieves an
element from fields or arrays of objects, and dictionary data.

subscript_reference := postfix_expression "[" expression "]"

The evaluation result of the postfix expression must be one of either object type, dictionary type, or array type.

If there is no element corresponding to the key or index, a runtime error will occur.

Function calls

Function calls call functions of objects defined by built-in functions, library type objects, and methods of objects with
a list of arguments. The argument list consists of an expression list followed by a binding list (keyword argument list),
each of which can be empty.

function_call
argument_list

postfix_expression " (" argument_list? ")"
expression_list ("," "*" atomic_expression)?
("," binding_list)? ("," "**" atomic_expression)?
| binding list ("," "**" atomic_expression)?

| "*" atomic_expression ("," binding_list)?
(
|

LU LI [RORON]]

, atomic_expression)?
"w*" atomic_expression

If the syntax *atomic_expression appears in the function call, atomic_expression must evaluate to an array. Elements
from this array are treated as if they were additional positional arguments

If the syntax **atomic_expression appears in the function call, atomic_expression must evaluate to a dictionary, the

4.5. Expression 119

Kompira Documentation, Release 1.6.7.post1

contents of which are treated as additional keyword arguments.

Each element of the argument list is evaluated before the function call.

4.5.3 Operator expression
Unary operator
Unary operators show as + and -. Since the unary operator is a right join, +-x has the same meaning as +(-x).

unary_expression = postfix_expression
| ¢ "+" | "-") unary_expression

The unary - operator inverts the sign of the numeric value to be argument.

The unary + operator does not change numeric arguments.
Multiplication and division operator
The multiplicative operator has *, /, and %. All of them have the same priority and become a left join.
multiplicative_expression := unary_expression
| multiplicative_expression unary_expression

| multiplicative_expression "/" unary_expression
| multiplicative_expression "%" unary_expression

e

The * operation is the product of the arguments. If either argument is a character string or an array and one is an integer,
it is the value obtained by repeating the number of strings and arrays by that number. For example, the expression ‘foo’
* 3 evaluates to ‘foofoofoo’.

The / operation is the quotient between the arguments. If division by zero occurs, an error occurs.

The % operation is the remainder when dividing the first argument by the second argument when the two arguments
are integers. If the first argument is a character string and the second argument is a dictionary, it returns the result of
replacing the template string.

Arithmetic operators

Arithmetic operators include + and -. All of them have the same priority and become a left join.

additive_expression := multiplicative_expression

| additive_expression "+" multiplicative_expression
| additive_expression "-" multiplicative_expression

The + operation returns the value obtained by adding the argument. If both arguments are a string or an array, it returns
the concatenated value.

The - operation returns the subtracted value between the arguments.

120 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

Comparison operators

The comparison operators are <, >, ==, >=, <=, |=, =~ and !~. All of them have the same priority and become a left
join.
comparison_expression = additive_expression

comparison_expression "<" additive_expression

comparison_expression ">" additive_expression

I

I

| comparison_expression "==" additive_expression
| comparison_expression additive_expression
| comparison_expression "<=" additive_expression
| comparison_expression "!=" additive_expression
| comparison_expression "=~" additive_expression
I

comparison_expression additive_expression

The result of the comparison is Boolean value true or false. You can chain any number of comparisons. For example,
X <y <=z is equivalent to x < y and y <= z. However, in this case, y is evaluated only once for the former. Also, x <y
<=z and (x < y) <=z have different meanings. The latter compares the Boolean value of z with the result of evaluating
X <Y.

The meaning of comparison between values of the same type depends on type.
* For integer-by-integer comparisons, an arithmetic comparison is made.
* In comparison between character strings, a dictionary comparison is performed.

 In comparison between arrays, a dictionary comparison is performed using the comparison result of each corre-
sponding element.

» Comparison between dictionaries is defined only for equivalence judgment. They are only equivalent when the
keys are in the same order and the corresponding elements of the key and value are equal.

x =y is equivalent to not (x ==y).
=~ makes similar comparisons. The meaning depends on type.
* In comparisons between pattern and character strings, comparison by pattern matching is performed.

* In comparison between character strings and other types, comparison is performed by converting values other
than character strings into character strings.

* In comparing arrays, similarities between corresponding elements are compared.

* A comparison between dictionaries ignores differences in the order of keys and compares the values correspond-
ing to each key in a similar manner.

» Except for the above, it has the same result as the equivalent comparison by normal ==.

x !~y is equivalent to not (x =~ y).

4.5. Expression 121

Kompira Documentation, Release 1.6.7.post1

Inclusion operators

Inclusion operators are expressed as in or not in. They all have the same priority and become a left join.

membership_expression := comparison_expresion
| membership_expression "in" membership_expression

| membership_expression "not in" membership_expression

Inclusive operations x in y returns true if the value x is included as an element of y, and false if it is not included. x not
iny is the same as not (x in y).

If y is a value other than an array type, the judgment as to whether it is an element or not is as follows:
» If x and y are both strings, they are regarded as elements if x is a substring of y.
 Ify is a dictionary type value, it is considered an element if x is included in the key set of y.

* Ify is a directory/table type object, it is regarded as an element if x is a child object of y.

Logical operators

Logical operators include not, and, and or. When a boolean value is required as a result of a logical operation context
or expression, false, null, 0, an empty string (‘”’), an empty array ([]), and an empty dictionary ({}) are all interpreted
as false. Any other value is interpreted as true.

logical_not_expression membership_expression

| "not" membership_expression

logical_and_expression := logical_not_expression

| logical_and_expression "and" logical_not_expression
logical_or_expression n= logical_and_expression

| logical_or_expression "or" logical_and_expression
expression n= logical_or_expression

The operator “not” is true if the argument is false, if the argument is true, then “not” is false.

The expressions x and y evaluate the expressions x and y respectively, and return the evaluation result of x if x is false.
Otherwise it returns the evaluation result of y.

The expression x or y evaluates the expression x and y respectively, and returns the evaluation result of x if x is true.
Otherwise it returns the evaluation result of y.

4.6 A job

A job instructs execution of a command, waiting for an event, or a control such as repetition or conditional branching.
The syntax of a job is as follows:

job = skip_job
| execution_job
| assignment_job
| update_job
| event_job

122 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

| builtin_job
| control_job
| block_job

4.6.1 Skip Job

Skip job does nothing but set $STATUS to 0.

Skip_job = " [u ll] n

4.6.2 Execution job

An execution job performs different processing depending on the value type of the result of evaluating the expression.

execution_job = "[" expression ("<<" expression)? (":" argument_list)? "]"

If the result of evaluating the first expression is a character string, the execution job interprets the character string as
a command on the remote server or on the local server according to the control context and executes it. If there is a
second expression following the symbol <<, the evaluation result of that expression is regarded as a character string
and passed to the standard input of the command.

If the result of evaluating the first expression is a job flow object, call that job flow object. If there is an argument list,
the value obtained by evaluating the expression of the argument in the list is the parameter of the job flow.

If the result of evaluating the first expression is a script object, that script will be executed on the remote server or on
the local server. If there is a second expression following the symbol <<, the evaluation result of that expression is
regarded as a character string and passed to the standard input at the time of script execution. If there is an argument
list, the value evaluating the expression of the argument in the list is the command line argument of the script.

If the result of evaluating the first expression is a method of Kompira objects, call its method with argument list as a
parameter.

If the result of evaluating the first expression is a library object function, call that function with the argument list as a
parameter.

Warning: The length of the command string, the size of the script and script command line arguments is limited
to 112 KB. If this limit is exceeded, the job execution will fail and set SSTATUS to -1.

4.6.3 Assignment jobs

Assignment jobs assign the evaluation result of the right side of the = expression to a variable.

assignment_job = "[" binding_list "]"

If the variable is undefined, a variable with job flow scope is newly defined and initialized with the evaluated value.

4.6. Ajob 123

Kompira Documentation, Release 1.6.7.post1

4.6.4 Update jobs

An update job evaluates the first expression and updates the contents of variables, objects, and fields as a result of
evaluating the target expression against the value of the result.

update_job n= "[" expression ">>" target_expression "]"
target_expression = IDENTIFIER | OBJECT_PATH
| target_expression "." IDENTIFIER

| target_expression "[" expression "]1"

4.6.5 Event jobs

The event job evaluates the first expression and waits according to its type.

n_n nw,n

event_job = <" expression (("?" | "??") expression)? (":

| "<t s

<

argument_list)? ">"

When the result of evaluating the first expression is a channel object or a task object, the event job waits for the event
of that object. Received objects are stored in SRESULT.

<./ChannelObject> ->
[message = $RESULT]

If you pass a process object, wait until the process ends. In this case, SRESULT stores process objects.

If you pass a list whose elements are channels, tasks, or process objects, wait for the event of one of the objects.
$RESULT stores a list with two elements described below. The first element of the list is the object where the event
occurred, the second element is the received object.

./ChannelTable is a Table object that contains Channel objects.
<./ChannelTable.children> ->
[chan = $RESULT[0], message = $RESULT[1]]

If 7 is followed by an expression (guard expression), it becomes an event job with a guard. In this case, we will only
receive a message if the result of evaluating the guard expression matches the object at the top of the message queue
of the channel. It is the same in the case of ?7?, but checks whether objects match in order from the top of the message
queue, and if they match, discards the previous object and receives the matched object. When waiting for a process
object, the guard specification is simply ignored.

If there is an argument list, timeout is specified. If the value of the first expression is a datetime type, the date and time
to time out is specified, and in the case of an integer type, the number of seconds until the timeout is specified. If it
times out, $STATUS is set to 1.

Passing the keyword argument peek_mode=true as a parameter changes the handling of received messages and the
structure of the result. If peek_mode=true is specified in an event job for a channel object, when a message is received,
the first message in the message queue of the target channel is referenced (without deleting it) and a list [msgid, mes-
sage] containing the ID value identifying the message in the target channel object and the message body is returned to
$RESULT. Since the message has not been removed from the channel at this time, the same message will be retrieved
when the event job is executed again. When a message is no longer needed to be retrieved from the channel, such as
when a message has been processed, the message can be deleted by calling Channel.delete_message() with the message
ID.

124 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

[chan = ./ChannelObject] ->
<chan: peek_mode=true> ->
[msgid = $RESULT[0], message = $RESULT[1]] ->

[chan.delete_message: msgid]

peek_mode can also be used in conjunction with guard expressions. ? followed by a guard expression and matched at
the top of the message queue, returns a list of [msgid, message] for that message. ?? followed by a guard expression
and matched in the middle of the message queue, it removes the message from the message queue from the beginning
to one before the message and returns a list of [msgid, message] of the matched messages.

Note that peek_mode can also be used in conjunction with event jobs on lists, but the structure of the resulting results
is a bit more complex.

<[chanA, chanB, chanC]: peek_mode=true> ->
[chan = $RESULT[0®], msgid = $RESULT[1][0], message = $RESULT[1][1]]

The “received object” portion of the result of an event job on a list is a list of [msgid, message], which is created by
peek_mode.

If peek_mode=true is specified in an event job for a process object, a list [pid, process] containing the process ID and
process object is returned to SRESULT. This ensures that the structure of the result will be the same, even if the list
contains mixed channels and processes when invoking an event job that specifies a list.

Passing the keyword argument detect_error=true as a parameter to an event job for a mail channel will set $STATUS to
-1 and immediately terminate the event wait if mail fetching fails due to misconfiguration, mail server failure, or if the
mail channel is disabled. (Passing detect_error to any event job parameter other than mail channel is simply ignored.)

If it is empty expression <>, the event is always fired, so the job flow will continue executing immediately.
Changed in version 1.6.6: The keyword argument detect_error has been added.

Changed in version 1.6.7: The keyword argument peek_mode has been added.

4.6.6 Built-in jobs

Embedded jobs are called Kompira’s built-in jobs.

builtin_job := IDENTIFIER "(" argument_list? ")"

If there is an argument list, the expression is evaluated from the beginning in order of the list, and the result is passed
as a parameter of the built-in job.

For a list and details of the embedded jobs provided by Kompira, see Kompira Standard Library.

4.6. Ajob 125

Kompira Documentation, Release 1.6.7.post1

4.6.7 Control jobs

There are two control jobs, break and continue.

control_job =

"continue" | "break"

Control jobs can only be used inside while blocks and for blocks. If you use it elsewhere, it will result in a compile-time

C€ITor.

Continue

Continue transfers control to the beginning of the next iteration of the while/for block.

Break

Break aborts the iteration of the while/for block, and transfers control to the block after it.

4.6.8 Block jobs

A block job creates a new block scope.

block_job :=

Simple block

simple_block

if_block
for_block
while_block
case_block
choice_block
fork_block
pfor_block
session_block
try_block

If a simple block has a variable declaration, the local variable holding the block scope is newly defined, and then a job
flow expression in the block is executed accordingly. If the variable declaration is omitted, simply execute the job flow

expression in the block.

simple_block ::=

"{" (binding_list "|")? jobflow_expression "}"

126

Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

if Block

The if block evaluates the first conditional expression and branches processing depending on the result. If the condi-
tional expression is omitted, the value of SRESULT which is the execution result of the immediately preceding job is
used.

if_block

"{" "if" expression? "|" jobflow_expression "}"

| "{" "if" expression? "|" then_clause elif_clause* else_clause? "}"
"then" ":" jobflow_expression

"elif" expression ":" jobflow_expression

"else" ":" jobflow_expression

then_clause
elif_clause
else_clause

In the first form of an if block, the job flow expression in the block is executed only if the conditional expression is true.

In the second form of an if block, if the first conditional expression is true, the jobflow expression in the then clause is
executed. In the case of false, the conditional expression of the next elif clause is evaluated, and if the value is true, the
job flow expression of the elif clause is executed. When every conditional expression is false, and if there is a last else
clause, the job flow expression of the else clause is executed.

Case block

The case block evaluates the first expression and attempts to match that value with the value evaluated for the pattern
expression of each case clause. If the matching is successful, execute the job flow of the corresponding case clause. If
multiple pattern expressions of case clause are described in comma-separated form, if matching with any one pattern
is regarded as a success, the job flow of that section is executed.

If the first expression is omitted, the value of SRESULT (which is the execution result of the previous job) is used.

case_block
case_clause = expression_list

"{" "case" expression? "|" case_clause+ else_clause? "}"
":" jobflow_expression

The case clause is followed by a pattern expression followed by a colon (:), which is a delimiter, and a job flow expression
to be executed when it matches the pattern. If the result of evaluating the pattern expression is a pattern object, matching
based on that pattern object is attempted. If the evaluation result of the pattern expression is a character string, it is
treated as a case-sensitive Glob pattern. Otherwise, we will do a simple == comparison by matching.

Patterns are tried in order from the beginning of the case clause. If no pattern matches, if there is an else clause, the job
flow expression is executed. If there is no else clause, matching is considered to have failed and $STATUS is set to 1.

for block

A for block is used to iterate over elements within an object that contains multiple elements, such as lists, directories,
and tables.

for_block ::= "{" "for" IDENTIFIER "in" expression "|" jobflow_expression "}"

Expressions are evaluated only the first time when the for block is executed. The evaluation result of the expression
must be a repeatable object or an integer value, otherwise an execution error will occur. Each element of the object is
assigned to a local variable indicated by an identifier (IDENTIFIER). If the evaluation result of the expression is an
integer value N, the local variable iterates in the range O to N-1. However, it does not iterate if N is O or negative. Since
this local variable has the scope of the for block, it can not be referenced after leaving the for block.

4.6. Ajob 127

Kompira Documentation, Release 1.6.7.post1

When the break job is executed in the job flow expression, the loop is terminated. When the continue job is executed,
the subsequent processing of the job flow expression is skipped and the loop is terminated.

$STATUS at the end of the for block is always set to 0.

While block

The while block evaluates the expression iteratively, and if it is true, it executes the job flow expression. If the expression
is false, the while block ends the iteration.

uln

while_block := "{" "while" expression jobflow_expression "}"

When the break job is executed in the job flow expression, the loop is terminated. When the continue job is executed,
skip the subsequent processing of the job flow expression and return to evaluating the expression.

$STATUS at the end of the while block is always set to 0.

Choice block

The choice block waits for multiple event jobs, and when one becomes executable, it executes the job flow expression
following that event job.

non

|" eventflow_expression+ "}"
" | "=>>") jobflow_expression

choice_block = "{" "choice
eventflow_expression event_job ("->" | "=" | "->>

If multiple event jobs can be executed at the same time, the event job closest to the top takes precedence.

Fork block

The fork block starts executing the job flow expression as a child process.

fork block = "{" "fork" "|" jobflow_expression+ "}"

The fork block waits until all child processes that has not been detach() have completed execution. SRESULT is set to
the list of child processes. At the end of the fork block, SRESULT is set to the list of all child processes created in the
fork block, and $STATUS is set to the number of child processes terminate abnormally. If all child processes terminate
normally, $STATUS is set to 0.

If the process generated by the fork block exceeds the limit of the number of processes, the fork block waits for execution
until the other process complete execution and it falls within the process limit.

128 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

Pfor block

The pfor block creates a child process and performs concurrent processing on elements in an object including multiple
elements such as lists, directories, and tables.

pfor_block := "{" "pfor" IDENTIFIER "in" expression "|" jobflow_expression "}"
Expressions are evaluated only during the first time when executing the pfor block. The evaluation result of the ex-
pression must be a repeatable object, otherwise it will result in an execution error. A child process is created for each
element of the object and the corresponding element in each child process is assigned to a local variable identified by
an identifier (IDENTIFIER), and execution of the child process is started. If the evaluation result of the expression is
an integer value N, execution of the child process is started for each of the local variables from 0 to N-1. However, if
N is O or negative, the child process is not executed.

The pfor block waits until all child processes that has not been detach() have completed execution. SRESULT is set to
the list of child processes. At the end of the pfor block, $RESULT is set to the list of all child processes created in the
pfor block, and $STATUS is set to the number of child processes terminate abnormally. If all child processes terminate
normally, $STATUS is set to 0.

If the process generated by the pfor block exceeds the limit of the number of processes, the pfor block waits for execution
until the other processes are executed and it is within the processing limit.

Session block

The session block starts a session with the remote server.

session_block ::= "{" "session" IDENTIFIER "|" jobflow_expression "}"

When a session block is executed, it first starts a session with the remote server specified by the control variable. The
session channel for interaction with the remote server in the session is assigned to the local variable indicated by the
identifier (IDENTIFIER). When sending (send) a character string to this session channel, a character string is sent to
the remote server side. In addition, in order to obtain output from the remote server side, data is acquired from the
session channel using the event job. The output from the remote server is stored in the session channel as a line-by-line
message. Therefore, reading messages from the session channel is one line at a time.

Exiting the session block ends the session, and the session channel is closed. After that, transmission to the session
channel will result in an error. Reading messages from the session channel also results in an error. (However, messages
output from the remote server before closing the session can be read)

Calling break in a session block closes the session and ends the block.

When the session block ends normally, $STATUS is set to 0. In addition, the session channel is stored in $SRESULT.
Unread data is stored in the data attribute of the session channel. (Each line of the message is concatenated and becomes
one character string data)

If the session fails to start, the session block is terminated without being executed in the session block, and $STATUS
is set to non-0. In addition, SERROR contains a message indicating the cause of the error.

Note: You can execute a command job within a session block, but you can not start another session anew.

The following shows an example of a job flow program that executes interactive processing by executing the su com-
mand.

4.6. Ajob 129

Kompira Documentation, Release 1.6.7.post1

[__host__ = 'server.exmaple.com', __user__ = 'testuser', __password__ = 'password',
__use_pty__ = true # su command require PTY.
] >

log in to server.example.com and start session.
{ session s |

[s.send: 'LANG=C su\n'] -> # execute su command
<s ?? 'Password: '> -> # wait for password prompt
[s.send: 'root_password\n'] -> # send root's password
<s ?? g'*]# '> -> # wait for root user prompt
[s.send: 'service httpd restart\n'] -> # restart the httpd service
<s ?? g'*]# '> > # wait for root user prompt
[s.send: 'exit\n'] # exit from root

} >

print('OK")

Try block

The try block catches the abnormal termination that occurred while executing the job flow in the block, and continues
the processing.

try_block = "{" "try" "|" jobflow_expression "}"

If the job flow enclosed by the try block ends normally, the try block sets $STATUS to 0, and if it ends abnormally,
sets $STATUS to 1. It also stores debugging information in $DEBUG.

If exit is called while executing the job flow in the try block, the job flow always ends. Also, if the execution of the job
flow is cancelled by the user while executing the job flow in the try block, the job flow will terminate execution.

4.7 Job flow expressions

A job flow expression is an expression that combines jobs with connectors.

jobflow_expression := jobflow_expression "->" job
| jobflow_expression "=>" job
| jobflow_expression "->>" job
| jobflow_expression "=>>" job

130 Chapter 4. Kompira Jobflow Language Reference

Kompira Documentation, Release 1.6.7.post1

4.7.1 Connectors

There are multiple types of connectors, and whether job flow processing continues or not when the job fails is different.

Below is a list of connectors, the behaviour they exhibit when the job fails and the value of the status variable, when

processing is continued.

