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Abstract

Tithis are the dates of Lunar Calendar. Sewell and Dikshithélje given a detailed
procedure to calculate tfiethis as used in ancient Indian astronormiie work is based
on the principles defined iBurya Siddhant&2) and other seminal ancient works. These
calculations rely on tabulated values for some constdis method of deriving these
tables is not clear and no formal process of calcgdhiese constants has been given. In
the present paper we evaluate the formulation of theegsoof calculating theithis. We
show that this formulation uses constants which caedbeulated using trigonometric
functions. Hence we re-formulate the method of catmog tithis and derive a self
consistent equation of calculatitithis that still uses the same basic procedure. Using the
data of solar eclipses from NASA website (3), we caleuthetithis from 2,000 BC till
3,000 AD, we show that this method of calculating the @mstfrom trigonometric
formulae gives an accurate prediction around 500 AD whertalles were created.
Outside this period, the discrepancies due to the Egthtsession overwhelm the data
and by 2,000 BC the discrepancies between calcutdatesl and occurrence of eclipses
can be as much as 7 days. We therefore fit this datdemsith square method and arrive
at the correction factors. We add this empirical ine@&rection factor to correct for this
and derive a method of calculatitithis which is accurate and self consistent from 2,000
BC to 3,000 AD. We propose that the method may be acdaraie much as 10,000 BC
to 10,000 AD. We then test this formulation against tlesliotedtithis (full Moon) of
lunar eclipses and show that the formulation givesiiatetithis from at least 2,000 BC
to 3,000 AD.

1. Introduction

The ancient Indian calendar dates back several thousarslayghthe relevant literature
has been extensively collated in a major commentaltgdcéhe Indian Calenday by
Sewell and Dikshit (1). The standard method of calcugatithhis was formalised around
500 AD when the calendar was standardised through a bolekl ¢8urya Siddhanta
(2). The methodology adopted in the book is not very @edris often cryptic. In their
seminal work more than a century ago, Sewell and DiK&hithave made a detailed
analysis of the various Indian calendars and givenralatdised method of calculating
all aspects of the Indian calendar. In the present pagerevisit their calculations of
tithis in order to ascertain the accuracy of the method. fige list the various
terminologies used in translations ®firya Siddhantand also inindian Calendarsto
help the readers access the original information reasdy. We then discuss the method
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itself and suggest possible changes in the formulatiomdke the calculations more
versatile.
1.1 Some basic concepts in defining the calendar

The Hindu calendar has fiv@gnchg limbs (angg, concerning five elements of
time division. These areufra, tithi, nakshtra, yogaand kirana. These are defined as
follows:

Vara: It is the name of the day like Mondd&ygmava), Tuesdayangalvay etc.

Tithi: The moment of new Moon, or that point of time whke longitudes of Sun and
Moon are equal is called ‘amavasya’. Th#hi is the time taken by the Moon in
increasing its distance from the Sun by 12 degrees. Thplete revolution of the Moon
(29.5 days) occupies 3fhis for 360 degrees. Since the motions of the Sun and Moon
are always varying in speed the length tiffa constantly alters.

Nakshatra: The time, which the Moon requires to travel over2fith part of the ecliptic,
is called ‘nakshatra’. During the traversal of Moon arothelEarth it was noticed that
the Moon is close to some of the fixed heavenly boditg). Twenty-seven stars that
fall on the path of the Moon identified. In 29.5 days,ttl&a Moon’s one synodic
revolution, Moon travels through 27 stars that were saidorm the 27Nakshatras
Hence, on an average Moon travels one nakshatra eweryte star, which is closest to
the Moon on its path, is called Moo&kshatra

Yoga: The period of time during which the distance betweenSte and Moon is
increased by 1°320. This is about 1 day.

Karana: The karana is half th&thi or during which the difference of the longitudes of
Sun and Moon is increased by 6

While the first three units are still in ud€aranasand Yogasare hardly used in
day-to-day life.