Connectors Command abnormal termination | Remote login failed
->
Forced termination Forced termination
=>
Processing continuation Forced termination
$STATUS >=1
$RESULT = (stdout)
$ERROR = (empty)
->>
Forced termination Processing continuation
$STATUS = -1
$RESULT = (empty)
$ERROR = (error message)
=>>
Processing continuation Processing continuation
$STATUS >=1 $STATUS = -1
$RESULT = (stdout) $RESULT = (empty)
$ERROR = (empty) $ERROR = (error message)

If the execution status of the remote command is anything other than 0, it begins to operate as per “Command abnormal
termination” in the above table. At this time, the value of the execution status of the remote command is the value of
$STATUS.

If remote access times out, or if the IP address, user name, password, etc. specified in the job flow are incorrect, the
failure will be as per “Remote login failure” in the above table.

Note: When a remote command is executed to a Windows node, the execution status is normally a signed 32-bit value,
but Kompira treats it as an unsigned 32-bit value.

Note: The maximum number of jobs that can be combined in a single job flow expression is 4096. Inside a block is
counted separately, so for example, the following job flow expression would have 6 jobs.

x >y >{iftrue | a->b ->c} >z ->v->w

Changed in version 1.5.4.post5: When remote login fails, $ERROR contains a message indicating the cause of the
error.

4.7. Job flow expressions 131

Kompira Documentation, Release 1.6.7.post1

4.8 Job flow Program

A job flow program consists of zero or more parameter declarations followed by job flow expressions. If the job flow
expression is empty, execution of the job flow program can be skipped.

jobflow_program := (parameter_declaration)* jobflow_expression?

4.8.1 Parameter declaration

The parameter declaration takes the following form:

parameter_declaration := "|" IDENTIFIER ("=" expression)? "|

In the parameter declaration, if there is a form of parameter_declaration = expresssion, the job flow has default param-
eters. For parameters with default values, if the corresponding parameter is omitted during the job flow call, the value
of the parameter will be replaced with the default value. The default parameter expression is evaluated for each job
flow invocation.

132 Chapter 4. Kompira Jobflow Language Reference

CHAPTER
FIVE

KOMPIRA STANDARD LIBRARY

Author
Kompira development team

In this library reference manual, the Kompira Standard library will be explained.

5.1 Built-in functions / jobs

Kompira’s jobs are predefined as built-in jobs and built-in functions.

Embedded jobs are divided into two types: local embedded jobs not run via the job manager and remote embedded
jobs executed by the job manager.

5.1.1 Local embedded jobs

Local embedded jobs are executable jobs even if the job manager is not running.

self()
Re-executes its own job flow from the beginning. When re-executing, the parameters of the job flow are not
changed. Also, in the case of a job flow whose multiplicity is specified, re-executes with the lock held.

print([message[, args, ...]])
Outputs a message string to the console and carries out a line feed.
When multiple arguments are given, multiple message strings are separated by space characters and output. If
you omit all arguments, only newlines are used.

sleep (timeout)
Sleeps the process for the number of seconds specified by the timeout. If the timeout is a datetime type, it will
sleep until that date and time.

exit([status=0[, result=”[, err0r=”]]])
Finishes the process. You can also specify an exit status code with status. Specify the execution result at process
termination with result. You can also specify an error message with error.

return([result="[, status=0[, err0r=”]]])
Returns control to the caller of the job flow. Specifies the execution result with result. You can also specify an
exit status code with status. You can also specify an error message with error.

abort([message])
It outputs a message to the console and abnormally ends the job. The end status code is set to 1.

133

Kompira Documentation, Release 1.6.7.post1

assert (value [, message])

It verifies that value is true, otherwise it outputs a message to the console and abnormally ends.

detach()

Separates the running process of the child process from the parent process. This allows the parent process to
proceed further without waiting for the child process to finish.

suspend ()

Pauses a running process.

urlopen (url [, ...options])

The options can be user, password, data, params, files, timeout, encode, http_method, verify, quiet, headers,
cookies, charset, binary, proxies.

It sends a HTTP request to the url specified by the argument and gets the result.
When user and password are specified, access by basic authentication is performed.

For data, you can specify the data to send with a POST request as a dictionary type. Transmission data is encoded
in the method specified by the encode argument.

Passing a dictionary to params expands it as a URL query string. For example, if you call as follows, the URL
actually accessed is http://example.com?keyl=valuel&key2=value2.

urlopen(url="http://example.com', params={keyl='valuel', key2='value2'})

You can pass files to upload to files. The file can be specified in either a dictionary with the fields name and data,
a list of file names and contents, a filename on the Kompira server, or an attachment field.

files={file={name='filename', data='content'}}
files={file=['filename', 'content']}
files={file="/tmp/filename.x1s"}
files={file=./attached_file.attachedl1}

In this case, specify the dictionary key (“file” in the above) to be sent to “files” according to the name of the
file field of the destination form. For file fields that accept multiple files, you can also pass field names and files
side-by-side in list format.

files=[['file', {name='filenamel', data='contentl'}],
['file', {name='filename2', data='content2'}]]

In this case, please also specify the inner field name and file in the list. When files are specified, they are encoded
in multipart/form-data format.

For timeout, specify the time until timeout in seconds.

For encode, “json” can be specified as the encoding type. When the data specified and encoded is in “json”,
application/json is automatically set in the Content-Type: header of the HTTP request. If the encode argument is
omitted, the transmitted data is encoded in application application/x-www-form-urlencoded format. If files are
specified, specifying “json” for encoding will result in an error.

For http_method, specify the method of HTTP request from ‘GET’, ‘POST’, ‘PUT’, ‘DELETE’, ‘HEAD’. If the
http_method is omitted, it is POST method if data or files are specified, and GET method if not specified.

When verify is set to true, a SSL certificate check is performed when the specified URL is https accessed. If an
illegal SSL certificate is detected, the urlopen job will generate an error. The default value of verify is false.

If quiet is set to true, when the verify option is true, suppress warning messages displayed when accessing https.

For headers, you can pass the header information set in the HTTP request as a dictionary type value.

134

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

In cookies, pass the cookie passed to the server as a dictionary type value.
For charset, you can specify the character code you expect as a response.

If you need to send an HTTP request via a proxy server, you pass the proxy server URL dictionary to the proxies
parameter for the following example. :

[proxies = {'http': 'http://10.10.1.10:3128', 'https': 'http://10.10.1.10:1080'}] ->
urlopen('http://www.kompira.jp', proxies=proxies)

Whether or not the acquired content is binary is determined by Content-Type. When Content-Type starts with
image | audio | video, or when octet | binary is included, it is judged to be binary. However, if binary is set to
true, content is treated as binary regardless of the Content-Type.

This built-in job returns a dictionary type value with the following elements:

Field Meaning

name

url Response URL

code Resulting status code

version | HTTP version (If HTTP 1.1, it will be 11)

text Content of the response (The response body was decoded into text based on the encoding informa-

tion, but in the case of binary content it will be empty)

content | Content of the response (body of the response as it is binary)

body Content of the response (When it judges that the content is binary, it becomes the same value as
content, and when judging it is text it will be the same value as text)

encod- | Encoding information

ing

head- Header information (dictionary type) included in the response
ers

cook- The cookie value (dictionary type) passed from the server

ies

history | When there is a redirect, its history information (list type)
binary | True value of whether it is binary content

mailto (to, from, subject, body[, ...options])

The options can be cc, bcc, reply_to, html_content, attach_files, parents, headers, charset, reply_to_all, in-
line_content, placeholder, as_string, smtp_server.

Send mail.

For to, specify the destination mail address as a character string. If you want to send to multiple addresses,
specify it in the list with the destination mail address as an element. For from, specify the mail address of the
sender. For subject, specify the character string of the mail subject. For body, specify the character string of
the mail body. For cc and bcc, specify Cc / Bee destination email addresses respectively. If you want to specify
multiple addresses, pass them in a list. For reply_to, specify the reply mail address.

When html_content is specified, mail of HTML format (text / html) is sent. If html_content is omitted or null is
specified, mail with body in text format (text / plain) will be sent. If both body and html_content are null, the
mailto job will fail. In attach_files, you can pass a list of file objects or file objects to attach to the mail.

If you pass a parent message (dictionary as a result of mail_parse) to parents, a reply mail will be sent for that
message. At this time, the mail headers In-Reply-To: and References: are properly set. In addition, the address
set in Reply-To: or From: of the parent message (if set) is set as the destination. If you want to refer to more than
one parent message, please pass it as a list. When reply_to_all is set to true when replying to mail with parents,
it sets “To:” of parent message as handling “Reply to all” and inherits the destination specified by Cc:.

5.1.

Built-in functions / jobs 135

Kompira Documentation, Release 1.6.7.post1

Passing a dictionary to headers, adds each key of the dictionary as a header item to the mail header.
For charset, you can specify the character code of sending mail. default is UTF-8.

Ifinline_content is set to true, inline expansion of the attached file occurs. At this time, the MIME mixed subtype
of the mail body is “related” and the Content-Disposition header of each attachment is “inline”. In addition,
“%{Content-ID#num}” (the num part is the index of the attachment specified by attache_files) or ““%{Content-
ID:filename}” in the body of the body (body, html_content) File name of the file) and the specified placeholder,
will be replaced with the Content-ID automatically appended to each attachment (with ‘<’ and ‘>’ removed
at both ends). For example, if you attach one image file with attach_files and include the description ‘’ in html_content, The image file attached to is now displayed inline.

If as_string is set to true, instead of actually sending the mail, it converts the entire message including the mail
header into a string. The resulting string can be referenced with SRESULT.

When an SMTP server type object is passed to smtp_server, the SMTP server is used to send mail. If the
argument is omitted, the SMTP server specified in the system configuration is used; if null is passed, mail is sent
using the SMTP server running on localhost (the server on which Kompira is installed), regardless of the system
configuration.

The User-Agent header of the mail sent by the mailto job is “Kompira ver X.XX”. The “X.XX” part contains
the version number of Kompira.

Note: If from is omitted, the sender’s e-mail address is determined with the next priority.
(1) process owner’s e-mail address
(2) administrator e-mail address of /system/config

(3) webmaster@localhost

download (from_file, to_path)

Download the file in the attached file field (fields of File, Array<File>, and Dictionary<File> types) to the spec-
ified path.

For from_file, specify the download source attachment field object. For to_path, specify the file path of the
download destination. The download destination is the file system on the server on which the job manager is
running. If the downloaded file path points to a directory, the file name is the file name of the attached file.

The following, downloads the file attached to the attached field of the Kompira object /root/Package to the local
/tmp directory. :

download(from_file=/root/Package.attached, to_path='/tmp/"')

upload (from_path, to_object, to _ﬁeld[, to_subscript])

Upload the file specified in the attached file field (fields of File, Array<File>, Dictionary<File> types). The result
returns the file name of the attached file.

For from_path, specify the file path of the download source. For to_object, specify the Kompira object to which
you want to attach, and specify the attachment field name of the attached Kompira object with to_field. If the
attachment field is an array (Array<File>) or a dictionary (Dictionary<File>), you can specify the array index or
dictionary key in to_subscript. If to_subscript is omitted, the array will add the file and the dictionary will treat
the file name is treated as a key in the dictionary.

The following uploads the locally placed file /tmp/foo.tar.gz to the attached field of the /root/Package object. :

upload(from_path="'/tmp/foo.tar.gz', to_object=/root/Package, to_field='"attached')

136

Chapter 5. Kompira Standard Library

mailto:webmaster@localhost

Kompira Documentation, Release 1.6.7.post1

5.1.2 Remotely embedded job

Remote embedded jobs are built-in jobs that run through the Job Manager. If the job manager is not running, execution
waits until the job manager is started.

In remote embedded jobs, the connection information of the remote host is referenced from the control variable.

put (local_path, remote_path) : Array<String>

Transfer the file from the host on which the job manager is running to the remote host. The result will return a
list of destination file paths.

For local_path, specify the source file path. It is also possible to transfer multiple files using wildcards. If
local_path is specified as a relative path, it is relative to the directory in which the job manager is running (usually
the root directory).

For remote_path, specify the directory path or file path of the transfer destination. If remote_path is specified
as a relative path, it is relative to the login user’s home directory or relative to the path specified by the __dir__
control variable.

get (remote_path, local_path) : Array<String>

Transfer the file from the remote host to the host on which the job manager is running. The result will return a
list of destination file paths.

For remote_path, specify the source file path. It is also possible to transfer multiple files using wildcards.
For local_path, specify the file path or directory path of the transfer destination (job manager side).

reboot ([wair=120])
Restarts the remote host.

In wait, specify the maximum time (in seconds) to wait for the remote host to restart.

The reboot job can only be run by users who run sudo jobs.

5.1.3 Built-in functions

Built-in functions are functions that can be used as Kompira expressions.

In addition to describing it in an expression, it can also be used alone as with embedded jobs. When used alone, the
result is inserted in SRESULT.

The right side of the colon (:) indicates the type of result returned by the function.
now() : Datetime
Return the current local date and time.
current() : Process
Retrieves its own process object currently executing.
channel() : Channel
Create an on-memory channel object for sending and receiving data between multiple processes.
datetime (dt_str_or_date[, dt_fimt_or_time, zone]) : Datetime

It converts the character string specified by dt_str_or_date into date and time data. It is also possible to specify
a format string with dt_fmt_or_time. By passing date type data to dt_str_or_date and passing time type data to
dt_fmt_or_time, you can configure date and time type data combined. The option parameter zone specifies a
time zone.

The format conforms to C language strftime() function. An example is shown below:

5.1. Built-in functions / jobs 137

Kompira Documentation, Release 1.6.7.post1

[dt = datetime('2015-1-1 10:30:05"', '%Y-%m-%d %H:%M:%S', 'Asia/Tokyo')] ->
print(dt) ->

[dt2 = datetime(dt.date, dt.time)] ->

print(dt2)

Note: If dt_fmt is omitted, the format of the date string will be converted as ISO 8601 format as shown below.
YYYY-MM-DDIT Jhh:mm(:ss(. mmmmmm)?)?([Z]|[+-]hh(:)?mm)?
You can use T or blank separator for date and time. Specifying seconds, microseconds, and time zones is optional.

If zone is omitted, the local time zone is assumed to be specified.

date (date_str[, dt_fimt]) : Date
It converts the character string specified by date_str into date data. It is also possible to specify a format string
with dt_fmt.
The format conforms to C language strftime() function.

time (time_str[, dt jnt]) : Time
It converts the character string specified by time_str into time data. It is also possible to specify a format string
with dt_fmt.
The format conforms to C language strftime() function.

timedelta (days=0, hours=0, minutes=0, seconds=0, microseconds=0) : Timedelta
Creates data showing elapsed time. Values of timedelta type and datetime type can be added or subtracted.

int(x=0) : Integer
Converts the string given by argument X to integer type.

float(x=0.0) : Float
Return a floating point number constructed from a number or string x.

pattern(pattern, typ="r', mode=") : Pattern

Creates a pattern object given by the argument pattern. typ represents the type of pattern, you can specify either
‘r’ (regular expression pattern), ‘g’ (glob pattern), ‘e’ (exact match pattern). If ‘i’ is specified for mode, pattern
matching is not case sensitive.

path(str_or_obj[, args, ...]) : Object

Returns the actual Kompira object from the character string str_or_obj representing the path name. str_or_obj can
be an array of strings. When an array or multiple arguments are given, each element is combined and interpreted
as a path name.

The following example enumerates the objects directly under the root directory. An example of use:

{ for p in path('/') | print(p) }

If a relative path is specified for str_or_obj, it refers to the Kompira object relative to the directory where this job
flow resides. The following example displays the path of the directory where this job flow resides.

Example usage:

print(path('."'))

138 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

You can also specify a Kompira object for str_or_obj. The following example enumerates Kompira objects at
the same level as the object contained in the parent directory of the Kompira object specified by parameter ‘dir’,
that is, the object specified by ‘dir’.

Example usage:

|dir = /home/guest|
{ for sibling in path(dir, '..') | print(sibling) }

user(user) : User

Returns a User object with the user name user. Giving an integer value to user returns a User object with that
value as user ID. Giving User object returns it as is.

group(group) : Group

Returns a Group object with the group name, group. Giving an integer value to group returns a Group object
with that value as the group ID. Giving a Group object will return it as is.

string(obj) : String
Converts object obj to a string.
bytes([b[, encoding="utf-8']]) : Binary

If b is an integer value, this generates a binary (sequence of bytes) of length b with each byte value of 0. If b is
a string, produces a binary encoded with the encoding specified in encoding. If b is an array of integers from
0-255, it generates the corresponding binary. If b is binary, return its value as is.

type(obj) : String

Returns the type name of the object obj.
decode (data [, encoding="utf-8']) : String

Decodes the binary data, data into a character string with the character code system specified by encoding.
encode (message [, encoding="utf-8']) : Binary

Encodes the string message into binary data with the encoding system specified by encoding.
length(obj) : Integer

Gets the length of the array passed in obj.

has_key(obj, key) : Boolean
Checks whether dictionary data and objects passed by obj are field accessible with the specified key, key.

json_parse(data [strict=false]) : any

Converts a string serialized in JSON format into an object of Kompira.

Example usage:

[str = '[1,2,3,true,"foo","bar"]"]
-> [obj = json_parse(str)]
-> { for elem in obj | print(elem) }

If strict is true, an error will occur if the control character is included in the string. If strict is false, then control
characters will be allowed inside strings. Control characters in this context are those with character codes in the
0-31 range, including ‘\t’, \n’, ‘\r’ and \0’

New in version 1.6.2.post3: Added the strict parameter.

5.1. Built-in functions / jobs 139

Kompira Documentation, Release 1.6.7.post1

json_dump(obj[, ensure_ascii=true, indent=null]) : String

Convert Kompira’s object to a serialized string in JSON format.

If ensure_ascii is true, all input non-ASCII characters will be escaped in the output. If ensure_ascii is false, these
characters will be output as-is.

If indent is a non-negative integer or string, then JSON array elements and dictionary elements will be pretty-
printed with that indent level. An indent level of 0, negative, or *”” will only insert newlines.

New in version 1.6.2.post3: Added the ensure_ascii and indent parameters.

mail_parse(data) : Dictionary

Converts MIME formatted string to Kompira’s dictionary object.

In addition to the header information of the mail, you can access the file name with the ‘Filename’ key in the
body of the mail with the ‘Body’ key. (If the attached file does not exist, ‘Filename’ key is null)

The body of the mail is encoded in utf-8 format only when Content-Type is text/plain and it is not an attached
file.

If the Content-Type is multipart, the ‘Is-Multipart’ key becomes true and the element of the ‘Body’ key becomes
an array of Kompira dictionary objects.

iprange(address) : Array<String>

Converts CIDR notation network address to IP network object.

Example usage:

{ for ip in iprange('192.168.0.1/24"') |
[__host__ = ip] >
['hostname'] ->> []

Warning: The embedded job iprange() will be removed in the near future.

5.2 Kompira objects

Various data handled by Kompira is stored as a Kompira object on the Kompira file system with directory structure.
Kompira objects have unique fields and methods for each type, and can be operated from the job flow.

5.2.1 Field type

The types that can be used in fields of Kompira object are as follows. The right side of the colon (:) indicates the type
of data when referring to the field from the job flow.

String : String

Represents a field of a string.

Binary : Binary

Represents a field of the binary, entered in hexadecimal notation.

Integer : Integer

Represents an integer field. Values other than integers can not be entered. If it is not entered, it will be null value.

140

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Float : Float

Represents a floating point number field. If an integer is entered, it is converted to a floating point number. If
not entered, a null value is returned.

Boolean : Boolean

Represents a boolean field. It is displayed as a check box on the form, corresponding to true when checked and
false when unchecked.

Enum : String

Represents a choice field. The list of choices is specified by the field qualifier.
Text : String

Represents a text field.

LargeText : String

Represents a larger text field.
Password : String

Represents a password field. The string is hidden when displaying the field.
File: File

Represents an attachment field. You can upload and download attached files.
Object : Object

Represents a Kompira object field. You can choose Kompira objects from choices. By specifying the field
qualifier, it is also possible to restrict choices to objects of a specific type or to objects under a specific directory.

Datetime : Datetime

Represents a date / time field. The format of the date and time information to enter is as follows.

Format Example

% Y-%m-%d J%H:%M:%S | 2006-10-25 14:30:59
% Y-%m-%d %oH:%M 2006-10-25 14:30

%o Y-%om-%od 2006-10-25
Yom/%od/%Y %H:%M:%S | 10/25/2006 14:30:59
Yom/%d/%Y %eH:%M 10/25/2006 14:30
Yo/ %od/% Y 10/25/2006
Yom/%od/%y %H:%M:%S | 10/25/06 14:30:59
Yom/%od/%y %oH: %M 10/25/06 14:30
Yorn/%od/ %0y 10/25/06

Date : Date
Represents a date field.
Time : Time
Represents a time field.
IPAddress : String
Represents an IP address field. It corresponds to input of IPv4 address format.
EMail : String
Represents a mail address field.
URL : String
Represents a URL field.

5.2. Kompira objects 141

Kompira Documentation, Release 1.6.7.post1

Array<T> : Array

Represents an array field whose type of elements is T. You can enter multiple elements of type T. (Array is
synonymous with Array<Strring> field.)

The only types that can be specified for the type variable T are String, Binary, Integer, Float, Boolean, Enum,
Password, Object, Datetime, Date, Time, [PAddress, EMail, and URL.

Dictionary<T> : Dictionary

Represents a dictionary field. Multiple keys and values can be entered. The type of the value is T. (Dictionary is
synonymous with Dictionary<String> field.)

New in version 1.6.0: Binary, Float, Array<T>, and Dictionary<T> fields have been added newly.

5.2.2 Field qualifier

Field qualifiers add more control and constraints on field display to field types. The field qualifier is described in the
form of a JSON object as shown below.

{ "<qualifierl>" : <valuel>, "<qualifier2>" : <value2>, ... }

The following types of field qualifiers exist.
The right side of the colon (:) indicates the type described by each field qualifier.
default : any

* Target fields: any
Specify the default value for the field.

invisible : Boolean

e Target fields: any
Hides fields from forms and views.

help_text : String

* Target fields: any
Describes the field. If this qualifier is specified, the text specified when editing the object is displayed.
object : String | Array | Dictionary
directory : String | Array | Dictionary
» Target fields: Object
Refines the choices in an object type field.

With the qualifier “object”, if you specify the path of a type object, the objects of that type will be displayed as
choices. Also, if you specify the path of a directory or table, the child objects of that object will be displayed as
choices. The following is an example of using a job flow type object as a choice.

{ "object" : "/system/types/Jobflow" }

With the qualifier “directory”, if you specify the path of a directory or table, its descendant objects are displayed
as choices. The following is an example of using all objects under /user as a choice.

{ "directory" : "/user" }

142 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

[Tk

If you specify a path wit or “~(username)” at the beginning, that part will be expanded to the user’s home
directory. If the user name is omitted, the user who is logged in becomes the target.

{ "object" : "~" }
{ "directory" : "~" }

These qualifiers allow you to specify multiple objects in an array format.

{ "object" : ["~", "/user"] }
{ "directory" : ["~", "/user"] }

If multiple directory or type objects are specified, an OR condition will be applied to each one. When a directory
and a type object are specified, an AND condition is applied.

By combining the qualifier “object” with the qualifier “directory”, it is possible to select an object of a specific
type under a certain directory, etc.

E.g.

{ "object" : "/system/types/NodeInfo", "directory" : "~" }

If you specify a object that does not exist or does not have read permission, it will be disabled. If you do not
specify any valid path, the choice will be empty. This means that you have narrowed down your search to criteria
that do not match any of the above.

E.g.
{ "object" : "/invalid_path" }
{ "directory" : "/invalid_path" }

If null is specified, then no filtering will be done. This is equivalent to not specifying a qualifier.

E.g.

{ "object" : null }
{ "directory" : null }

If you want to switch the criteria for narrowing down the choices in this field depending on the status of other
objects, instead of keeping it fixed, there are several ways to do so, as shown below.

If you want to switch the criteria for narrowing down the choices in this field based on the objects recorded in
the Object type field of another object, you can specify the field name as [reference_field] followed by the
path notation as follows.

E.g.
{ "object" : "/foo/bar/SomeObject[reference_field]" }
{ "directory" : "/foo/bar/SomeObject[reference_field]" }

In this case, the field named reference_field is called the “reference field”.

The object recorded in the reference field will be applied as this qualifier “object” or “directory”. Note, however,
that if no directory, table or type object is recorded in the reference field, it will not be valid as an object to be
specified as a qualifier.

If you want to refer to an Object type field as a configuration item of a Config type object, you need to add the
attribute name . data to the path of the Config type object.

E.g.

5.2. Kompira objects 143

Kompira Documentation, Release 1.6.7.post1

{ "object" : "/foo/bar/SomeConfig.data[reference_field]" }
{ "directory" : "/foo/bar/SomeConfig.data[reference_field]" }

If you want to switch the narrowing choices in this field depending on the selection of another Object type field
in the same object, you can specify the field name as $ [depend_field] instead of the path notation as follows.

E.g.

{ "object" : "$[depend_field]" }
{ "directory" : "$[depend_field]" }

In this case, the field named depend_field is called the “dependent field”.

The object selected in the dependent field will be applied as this qualifier “object” or “directory”. In the editing
window, selecting a dependent field will reset the selection at that point as the choices for this field will be
switched.

Note, however, that if the object selected in the dependent field is not a directory, table or type object, it is not
a valid object to specify as a qualifier. It is recommended to specify a field qualifier that limits the type on the
dependent field side as well.

Also, when the object selected in the dependent field has an Object type field, you can specify the object recorded
in that field as the reference field.

E.g.
{ "object" : "$[depend_field][reference_field]" }
{ "directory" : "$[depend_field][reference_field]" }

The object recorded in the reference field of another object selected in the dependency field will be applied as this
qualifier “object” or “directory”. Note, however, that as above, if no directory, table or type object is recorded in
the reference field, it will not be valid as an object to be specified as a qualifier.

Depending on the selection of another Enum or Object type field, you can also choose another way to switch the
refinement choices in this field.

E.g
{
"object" : {
"switch" : "$[depend_£field]",
"case" : {
"Directory": ["/system/types/Directory", "/system/types/Table"],
"Jobflow": "/system/types/Jobflow",
"F'onull
}
}
}

In this form, a “switch” part and a “case” part are required. The “switch” part is written in the same way as the
dependent or reference fields described above. The “case” part is in the form of a dictionary, which can contain
multiple pairs of patterns as keys and values as qualifier to be applied if a match is found. The “case” part is
a dictionary, with the pattern as the key and the qualifier as the value to be applied if a match is found. In this
case, the values of the dependent or reference fields described in the “switch” part are used to evaluate whether
the pattern described in the key of the “case” part matches, starting from the top. If any pattern is matched, the
corresponding value will be applied as this qualifier.

144

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

If none of the patterns match, it will be disabled as this qualifier and the choices in this field will be empty unless
a valid refinement is specified with another qualifier. In the example above, the optional matching pattern “*” is
specified at the end of the “case” section to prevent it from being invalidated.

By default, the pattern part can be written with the glob pattern, which is case-sensitive. The pattern type can be
specified in “case_pattern_type” as “exact”, “glob”, or “regex”. If “case_ignorecase” is set to true, the pattern
will be case-insensitive.

E.g.
{
"object" : {
"switch" : "$[depend_£field]",
"case" : {
"[0-9a-f]+\\.bin":
3,
"case_pattern_type": "regex",
"case_ignorecase": true
}
}

Note that when writing the regex pattern as a field qualifier in JSON format, the escape character \\ should be
ANANY

filter : Dictionary
* Target fields: Object

In the object type field, narrow down the choices. In addition to filtering by the “object” and “directory” qualifiers,
the filtering conditions specified here will be applied. Filtering conditions can be specified as a dictionary of
parameters to the find() method of the directory object.

E.g.
{
"directory" : "/user",
"filter" : {
"type_object" : "/system/types/TypeObject",
"abspath__contains" : "kompira"
}
}

Note that if the type object is specified with the qualifier “object” and the type object is also specified with
“type_object” in the qualifier “filter”, the condition will be applied as an OR condition.

Note, however, if you specify a type object with “type_object” in the “filter” qualifier, the home directory will
not be expanded with “~” or “~(username)”.

order_by : String

 Target fields: Object

Specifies the sort order for object type fields. The sort order can be specified by attribute names (abspath,
display_name, etc.) common to general objects. If you specify “-” at the beginning, such as “-abspath”, the sort
result will be in reverse order.

E.g.

5.2. Kompira objects 145

Kompira Documentation, Release 1.6.7.post1

{ "object" : "/system/types/NodeInfo", "order_by" : "abspath" }

If omitted, the sort order set for the directory specified by the qualifier “object” or “directory” will be applied.
However, the behavior when multiple directories are specified is undefined, so please specify it explicitly with
the qualifier “order_by”.

Specifying the sort order by field value is not supported. Also, if an invalid sort order is specified, it will be
ignored.

no_empty : Boolean

* Target fields: Object

Does not allow empty choices on the input form of Object type field.

E.g.
{ "object" : "/system/types/TypeObject", "no_empty" : true }
enum : Array | String | Dictionary

¢ Target fields: Enum
In the Enum type field, specifies a list of character strings to be selected.

Example

{ "enum" : ["Server", "Switch", "Router"] }

If you want to separate the stored data from the display name, you can specify it as follows by using the pair

ELINT3

[“<data>”, “<display name>"]. :

{ "enum" : [["SV", "Server"], ["SW", "Switch"], ["RT", "Router"]] }

If you want to switch the choices in this field depending on the status of other objects, instead of keeping them
fixed, there are several ways to do so.

If you want to switch a value recorded in an Array or Dictionary type field of another object as a choice for this
field, you can specify it as a reference field as follows.

E.g.

{ "enum" : "/foo/bar/SomeObject[reference_field]" }

The value recorded in the reference field will be applied as this qualifier “enum”. If the reference field is an array,
it will remain as an option. If the reference field is a dictionary, the key of each element will be the data and the
value will be the display name.

However, if you specify an object that does not exist or does not have read permission, and if the object does not
have the specified reference field, the choice will be empty.

If you want to reference an Array or Dictionary type field as a configuration item of a Config type object, you
need to add the attribute name .data to the path of the Config type object.

E.g.

{ "enum" : "/foo/bar/SomeConfig.data[reference_field]" }

If the object selected for another Object type field in the same object has an Array or Dictionary type field, you
can specify the reference field along with the dependent field as follows.

146

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

E.g.

{ "enum" : "$[depend_field][reference_field]" }

Based on the value recorded in the reference field held by another object selected in the dependent field, the
choices in this field will be switched. In the editing screen, when you select a dependent field, the selection at
that point will be reset once in order to switch the choices for this field.

Depending on the selection of another Enum or Object type field, you can also choose another way to switch the
choices for this field.

E.g
{
"enum" : {
"switch" : "$[depend_field]",
"case" : {
"Server": ["Server-A", "Server-B", "Server-C"],
"Switch": ["Switch-A", "Switch-B", "Switch-C"],
"Router": ["Router-A", "Router-B", "Router-C"],
"E ["Unknown'"]
}
}
}

In this form, a “switch” part and a “case” part are required. The “switch” part is written in the same way as the
dependent or reference fields described above. The “case” part is in the form of a dictionary, which can contain
multiple pairs of patterns as keys and values as qualifier to be applied if a match is found. The “case” part is
a dictionary, with the pattern as the key and the qualifier as the value to be applied if a match is found. In this
case, the values of the dependent or reference fields described in the “switch” part are used to evaluate whether
the pattern described in the key of the “case” part matches, starting from the top. If any pattern is matched, the
corresponding value will be applied as this qualifier.

If none of the patterns match, it will be invalid as this qualifier and the choices in this field will be empty. In the
example above, the “case” section is terminated with an optional matching pattern “*” to prevent it from being
invalidated.

By default, the pattern part can be written as a glob pattern, and the pattern type can be specified by
case_pattern_type as well as the object field qualifier.

pattern : String

e Target fields: String

In the String type field, specify a pattern with a regular expression.

min_length : Integer

 Target fields: String

In the String type field, specify minimum and/or maximum length.

max_length : Integer

e Target fields: String

In the String type field, specify minimum and/or maximum length.

strip : Boolean

¢ Target fields: String, Text, LargeText, Password

5.2. Kompira objects 147

Kompira Documentation, Release 1.6.7.post1

Removes whitespace characters from both ends of the input string. The default value is false.

key_strip : Boolean

e Target fields: Dictionary<T>

In the Dictionary<T> type fields, removes whitespace from both ends of the input key string. The default value

is false.

min_value : Integer

* Target fields: Integer, Float

In the Integer and Float type field, specifies minimum value.

max_value : Integer

e Target fields: Integer, Float

In the Integer and Float type field, specifies maximum value.

file_accept : String | Array

* Target fields: File
In the File type field, specifies a selectable file types.
E.g.

{ "file_accept" : ".x1ls" }

When more than one file type is specified, it is specified by a list.

E.g.

{ "file_accept" : [".png", ".jpg"] }

Note: The Array<T> and Dictionary<T> fields allow you to specify a qualifier for the element T-type.

New in version 1.5.1: New field qualifiers: pattern, min_length, max_length, min_value, max_value, file_accept have

been added.

New in version 1.6.2.post5: New field qualifiers: strip and key_strip have been added.

New in version 1.6.4: New field qualifiers: filter and order_by have been added.

New in version 1.6.4: Dependency and reference fields can now be specified with the object, directory or enum quali-

fiers.

New in version 1.6.4: For object, directory or enum qualifiers, “switch” and “case” now allow you to specify which

qualifier to apply depending on the pattern.

Changed in version 1.6.4: The sort order set for objects specified with the object or directory qualifiers is now applied.

148

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

5.2.3 Properties

Kompira objects provide the following properties.

Object.id : Integer
The value of the ID of the object. The object ID is a unique integer value that is automatically assigned when
the object is created. It can not be updated.

Object.abspath : String
The absolute path value of the object. It can not be updated.

Object.name : String
The value of the object name. The format of the character string that can be used for the object name is the same
as the identifier in the Kompira job flow language. You can not create objects with the same name in the same
directory.
Object.description : String
A character string that describes the object.
Object.display_name : String
The display name of the object. The display name string has no format restriction unlike object names.
Object.field_names : Array<String>
A list of field names that the object has. It is a list type value. It can not be updated.

Object.owner : User
The owning user of the object. It is a user object.

Object.created : Datetime
The creation date and time of the object. It will be a date and time type value. It can not be updated.

Object.updated : Datetime
The update date and time of the object. It will be a date and time type value. It can not be updated.

Object.parent_object : Object
The parent object of the object, i.e. the directory (or table) object. It can not be updated.

Object.children : Array<Object>
A child object list of objects. If the object does not have child objects, such as when it is not a table or directory,
it is an empty list. It can not be updated.
Object.type_object : TypeObject
The type object of the object. It can not be updated.
Object.type_name : String
The type name of the object. It can not be updated.
Object.user_permissions : Dictionary<Permission>
User permission information. It is a dictionary type object with key as writable, readable, executable as the key.

Object.group_permissions : Dictionary<Permission>
Group permission information. It is a dictionary type object with writable, readable, executable and priority keys

5.2. Kompira objects 149

Kompira Documentation, Release 1.6.7.post1

5.2.4 Method

Kompira objects provide the following methods.

Object.delete()
Deletes the object.

Object.update([keyl=vall, key2=vai2, ...]
Updates the values of the fields keyl, key2, ... of the object to vall, val2,

Object.rename (name)

Change the name of the object to name.

5.3 Built-in objects

This section describes standard type objects pre-built in Kompira.

An object of Kompira has a type indicated by a type object. For example, a job flow object has a job flow type and a
directory object has a directory type. In Kompira, types such as job flow type and directory type are also defined as
objects, so they also have types of type objects. L.e. the type of the type object is a type object.

Kompira’s objects have fields and methods specific to that type.

5.3.1 Type Object (TypeObject)

The type object type defines the fields and methods of Kompira objects belonging to that type. By defining a new type
object, the user can freely add the type of Kompira object.

Note: When modifying a type object, such as adding a field to an existing type or deleting an unnecessary field,
Kompira processes it according to the following rules.

* Fields deleted by the changed type object are ignored and become inaccessible.

* Newly added fields of the new type object are automatically initialized with null values.

Field

In the type object type, the following fields are defined.

TypeObject.extend : String

 Display name: Extend module
Specifies Python extension module paths referenced by type objects. The default is kompira.extends.

To extend the behavior and view of type objects, create extension model modules models.py and extension view
modules views.py as Python modules and place them under the path specified here.

TypeObject.fieldNames : Array

* Display name: Field names

Specifies an array of field names of objects of this type as an array. The rules for strings that can be used in field
names are the same as the job flow language identifier.

150 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

TypeObject.fieldDisplayNames : Array
* Display name: Field display names

Specifies the list of field display names of objects of this type as an array. An arbitrary character string can be
used for the field display name. The order of array elements must correspond to the columns of field names.

TypeObject.fieldTypes : Array
 Display name: Field types

Specifies an array of field types of objects of this type as an array. The order of array elements must correspond
to the columns of field names.

Method

Methods specific to type object types are not specifically defined.

5.3.2 Directory (Directory)

Directory type specifies the type of directory object. You can have several different types of Kompira objects under a
directory object. This allows Kompira objects to have a hierarchical structure as well as Unix file systems.

Field

In the directory type, the following fields are defined.

Directory.orderBy : String

* Display name: Sort order
Specifies the order in which objects are displayed in this directory.
Directory.pageSize : Integer
 Display name: Page size
* Minimum value: 10
e Maximum value: 1000
* Default value: 25

Specifies the number of objects to be displayed in this directory.

Method

The following methods are defined in the directory type.

Directory.add(name, type_obj[, data, overwrite]) : Object

Under the directory, add a type_obj type Kompira object with the name specified by name. Dictionary type
data can be passed to data, so that you can initialize the field value of the object. SRESULT stores newly added
objects. If you pass true to the overwrite argument, even if an object of the same name exists under the directory,
it does not cause an error and updates the object.

5.3. Built-in objects 151

Kompira Documentation, Release 1.6.7.post1

Directory.move (obj[, name])
Moves the object specified by obj under the directory. If name is specified, the name of the object to be moved
is changed to name.

Directory. copy(obj[, name]) : Object
Duplicates the object specified by obj under the directory. If name is specified, the name of the duplicated object
is changed to name. If obj is a directory or table, child objects are recursively duplicated. SRESULT stores newly
created objects.

Directory.has_child(name) : Boolean
Returns true if the child object specified by name exists under the directory, false if it does not exist.

Directory.find(params) : Array<Object>

If objects matching the condition specified by params exists under the directory, the objects is returned as a list.To
filter by attribute of the objects, you can specify filters = <attribute-name> = <value> ™" in params.

For example, if you want to get a list of type objects, specified as shown below.

[result = /.find(type_object=/system/types/TypeObject)]

Although the above is filtering by exact matching, detailed filtering conditions can be specified by describing the
attribute name followed by a lookup as follows.

For example, you can filter objects that contain kompira in the path.

[result = /.find(abspath__contains="kompira')]

The lookup types and filtering method is as follows.

Lookup Filtering method

exact, iexact The attribute exactly matches the specified value.

contains, The attribute contains the specified value.

icontains

startswith, The attribute starts with the specified value.

istartswith

endswith, The attribute ends with the specified value.”

iendswith

regex, iregex The attribute matches the specified regular expression.

gt, gte The attribute is greater than specified value (gt). The attribute is greater than or
equal to the value specified (gte).

1t, 1te The attribute is less than specified value (1t). The attribute is less than or equal to
the value specified (1te).

in The attribute is included in the specified values.

In filtering others than virtual objects by attribute value, the lookup that can be specified depends on attribute.

152 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Attribute Specifiable Lookup

owner exact, in

abspath exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex

dis- exact, iexact, contains, icontains, startswith, istartswith, endswith,

play_name iendswith, regex, iregex

description | exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex

created exact, gt, gte, 1t, 1te

updated exact, gt, gte, 1t, 1te

type_object | exact, in

par- exact, in

ent_object

In filtering virtual objects by attribute value, the lookup that can be specified depends on the data type of the

attribute.
Type of the at- | Specifiable Lookup
tribute
String exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex
Integer exact, gt, gte, 1t, 1te
Datetime exact, gt, gte, 1t, 1te
Object exact
User exact
Boolean exact

If lookup is not specified, exact is applied.”

If type objects are specified by type_object attribute filtering, you can also specify filtering conditions by
field value.When filtering by field value, use params as fields = {<field-name> = <value>} or fields
= {<field-name>__<lookup> = <value>}.

An error occures if you specify filtering by field value when type object is not specified.

For example, if you want to get a list of jobflows that contain urlopen in its source code, specified as shown
below.

[result = /.find(type_object=/system/types/Jobflow, fields={source__contains=
—'urlopen'})]

The available lookups for filtering by field are shown below.

5.3. Built-in objects 153

Kompira Documentation, Release 1.6.7.post1

Type of | Specifiable Lookup

field

String exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex, in, range

Integer exact, isnull, gt, gte, 1t, 1te, in, range

Boolean exact

Datetime exact, isnull, gt, gte, 1t, 1te, range

Object exact, isnull

File (same as string)

Array (same as string)

Dictio- (same as string)

nary

exact is applied when lookup is not specified.

By default, the find method returns the resulting object list in the order set for the directory. If you want to specify
the order explicitly, you can specify order_by=<attribute-name> in params. In the following example, they
are sorted in ascending order by creation date and time.

[result = /.find(order_by='"created')]

The following attributes can be used to specify the order by order_by.

Attribute Order applied

id Order by object ID

owner Order by user ID of the object’s owner

abspath Order by absolute path of the object

display_name | Order by display name of the object

description Order by description of the object

created Order by creation date and time of the object (oldest first)
updated Order by update date and time of the object (oldest first)
type_object Order by type object’s ID

parent_object | Order by parent object’s ID

If you want to reverse the order, prefix it with -. In the following example, they are sorted in descending order
by update date and time.