2. Calculation of Tithi

The simplest definition of &thi is that, it is the phase of Moon on a given time of
the year (DOY). Since the Moon has a periodicit2®f days and since a year begins
with Sunrise aGudi Padwa(the day after the New Moon day at the beginning of gprin
In the year 300 AD, spring began on the amavasya thdtedrdne month of Chaitra), in
its most simple form th&thi on a specific day of the yedithi(DOY) can be calculated
as

tithi(DOY) = longitude of Moon — Longitude of Sun (of the orbit of 860 o1

In order to map it with observable parameters, an addititactor is added into
this formulation. The 3Qithis (from Full Moon to New Moon and back) are given in



table 1. The waning phase (from Full Moon to New MosmalledKrishna Pakshand
the waxing phase (from New Moon to Full Moon) is edbhukla Pakshand the names
of tithis are reversed.

Table 1: Names of tithis starting with Full Moon

Number | Phase Tithi Number | Phase Tithi
1 Krishna| Pratipada 16 Shukla Pratipada
2 Krishna| Dvitiya 17 Shukla] Dvitiya
3 Krishna| Tritiya 18 Shukla  Tritiya
4 Krishna| Chaturthi 19 Shukla Chaturthi
5 Krishna| Panchami 20 Shukla Panchami
6 Krishna| Shashthi 21 Shukla Shashthi
7 Krishna| Saptami 22 Shukla Saptami
8 Krishna| Ashtami 23 Shukla Ashtami
9 Krishna| Navami 24 Shukla Navami
10 Krishna| Dasami 25 Shukla Dasami
11 Krishna| Ekadasi 26 Shukla Ekadasi
12 Krishna| Dwadasi 27 Shukla Dwadasi
13 Krishna| Trayodasi 28 Shukla Trayodasi
14 Krishna| Chaturdash 29 Shukla] Chaturdash
15 Krishna| Amavasya 30 Shukla Purnima

In order to map this movement in the sky, differenthpaif the movement of the
Moon are divided as per the nearest star or congpellathe names of the 27 regions,
called the 2Nakshatraghat make this path are given in table 2. These are asfihe
a month. The name of a lunar month is given by thetitmtaf the Moon on the Full
Moon day. Each region is about®130 in the sky.

Table 2: Division of the path of Moon in the sky

Number | Star Names | No Star name
1 Ashvini 15 Swati
2 Bharani 16 Vishakha
3 Krittika 17 Anuradha
4 Rohini 18 Jyeshtha
5 Mrugashira | 19 Mula
6 Ardra 20 Purva Ashadha
7 Punarvasu 21 Uttara Ashadha
8 Pushya 22 Shravana
9 Aslesha 23 Dhanishta
10 Magha 24 Shatataraka
11 Purva Falgun] 2% Purva Bhadrapada
12 Uttara Falgunj 26 | Uttara Bhadrapada
13 Hasta 27 Revati
14 Chitra




From the point of view of a calendartithi begins on one day and ends on the
following day. However, the length of théhi alters quite often since the apparent
motions are not linear. The length ofithi may begin and end within the limits of same
solar day. On other occasions, the Moon may remaihearsamdithi for as many as 2
days; occupying the whole of one and parts of the othar daj.

OneTithi ends at the moment of time when the angular distarteesba the Sun
and Moon becomes an integral multiple of.1@ other words, &ithi ends at the same
instant of time for all places on Earth andithi is not sensitive to the longitude (or
latitude) of the region. The moment of Sunrise of cewaries with longitude and
therefore local time of Moon’s entry into atithi will differ at different places. For the
same reason expunction and repetitiontidfis may differ by a day in different
longitudes.

2.1 Mathematical formulation dithi calculations

Lunation is the time taken by the Moon to complete mwodlution around the
Earth. The 36Dangular path of the Moon in the sky is divided into 10,080s and 1
part, the finest possible resolution amounts 2.16 arc mi®y2The time between two
conjunctions is a synodic lunar month. The smallest of measure of a tithi is
1/10,008 part of an apparent sidereal revolution of the Moon.