[result = /.find(order_by='"-updated')]

Multiple sort orders can be specified by separating them with commas. If the values of the previously specified
attributes are the same, they will be sorted in the order of the values of the later specified attributes.

[result = /.find(order_by='"type_object,created')]

If the type object is specified by type_object attribute filtering, you can also specify the sort order by field value.
To sort by field value, use order_by=field:<field name> in params. However, only one order by field value
can be specified. If you want to reverse the order by field value, use order_by=-field:<field-name>.

[result = /.find(type_object=/system/types/Wiki, order_by='field:wikitext')]

By default, the find method returns a list of all objects that match the condition, but in some cases, this may be
unwieldy due to the large number of objects involved. If you want to limit the maximum number of objects to
retrieve, you can specify 1imit=<number> in params. The following example will return at most the first 10
objects.

154

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

[result = /.find(Qimit=10)]

If you want to specify the first position of the object to be retrieved, you can specify it in params with
offset=<first position>. The first position is specified starting from 0. The following example returns
up to 10 objects, starting at position 11.

[result = /.find(offset=10, limit=10)]

Even if the specified first position is larger than the actual number of objects, no error will occur, resulting in an
empty list.

New in version 1.6.6postl: Parent_object can now be specified in object attribute filtering. Description and par-
ent_object attributes can now be specified in order_by.
Directory.glob(pattern) : Array<Object>

If objects matching the condition specified by patterns exists under the directory, the objects is returned as a list.
To filter by patterns of the objects, you can specify as shown below.

"<object name>"

For example, you can filter objects that contain kompira in the path.

[result = /.glob("kompira*")]

In addition to the object name, it is possible to specify the following elements.
* Path
* Object
* Owner
* Attribute filtering
* Field value filtering

If a path is specified, the object under that path is returned. The pattern is described in the following format.

"<path>/<object name>"

You can specify /* and /** as the path. Each matches a single-tiered directory and a directory of any depth.

For example, if you want to get a list of objects whose name begin with kompira and that contain user in path,
specified as shown below.

[result = /.glob("/**/user/**/kompira*")]

If a type object is specified, the object whose type is specified type object is retuened. The pattern is described
in the following format.

"<object name>.<type object>"

For example, if you want to get a list of jobflows, specified as shown below.

[result = /.glob("*.Jobflow")]

If a owner is specified, the owner’s object is returned. The pattern is described in the following format.

5.3. Built-in objects 155

Kompira Documentation, Release 1.6.7.post1

"<object name>@<owner>"

For example, if you want to get a list of root’s objects, specified as shown below.

[result = /.glob("*@root")]

If a attribute filtering is specified, matched object is returned. The pattern is described in the following format.

"<object name>(<attirubute name>=<value>)" or "<object name>(<attibute name>_
—<lookup>=<value>)"

Refer to the find method for a list of lookups that can be specified for attribute values.

For example, if you want to get a list object whose display name contains kompira, specified as shown below.

[result = /.glob("*(diplay_name__contains="kompira')")]

If a field value filtering is specified, matched object is returned. The pattern is described in the following format.

"<object name>[<field name>=<value>]" or "<object name>[<field name>_<lookup>=
—<value>]"

Refer to the find method for a list of lookups that can be specified for field values.

For example, if you want to get a list of jobflows that contain urlopen in its source code, specified as shown
below.

[result = /.glob("*[source__contains="urlopen']")]

These can also be specified in combination. The pattern when all specified is as follows.

"<path>/<object name>.<type object>@<owner>(<attirubute filtering>)[<field value.
—filtering>]"

For example, if you want to get a list of object like below, specified as shown below.
* Objects under /user/app
* It owned by root.
* Its name starts with Kompira.
* Jobflow
* <Its display name contains Kompira.

e Its multiplicity is 1 or less.

[result =
/.glob("/user/app/**/kompira*.Jobflow
@root(display_name__contains="kompira') [multiplicity__lt=1]1")]

156 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

5.3.3 License

License type defines objects that manage Kompira’s license file.

Field

A unique field is not defined for the license type.

Method

There are no specific methods defined for the license type.

Properties

The license type object provides the following properties.

License.node_count : Integer

The number of nodes currently in use.

5.3.4 Virtual Object (Virtual)

Virtual object type specifies an implementation module for defining special objects of Kompira, such as processes and
incidents.

Field

In the virtual object type, the following fields are defined:

Virtual.virtual : String

 Display name: Implementation module

Specifies the path of the Python implementation module of the special object.

Method

Methods specific to virtual object types are not specifically defined.

5.3.5 Job flow (Jobflow)

The job flow type specifies the type of job flow object.

5.3. Built-in objects 157

Kompira Documentation, Release 1.6.7.post1

Field

In the job flow type, the following fields are defined.

Jobflow.source : LargeText

» Display name: Source
The source code string of the job flow.

Jobflow.code : LargeText

» Display name: Code
* Invisible field

The intermediate code character string, as the result of compiling the source of the job flow, is stored. It can not
be edited from the browser.

Jobflow.parameters : Dictionary

* Display name: Parameters
* Invisible field

The intermediate code character string, resulting from compiling the default value of the parameters of the job
flow, is stored as a parameter dictionary. Since it is invisible, it can not be edited from the browser.

Jobflow.executable : Boolean

* Display name: Executable
* Invisible field

If the job flow can be executed, it is true. If the job flow can not be executed because of a compile error or the
like, false is stored. It can not be edited from the browser.

Jobflow.errors : Dictionary

* Display name: Errors
* Invisible field

An error message at compile time is stored in a dictionary with the line number of the corresponding source code
as a key. It can not be edited from the browser.

Jobflow.compilerVersion : String

* Display name: Compiler version
¢ Invisible field
Contains the version string of the compiler used to compile the job flow. It can not be edited from the browser.
Jobflow.multiplicity : Integer
* Display name: Multiplicity

Sets the multiplicity of the job flow. If a job flow process that exceeds the number of multiplicity invokes this
job flow at the same time, that process is kept waiting until another process completes this job flow call. If the
multiplicity is set to a value less than or equal to 0, the multiplicity is interpreted as unlimited.

158 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Jobflow.defaultCheckpointMode : Boolean

 Display name: Default Checkpoint mode
Specifies the default checkpoint mode for the job flow.
Jobflow.defaultMonitoringMode : Enum
* Display name: Default Monitoring mode
e Enum choices: "NOTHING" | "MAIL" | "ABORT_MAIL"
Specifies the default monitoring mode of the job flow.
Jobflow.compiledDatetime : Datetime
 Display name: Compiled Datetime
* Invisible field

The compiled datetime of the job flow is stored. It can not be edited from the browser.

Note: If you call a job flow with multiplicity specified, the job flow process acquires the lock. When returning from the
job flow call or the job flow ends, the lock is released. Locks can be acquired recursively. Therefore, even if recursively
calling a job flow with specified multiplicity, execution of that process will not block.

Multiplicity When another job flow is called at the end in the specified job flow, the acquired lock is released.

Method

Methods specific to the job flow type are not specifically defined.

5.3.6 Channel (Channel)

Channel type specifies the type of channel object. Using channel objects, it is possible to synchronously send and
receive messages between different job flow processes.

By specifying an action, you can specify what to do when a message is received.

Field

In the channel type, the following fields are defined.
Channel .message_queue : Array<Binary>
* Display name: Message queue
* Invisible field
The queue in which messages sent to the channel are stored. It can not be edited from the browser.

Channel .event_queue : Array<Binary>

 Display name: Event queue
* Invisible field

A queue that stores events waiting to receive messages on a channel. It can not be edited from the browser.

5.3. Built-in objects 159

Kompira Documentation, Release 1.6.7.post1

Channel.action_type : Enum

 Display name: Action type
¢ Enum choices: "NoAction" | "ExecuteJobflow"
¢ Default value: "NoAction"

Specifies the type of action to take when the channel receives a message.

Action type Action behavior
NoAction Nothing as an action.
ExecuteJobflow | Execute the job flow specified in the action target.

Channel.action_target : Object

* Display name: Action target
» Choices by object: Depends on the field action_type

Specify the action target to be processed according to the action type. If the action type is ExecuteJobflow, it
specifies a job flow to be executed. The job flow is executed with the owner of the channel object as the user,
passing the received message as the first parameter.

Warning: The job flow specified when the action type is ExecuteJobflow must have at least one parameter,
and if there is a second or subsequent parameter, a default value definition is required.

Changed in version 1.6.6: The fields action_type and action_target have been added.

Method

The channel type has the following methods defined.

Channel . send (message)

Sends the message, ‘message’ to the channel.

Channel .pop_message (index=0) : any

Retrieves a message of the specified index (or first if omitted) from the channel’s message queue. The retrieved
message is deleted from the message queue.

If a negative value is specified for the index, the position from the end is specified. If an index at which no
message exists is specified, a runtime error occurs (unlike an event job, it does not wait for receipt of a message).

Channel .peek_message(index=0) : Array

References a message of the specified index (or first if omitted) from the channel’s message queue. The referenced
message is not deleted from the message queue but remains.

The result is a list, where the first element contains the ID of the referenced message and the second element
contains the referenced message itself. This is the same structure as the result when peek_mode=true is specified
in Event jobs.

If a negative value is specified for the index, the position from the end is specified. If an index at which no
message exists is specified, a runtime error occurs (unlike an event job, it does not wait for receipt of a message).

The message ID is an ID that identifies a separate message for each channel and is used in the delete_message()
method described below. Note that the message ID is not system unique, since the same message ID may be used
for different channel objects.

160

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Channel.delete_message (*msgid)

Deletes the message corresponding to the specified message ID from the channel’s message queue. Multiple
message IDs can be specified.

If a message ID that does not exist is specified, a runtime error occurs.

Channel.clear_messages()
Empties the channel’s message queue.

Changed in version 1.6.7: New methods pop_message, peek_message, delete_message and clear_messages have been
added.

Properties

The channel type object provides the following properties.

Channel .message_count : Integer
Indicates the number of messages accumulated in the message queue.

Channel.event_count : Integer
Indicates the number of events accumulated in the event queue.

5.3.7 Wiki page (Wiki)

The Wiki page type specifies the type of wiki page object. Kompira’s Wiki page object supports Wiki Creole / Mark-
down / Textile notation.

Field

In the Wiki page type, the following fields are defined.
Wiki.wikitext : LargeText

* Display name: Wiki text

Stores the text of the wiki page.

Wiki.style : Enum

* Display name: Wiki style

¢ Enum choices: "Creole" | "Markdown" | "Textile"

 Default value: "Creole"

Select wiki page notation from Creole, Markdown and/or Textile.

5.3. Built-in objects 161

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to Wiki page type are not specifically defined.

5.3.8 ScriptJob

The script job type specifies the type of script job object.

Field

In the script job type, the following fields are defined.

ScriptJob.source : LargeText

* Display name: Source
Stores the source text of the script.

Scriptlob.ext : String

 Display name: Extension

Sets the extension of the script. When executing a script on a Windows server, you need to set the extension of
the script appropriately.

ScriptJob.multiplicity : Integer
* Display name: Multiplicity

Sets the multiplicity of the script job. If a job flow process that exceeds the number of multiplicity invokes this
script job at the same time, that process will wait until another process completes this script job invocation. If
the multiplicity is set to a value less than or equal to 0, the multiplicity is interpreted as unlimited.

Method

Methods specific to script job types are not specifically defined.

5.3.9 Environment Variables (Environment)

The environment variable type specifies the type of the environment variable object. If an environment variable object
is specified in the environment variable section of the user’s configuration, when the user executes the job flow, an
environment variable dictionary is stored in $ENV so that each value in the dictionary can be referenced from the job
flow.

Field
For environment variable type, the following fields are defined.
Environment.environment : Dictionary

* Display name: Environment

Stores the environment variable dictionary.

162 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to environment variable types are not specifically defined.

5.3.10 Template

The template type specifies the type of the template object.

Field

In the template type, the following fields are defined.

Template.template : LargeText

* Display name: Template

Stores the template string.

Method

Methods specific to template type are not specifically defined.

Deprecated since version 1.4.7: Changed since version 1.4.7: Please use text type object instead.

5.3.11 Table

Table type specifies the type of table object. A table object, like a directory object, can have multiple child objects.
However, the type of the child object is fixed.

Field

For table type, the following fields are defined.
Table.typeObject : Object
¢ Display name: Type object
» Choices by object: TypeObject
* No empty field
Specifies the type of the child object to be stored in this table.
Table.relatedObject : Object

* Display name: Related object
» Choices by object: Jobflow | Form

Specifies the job flow and form that can be executed from the menu of this table. You can now run job flows and
forms on selected objects from the table list. In the case of job flow execution, the selected object list is passed to
the first parameter of the job flow. For form execution, the object list selected is passed to the objects parameter.

5.3. Built-in objects 163

Kompira Documentation, Release 1.6.7.post1

Table.displayList : Array
* Display name: Display fields
Specifies an array of field names of child objects to be displayed in the view of the table.

Table.orderBy : String

* Display name: Sort order
Specifies the order in which objects are displayed in this table.
Table.pageSize : Integer
* Display name: Page size
e Minimum value: 10
* Maximum value: 1000
¢ Default value: 25

Specifies the number of objects to be displayed in this table.

Method
The table type method is the same as the Method provided by the directory type. However, the type_obj parameter can
be omitted in the add method, and the find method does not require the type object to be identified.

Table. add(name[, type_obj, data, overwrite]) : Object

Adds a Kompira object of the type specified in the object type field of the table with the name specified by name
under the table. Dictionary type data can be passed to data, so that you can initialize the field value of the object.
If you pass true to the overwrite argument, even if an object of the same name exists under the table, it does not
cause an error and updates the object.

Table.find(params) : Array<Object>

If objects matching the condition specified by params exists under the table, the objects is returned as a list.
Basically, it is the same as the find method for directory types, but it does not require the type_object attribute
filtering to identify the type object, even when filtering by field value or sorting by field value is specified.

5.3.12 Management Area (Realm)

The management area type specifies the type of management area object. By defining the management area objects,
you can manage managed networks separately for each job manager.

Field

In the management area type, the following fields are defined.
Realm.range : Array
 Display name: Range
Specifies the target range of the network address that this management area has jurisdiction.

Realm.disabled : Boolean

 Display name: Disabled

If this value is set to true, the management area setting is invalidated.

164 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to the controlling area type are not specifically defined.

5.3.13 AttachedFile

Attachment type specifies the type of attachment object.

Field
In the attached file type, the following fields are defined.
AttachedFile.attachedl : File

* Display name: Attached file 1
The field containing the first attachment object.
AttachedFile.attached2 : File

 Display name: Attached file 2
The field where the second attachment object is stored.

AttachedFile.attached3 : File

* Display name: Attached file 3

The third attachment object field is stored.

Method

Methods specific to attachment type are not specifically defined.

5.3.14 Node information (Nodelnfo)

Node information type specifies the type of node information object. By specifying the node information object as the

__node__ control variable in the job flow, you can specify the target node to execute the command.

Field

In the node information type, the following fields are defined.
NodeInfo.nodetype : Object
 Display name: Node type
* Choices by object: NodeType
Select the type of node defined in Kompira.

5.3. Built-in objects

165

Kompira Documentation, Release 1.6.7.post1

NodeInfo.conntype : Enum

 Display name: Connection type
* Enum choices: Depends on the field NodeType.conntypes of the object selected in field nodetype

Select the connection type of the node. The connection type that can be specified will change depending on the
node type selected above. See Node setting for details.

NodeInfo.hostname : String

* Display name: Hostname
Specifies the host name of the node.

NodeInfo.ipaddr : IPAddress

 Display name: IP address
Specifies the IP address of the node.

NodeInfo.port : Integer

» Display name: Port number
* Minimum value: 0
e Maximum value: 65535

Specifies the port number of the node. If not specified, the default port number corresponding to the connection
type is used.

NodeInfo.shell : String

 Display name: Shell
Specifies the shell to be used for remote connection. If not specified, ‘/bin/bash’ is used as the default.

NodeInfo.use_shell : Boolean

* Display name: Use shell
¢ Default value: false

Set to false if you do not want to use the shell when connecting remotely. When connecting to a device that does
not have a shell, such as network equipment, it is a good idea to set it to false. The default is false.

NodeInfo.proxy : Object
* Display name: Proxy
* Choices by object: Nodelnfo

When connecting via SSH via a steppingstone server, specify the node information object to be the platform
server. It is used only when connecting with SSH.

NodeInfo.account : Object

* Display name: Account
* Choices by object: AccountInfo

Specifies account information to be used for remote connection. If explicitly specifying the __account__ control
variable of the job flow, that will take precedence.

166 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

New in version 1.6.4: The node type field has been added.

Changed in version 1.6.4: The connection type field now switches between different options depending on the node
type.

Method

Methods specific to node information type are not specifically defined.

5.3.15 Account information (Accountinfo)

Account information type specifies the type of account information object. By setting the account information object to
the __account__ control variable in the job flow, you can specify account information to be used for remote connection.

Field

In the account information type, the following fields are defined.

AccountInfo.user : String

 Display name: Username
Sets the user name of the account.

AccountInfo.password : Password

* Display name: Password
Sets the password for the account. If an SSH key file with passphrase is set, it is also used as a passphrase.

AccountInfo.keyfile : File

* Display name: SSH key file
When logging in using the SSH key file, attach the key file.

AccountInfo.passphrase : Password

* Display name: SSH key passphrase

This is the passphrase you specify for SSH keys with passphrase. If you do not have a passphrase or if it is the
same as a password, you can omit it.

Method

Methods specific to account information type are not specifically defined.

5.3. Built-in objects 167

Kompira Documentation, Release 1.6.7.post1

5.3.16 Repository (Repository)

The repository type specifies the type of repository object. Using the repository object, you can link with an external
VCS repository, you can synchronize data such as pushing data of Kompira’s directory to repository, or pull data on
repository to the Kompira directory.

Field

In the repository type, the following fields are defined.
Repository.URL : URL
* Display name: URL
Sets the URL of the repository to be synchronized.
Repository.repositoryType : Enum
» Display name: Repository type
¢ Enum choices: "git" | "mercurial”
Specify the repository type. In the current version, only ‘git’ and ‘mercurial’ are supported. The default is ‘git’.

Repository.port : Integer

* Display name: Port number
* Minimum value: 0
e Maximum value: 65535
Specifies the port number to connect to the external repository. If not specified, the default port number is used.

Repository.username : String

* Display name: Username
Specify the user name when connecting to the repository.

Repository.password : Password

* Display name: Password
Specify the password when connecting to the repository.

Repository.directory : Object

 Display name: Directory
* Choices by object: Directory
Specify the Kompira directory to be synchronized.

Repository.updateConfig : Boolean

* Display name: Update config data

When pulling object data from an external repository, the configuration data of Config type objects are also
overwritten.

168 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Repository.log : LargeText
 Display name: Log
¢ Invisible field
The log at the time of synchronous execution is stored.

New in version 1.6.7: The field updateConfig has been added.

Method

Methods specific to repository types are not specifically defined.

5.3.17 Mail channel (MailChannel)

Mail channel type specifies the type of mail channel object that imports mail from IMAP4 / POP3 server into the
channel.

When a job flow is waiting to receive mail from the mail channel, or when an action with some action is set for the
mail channel, the mail channel starts polling to receive mail from the configured IMAP4/POP3 server.

When mail is received from the IMAP4/POP3 server during polling, the following action is taken.

* If there is more than one job flow waiting for the mail channel, the received mail is passed to the job flow that
has been waiting the longest and that job flow continues processing.

« If the above does not apply and an action has been set for the mail channel, the action will be initiated based on
the received mail.

¢ If none of the above apply when the mail is received, the received mail is stored in the message queue of the mail
channel.

The target mail to receive (all mails or unread mails) and whether to delete the received mail can be specified in the
receive mode.

If there is no target mail to be received in the mailbox, mail is fetched again from the IMAP4/POP3 server after the
time set in checkInterval has elapsed. However, if there is no job flow waiting for the mail channel and no action is set
for the mail channel, the polling process for receiving mail is suspended.

Field

In the mail channel type, the following fields are defined.
MailChannel .message_queue : Array<Binary>

 Display name: Message queue

* Invisible field

The queue in which the message sent to the mail channel is stored. It can not be edited from the browser.

MailChannel.event_queue : Array<Binary>

* Display name: Event queue

* Invisible field

A queue that stores events waiting to receive messages on the mail channel. It can not be edited from the browser.

5.3. Built-in objects 169

Kompira Documentation, Release 1.6.7.post1

MailChannel.serverName : String

* Display name: Server name
Specifies the host name of the IMAP4/POP3 server. If set to empty, it will be treated as localhost.

MailChannel.protocol : Enum

* Display name: Protocol
¢ Enum choices: "IMAP4" | "POP3"
e Default value: "IMAP4"
Sets IMAP 4 or POP 3 as the mail reception protocol.
MailChannel.SSL : Boolean
¢ Display name: SSL
Set to true to communicate via SSL.