When the angular difference between the Sun and Msdass than 2.16
(measured eastward angle), the Sun and Moon are sadriacbnjunction. This moment
of time is said to be themavasya momewtr new Moon. To travel 21,600f arc, (360)
Moon takes 29.53 (solar) days or 42,480 minutes. So, to travéld.afc it takes 4.25
minutes. The Moon remains in this position for approxinyade25 minutes. This interval
defines the accuracy of all astronomical observationancient Indian calendar. Since
Amavasygnew Moon) lasts for the movement of the Moon fr@16 to + 2.16 around
the Sun, it last for 8.50 minutes only, according to thimitdation.

2.1.1 Primary calculations — Calculationtithi index ‘a’:

As stated earlier, a lunation, i.e. rotation by 3@ divided into 30tithis. 1/30" of a
lunation represents the time duration ditlai or the angular movement of°1lZSince the
lunation is divided into 10,000 parts about 333 (10,000/30) parts geetithi, 667 to 2
tithis and so on. Lunation parts are calk#tii indices. Thetithi index @ shows the
position of the Moon in its orbit with respect to thespion of the Sun at conjunction.
For example 0 or 10,0Gihi index is the distance travelled from one new Mooretarn
back to the same relative position, anttla index of 5000 implies that the Moon has
travelled from new Moon to full Moon. The value t=4@wls that the Moon has recently
(40 x 29.53 x 24 x 60/10,000 = 170 minutes ago) passed the point or moment of
conjunction. Hence if we know thehi index (@) we can find out theithi of a given
day. Therefore, Equation 1 can be written as

a = (DOY — DOY of Gudi Padway 338.63 2



The constant 338.63 arises from the fact that the Moarels 10,000 parts in
29.5 days, or 338.63 parts in a day. It implicitly assumeshieamoment afteAmavasya
was at Sunrise on tieudi Padwaday, that is, the sunrise @udi Padwaday occurred
8.5 minutes afterAmavasya Clearly, this not a good approximation and various
corrections need to be madaudi Padwaday is defined as the first moment after New
Moon after the Sprirfg

2.1.2 Correction factors

The first correction comes from the fact that thaotxmoment of New Moon
need not have occurred 8.5 minutes before Sunrise. Thenitibevalue of @ is non-
zero. For example, in the year 300 AD, the valueobn Gudi Padwa day was 182 i.e.
the Moon was 182 (1) units ahead of the Sun at Sunrisgaah WMjhich was the central
point for all calculations. That is, themavasyahad occurred 773 minutes (12.9 hours)
before the sunrise (for more details see page 57 of &weIDikshit (1)). Hence we add
the first correction term to equation 2 and computervidee of &' in the following
manner

Bcalculated= @ t @ Gudi Padwa ... 3

AcalculatediS @ NUMber that tells how may lunation parts have beempleted or lagging
behind on the day in question.

The calculation oftithi is further complicated than this since all the objects
involved, the Moon, the Sun and the Earth have some mmenis. The correction for all
this involves 2 additional parameters o8glicuiatedNamely,’b’ and‘c’. We discuss these
below.

While movement of the Moon is measured with respethiédSun, the movement
of the Sun itself (with respect to the background stasinireality, a measure of the
movement of the Earth with respect to the Sun. TherMoavels much faster than the
Earth in the sky. Hence the absolute angular distand&ooh and Sun or their distance
from one another increases continuously for the fiedf of the month and decreases
during the second half of the month till another cortjiomcoccurs. For measurements,
all angles are calculated due east starting with G@ajunction and 5,000 parts at the
maximum separation to 10,000 parts at the next conjunatiben the counter is re-set.
Note that while the Moon completes 1 revolution in 10,00@spam the sky, the Sun
itself has moved an additional 3@o complete 360in 12 months)Hence to calculate
the correctithi two corrections to the first number are added. Hent®ah of 3 terms
have to be evaluated to determine titid@. The first number is simply the calculation of
the Moon’s movement assuming the Sun to be statiomlaeyjthi index (term &) as
discussed above. To this, an additional correction (tbf)ris added to correct for the

% In the year 500 AD, spring is defined as the period wherStireenters Aries. Since
then, the precession of the Earth’s axis meanshisaistno longer true.



rotation of the Earth. A third correction (terunj)‘takes into account the revolution of the
Earth. While in the original calculations, the tefa is calculated based on formula
given in equation 3, the corrections fbr and‘c’ are directly read out from a table. The
values of'b’ and‘c’ are tabulated by Sewell and Dikshit (1) and its methodois
specified. However we fit the trigpnometric sine cumvette values ofo’ and‘c’ when
drawn against angle (lunation parts) as a parameter.