MailChannel.port : Integer

 Display name: Port number
e Minimum value: 0
* Maximum value: 65535
Set the port number of the IMAP server. If not specified, the default port number is used.

MailChannel .username : String

* Display name: Username
Set the user name to connect to the IMAP4 / POP3 server.

MailChannel.password : Password

* Display name: Password
Set the password for connecting to the IMAP4 / POP3 server.

MailChannel.timeout : Integer

* Display name: Timeout
* Minimum value: 0
* Default value: 60

Specify the connection timeout for IMAP4 / POP3 serverin seconds. The default is 60 seconds. When it is empty
or set to 0, it becomes the default value. Negative values are not allowed.

MailChannel .use_oauth2 : Boolean
* Display name: Use OAuth2
Check this box if you wish to authenticate using OAuth2. In this case, a password is not required.
MailChannel.oauth2_provider : Object
* Display name: OAuth2 provider
* Choices by object: OAuth2Provider

Select the OAuth2 service provider; required if OAuth2 authentication is used.

170 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

MailChannel.refresh_token : Password

* Display name: Refresh token
* Invisible field

Stores the refresh token obtained through OAuth2 authentication. It is a hidden field and cannot be edited from
the browser.

MailChannel.access_token : Password

* Display name: Access token

¢ Invisible field

Stores the access token obtained through OAuth2 authentication. It is a hidden field and cannot be edited from
the browser.

MailChannel.token_expires_at : Datetime

* Display name: Token expires at

¢ Invisible field

Stores expiration date of the access token obtained through OAuth2 authentication. It is a hidden field and cannot
be edited from the browser.

MailChannel.mailbox : String
» Display name: Mailbox
¢ Default value: "INBOX"
Set up the mailbox to receive. The default is “INBOX”. For the POP3 protocol, mailbox settings are ignored.

Warning: You can not set the Japanese mailbox name.

MailChannel.receive_mode : Enum

* Display name: Receive mode
* Enum choices: Depends on the field protocol

Specifies the behavior of the mail channel when it receives mail.

Receive Mode Behavior when receiving mail
ReceiveAllAndDelete Receive all mail, and delete received mail.
ReceiveUnseenAndSetSeen | Receive unread mail, and mark received mail as read.

Warning: ReceiveUnseenAndSetSeen cannot be specified when the protocol is POP3.

MailChannel.checkInterval : Integer

* Display name: Interval
e Minimum value: 0

¢ Default value: 10

5.3. Built-in objects 171

Kompira Documentation, Release 1.6.7.post1

Specify the interval for checking new messages for IMAP4 / POP3 server in minutes. The default is 10 minutes.
When 0 is specified, it becomes the default value. Negative values are not allowed.

MailChannel.action_type : Enum
 Display name: Action type
¢ Enum choices: "NoAction" | "ExecuteJobflow"
¢ Default value: "NoAction"

Specifies the type of action to take when the mail channel receives a message.

Action type Action behavior
NoAction Nothing as an action.
ExecuteJobflow | Execute the job flow specified in the action target.

MailChannel.action_target : Object

* Display name: Action target
» Choices by object: Depends on the field action_type

Specify the action target to be processed according to the action type. If the action type is ExecuteJobflow, it
specifies a job flow to be executed. The job flow is executed with the owner of the mail channel object as the
user, passing the received message as the first parameter.

Warning: The job flow specified when the action type is ExecuteJobflow must have at least one parameter,
and if there is a second or subsequent parameter, a default value definition is required.

MailChannel.log : LargeText
* Display name: Log
* Invisible field
Connection log of IMAP4 / POP3 server is stored.
MailChannel.logSize : Integer
 Display name: Log size
* Default value: 65536
Specify the maximum size of the log. If it exceeds the maximum size, it will be deleted from the old log message.

MailChannel.disabled : Boolean

 Display name: Disabled
e Default value: true
Disable the connection to IMAP4 / POP3 server.

Changed in version 1.6.6: Negative values for timeout and checkInterval are no longer allowed. The fields use_oauth2,
oauth2_service_provider, refresh_token, access_token, and token_expires_at have been added. The field receive_mode
have been added. The fields action_type and action_target have been added. The order of some fields has been changed.

172 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

The mail channel type has the following methods defined.

MailChannel.conn_check()

Test the connection to the configured IMAP4/POP3 server (including authentication with user name and pass-
word, and mailbox confirmation). If the connection is successful, $STATUS is set to 0. If it fails, $STATUS is
set to 1 and a string indicating the reason for the failure is set to $ERROR. The connection test is performed even
when the disabled flag is set.

New in version 1.6.6: A conn_check method has been newly added.

5.3.18 Form

The form type specifies the type of the form object that provides a view of the user input form. The items of the input
form can be freely defined by the user.

When the user submits the form, the information entered in the form is submitted as dictionary type data to the specified
submission object. If the submitted object is a channel type, the data is placed in the message queue of that channel
object. If the submitted object is a job flow, the dictionary data is expanded to the parameters of the job flow and
execution starts.

Field

Form.submitObject : Object

* Display name: Submit object
» Choices by object: Jobflow | Channel
* No empty field
Specify the object to submit the data entered in the form.

Form.fieldNames : Array

* Display name: Field names

Specify the list of field names of the input form as an array. The rules for strings that can be used in field names
are the same as the job flow language identifier.

Form.fieldDisplayNames : Array
* Display name: Field display names

Specify the list of field display names of the input form as an array. An arbitrary character string can be used for
the field display name. The order of array elements must correspond to the columns of field names.

Form.fieldTypes : Array
 Display name: Field types

Specify the list of field types of the input form as an array. The order of array elements must correspond to the
columns of field names.

5.3. Built-in objects 173

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to form types are not specifically defined.

5.3.19 Settings (Config)

The configuration type specifies the type of configuration object that provides a view of the configuration form. The
items of the setting form can be freely defined by the user.

When the user saves the setting form, the information entered in the form is saved in the data property of the setting
object as dictionary type data.

Note: To change the configuration information of a configuration object (the data property), you must
have executable privileges for the object.

Field

Config.fieldNames : Array

* Display name: Field names

Specify the list of field names of the setting form as an array. The rules for strings that can be used in field names
are the same as the job flow language identifier.

Config.fieldDisplayNames : Array
 Display name: Field display names

Specify the list of field display names of the setting form as an array. An arbitrary character string can be used
for the field display name. The order of array elements must correspond to the columns of field names.

Config.fieldTypes : Array
 Display name: Field types

Specify the list of field types of the setting form as an array. The order of array elements must correspond to the
columns of field names.

Properties

Configuration type objects provide the following properties.

Config.data : Dictionary
The value of the data dictionary entered in the setting form.

174 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to configuration type are not specifically defined.

5.3.20 Library

The library type defines a library implemented in Python that can be called from the job flow.

Field

Library.libraryType : Enum

¢ Display name: Library type

nlu H|H

¢ Enum choices: "source" | "safe_source" | "module"
¢ Default value: "source"

Specify how to define the library. If ‘source’ is selected, the string stored in the source text will be loaded as a
Python module program. When ‘safe_source’ is selected, the string stored in the source text is loaded as a safe
Python module program. If ‘module’ is selected, the character string specified in the module path is loaded as a
module under kompira.library in the Kompira package. The default value is ‘source’. This field can not be edited
from the browser.

Library.modulePath : String

* Display name: Module path

Specify the module path of the Python library to be loaded. The field used when libraryType is ‘module’. This
field can not be edited from the browser.

Library.sourceText : LargeText

* Display name: Source text
Write Python source code.

Library.document : LargeText

* Display name: Document
* Invisible field

The document character string of Python module is stored. Error messages are stored at load error. This field
can not be edited from the browser.

Library.executable : Boolean

» Display name: Executable
* Invisible field

It is true if the Python module is loaded correctly and can be called from the job flow. If loading fails, it is false.
This field can not be edited from the browser.

5.3. Built-in objects 175

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to configuration type are not specifically defined.

Invocation example

For library objects, you can call the defined Python functions from the job flow. For example, define a test_lib object
with the following Python program as source text.

Python Program

def split(s):
return s.split():

def hello():
print('Hello, world!")

The job flow calling the function defined in this library is as follows.

[str = "foo bar baz']
-> [result = ./test_lib.split(s)]
-> [./test_lib.hello]

When the above job flow is executed, the result variable stores the list [‘foo’, ‘bar’, ‘baz’] of split results. Also, “Hello,
world!” Is output to the console of the job flow process.

Warning: When using property names (Properties) and method names (Method), which are pre-built in Kompira
objects such as display_name, update, and delete, in Python function names defined in library objects they cannot
be called the same thing.

5.3.21 MailTemplate

The mail template type specifies the type of the mail template object.

Field

In the mail template type, the following fields are defined.
MailTemplate.subject : String
» Display name: Subject
Stores the template character string that is the subject of the mail.
MailTemplate.body : LargeText
* Display name: Body

Stores the template character string that is the body of the mail.

176 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

Methods specific to the mail template type are not specifically defined.

5.3.22 Text

Text type specifies the type of text object that holds plain text or HTML text.

The text object can display the render view rendered by the template engine by accessing http://<Kompira server>/<text
object>.render from the browser.

Note: Jinja 2 is used for the template engine. For the notation of templates, see the Jinja 2 document http://jinja.
pocoo.org/docs/dev/templates/

Templates can be imported and inherited by specifying the path of another text object with the ‘include’ and ‘extends’
tags.

Field

For text type, the following fields are defined.

Text.text : LargeText

» Display name: Text
Stores a text string.

Text.ext : String

 Display name: Extension

Specify extension for browser access to display render view. For example, if you specify “html” as the extension,
you will see a render view when accessing http://<Kompira server>/<text object path>.html and http://<Kompira
server>/<text object path> To access the normal view.

Text.contentType : String

» Display name: Content type

Specify the content type of the text. If the content type specification is omitted, the content type is guessed from
the extension. Also, if you omit specifying the extension and specify only the content type, the render view is
displayed instead of the normal view even if the browser is accessed without the extension.

Text.context : Object

* Display name: Context
* Choices by object: Environment

Specify the environment variable object as the context to pass to the template. From the template you can refer
to the key value of the environment variable as a variable.

5.3. Built-in objects 177

http:/
http://jinja.pocoo.org/docs/dev/templates/
http://jinja.pocoo.org/docs/dev/templates/

Kompira Documentation, Release 1.6.7.post1

Method

The following methods are defined for the text type.

Text.render() : String
Gets the text rendered by the template engine.

Properties

The text type object provides the following properties.

Text.content_type : String
Indicates the estimated content type.

New in version 1.4.7: A new text type has been added.

5.3.23 Systeminfo

System information type defines objects that provide Kompira’s system information.

Field

A unique field is not defined for the system information type.

Method

No specific method is defined for system information type.

Properties

The system information type object provides the following properties.

SystemInfo.engine_started : Datetime
Kompira Indicates the start date and time of the engine.

SystemInfo.server_datetime : Datetime

Indicates the current date and time of the Kompira server.

SystemInfo.version : String
Indicates the version number of Kompira.

New in version 1.4.8.post2: A new system information type has been added.

178 Chapter 5.

Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

5.3.24 NodeType

The NodeType defines the connection peer information that Kompira can use for remote jobs. The NodeType type
object you create will be displayed as one of the choices for the nodetype field in the Nodelnfo type object edit screen.
The NodeType type objects supported by Kompira are defined in /system/nodetypes.

Field

NodeType.conntypes : Dictionary

* Display name: Connection types

This node type defines the corresponding connection type. The connection type field of the node information
object displays choices based on this field.

Method

There are no specific methods defined for the NodeType type.
New in version 1.6.4: A new NodeType type has been added.

5.3.25 CustomStyle

CustomStyle type defines the type of the custom style object that sets the color scheme and other settings for the screen
displayed in the browser.

Field

CustomStyle.mainBackColor : String

 Display name: Main background color
Set the background color for areas other than the menu bar.

CustomStyle.menubarBackColor : String

* Display name: Menu bar background color
Set the background color of the menu bar area.

CustomStyle.menubarTextColor : String

* Display name: Menu bar text color
Set the text color of the menu bar area. The text will be slightly darker when the mouse is not hovering over it.

CustomStyle.invertMode : Boolean

* Display name: Invert mode

When checked, the entire screen, including the menu bar, is inverted.

Note: For color information such as background and text color, you can specify Web Colors as strings. You can
specify #000000, rgb(255,255,255), blue, and so on.

5.3. Built-in objects 179

Kompira Documentation, Release 1.6.7.post1

Method

No specific method is defined for CustomStyle type.

New in version 1.6.6: A new CustomStyle type has been added.

5.3.26 OAuth2Provider

OAuth2Provider type defines the service provider configuration information used for OAuth2 authentication. To use
OAuth?2 authentication, you must register Kompira as an application with the service provider in advance and create an
OAuth?2 service provider type object based on the registration information.

Field

OAuth2Provider.client_id : String

* Display name: Client ID
Stores the client ID of the application registered with the service provider.

OAuth2Provider.client_secret : Password

 Display name: Client secret
Stores the client secret of the application registered with the service provider.

OAuth2Provider.auth_endpoint : URL

 Display name: Authorization endpoint
Specifies the service provider’s authentication endpoint.

OAuth2Provider.token_endpoint : URL

 Display name: Token endpoint
Specifies the token endpoint of the service provider.
OAuth2Provider.scope : Array
» Display name: Scope

Specify the scopes of sending and receiving mail to allow access from Kompira. Scope names are defined
uniquely for each service provider, so please refer to the service provider’s documentation to specify the scope
name required for sending and receiving mail.

OAuth2Provider.redirect_url : URL

* Display name: Redirect URL

Specify the URL to redirect to after the approval flow is completed. If empty, you will be redirected to your own
Kompira server.

180 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

There are no specific methods defined for the OAuth2Provider type.
New in version 1.6.6: OAuth2Provider type is newly added.

5.3.27 SmtpServer

The SMTP server type defines the SMTP server configuration information available when sending mail from Kompira.
The created SMTP server type object can be passed to the smtp_server parameter of the mailto built-in job to specify
the SMTP server to be used when sending mail from the job flow.

Field

SmtpServer.hostname : String

 Display name: Host name
Specifies the host name of the SMTP server. If set to empty, it will be treated as localhost.

SmtpServer.port : Integer

 Display name: Port number
¢ Minimum value: 0
¢ Maximum value: 65535

Specifies the connection port number for the SMTP server. If set to empty, the connection is normally made on
port 25, port 587 for TLS connections, or port 465 for SSL (SMTPS) connections.

SmtpServer.username : String

 Display name: User name
If authentication is required for SMTP server connections, set the user name.

SmtpServer.password : Password

* Display name: Password
If authentication is required for SMTP server connections, set a password.

SmtpServer.timeout : Integer

* Display name: Timeout
¢ Minimum value: 0
¢ Default value: 60

Specifies the connection timeout to the SMTP server in seconds. An empty or O setting is the system’s default
timeout for TCP/IP connections. The default is 60 seconds. Negative values are not allowed.

SmtpServer.use_tls : Boolean

 Display name: Use TLS

Check this box if you want to connect to the SMTP server using TLS.

5.3. Built-in objects 181

Kompira Documentation, Release 1.6.7.post1

SmtpServer.use_ssl : Boolean

* Display name: Use SSL

Check this box if you wish to connect to the SMTP server using SSL (SMTPS). Cannot be used with TLS at the
same time.

SmtpServer.use_oauth2 : Boolean

 Display name: Use OAuth2
Check this box if you wish to authenticate using OAuth2. In this case, a password is not required.

SmtpServer.oauth2_provider : Object

* Display name: OAuth2 provider
* Choices by object: OAuth2Provider
Select the OAuth2 service provider; required if OAuth2 authentication is used.

SmtpServer.refresh_token : Password

 Display name: Refresh token
* Invisible field

Stores the refresh token obtained through OAuth2 authentication. It is a hidden field and cannot be edited from
the browser.

SmtpServer.access_token : Password

* Display name: Access token
* Invisible field

Stores the access token obtained through OAuth2 authentication. It is a hidden field and cannot be edited from
the browser.

SmtpServer.token_expires_at : Datetime

 Display name: Token expires at
* Invisible field

Stores expiration date of the access token obtained through OAuth2 authentication. It is a hidden field and cannot
be edited from the browser.

Method

SmtpServer.conn_check()

Test the connection to the configured SMTP server. If the connection is successful, $STATUS is set to 0. If it
fails, $STATUS is set to 1 and a string indicating the reason for the failure is set to $ERROR. If either the user name
or password setting is empty, the connection to the SMTP server will be checked, but the user authentication will
not be checked. This may cause an error when sending mail on SMTP servers that require a login.

New in version 1.6.6: SmtpServer type is newly added.

182 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

5.4 Special objects

Unlike ordinary objects, special objects are built-in objects that are not specified by Kompira’s type object. Each type
has its own properties and methods. It does not have a field.

5.4.1 Process

An object representing process information at the time of executing a job flow.

Properties

The fields defined in the process object are as follows.

Process.checkpoint_mode : Boolean

True if the process is running in checkpointing mode, false otherwise. It is a writable property.

Process.children : Array<Process>

A list of child processes is stored.

Process.console : String

A character string displayed on the console.

Process.current_job : Object
Stores job flow object or script job object currently being executed by the process. If you call another job flow
from the job flow, the value of current_job is changed.

Process.elapsed_time : Timedelta
Represents the elapsed execution time of the process.

Process.error : any
The value of SERROR at the end of the process is stored.

Process.exit_status : Integer
The status code at the end of the process is stored.

Process.finished_time : Datetime
The date and time when the process ended.

Process.invoker : Object
When a process is started from the object, the corresponding object is stored.

How to invoke a process Objects recorded in invoker
Startup Jobflow Startup directory

Jobflow execution from a form. Form object

Jobflow execution from a table. Table object

Jobflow execution by channel action. Channel object

Jobflow execution by mail channel action. | MailChannel object

In cases other than the above, such as when a jobflow is executed directly or invoked from the scheduler, null is
stored.

Process.job : Object
Represents a job flow or script job object that started the process.

5.4. Special objects 183

Kompira Documentation, Release 1.6.7.post1

Process.monitoring mode : String
A string representing the monitoring mode of the process. It is a writable property.

String Monitoring Mode

NOTHING A mail will not be sent.

MAIL When the process is finished, a mail will be sent.

ABORT_MAIL | When the process is terminated abnormally (aborted), a mail will be sent.

Process.pid : Integer
Process ID.

Process.parent : Object
The job flow object of the parent process.

Process.result : any
The value of SRESULT at the end of the process is stored.

Process.schedule : Schedule
When a process is started from the scheduler, the corresponding schedule object is stored.

Process.started_time : Datetime
The date and time when the process started running.

Process.status : String
A string representing the execution state of the process.

String Execution Status

NEW New (awaiting start)

READY Executable

RUNNING | Running

WAITING | Waiting for input/command completion
ABORTED | Abnormal termination

DONE Finished

Process.step_mode : Boolean
Set to true if the process is running in stepping mode, false otherwise. It is a writable property.

Process.suspended : Boolean
It is true if the process is suspended, false otherwise.

Process.user : User
The process execution user. Only for privileged users, you can change the executing user.

New in version 1.5.0.postl: A new monitoring_mode has been added.

New in version 1.6.6: A new property invoker has been added.

184 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

Process.delete()
Delete the process object.

5.4.2 Process list (/process)

The process list (/process) is an object that holds a list of process objects and is implemented as a virtual object (Virtual).

It is possible to iterate over each process object in ‘for’ and ‘pfor’ blocks as follows.

{ for p in /process |
print(p)
}

Method

The following methods are defined in the process list.

ProcessRoot.find([...pamms]) : Array<Process>

Extracts processes from the process list that match the conditions specified in params, and returns the list. The
params can be used to specify filtering, similar to the £ind method of directories.

The attributes and lookup that can be specified are as follows.

Attribute Specifiable Lookup

job exact

user exact

started_time exact, gt, gte, 1t, 1te

finished_time same as above

status exact

schedule exact

invoker exact, isnull

parent exact

current_job exact

suspended exact

lineno exact, gt, gte, 1t, 1te

console exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex

New in version 1.6.3: A new find method has been added.

New in version 1.6.6: A new specifiable attribute invoker has been added.

5.4. Special objects 185

Kompira Documentation, Release 1.6.7.post1

5.4.3 Schedule

The schedule object represents the schedule registered in the scheduler of Kompira.

Properties

Schedule.day : String
Represents the day (1 to 31) on which the schedule is to be executed.
Schedule.day_of_week : String

Represents the day of the week or weekday number on which the schedule is to be executed. 0 (Monday) - 6
(Sunday), or mon, tue, wed, thu, fri, sat, sun.

Schedule.description : String

A character string describing the contents of the schedule is stored.
Schedule.disabled : Boolean

This field indicates invalidation of the schedule. It is true if the schedule is invalid, false if it is valid.
Schedule.hour : String

Represents the schedule execution (0 to 23).
Schedule.job : Object

Stores job flow or script job executed by schedule.
Schedule.minute : String

Represents the minute (0 to 59) to execute the schedule.
Schedule.month : String

Represents the month (1 to 12) for executing the schedule.
Schedule.name : String

A character string representing the name of the schedule.
Schedule.next_run_time : Datetime

If the schedule is valid, the date and time of the next execution will be stored. (Read Only)
Schedule.parameters : Array<String>

Strings of parameters passed to the job flow and script are allowed.
Schedule.user : User

Schedule user.
Schedule.week : String

Represents the ISO week number (1 to 53) for executing the schedule.

Schedule.year : String
Represents the year (4 digit number) for executing the schedule.

Note: For the fields that specify execution date and time of the above property, Date and time setting field format Date
and time setting field format can be used.

186 Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

Schedule.delete()
Delete the schedule object.

5.4.4 Schedule list (/scheduler)

The schedule list (/scheduler) is an object that holds a list of schedule objects and is implemented as a virtual object
(Virtual). By using the schedule list in for and pfor blocks, it is possible to process each schedule object iteratively.

Method

The following methods are defined in the schedule list.

SchedulerRoot.add (name, job[, parameters, datetime]) : Schedule

In the schedule list, add a schedule that has the name specified by name and executes the job flow or script
job specified by job. You can specify as an option a parameter list given when executing job flow or script job
as parameters argument. An optional datetime argument can be a date-time type value that indicates the job
execution date and time.

SchedulerRoot. find([...params |) : Array<Schedule>

Extracts schedules from the schedule list that match the criteria specified in params and returns the list. The
params can be used to specify filtering, similar to the £ind method of directories.

The attributes and lookup that can be specified are as follows.

Attribute Specifiable Lookup

name exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex

description same as above

user exact

job exact

year exact, contains

month exact, contains

day exact, contains

week exact, contains

day_of_week exact, contains

hour exact, contains

minute exact, contains

disabled exact, contains

New in version 1.6.3: A new find method has been added.

5.4. Special objects 187

Kompira Documentation, Release 1.6.7.post1

5.4.5 User

It is an object representing Kompira’s user.

Properties

The properties defined in the user object are as follows.

User.username : String

Username

User.first_name : String
The user’s first name.

User.last_name : String

The user’s surname.

User.full_name : String
The user’s full name.

User.mailbox : String
Represents an address in the following format.

username <email address>

User.email : String

This is the user’s email address. It is a writable property.

User.environment : Object (Environment)

Environment variable object. It is a writable property.

User.home_directory : Object (Directory)

It is the user’s home. It is a writable property.

User.groups : Array<Group>
Group list to which the user belongs.

User.enable_restapi : Boolean

Indicates whether to enable the REST APL. It is a writable property.

User.auth_token : String

The user’s authentication token. This is a read-only property. It is null when the REST API is invalid.

User.last_login : Datetime
The user’s last login datetime.

New in version 1.6.3: The last_login property has been added.

188

Chapter 5. Kompira Standard Library

Kompira Documentation, Release 1.6.7.post1

Method

There are no published methods.

5.4.6 User list (/config/user)

The user list (/config/user) is an object that holds a list of user objects and is implemented as a virtual object (Virtual).

Method

The following methods are defined in the user list.

UserRoot.:Eind([...params]) : Array<User>

This method extracts users from the list of users that match the criteria specified in params and returns the list.The
params can be used to specify filtering, similar to the £ind method of directories.

The attributes and lookup that can be specified are as follows.

Attribute Specifiable Lookup

username exact, iexact, contains, icontains, startswith, istartswith, endswith,
iendswith, regex, iregex

first_name same as above

last_name same as above

email same as above

last_login exact, gt, gte, 1t, 1te

is_active exact

home_directoryexact

environment | exact

New in version 1.6.3: A new find method has been added.

5.4.7 Group

This is an object representing a group of Kompira.

Properties

The properties defined in the group object are as follows.

Group.name : String

Group name

Group.users : Array<User>

List of users who belong to this group

New in version 1.6.3: The name and users properties have been added.

5.4. Special objects

189

Kompira Documentation, Release 1.6.7.post1

Method

There are no published methods.

5.4.8 Group (/config/group)

The groupd list (/config/group) is an object that holds a list of group objects and is implemented as a virtual object
(Virtual).

Method

The following methods are defined in the group list.

GroupRoot. find([params]) : Array<Group>

Extracts groups from the group list that match the criteria specified in params and returns the list. The params
can be used to specify filtering, similar to the £ind method of directories.

The attributes and lookup that can be specified are as follows.

At- Specifiable Lookup

tribute

name exact, iexact, contains, icontains, startswith, istartswith, endswith, iendswith,
regex, iregex

New in version 1.6.3: A new find method has been added.

190 Chapter 5. Kompira Standard Library

CHAPTER
SIX

COORDINATION WITH OTHER SYSTEMS

Author
Kompira development team

6.1 Introduction

This document will explain how to transfer data to other systems with Kompira, how to receive data from other systems
and the required settings etc.

6.2 Sending events to Kompira

Event information can be sent to Kompira by using the kompira_sendevt command included in Job manager package
and Send-Event package. This section explains the event transmission to Kompira using kompira_sendevt.

The kompira_sendevt script packs the <keyword>=<value> pair specified by the argument into a message and sends
it to the Kompira server.

/opt/kompira/bin/kompira_sendevt [options] [<keyl>=<valuel> ...]

Be careful not to put a space on both sides of ‘=" connecting keyl and valuel. The job flow can refer to the received
message as dictionary type data.

If no argument is specified, the standard input is sent as one key to the Kompira server.
6.2.1 Sending events from Windows

By installing Installation on Windows, you can send events from Windows using the kompira_sendevt command, similar
to as in Linux.

Note: Procedure: When installing Installation on Windows, the kompira_sendevt command will be installed in C:\
Kompira\Scripts\kompira_sendevt.exe.

Also, since the default log directory /var/log/kompira is not created on Windows, a warning is displayed when
executing the kompira_sendevt command, and a log is output on the standard output.

In order to avoid this, create the following configuration file and save it as kompira.conf.

[logging]
logdir=.\

191

Kompira Documentation, Release 1.6.7.post1

Use the --conf option of the kompira_sendevt command to read the above file. In addition, specify the Kompira server
to which the event is sent with the --server option.

$ kompira_sendevt --conf=kompira.conf --server=<kompira server> test_key=test_message

6.2.2 kompira_sendevt options

The kompira_sendevt command has the following options:

Option Description

-c, --config=CONF Specify the configuration file. (CONF is the configura-
tion file path) By default, /opt/kompira/kompira.conf is
read.

-s, --server=SERVER Specify the IP address or server name of the Kompira

server as the destination. It takes precedence over spec-
ification of the configuration file.

-p, --port=PORT Specify the port number of the message queue of the des-
tination Kompira server. It takes precedence over speci-
fication of the configuration file.

--user=USER Destination Kompira specifies the user name of the mes-
sage queue. It takes precedence over specification of the
configuration file.

--password=PASSWORD Destination Kompira specifies the user name of the mes-
sage queue. It takes precedence over specification of the
configuration file.

--ssl SSL is used to connect the message queue.
--channel=CHANNEL Specify the path on the Kompira file system of the chan-
nel to send the message. It takes precedence over speci-
fication of the configuration file.

--site-id=SITE_ID Specify Kompira site ID. It takes precedence over spec-
ification of the configuration file.
--max-retry=MAX_RETRY Specify the maximum number of times to send an event.

. Specify the interval between events (in seconds).
--retry-interval=

RETRY_INTERVAL

--dry-run Does not actually transmit data but displays the trans-
mission contents on the standard output.

6.3 Receive e-mails on Kompira

How to use Kompira_sendevt to handle email contents received by the Kompira server in the job flow.

Note: If you are using an IMAP server, you can handle the contents of the email in the job flow by using the mail
channel in alternative to the method described below. For details, see MailChannel.

192 Chapter 6. Coordination with other systems

Kompira Documentation, Release 1.6.7.post1

6.3.1 Setting up Linux
By writing the settings in the/etc/aliases file which is an alias for Sendmail, it is possible to specify execution of an
arbitrary command for emails addressed to a specific account on the Kompira server.

The following is a setting for sending mail to kompira_sendevt when an email is sent to the kompira account on the
kompira server.

kompira: "|LANG=ja_JP.UTF-8 /opt/kompira/bin/kompira_sendevt --channel=/system/
—channels/Mail"

After writing the above in /etc/aliases, the setting is reflected by executing the following command.

% newaliases

Note: Depending on your system you may need to use smrsh. In that case, create a symbolic link of the kom-
pira_sendevt command in the smrsh directory.

6.3.2 Kompira settings

kompira_sendevt can send values to arbitrary channels. Here is how to create a dedicated channel to receive mail called
/system/channels/Mail.

The following is an example of a job flow in which mail contents are received and the contents are displayed.

</system/channels/Mail>

-> [mail = $RESULT]

-> mail_parse(mail)

-> [parsed_mail = $RESULT]

-> print(parsed_mail['Subject'])
-> print(parsed_mail['Body'])

By using Kompira’s built-in job mail_parse, you can parse mail text in MIME format and handle values in dictionary
format.

6.4 Coordinating with monitoring systems

Kompira can coordinate with external monitoring servers such as Zabbix and Nagios. By sending event information
to the Kompira message queue (RabbitMQ) from the external system you want to link, you can receive the event from
the job flow.

In this section, we will explain how to notify Kompira of occurrence of failure by using Zabbix as an example.

6.4. Coordinating with monitoring systems 193

Kompira Documentation, Release 1.6.7.post1

6.4.1 Confirming event transmission and receipt
How to prepare a script for sending event information to Kompira on the server running Zabbix. This section explains
how to use kompira_sendevt.

1) Install the Kompira agent on the Zabbix server

According to the Kompira manual (Send-Event package), install Kompira’s event sending package on the server on
which Zabbix is running. (If you do not operate the job manager, startup settings of the job manager are unnecessary.)

2) Change of Configuration File
Rewrite the /opt/kompira/kompira.conf file on the Zabbix server side.

Specifically, set the IP address of the Kompira server or the host name in the server field of the [amgp-connection]
section. Also make sure that the channel item in the [event] section is set to /system/channels/Alert.

3) Message notification confirmation

At this point, run kompira_sendevt to check that the event can be notified correctly to the Kompira server. On the
Zabbix server side, execute the following command.

$ /opt/kompira/bin/kompira_sendevt test=hello

Next, log in to Kompira, refer to the page of /system/channels/Alert and check that the number of messages is increasing.
4) How to receive messages

Next, read the message that arrived at /system/channels/Alert from the job flow. Please define the following job flow
and execute it.

</system/channels/Alert> -> [message = $RESULT] -> print(message.test)

If “hello” is displayed on the console, it was successful.

6.4.2 Zabbix Settings

Next, configure Zabbix.

Log in to Zabbix, create a new action from the “Set Action” menu and create a new operation of the action in it. The
type of operation is a remote command.

For example, the contents of the remote command are as follows.

Zabbix server:python /opt/kompira/bin/kompira_sendevt status="{TRIGGER.STATUS}"
severity="{TRIGGER.NSEVERITY}" hostname="{HOSTNAME}"
trigger_name="{TRIGGER.NAME}" trigger_key="{TRIGGER.KEY}"
detail="{TRIGGER.KEY}: {ITEM.LASTVALUE}"

Here, we have set up to send dictionary data including the following key to Kompira.

Key name Content (Value)

status Trigger status
severity Severity
hostname Name of the host where the failure occured

trigger_name | Trigger name
trigger_key Trigger Key
detail Event detailed information (combination of trigger key and event value)

194 Chapter 6. Coordination with other systems

Kompira Documentation, Release 1.6.7.post1

After that, we will make settings so that the action registered here will be kicked, with the fault event as a trigger. For
details, please refer to the Zabbix manual etc.

6.5 Coordinating with Redmine

As an example of coordination with an external ticketing system, we will explain how to issue tickets to Redmine from
Kompira’s job flow.

6.5.1 Redmine settings

1) Enable REST API
From “Administration” -> “Settings” -> “Authentication”, save with “Enable Web service by REST” checked.
2) Create project
Select “New Project” from “Administration” -> “Project” and create the project “test”.
3) Setting Priorities
Set the value to the priority of the ticket in “Administration” -> “Enumeration item”. (Eg “high” “medium” “low”)
Also, set one as the “default value”.
(*) If you do not set the default value, the priority_id value is required when calling the APL
4) Create new user
Select “New User” from “Administration” -> “User” and create an arbitrary user.

Log in as the user you created and note the API access key on the “Personal Settings” page.

6.5.2 Issuing a ticket

In order to issue Redmine tickets, we convert the necessary information into json format data and send a POST request
to the Redmine URL.
To do that, call dictionary type data to urlopen which is a built-in job of Kompira.

Specifically, you can issue a ticket to Redmine by describing the following job flow.

|redmine_server = '192.168.0.1"|
|redmine_key = '1234567890abcdef1234567890abcdef12345678" |

|ticket_title = 'Task from Kompira']
|project_name = 'test'|
[url = 'http://$redmine_server/issues. json?format=json&key=$redmine_key']

-> [ticket = {issue = {subject = ticket_title, project_id = project_name}}]
-> urlopen(url=url, data=ticket, timeout=60, encode='json')

For “redmine_key”, set the API access key confirmed in “4. Creating a user”.

In addition to the above, you can also include information such as ticket priority, description, person in charge and
category.

You can also update / delete tickets, get list of ticket information, etc. For details, refer to the Redmine API specifica-
tions.

6.5. Coordinating with Redmine 195

Kompira Documentation, Release 1.6.7.post1

6.6 Receiving SNMP Traps

How to receive SNMP traps in Kompira’s job flow using Linux commands snmptrapd (8) and snmptrap (1).

6.6.1 Environment

IP Address OS

Kompira Server

192.168.213.100 | CentOS 6.5

SNMP Agent Server

192.168.213.101 | CentOS 6.5

6.6.2 Kompira Server Settings

Assume Kompira is installed on the Kompira server.

1) Install snmptrapd

$ yum install net-snmp

2) Edit /etc/snmp/snmptrapd.conf
Edit snmptrapd.conf to handle SNMP traps.

authCommunity log,execute,net default

traphandle default /opt/kompira/bin/kompira_sendevt --channel=/system/channels/

—.snmptrap

Here default represents “all OIDs”.
3) Add job flow to Kompira

Create a “/system/channels/snmptrap” channel and create and execute a job flow that waits for data to this channel.

</system/channels/snmptrap> ->
print ($RESULT)

4) Start snmptrapd

$ service snmptrapd start

6.6.3 Setting up the SNMP agent server

Install snmptrap command

$ yum install net-snmp-utils

196

Chapter 6

. Coordination with other systems

Kompira Documentation, Release 1.6.7.post1

6.6.4 Transmission of SNMP trap

Execute the snmptrap command on the SNMP agent server.

$ snmptrap -v 2c -c default 192.168.213.100 '' netSnmp.99999 netSnmp.99999.1 s "hello.,
—world"

If the Kompira server can receive it correctly, the following log is displayed in /var/log/messages.

$ tail -f /var/log/messages

Dec 13 16:29:30 kompira-server snmptrapd[6110]: 2012-12-13 16:29:30 <UNKNOWN>
[UDP: [192.168.213.101]:56313->[192.168.213.100]]:#012DISMAN-EVENT-

—MIB: :sysUpTimeInstance = Timeticks: (590254) 1:38:22.54
#O11SNMPv2-MIB: : snmpTrapOID.® = OID: NET-SNMP-MIB: :netSnmp.99999#011NET-SNMP-
< MIN: :netSnmp.99999.1 = STRING: "hello world"

In addition, the following received results are displayed on the console of the job flow process that was running on
Kompira.

<UNKNOWN>

UDP: [192.168.213.101]:56313->[192.168.213.100]
DISMAN-EVENT-MIB: :sysUpTimeInstance 0:0:18:39.04
SNMPv2-MIB: :snmpTrapOID.® NET-SNMP-MIB: :netSnmp.99999
NET-SNMP-MIB: :netSnmp.99999.1 "hello world"

6.6. Receiving SNMP Traps 197

Kompira Documentation, Release 1.6.7.post1

198 Chapter 6. Coordination with other systems

CHAPTER
SEVEN

MONITORING KOMPIRA

Author
Kompira development team

7.1 Introduction

This document describes how to monitor the state of Kompira using a monitoring system such as Zabbix.

7.2 Monitoring using Zabbix

This document will explain how to acquire the number of Kompira’s running processes and the number of incidents
being handled in Zabbix.

There are various ways to monitor Zabbix, but here we will explain monitoring using Zabbix Agent’s “UserParameter”
function and monitoring method by “external script”.

This document introduces the monitoring method using Zabbix 2.4.

7.2.1 Preperation
kompira_jq.sh

Whichever monitoring method you use, use the kompira_jq. sh script provided by Kompira.

For monitoring by “external script”, execute kompira_jq. sh on the Zabbix server and on the Kompira server on which
Zabbix Agent is installed for monitoring with, use “UserParameter”.

Since kompira_jq. sh internally uses the curl and jq commands, please install the necessary packages on the Zabbix
server or Kompira server according to the monitoring method so that these can be used.

In the CentOS environment, jq can be installed from the EPEL repository and in the AWS environment from the amzn-
main repository.

Note: Since kompira_jq.sh that comes with Kompira 1.4.6 or later has become a version compatible with REST-API,
it is incompatible with option specification method and older versions.

199

Kompira Documentation, Release 1.6.7.post1

Kompira server’s host settings
Since both monitoring methods access the Kompira server, it is necessary to register the Kompira server URL and
REST API token as Zabbix “macros”.

On Zabbix, set the REST API token with the following macro names on the “Host Setting” — “Macro” settings screen
of the Kompira server.

Macro Value
{$KOMPIRA_URL} Kompira Server’s URL
{$KOMPIRA_TOKEN} | REST API token

7.2.2 Monitoring with UserParameter

This is the way Zabbix Agent gathers the value of the monitoring item by executing a preset command for the item
specified from the Zabbix server.

Zabbix Agent settings

It is necessary to prepare UserParameter’s setting files on the Kompira server where Zabbix Agent is installed. Please
copy userparameter_kompira.conf to /etc/zabbix/zabbix_agentd.d

Please restart the Zabbix Agent when the setup file is ready.

$ sudo service zabbix-agent restart
Shutting down Zabbix agent: [OK]
Starting Zabbix agent: [OK]

Zabbix Server settings

For Zabbix Server, you need to set monitoring items using UserParameter, but you can immediately use standard
monitoring items by importing zbx_kompira_basic_templates.xml.

A template named Template Kompira Server will be created, so apply this template to the Kompira server you want to
monitor.

Monitoring items

The following monitoring items can be used as standard.

200 Chapter 7. Monitoring Kompira

Kompira Documentation, Release 1.6.7.post1

Name Overview

Kompira active incidents Number of active incidents

Kompira active processes Number of active processes

Kompira active schedulers Number of active schedules
Kompira active tasks Number of active tasks

Kompira jobflows Total number of job flows

Kompira license remain_days Number of remaining days of license
Kompira objects Total number of Kompira objects
Memory usage of kompirad process Memory usage (kompirad)

Memory usage of kompira_jobmngrd process | Memory usage (kompira_jobmngrd)
Number of kompirad process Number of processes (kompirad)
Number of kompira_jobmngrd process Number of processes (kompira_jobmngrd)

7.2.3 Monitoring with external scripts

This is a method of collecting the value of the monitoring item by executing the external script on the Zabbix server.

First, please copy the script provided by Kompira /opt/kompira/bin/kompira_jq.sh to the directory where the
external script on the Zabbix server is located. By default it is: /usr/1ib/zabbix/externalscripts.

Number of processes

When monitoring the number of processes using the external script kompira_jq. sh, create the Item with the following

settings:
Name Kompira processes
Type External check
Key kompira_jq.sh[-s, {$KOMPIRA_URL},-t, {$KOMPIRA_TOKEN}, -ac, /process]

Type of information | Numeric (unsigned)

Data type Decimal

Number of incidents

To monitor the number of incidents using the external script kompira_jq. sh, create an Item with the following set-

tings:
Name Kompira incidents
Type External check
Key kompira_jq.sh[-s, {$KOMPIRA_URL},-t, {$KOMPIRA_TOKEN},-ac,/incident]

Type of information | Numeric (unsigned)

Data type Decimal

7.2. Monitoring using Zabbix

201

Kompira Documentation, Release 1.6.7.post1

202 Chapter 7. Monitoring Kompira

CHAPTER
EIGHT

KOMPIRA REST API REFERENCE

Author
Kompira development team

8.1 Introduction

This document describes how to use REST API.

8.2 Common Features

8.2.1 The end point

The end point of REST API is similar to that of the resource path of a regular Kompira object. That is, the root end
point is displayed

http[s]://<hostname>/

as above.

In order to distinguish access from the browser and an API request, in the Accept header of the HTTP Request

Accept: application/json

must be included.

Alternatively, you could include: format=json in the request string.

8.2.2 User Authentification

The two types of authentication that are allowed are: 1. token and 2. session authentication methods.

While using token authentication, include the token key in the Authorization header of the request as follows:

Authorization: Token <token key>

Alternatively, you can include the token key in the query string of the HTTP request as shown below.

token=<token key>

203

Kompira Documentation, Release 1.6.7.post1

When you enable the REST API of each user on the user setting page, an access token is generated. If you disable the
REST API and re-enable it, the token is reinitialized.