Since the relevant motions are not uniform, a givenovli§fdoon, Earth or Sun) is
sometimes behind and sometimes in front of its meawvernage place. These distances
are said to be ‘in defecttyna) or ‘in excess’ 4dhik depending on whether the object is
behind, or in front of the expected location from thiewdations of &. The parameter
‘a’, corresponds to mean expected location and is alsedc#dication of the centre’ and
the correction over this is called ‘equation of coriettfrom centre’ in lunar motion.
This value sometimes needs to be added and sometimestubtoacted from the mean
longitude. In the method adopted in (1), the sign elensegliminated and the correction
tables are prepared so that the sum to be worked outagsalve one of addition. That is,
the correctithi is derived as

a = Acaclulated+ C ... 4

whereC is the correction term that is derived empirically aadobitated. The value of the
termC is the term of the equation of correction of thetieen

The true value ofd which gives the correctithi, that is &g is the true
difference between the longitudes of Moon and Sun.th&fefore get

awue = true longitude of the Moon - true longitude of the Sun +C ... ba
or
Ayrue = Acalculatedt D + C ...5b

To get the true longitude of the Moon from the meanitodg, we must apply the
equation of the centre to the mean longitude. The isereamean longitude of Sun and
Moon, i.e., eastward distance of Moon from the Sun, Sone¢'an anomaly (constard)’
and Moon’s mean anomaly (constahy ‘are given in table 3. As per the conventional
definition, the variablel’ is moon’s mean anomaly, defined as the differendevéoen
the longitude of moon and it’s perigee. The consteins‘Sun’s mean anomaly, namely
the difference between the longitude of Sun and it'ggper The mean values of these
three constants, namely the eastward Moon (quaratiy is calculated as the angular
travel by the moon in 1 lunar month (given by 10000/29.58),ntlean anomaly of the
Moon (quantity b’ given by 1000/27.5546) and the Sun’s mean anomaly (quantity °
given by 1000/365.256) are given in table The quantitiesb and ¢ can also be
interpreted the correction of the co-movement of theoMwith respect to the Earth
(quantityb, for Earth’s rotation) and Earth with respect to $um (quantityc, for Earth’s
revolution).



Table 3: Daily drifts of the Sun from the moon and the mean anomaly in this

movement.
No. of Eastward dist. of Moon’s mean anomaly Sun’s mean anomaly
days Moon from sun

(a) Parts of tithi index| (b) Parts of tithi index | (c) Parts of tithi index
1 338.6319 36.2916 2.7378

In order to determine the relative angular displacermoetite Moon from the Sun,
the quantity Ip+c) must beaddedto the eastward displacement of the Moon that can be
calculated as given in equation 4. Since these quargigesmall, their evaluation is done
by dividing 1 Lunar month by 1,000 parts as compared to theiativisy 10,000 in
evaluating &. In Sewell and Dikshit (1) the values df ‘and ‘c’ are evaluated in parts of
tithi index per day. Their method of calculations is not gi&ad they are said to have
been derived as best fit values over a long period ofrexapstudies. In figure 1, we
have plotted the values df ‘and ‘c’ as given in table VI and VII of Sewell and Dikshit

(1).
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Since bothb’ and ‘c’ are trigonometric we can calculate them by the equati
given below.
b = C; sin(aaiculaed+ C2 where G =140 G =140 .. 6a
and
¢ = Gz sin(&aiciulatedt+ Ca where G = -60 G =60 .. 6b