8.2.3 Format

Only the JSON format of data is supported.

Datetime data

The date and time data should be in UTC and the following format of (ISO8601) must be used.

%Y -%m-%dT%H : %M : %S . %fZ or %Y-%m-%dT%H:%M:%SZ

It is acceptable to omit microseconds and seconds when entering the data. If Z (the last UTC directive) is omitted, it
will be regarded as (JST) local time and will be internally converted to UTC.

Object data

Object data is represented by the absolute path of the object.

File data

When outputting file data, it becomes key holding dictionary data which displays the name and data, as shown below.

{ "name": "<file name>", "data": "<BASE64 encoded file data>" }

When entering the data, enter it as key holding dictionary data, showing name and data as shown below.

{ "name": "<file name>", "data": "<BASE64 encoded file contents string>" }

8.2.4 Error

When an error occurs, A HTTP status code will appear indicating as such. When this happens, data indicating the
reason for the error will be shown in the HTTP response’s content body.

Most error data will be shown in dictionary type including the detail key as follows.

{ "detail": "<reason of error>" }

In the case of a validation error in which the required data is not included in the request data, the following dictionary
data will appear:

{ "<field name>": ["<error message>", ...],
"<field name>": ["<error message>", ...],
.1

204 Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.2.5 Paginate

When the list is retrieved, paginated data in the form shown, appears as below.

{
"count": <total number of objects>,
"next": <next page URL>,
"previous": <previous page URL>,
"results": <objects data list>

3

When specifying and acquiring a page, include page = <page number> in the query path. If you want to get the last
page, specify last as the page number.

The default page size is 25. If you want to change the page size, enter:

page_size=<page size>

into the query string.

8.2.6 Specifying attributes to retrieve
By specifying the attribute name to be retrieved as attrs=<attribute name> in the query path, it is possible to
retrieve only some attribute values of the object data.

For example, to get only the ID and display name of an object, specify id and display_name as the attribute names,
as shown in the example below

/some/object?attrs=id&attrs=display_name

In the same way, it is possible to specify the attributes to be acquired in the list acquisition. For example, to get only
the process ID and status in the process list, specify as follows

/process?attrs=id&attrs=status

8.2.7 Filtering

To filter by attribute of the object, specify <attribute-name>=<value> in the query path.

For example, if you want to get a list of only successfully completed processes, specified as shown below.

/process?status=DONE

If multiple attributes are specified in the query path as shown below, it is filtering by AND.

/app.descendant?display_name=test&owner=root

Although the above is filtering by exact matching, detailed filtering conditions can be specified by describing the
attribute name followed by a lookup as follows.

<attribute-name>__<lookup>=<value>

For example, you can filter objects that contain test in the display name.

8.2. Common Features 205

Kompira Documentation, Release 1.6.7.post1

/app.descendant?display_name__contains=test

The lookup types and filtering method is as follows.

Lookup

Filtering method

exact, iexact

The attribute exactly matches the specified value.

contains, icontains

The attribute contains the specified value.

startswith, istartswith

The attribute starts with the specified value.

endswith, iendswith

The attribute ends with the specified value.

regex, iregex

The attribute matches the specified regular expression.

gt, gte The attribute is greater than specified value (gt). The attribute is greater than or
equal to the value specified (gte).

1t,1te The attribute is less than specified value (1t). The attribute is less than or equal
to the specified value (1te).

in The attribute is included in the specified values.

In filtering others than virtual objects by attribute value, the lookup that can be specified depends on attribute.

Attribute Specifiable Lookup
owner exact, in
abspath exact, iexact, contains, icontains, startswith, istartswith,

endswith, iendswith, regex, iregex

display_name

exact, iexact, contains, icontains, startswith, istartswith,
endswith, iendswith, regex, iregex

description exact, iexact, contains, icontains, startswith, istartswith,
endswith, iendswith, regex, iregex

created exact, gt, gte, 1t, 1te

updated exact, gt, gte, 1t, 1te

type_object exact, in

parent_object exact, in

In filtering virtual objects by attribute value, the lookup that can be specified depends on the data type of the attribute.

Type of the attribute

Specifiable Lookup

String

exact, iexact, contains, icontains, startswith, istartswith,
endswith, iendswith, regex, iregex

Integer exact, gt, gte, 1t, 1te
Datetime exact, gt, gte, 1t, 1te
Object exact
User exact
Boolean exact

If lookup is not specified, exact is applied.

206

Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.2.8 Specify sort order

To specify the order in retrieving a list of objects, specify order_by=<attribute name> in the query path. This
will return a list of the results sorted in ascending order by the specified attribute. To sort in descending order, specify
order_by=-<attribute name> in the query path.

The following object attributes can be used to specify the order by order_by

Attribute Order applied

id Order by object ID

owner Order by user ID of the object’s owner

abspath Order by absolute path of the object

display_name | Order by display name of the object

description Order by description of the object

created Order by creation date and time of the object (oldest first)
updated Order by update date and time of the object (oldest first)
type_object Order by type object’s ID

parent_object | Order by parent object’s ID

New in version 1.6.6postl: Description and parent_object have been added to the attributes that can be specified in
order_by.

Object

The attributes that can be used for filtering general objects (other than virtual objects) are as follows.

Attribute name | description (type of attribute) or [available lookup]
owner Owner (User)

display_name | Display name (String)

description Description (String)

created Created date (Datetime)

updated Updated date (Datetime)

type_object Type object (Object)

In addition, in situations where type objects are identified, you can also specify filtering by field values.

field:<field-name>__<lookup>=<value>

For example, specify as follows.

/.descendant?type_object=/system/types/Jobflow&field:source__contains=urlopen&
—.field:defaultMonitoringMode=MAIL

A situation in which a type object is specified means one of the following.
» The type_object attribute filter specifies a type object.
* The endpoint object is a table type, and the type object is set in the table.
If type objects are not specified, specifying filtering by field value results in an error.

In filtering by field value, the lookup that can be specified differs depending on the data type of the field.

8.2. Common Features 207

Kompira Documentation, Release 1.6.7.post1

Type of field Specifiable Lookup

String exact, iexact, icontains, startswith, istartswith,
endswith, iendswith, regex, iregex, in, range

Integer exact, isnull, gt, gte, 1t, 1te, in, range

Boolean exact

Datetime exact, isnull, gt, gte, 1t, 1te, range

Object exact, isnull

File (same as string)

Array (same as string)

Dictionary (same as string)

Process Type (Process)

The attributes that can be used for filtering process objects are as follows:

Attribute name

description (type of attribute) or [available lookup]

job

Job object (Object)

user

Execution user (User)

started_time

Start date and time (Datetime)

finished_time

End date and time (Datetime)

status

Status [exact]

schedule Schedule object (Obejct)
parent Parent process (Process)
current_job Running job object (Object)
suspended Pause flag (Boolean)

lineno Running line number (integer)
console Console (String)

Schedule type Processes (Scheduler)

The attributes that can be used for filtering schedule objects are as follows:

Attribute name

description (type of attribute) or [available lookup]

name

Schedule name (String)

description Description (String)
user User type (User)

job Job object (Object)
year Year [exact, contains]
month Month [exact, contains]
day Day [exact, contains]
week Week [exact, contains]
day_of_week Day of the week [exact, contains]
hour Hour [exact, contains]
minute Minute [exact, contains]
disabled Disabled flag (Boolean)

Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

Incident type processes (Incident)

The attributes that can be used for filtering incident objects are as follows:

Task type (Task)

User type (User)

Attribute name

description (type of attribute) or [available lookup]

name Incident name (String)
device Device name (String)
service Service name (String)

created_date

Created date (Datetime)

closed_date

Completed date and time (Datetime)

status

Status [exact]

owner

Owner (User)

The attributes that can be used for filtering task objects are as follows:

Attribute name

description (type of attribute) or [available lookup]

name

Task name (String)

title Title (String)
message Message (String)
status Status [exact]
owner Owner (User)

created_date

Created date (Datetime)

closed_date

Completed date and time (Datetime)

The attribyte that can be used for filtering user objects are as follows:

Attribute name

description (type of attribute) or [available lookup]

username User name (String)

first_name First name (String)

last_name Surname (String)

email E-mail (String)

last_login Last login date and time (Datetime)
is_active Enabled (String)
home_directory | Home directory (Object)
environment Environment variable (Object)

8.2. Common Features

209

Kompira Documentation, Release 1.6.7.post1

Group type (Group)

The attributes that can be used for group object filtering are as follows:

Attribute name | description (type of attribute) or [available lookup]
name Group name (String)

8.3 Accessing Kompira objects

8.3.1 How to get object information

Request
¢ GET <object path>

Response

{
"id": <object ID>,
"abspath": <object path>,
"owner": <username of object owner>,
"fields": <field data dictionary>,
"extra_properties'": <extra properties>,
"user_permissions": <user permissions dictionary>,
"group_permissions": <group permissions dictionary>,
"display_name": <display name>,
"description": <desciption>,
"created": <datetime of object created>,
"updated": <datetime of object updated>,
"type_object": <path of type obejct>,
"parent_object": <path of parent object>

}

Field data dictionary and object extended attributes are dictionary data containing keys that vary depending on the
object type.

Note: In the case of a configuration type object, in addition to the above, it contains a data field with dictionary data
containing the keys and values of the configuration items.

8.3.2 Object Information Updates

Request
* PUT <object path>
* PATCH <object path>
The PUT request replaces the entire data of the object. For a partial object update, use the PATCH request instead.

Request Data

210 Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

{
"owner": <username of object owner>,
"fields": <field data dictionary>,
"user_permissions": <user permissions dictionary>,
"group_permissions": <group permissions dictionary>,
"display_name": <display name>,
"description": <desciption> # optional

}

In the case of a PATCH request, omitting an attribute does not change the value of the object corresponding to that key.

Response
Updated Object Data

8.3.3 Adding a new object

When a POST request is sent to a directory object or table object, an object is newly created.
Request

* POST <directory or table’s object path>
Request Data

{

"owner": <username of object owner>, # optional
"fields": <field data dictionary>,

"name": <object name>,

"user_permissions": <user permissions dictionary>,
"group_permissions": <group permissions dictionary>,

"display_name": <display name>, # optional
"description": <desciption>, # optional
"type_object": <path of type obejct>

}

Response

HTTP 201 Created Response to the Newly Created Object’s Data

8.3.4 Deleting an object

You can delete the object by sending a DELETE request to the object path.
Processes, schedules, incidents, tasks, objects can also be deleted in this way, one by one.
Request

¢ DELETE <object path>

Response
If successful, HTTP 204 No Content is returned.

8.3. Accessing Kompira objects 211

Kompira Documentation, Release 1.6.7.post1

8.3.5 Obtaining a list of children and descendants

You can get a list of directory objects or children and descendant objects of table objects.
Request

* GET <object path>.children # child object list

* GET <object path>.descendant # descendant object list

Response
A list of object data will be returned.

Note: For objects other than directories and tables, an empty list is returned.

8.3.6 Executing a job flow

Request
* POST <job flow path>.execute

Request Data

{
"step_mode": <step mode>, # true or false
"checkpoint_mode": <checkpoint mode>, # true or false
"monitoring_mode": <monitoring mode>, # NOTHING, MAIL, ABORT_MAIL
"parameters": <jobflow parameters dictionary>

}

Response

The path of the executed job flow process is returned.

8.3.7 Executing a script job

Request
* POST <script job path>.execute
Request Data

{
"node": <path of node object>,
"account": <path of account object>,
"command_line": <command line string>

Response
The path of the executed job flow process is returned.

212 Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.3.8 Sending Messages

Messages can be sent to Channel Objects.
Request
* POST <channel object path>.send

Request Data
Can be sent in any JSON data format

Response
If it succeeds, HTTP 200 OK is returned.

8.3.9 Received Messages

Receiving a message from a channel object

Request
* POST <channel object path>.recv
Request Data
{
"timeout": <timeout (seconds)>
}
Response

If it succeeds, the received data is returned. When the receive timeout expires, HTTP 408 Request Timeout is
returned as the status code.

Note: If there is no data on the channel, wait for the specified number of seconds with timeout. The default value for
timeout is 0 seconds.

8.4 Process

8.4.1 Retreiving lists

Request
* GET /process
To retrieve the child process list, use the following request:
* GET /process/id_<process ID>.children

Response
A list of process details data will be returned.

8.4. Process 213

Kompira Documentation, Release 1.6.7.post1

8.4.2 Obtaining process detail data

Request
¢ GET /process/id_<process ID>

Response

{
"id": <process id>,
"abspath": <path of process object>,
"user": <username of execution user>,
"elapsed_time": <elapsed time from process started>,
"started_time": <datetime of process started>,
"finished_time": <datetime of process finished>,
"status": <process status>,
"exit_status": <exit status>,
"result": <result>,
"error": <error>,
"suspended": <suspended>,
"lineno": <line number>,
"console": <console string>,
"job": <path of starting jobflow>,
"schedule": <path of schedule>,
"parent": <path of parent process>,
"current_job": <path of executing jobflow>

8.4.3 Process’ operation

Request
* POST /process/id_<process ID>.terminate # Cancel process execution
* POST /process/id_<process ID>.suspend # Pause process execution

* POST /process/id_<process ID>.resume # Restart process execution

Request Data
You can
{
"step_mode": <step mode>, # true/false
"checkpoint_mode": <checkpoint mode> # true/false
}
Response

Returns “true” on success, “false” on failure.

214 Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.4.4 Wait for the completion of execution of the process

Request
e POST /process/id_<process ID>.wait
Request Data
{
"timeout": <timeout value> # an integer value of 0 or more
}
Response

On success, detailed information on the process is returned. When timeout occurs, HTTP 408 Request Timeout
is returned as the status code.

8.5 Schedule

8.5.1 Obtaining the schedule

Request
e GET /scheduler

Response
A list of schedule detail data is returned.

8.5.2 Obtaining Schedule details

Request
o GET /scheduler/id_<schedule ID>

Response

{

"id": <schedule id>,

"abspath": <path of schedule object>,
"user": <username>,
"scheduled_datetimes: <datetimes of scheduled>,
"parameters": <parameters list>,
"name": <schedule name>,
"description": <description>,

"year": <year>,

"month": <month>,

"day": <day>,

"week": <week>,

"day_of_week": <day of week>,

"hour": <houe>,

"minute": <minute>,

"disabled": <disabled>,

"job": <path of execution jobflow>

8.5. Schedule 215

Kompira Documentation, Release 1.6.7.post1

8.5.3 Schedule update

Request

e PUT /scheduler/id_<schedule ID>

e PATCH /scheduler/id_<schedule ID>
Request Data

{

"user": <username>,

"parameters": <parameters list>,

"name": <schedule name>, # mandatory
"description": <description>,

"year": <year>,

"month": <month>,

"day": <day>,

"week": <week>,

"day_of_week": <day of week>,

"hour": <houe>,

"minute": <minute>,

"disabled": <disabled>,

"job": <path of execution jobflow> # mandatory

}

Response
Updated Object Data

8.5.4 Creating a schedule

Request
e POST /scheduler

Request Data
Same as the update request

Response
Data of the created object

8.6 Incident

8.6.1 Obtaining the incident list

Request
¢ GET /incident

Response
A list of incident detail data is returned.

216 Chapter 8.

Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.6.2 Obtaining incident details

Request
¢ GET /incident/id_<Incident ID>

Response

{
"id": <incident id>,
"abspath": <path of incident object>,
"owner'": <username of owner>,
"worklogs": <worklogs>,
"alerts": <alerts>,
"name": <incident name>,
"device": <device name>,
"service": <service name>,
"created_date": <datetime of incident created>,
"closed_date": <datetime of incident closed>,

"status": <incident status> # "OPENED", "WORKING", "CLOSED"

8.6.3 Updating Incidents

Request

e PUT /incident/id_<incident ID>

¢ PATCH /incident/id_<Incident ID>
Request Data

{
"owner": <username of owner>,
"name": <incident name>,
"device": <device name>,
"service": <service name>,
"status": <incident status>

Response
Updated Object Data

8.6.4 Adding a work log

Request
* POST /incident/id_<incident ID>.worklogs
Request Data

{

"user": <username>,
"description": <description>

8.6. Incident

217

Kompira Documentation, Release 1.6.7.post1

Response
Data of the added work log

8.6.5 Creating a incident

Request
¢ POST /incident

Request Data
Same as the update request

Response
Data of the created object

8.7 Task

8.7.1 Obtaining a list of tasks

Request
* GET /task

Response
List of task detail data

8.7.2 Obtaining task details

Request
e GET /task/id_<Task ID>

Response

{
"id": <task id>,
"abspath": <path of task object>,
"owner'": <username of owner>,
"assigned_users": <assigned users>,
"assigned_groups": <assigned groups>,
"name": <task name>,
"title": <task title>,
"message": <message>,
"action_text": <action text>,
"result": <result>,
"status": <status>, # "WAITING", "ONGOING", "DONE", "CANCELED"
"created_date": <datetime of task created>,
"closed_date": <datetime of task closed>

218 Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.7.3 Cancelling a task

Request
¢ POST /task/id_<incident ID>.cancel

Response
If it succeeds, HTTP 200 OK is returned.

8.7.4 Submitting a task

Send a message to the task channel.
Request

e POST /task/id_<incident ID>.submit
Request Data

{

"result": <result message>

}

If request data is omitted, “OK” is transmitted to the task channel.

8.8 User / Group Management

8.8.1 Obtaining a user list

Request
* GET /config/user

Response
List of user detail data

8.8.2 Obtaining User Details

Request
* GET /config/user/id_<user ID>

Response

{
"id": <user id>,
"abspath": <path of user object>,
"groups": <groups>,
"last_login": <datetime of last login>,
"username": <username>,
"first_name": <first name>,
"last_name": <last name>,
"email": <E-mail address>,
"is_active": <active flag>,

(continues on next page)

8.8. User/ Group Management 219

Kompira Documentation, Release 1.6.7.post1

(continued from previous page)

"home_directory": <path of home directory>,
"environment": <path of environment object>

8.8.3 Updating Users

Request

* PUT /config/user/id_<user ID>

* PATCH /config/user/id_<user ID>
Request Data

{
"groups": <groups>,
"last_login": <datetime of last login>,

"username": <username>, # mandatory
"password": <password>, # mandatory

"first_name": <first name>,

"last_name": <last name>,

"email": <E-mail address>,

"is_active": <active flag>,
"home_directory": <path of home directory>,
"environment": <path of environment object>

}

Response
Updated Object Data

8.8.4 Create new users

Request
e POST /config/user

Request Data
Same as for Updating Users

Response
Data of the created object

8.8.5 Obtaining the group list

Request
* GET /config/group

Response
List of group detail data

220

Chapter 8. Kompira REST API Reference

Kompira Documentation, Release 1.6.7.post1

8.8.6 Obtaining group details data

Request
* GET /config/group/id_<group ID>

Response

{
"id": <group id>,
"abspath": <path of group object>,
"name": <group name>

8.8.7 Updating Groups

Request

* PUT /config/group/id_<group ID>

* PATCH /config/group/id_<group ID>
Request Data

{

"name": <group name>

}

Response
Updated Object Data

8.8.8 Adding a new group

Request
* POST /config/group

Request Data
Same as for updating groups

Response
Updated Object Data

8.8. User/ Group Management

221

Kompira Documentation, Release 1.6.7.post1

222 Chapter 8. Kompira REST API Reference

A

abort (built-in local job), 133

abspath (Object property), 149
access_token (MailChannel field), 171
access_token (SmipServer field), 182
account (Nodelnfo field), 166
AccountInfo (built-in type object), 167
action_target (Channel field), 160
action_target (MailChannel field), 172
action_type (Channel field), 159
action_type (MailChannel field), 172
add (Directory method), 151

add (SchedulerRoot method), 187

add (Table method), 164

add_item (Array method), 110

Array (data type), 110

Array (field type), 141

assert (built-in local job), 133
attachedl (AttachedFile field), 165
attached2 (ArtachedFile field), 165
attached3 (ArtachedFile field), 165
AttachedFile (built-in type object), 165

auth_endpoint (OAuth2Provider field), 180

auth_token (User property), 188

B

Binary (data type), 109
Binary (field type), 140

body (MailTemplate field), 176
Boolean (data type), 109
Boolean (field type), 141
bytes (built-in function), 139

C

channel (built-in function), 137
Channel (built-in type object), 159
checkInterval (MailChannel field), 171

checkpoint_mode (Process property), 183

children (Object property), 149
children (Process property), 183
clear_messages (Channel method), 161
client_id (OAuth2Provider field), 180

client_secret (OAuth2Provider field), 180

code (Jobflow field), 158
compiledDatetime (Jobflow field), 159
compilerVersion (Jobflow field), 158
Config (built-in type object), 174
conn_check (MailChannel method), 173
conn_check (SmtpServer method), 182
conntype (Nodelnfo field), 165
conntypes (NodeType field), 179
console (Process property), 183
content_type (Text property), 178
contentType (Text field), 177

context (Text field), 177

copy (Directory method), 152

created (Object property), 149
current (built-in function), 137
current_job (Process property), 183
CustomStyle (built-in type object), 179

D

data (Config property), 174
date (built-in function), 138
Date (data type), 112

date (Datetime property), 112
Date (field type), 141

datetime (built-in function), 137
Datetime (data type), 112
Datetime (field type), 141

day (Date property), 113

day (Datetime property), 112
day (Schedule property), 186
day_of_week (Schedule property), 186
days (Timedelta property), 113
decode (Binary method), 109
decode (built-in function), 139
default (field qualifier), 142

INDEX

defaultCheckpointMode (Jobflow field), 158
defaultMonitoringMode (Jobflow field), 159

del_item (Array method), 110
del_item (Dictionary method), 110
delete (Object method), 150
delete (Process method), 185

223

Kompira Documentation, Release 1.6.7.post1

delete (Schedule method), 187
delete_message (Channel method), 160
description (Object property), 149
description (Schedule property), 186
detach (built-in local job), 134
Dictionary (data type), 110
Dictionary (field type), 142
Directory (built-in type object), 151
directory (field qualifier), 142
directory (Repository field), 168
disabled (MailChannel field), 172
disabled (Realm field), 164
disabled (Schedule property), 186
display_name (Object property), 149
displayList (Table field), 163
document (Library field), 175
download (built-in local job), 136

E

elapsed_time (Process property), 183
EMail (field type), 141

email (User property), 188
enable_restapi (User property), 188
encode (built-in function), 139

encode (String method), 108
endswith (String method), 108
engine_started (Systemlinfo property), 178
enun (field qualifier), 146

Enum (field type), 141

Environment (built-in type object), 162
environment (Environment field), 162
environment (User property), 188
error (Process property), 183

errors (Jobflow field), 158
event_count (Channel property), 161
event_queue (Channel field), 159
event_queue (MailChannel field), 169
executable (Jobflow field), 158
executable (Library field), 175

exit (built-in local job), 133
exit_status (Process property), 183
ext (ScriptJob field), 162

ext (Text field), 177

extend (TypeObject field), 150

F

field_names (Object property), 149
fieldDisplayNames (Config field), 174
fieldDisplayNames (Form field), 173
fieldDisplayNames (TypeObject field), 150
fieldNames (Config field), 174

fieldNames (Form field), 173

fieldNames (TypeObject field), 150
fieldTypes (Config field), 174

fieldTypes (Form field), 173
fieldTypes (TypeObject field), 151
File (data type), 111

File (field type), 141
file_accept (field qualifier), 148
filter (field qualifier), 145

find (Directory method), 152
find (GroupRoot method), 190
find (ProcessRoot method), 185
find (SchedulerRoot method), 187
find (String method), 108

find (Table method), 164

find (UserRoot method), 189
finished_time (Process property), 183
first_name (User property), 188
float (built-in function), 138
Float (data type), 109

Float (field type), 140

Form (built-in type object), 173
format (Date method), 113
format (Datetime method), 112
format (String method), 108
format (Time method), 113
full_name (User property), 188

G

get (built-in remote job), 137

get_item (Dictionary method), 110
get_keys (Dictionary method), 111

glob (Directory method), 155

group (built-in function), 139

Group (virtuel model), 189
group_permissions (Object property), 149
GroupRoot (virtuel object), 190

groups (User property), 188

H

has_child (Directory method), 152
has_key (built-in function), 139
help_text (field qualifier), 142

hex (Binary method), 109
home_directory (User property), 188
hostname (Nodelnfo field), 166
hostname (SmtpServer field), 181
hour (Datetime property), 112

hour (Schedule property), 186

hour (Time property), 113

id (Object property), 149
int (built-in function), 138
Integer (data type), 107
Integer (field type), 140

224

Index

Kompira Documentation, Release 1.6.7.post1

invertMode (CustomStyle field), 179
invisible (field qualifier), 142
invoker (Process property), 183
ipaddr (Nodelnfo field), 166
IPAddress (field type), 141

iprange (built-in function), 140
isoformat (Datetime method), 112

J

job (Process property), 183

job (Schedule property), 186
Jobflow (built-in type object), 157
join (String method), 108
json_dump (built-in function), 139
json_parse (built-in function), 139

K

key_strip (field qualifier), 148
keyfile (Accountlnfo field), 167

L

LargeText (field type), 141
last_login (User property), 188
last_name (User property), 188
length (built-in function), 139
Library (built-in type object), 175
libraryType (Library field), 175
License (built-in type object), 156
log (MailChannel field), 172

log (Repository field), 168
logSize (MailChannel field), 172
lower (String method), 108

M

mail_parse (built-in function), 140
mailbox (MailChannel field), 171

mailbox (User property), 188

MailChannel (built-in type object), 169
MailTemplate (built-in type object), 176
mailto (built-in local job), 135
mainBackColor (CustomStyle field), 179
match (Pattern method), 110

max_length (field qualifier), 147
max_value (field qualifier), 148
menubarBackColor (CustomStyle field), 179
menubarTextColor (CustomStyle field), 179
message_count (Channel property), 161
message_queue (Channel field), 159
message_queue (MailChannel field), 169
microseconds (Timedelta property), 113
min_length (field qualifier), 147
min_value (field qualifier), 148

minute (Datetime property), 112

minute (Schedule property), 186

minute (Time property), 113

modulePath (Library field), 175
monitoring_mode (Process property), 183
month (Date property), 113

month (Datetime property), 112

month (Schedule property), 186

move (Directory method), 151
multiplicity (Jobflow field), 158
multiplicity (ScriptJob field), 162

N

name (Group property), 189

name (Object property), 149

name (Schedule property), 186
next_run_time (Schedule property), 186
no_empty (field qualifier), 146
node_count (License property), 157
NodeInfo (built-in type object), 165
NodeType (built-in type object), 178
nodetype (Nodelnfo field), 165

now (built-in function), 137

Null (data type), 109

O

oauth2_provider (MailChannel field), 170
oauth2_provider (SmtpServer field), 182
OAuth2Provider (built-in type object), 180
Object (base object), 140

Object (data type), 111

object (field qualifier), 142

Object (field type), 141

order_by (field qualifier), 145

orderBy (Directory field), 151

orderBy (Table field), 164

owner (Object property), 149

P

pageSize (Directory field), 151
pageSize (Table field), 164
parameters (Jobflow field), 158
parameters (Schedule property), 186
parent (Process property), 184
parent_object (Object property), 149
passphrase (AccountInfo field), 167
password (Accountlnfo field), 167
Password (field type), 141

password (MailChannel field), 170
password (Repository field), 168
password (SmipServer field), 181
path (built-in function), 138

pattern (built-in function), 138
Pattern (data type), 109

Index

225

Kompira Documentation, Release 1.6.7.post1

pattern (field qualifier), 147
peek_message (Channel method), 160
pid (Process property), 184
pop_item (Array method), 110
pop_item (Dictionary method), 111
pop_message (Channel method), 160
port (MailChannel field), 170

port (Nodelnfo field), 166

port (Repository field), 168

port (SmtpServer field), 181

print (built-in local job), 133
Process (virtuel model), 183
ProcessRoot (virtuel object), 185
protocol (MailChannel field), 170
proxy (Nodelnfo field), 166

put (built-in remote job), 137

R

range (Realm field), 164

Realm (built-in type object), 164

reboot (built-in remote job), 137
receive_mode (MailChannel field), 171
redirect_url (OAuth2Provider field), 180
refresh_token (MailChannel field), 170
refresh_token (SmipServer field), 182
relatedObject (7Table field), 163
rename (Object method), 150

render (Text method), 178

replace (String method), 108
Repository (built-in type object), 167
repositoryType (Repository field), 168
result (Process property), 184

return (built-in local job), 133

rfind (String method), 108

rsplit (String method), 108

S

schedule (Process property), 184
Schedule (virtuel model), 185
SchedulerRoot (virtuel object), 187
scope (OAuth2Provider field), 180
ScriptJob (built-in type object), 162
second (Datetime property), 112
second (Time property), 113

seconds (Timedelta property), 113
self (built-in local job), 133

send (Channel method), 160
server_datetime (Systemlnfo property), 178
serverName (MailChannel field), 169
shell (Nodelnfo field), 166

sleep (built-in local job), 133
SmtpServer (built-in type object), 181
source (Jobflow field), 158

source (ScriptJob field), 162

sourceText (Library field), 175
split (String method), 108
splitlines (String method), 109

SSL (MailChannel field), 170
started_time (Process property), 184
startswith (String method), 108
status (Process property), 184
step_mode (Process property), 184
string (built-in function), 139
String (data type), 107

String (field type), 140

strip (field qualifier), 147

strip (String method), 109

style (Wiki field), 161

subject (Maillemplate field), 176
submitObject (Form field), 173
suspend (built-in local job), 134
suspended (Process property), 184
SystemInfo (built-in type object), 178

T

Table (built-in type object), 163
Template (built-in type object), 163
template (Template field), 163
Text (built-in type object), 177
Text (field type), 141

text (Text field), 177

time (built-in function), 138

Time (data type), 113

time (Datetime property), 112
Time (field type), 141

timedelta (built-in function), 138
Timedelta (data type), 113
timeout (MailChannel field), 170
timeout (SmitpServer field), 181

token_endpoint (OAuth2Provider field), 180
token_expires_at (MailChannel field), 171
token_expires_at (SmipServer field), 182
total_seconds (Timedelta property), 114

type (built-in function), 139
type_name (Object property), 149
type_object (Object property), 149
TypeObject (built-in type object), 150
typeObject (Table field), 163

U

update (Object method), 150
updateConfig (Repository field), 168
updated (Object property), 149
upload (built-in local job), 136
upper (String method), 108

URL (field type), 141

URL (Repository field), 168

urlopen (built-in local job), 134

226

Index

Kompira Documentation, Release 1.6.7.post1

use_oauth2 (MailChannel field), 170
use_oauth2 (SmitpServer field), 182
use_shell (Nodelnfo field), 166
use_ssl (SmitpServer field), 181
use_tls (SmtpServer field), 181
user (Accountlnfo field), 167

user (built-in function), 139

user (Process property), 184

user (Schedule property), 186

User (virtuel model), 187
user_permissions (Object property), 149
username (MailChannel field), 170
username (Repository field), 168
username (SmipServer field), 181
username (User property), 188
UserRoot (virtuel object), 189

users (Group property), 189

\Y

version (Systeminfo property), 178
Virtual (built-in type object), 157
virtual (Virtual field), 157

W

week (Schedule property), 186
weekday (Date property), 113
weekday (Datetime property), 112
Wiki (built-in type object), 161
wikitext (Wiki field), 161

Y

year (Date property), 113
year (Datetime property), 112
year (Schedule property), 186

Index 227

	Administration Guide
	Introduction
	Kompira package management
	Type of installation package
	Install Script
	Limitation
	Command Line Options

	Kompira Package
	Installation
	Update

	Job manager package
	Installation
	Update

	Send-Event package
	Extract the Kompira package and run install.sh.
	Installation on Windows
	Update

	Offline install
	Create the kompira-extra package in an Internet-connected environment.
	Offline installation using the kompira-extra package.

	Kompira process management
	Structure of Kompira processes
	Starting / stopping the Kompira daemon and Checking the state
	For RHEL / CentOS 7x / 8x

	Starting / stopping the Kompira daemon and Checking the status.
	For RHEL / CentOS 7x / 8x

	Port List used by Kompira

	Node setting
	Local node setting
	SSH node setting
	Windows node setting
	Enabling remote management of WinRM
	Changing WinRM connection settings
	Test job flow

	Network device node setting
	List of supported devices
	Restrictions on network devices
	Information on the devices tested

	Kompira settings and log files
	Kompira standard directories.
	Kompira logs
	Kompira configuration files
	Kompira image files

	Data backup of Kompira
	Export of Kompira objects
	Import of Kompira objects
	Backup
	export_data options
	export_dir options
	import_data options
	import_dir options

	Kompira License
	Private key management
	changing the private key

	High Availability (HA) Management
	Introduction
	Installation
	Setting of the primary server
	Setting of the secondary server
	Status check
	License Registration

	Update
	Update procedure with both systems stopped (without failover)
	Update procedure with single systems stopped (with failover)

	HA stop and start
	Stop HA configurtion
	Start HA configuration

	Failover and fail back behavior
	When the server is recoverable
	When the server is unrecoverable

	setup_cluster.sh Options

	Audit log management
	Introduction
	Operations covered by the audit log
	Operation level and logging level

	Audit log file
	Destination of audit log
	File format of audit log
	Items recorded in audit log
	Sample of audit log

	Details of audit log items
	Operation level (level)
	Operation date and time (started, finished)
	Execution information (exec)
	Operation user (user)
	Operation interface (interface)
	Operation class (class)
	Operation target (target_path, target_type)
	Operation type (type)
	Operation result (permit, result)
	Detail information (detail)

	Configuration file
	Configuration file format
	Auto reloading of configuration file
	Default configuration file

	System packages management
	Manage command for packages information
	Show pacakges information
	Collect packages information
	Update packages information

	Operation Guide
	Introduction
	Basic operations
	Login and logout
	Menu operations
	Keyboard operations

	Kompira file system
	Names of object
	Object Properties
	Object permissions

	Kompira object
	Directory
	Create new object
	Viewing and editing object
	Rename object
	Moving and copying objects
	Delete objects
	Editing object properties
	Importing objects
	Exporting objects
	Searching for objects

	Table
	Job flow
	Job flow execution

	Script job
	Script edit
	How to execute a script

	Mail channel
	How to set up mail channels
	Connection test
	Setup procedure when using OAuth2 authentication

	SMTP server
	How to set up an SMTP server

	Form
	How to set up a form
	Send message
	Run job flow

	Repository
	How to set up repository
	Initialization
	Push
	Pull

	Process Management
	Process list
	Process details
	Terminate
	Suspend
	Resume
	Console
	Job flow / Script
	Result
	Child processes
	Settings

	Process operation by management command
	Process operation options
	Process filtering options
	Other options

	Scheduler
	Date and time setting field format

	Settings
	User management
	Group management
	Management area setting
	Job manager status check

	System Settings
	Show command format
	console display filter

	Startup job flow
	License Management
	License of registration

	Troubleshooting
	“The number of Jobflows has exceeded the limit”, “The number of ScriptJobs has exceeded the limit”
	“Kompira engine has stopped”
	Database connection error
	Internal error
	kompira_dump.sh Information collection and support inquiries
	Information not collected
	Information collected

	Kompira Tutorial
	Introduction
	Initiate the job flow
	Hello World
	How to write a comment
	Execute the command
	$RESULT
	Linking jobs together

	Use a variable
	Variable definition
	Identifier
	Scope
	Assigning Variables
	Array and Dictionary
	Array
	Dictionary

	Template character string
	Parameters

	Remotely run commands
	Specified by the control variable
	Node information and account information settings
	Execution by sudo

	Manipulating Jobs with Control Structures
	Conditional branch
	If block
	Case block

	Repetition
	for blocking
	While block

	Calling a job
	Calling a job flow
	Passing parameters to job flows
	Execution of a script job

	Manipulating objects
	Referencing objects
	Browse and update properties
	Referencing and updating fields
	Calling methods

	Waiting for an event
	Transmission of messages
	About event jobs
	Specify a timeout for message retreival
	Selective reception from multiple channels

	Access externally
	Send mail
	HTTP Access

	Controlling processes
	Process Termination
	exit
	abort

	Child Process Activation
	fork
	pfor

	Detaching from the parent process
	detach

	Kompira Jobflow Language Reference
	Introduction
	Syntax Notation

	Lexical structure
	Comment
	Blanks
	Identifiers
	Keywords
	Reserved identifier Class
	Special identifiers

	Object Path
	Literal
	String literal (STRING)
	Binary literal (BINARY)
	Integer literal (INTEGER)
	Floating-point literal (FLOAT)
	Boolean literal (BOOLEAN)
	Null literal (NULL)
	Pattern literal (PATTERN)

	Symbols
	Operators
	Connectors
	Delimiter

	Value and type
	Primitive types
	Integer type (Integer)
	String type (String)
	Binary type (Binary)
	Floating-point type (Float)
	Boolean (Boolean)
	Null type (Null)
	Pattern type (Pattern)

	Complex data type
	Array type (Array)
	Dictionary type (Dictionary)

	Opaque data type
	Object type (Object)
	File type (File)
	Date and time data (Datetime)
	Date data (Date)
	Time data (Time)
	Elapsed time type (Timedelta)

	Variables
	Local variables
	Job Flow Scope
	Block scope

	Environment variable
	Special variable
	Status variable
	Control variable

	Expression
	Atomic formula
	Identifier (IDENTIFIER)
	Object Path
	Special identifiers
	Literal
	Parentheses format
	Array expression
	Dictionary expression

	Postfix expressions
	Attribute reference
	Subscript Reference
	Function calls

	Operator expression
	Unary operator
	Multiplication and division operator
	Arithmetic operators
	Comparison operators
	Inclusion operators
	Logical operators

	A job
	Skip Job
	Execution job
	Assignment jobs
	Update jobs
	Event jobs
	Built-in jobs
	Control jobs
	Continue
	Break

	Block jobs
	Simple block
	if Block
	Case block
	for block
	While block
	Choice block
	Fork block
	Pfor block
	Session block
	Try block

	Job flow expressions
	Connectors

	Job flow Program
	Parameter declaration

	Kompira Standard Library
	Built-in functions / jobs
	Local embedded jobs
	Remotely embedded job
	Built-in functions

	Kompira objects
	Field type
	Field qualifier
	Properties
	Method

	Built-in objects
	Type Object (TypeObject)
	Field
	Method

	Directory (Directory)
	Field
	Method

	License
	Field
	Method
	Properties

	Virtual Object (Virtual)
	Field
	Method

	Job flow (Jobflow)
	Field
	Method

	Channel (Channel)
	Field
	Method
	Properties

	Wiki page (Wiki)
	Field
	Method

	ScriptJob
	Field
	Method

	Environment Variables (Environment)
	Field
	Method

	Template
	Field
	Method

	Table
	Field
	Method

	Management Area (Realm)
	Field
	Method

	AttachedFile
	Field
	Method

	Node information (NodeInfo)
	Field
	Method

	Account information (AccountInfo)
	Field
	Method

	Repository (Repository)
	Field
	Method

	Mail channel (MailChannel)
	Field
	Method

	Form
	Field
	Method

	Settings (Config)
	Field
	Properties
	Method

	Library
	Field
	Method
	Invocation example

	MailTemplate
	Field
	Method

	Text
	Field
	Method
	Properties

	SystemInfo
	Field
	Method
	Properties

	NodeType
	Field
	Method

	CustomStyle
	Field
	Method

	OAuth2Provider
	Field
	Method

	SmtpServer
	Field
	Method

	Special objects
	Process
	Properties
	Method

	Process list (/process)
	Method

	Schedule
	Properties
	Method

	Schedule list (/scheduler)
	Method

	User
	Properties
	Method

	User list (/config/user)
	Method

	Group
	Properties
	Method

	Group (/config/group)
	Method

	Coordination with other systems
	Introduction
	Sending events to Kompira
	Sending events from Windows
	kompira_sendevt options

	Receive e-mails on Kompira
	Setting up Linux
	Kompira settings

	Coordinating with monitoring systems
	Confirming event transmission and receipt
	Zabbix Settings

	Coordinating with Redmine
	Redmine settings
	Issuing a ticket

	Receiving SNMP Traps
	Environment
	Kompira Server Settings
	Setting up the SNMP agent server
	Transmission of SNMP trap

	Monitoring Kompira
	Introduction
	Monitoring using Zabbix
	Preperation
	kompira_jq.sh
	Kompira server’s host settings

	Monitoring with UserParameter
	Zabbix Agent settings
	Zabbix Server settings
	Monitoring items

	Monitoring with external scripts
	Number of processes
	Number of incidents

	Kompira REST API Reference
	Introduction
	Common Features
	The end point
	User Authentification
	Format
	Datetime data
	Object data
	File data

	Error
	Paginate
	Specifying attributes to retrieve
	Filtering
	Specify sort order
	Object
	Process Type (Process)
	Schedule type Processes (Scheduler)
	Incident type processes (Incident)
	Task type (Task)
	User type (User)
	Group type (Group)

	Accessing Kompira objects
	How to get object information
	Object Information Updates
	Adding a new object
	Deleting an object
	Obtaining a list of children and descendants
	Executing a job flow
	Executing a script job
	Sending Messages
	Received Messages

	Process
	Retreiving lists
	Obtaining process detail data
	Process’ operation
	Wait for the completion of execution of the process

	Schedule
	Obtaining the schedule
	Obtaining Schedule details
	Schedule update
	Creating a schedule

	Incident
	Obtaining the incident list
	Obtaining incident details
	Updating Incidents
	Adding a work log
	Creating a incident

	Task
	Obtaining a list of tasks
	Obtaining task details
	Cancelling a task
	Submitting a task

	User / Group Management
	Obtaining a user list
	Obtaining User Details
	Updating Users
	Create new users
	Obtaining the group list
	Obtaining group details data
	Updating Groups
	Adding a new group

	Index