The constant$; to C, are dependant on the period and speed of the objects
concerned and cam principle, be calculated from basic astronomy. However, we have
used empirical values d3; to C, based on the amplitudes of the functions plotted in
figure 1. We therefore derive the formula based®arya Sidhantéormulation as,



This can be simplified to the equation & as

ague= Tithi (DOY) = @alculated+ C1SiN(&aiculated + C2 + C3SiN(&alculated + Ca .. 8

From one full Moon to the next it takes 29.5 days. Tmeany days correspond to
one lunar month. Names of the lunar months arengiwdable 4. Twelve lunar months
correspond to one lunar year and one lunar year isaqut to 354 days.

Table 4. Commonly used names of Lunar Months

Sr No | Name of lunar month | Sr No | Name of lunar month
1 Chaitra 7 Ashvin
2 Vaishakh 8 Kartik
3 Jyeshtha 9 Mragshirsha
4 Ashadha 10 Pausha
5 Shravana 11 Magha
6 Bhadrapada 12 Phalgun

Earth takes 365.24 days to go around the Sun. So the laaarisyshorter by
about 11 days. To map lunar year to solar year a luar-sallendar has been used for
several centuries (see e.g. Bag (3)).

To define the exact day of the beginning of the so-calleédgpnonth ofChaitra
the following procedure is used. In most of India lunas@haitradi year commences
with shukla paksha pratipadar T day of the Chaitra month. According luni-solar
calendar, one extra month is added at a regular intertags month is calledAdhik-
maas or intercalated month. Intercalations occur in 8f 5", 8" 11" 14" 16" and
19" year of a cycle of 19 years is called the Metonic €yarid is Greek in origin. It
arises from the fact that 19 Solar months X1364.2422 = 6939.602 days) and 235 Lunar
Months (235x 29.53059 = 6939.689 days) are nearly identical and are usedstettirey
the complete calendar. This is the method adopted by SewdllDikshit (1). The
original Indian practice was to define 5 year periods with intercalated months (See
e.g. Abhyankar (4)). While we continue with the Metonicleyes done by Sewell and
Dikshit (1), since the true period of lunar orbit precass® 18.6 years rather than 19
year, the 5 year method gives a more accurate methomrr@ictions. We simply note in
the passing that Chandra Hari (5) has suggested that 19 geayele was also in use in
India as far back as 2400 BC.

It is clear from equation 3 that the entire calcolatdepends critically on the
mapping ofGudi Padwaon the Solar year. We therefore discuss the calounlaif the
DOY of Gudi Padwabelow.

2.1.3 Calculation osudi Padwaday:

The initialisation of the calendar was done on thst fday of the month of
Chaitraat Ujjain (lat 28 9 N, 75 43 E) of the year 399. This day is callédidi Padwa



There after, allGudi Padwadays arecalculated based from this day, with a quasi
periodicity of 354 days with re-normalisation done wheradditional month is added
every few years as discussed above. In some casesndlyi imply that the month of
Chaitra that is supposed to herald the beginning of spring may corlier @a later than
the actual beginning of the season of spring.

The years with intercalated month have 383-385 days and hypearahas 353 —
355 days. All calculations are based@udi Padwaas the first day of the year. Tkaudi
Padwaday itself is the day after new Moon day of the mddhaitra. The lunar year is
354 (29.5x 12) days and hence the Gudi Padwa is earlier by 11 daxg yaaer, if no
corrections are made. In order to synchronize withstilar )éear therefore an additional
month ‘Adhik Maa3 is added every'd 5" 8" 11" 14" 16" and 14 year. In figure 2
we have plotted the DOY d@budi Padwagiven in (1) for one cycle of 19 years. As can
be seen from the figure the differenceGifdi Padwaday from previous year is about -11
days in normal years and about +18 days for years watAdhik maas.

Difference in Gudi Padwa DOY from
previous year
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Figure 3: Plot of the Day (Gudi Padwe compared to previous yeaiGudi Padwi
day as a function of years for one 19 year cycle. Ye&r 400 AD. The numbe
near each point corresponds to the year number inetipgesce. Note that th
difference is about — 11 days corresponding to the differbetiveen the length g
lunar and solar year. During the monthsAdhika Maag(i.e. years with intercalary
months, namely§ 5" 8" 11" 14" 16" and 14 year) the difference changes
from — 11 days to +18 days. A precession cycle of 19 yeatgsenthat the patter
is repeated every 19 years and hence only one cyclevssh
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In order to calculate th&udi Padwaday in any given yealy), we follow the
following procedure:



n = integer equivalent of [remainder (abs(y-399)/19)] .. 9

Note that the remainder is an integer number between 0 and 18. The number 399
corresponds to the year of normalizatiom # 0, 3, 5, 8, 11, 14 or 16 then

Gudi Padwa day = Gudi Padwa day in 399 (DOY = 54) + 18 days ... 10a
else
Gudi Padwaday =Gudi Padwaday in 399-11 daygfrom the year with lashdhik Maa$ ... 10b

Since this drift is entirely due to the precession ohdr orbit around the earth,
we assume that it is not dependent on the precessibe efirth's orbit around the Sun.

It should be noted that while we have used the 19-year ¢yciget theGudi
Padwadate of any required year, the periodicity is not ex@be value of &cudi padwa
(Equation 7) does not return exactly to the same vdlee &9 year cycle. Hence for
accurate calculations, the round off with years shoatdor used and the integer number
of days fromGudi Padwain 399 should be calculated. However, for 1 day accutaey,
approximations used here are acceptable.

In table 5 we have given the valueagfqyi padwafor 19 years from the year 1798.
should be noted that the Moon travels 33863 indexes in 1 day. Also, for all the
parameter values in table 5 with the values less than 338.GBeater than 9661.37
(10,000 — 338.63), the error introduced by slightly different cbivalues ofacudipadwa
for a specific year will not be significant and wile Hess than the error of 1 day
introduced by longitude insensitivity of calculations.

Table 5: Approximate values of acudi padwa @S a function of n (equation 9)

Value ofn (equation 8) Value ofagydi padwa
0 74
1 9950
2 9825
3 9860
4 9736
5 9770
6 9985
7 199
8 234
9 109
10 9985
11 20
12 9896
13 9771
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14 9806
15 20
16 55
17 269
18 145

In one day the eastward distance of Moon from Sun wasdf to be 338.63.
Number of days between th&udi Padwaday and the solar eclipse day under
consideration was found and the valueadfér these many days was calculated.

For example, for the year 1937 Gudi Padwa was on MaréhTid calculate the
tithi of December ' 1937 (solar eclipse day), one has to find the differelmetween
March 11" and December™ i.e., 266 days. Then théthi index of the day was
calculated as follows in line with equation 3.

Acac  =338.63 * 266 + ‘a’ on Gudi Padwa of 1937AD (from equation 9)
= 90075.58 +145 = 90220.58

The counter is initialised to 0 once t=10000. Accordinghg torrect value of
tithi index of the day is 220. According tghi index value it is aShukla Paksha
Pratipada.

2.1.4 Final formulation

To summarise, in order to calculate thiki on any dayd,) of any Solar yearyj
the following steps must be performed.

a) Calculate the day o6Gudi Padwaas given by equation 10a or b as per the
parameten defined in Equation 9.

b) Now calculate the number of days from tedi Padwafor d, by subtraction.

c) To determine the value @ydiradwa USE table 5. Using the appropriate value of
acudipadwaCOMpuUte equation 7 to get the valu@@f.uaequsing the values a; to
C4 from equations 6a and b.

d) Compute equation 8 using the parameters from earlier stepetd; e to arrive at
thetithi for thed,.

Since the corrections introduced by ‘and ‘c’ are less than 338.63, as a first
approximation, these can be ignored for average ttilg. However, since the sum of
maximum error ob andc is 400, these calculations can introduce an error ofyllda
addition, the approximations used in table 5 when added fommaxierror, the error
can go up to 2 days.

Note that these calculations will have an inaccuracy ddy due to usage of table 5.

To calculate théithi with an accuracy of better than 1 day, it is necgdbat the DOY is
computed from DOY 54Gudi Padwaday) in 399 and performing the above calculations
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ignoring the round off with years. However, this procedwill introduce an additional
error due to the precession of the Earth’s axis wiperdod of about 25,800 years. We
correct for this in the formulation below.

3. Verification of thetithi using solar eclipse dates

In order to check the accuracy of the formulation gigbove, we calculated the
tithis of the days on which Solar eclipses were observe&ANwebsite (3) gives a list of
solar and lunar eclipses from 2000 BC to 4000 AD using currernagts. In the first
step, we calculated thtéhi corresponding to the dates of solar eclipse giverethWe
tolerated an error of * day in view of the approximations discussed earliert Bhaf
our calculatedtithi was Chaturdashi Amavasyaor Pratipada we considered the
calculations to be accurate. Apart from the approximatitves error of 1 day can also
arise due to the fact that we calculate the avetitgeas seen at Ujjain on that day while
it is very likely that theithi index itself did reach 0 sometime during the day,esive
have taken all eclipses in the data base and notctesttio those seen from Ujjain. We
find that our calculatetlithis can be substantially different from the expedigd when
the calculations are extended into past or future.

The error arises due to the fact that the year is yrathsonised to the length of
the day. The short term error in the calculationdus to the 19 year precession of the
Moon around the Earth which was discussed while discuskagdlculation ofGudi
Padwaabove. The long term deviation occurs due to the fattthieayear is not 365.24
days but has fractions that go to third and fourth degniaales. This error builds up into
a significant (linear) error over a few hundred ye&ve empirically correct for both
these below.

We verified our calculations with more than 100 soldipee dates from 2000 BC
to 3000 AD taken from (6, 7). However a systematic ine@aghe deviation from the
central value was noticed both for AD and BC dategui@ 4, 5). This deviation can
occur due to the difference in number of days in one year.

We analysed the data between 2000 BC and 3000 AD withdgaate fit. The

corrections thus obtained were incorporated in our proguaaithe correct value tthi
was obtained.
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Tithi Vs Year

Figure 4: Difference between
calculatedithi and New
Moon days determined from
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As the figures above show, long term corrections areati Hence in order to
determine the corredithi, the DOY of Gudi Padwashould be re-calculated as per
equations given below.

From 2000 BC to 1582 AD
Difference in days =0.003 x year +0.6994 . ...1l1a

From 1583 AD to 3,000 AD
Difference in days = 0.00&lyear —7.6017 ....11b

The change over from 11a to 11b is done in the year 1582 thiaceés the year

when the Julian year was changed to Gregorian yease@s from the value of the
best-fit equations are equation 11la and 11b and we use timsldbion to extend the
calculations to determine thighi over an extended period from 2,000 BC to 3000 AD.
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The formulation was checked for the Eclipses from 3000t&000 AD tabulated in
(6).

The present formulation has taken into account all iplesssources of
accumulated errors due to various approximations. Herst®witld be possible to extend
the calculations from 10,000 BC to 10,000 AD. However, smeédave no independent
ways of confirming this, we only mention this here.

4.0 Testing of data for Lunar Eclipse

We have tested the calculated tithi dates based on equatgainst the calculation of
Lunar Eclipse data which was not used in deriving the pdesmbere, as well as Solar
eclipse till 4000 AD. The figures given below show thealueclipse data fit.

In figure 6 we have plotted sample calculations oftitie on the day on which a
lunar eclipse was calculated using modern ephemeriso(3jifferent years on which
data are available. As can be seen from the figure htorsame values of the various
constants our calculated dates of lunar eclipse agrdetin@ observed date of Lunar
Eclipse validating the formulation given here.

Deviation between calculated tithi and dates of Lunar
Eclipse

g2 . Figure 6: Difference
g 1 . . . . between Calculated
2 R R S e B e e aA i AArrAs A B L i I.».>_ and eXpected values
g, . . of tithis (purnimg

5 . . on days of Lunar

3 | | | | Eclipse from 2000

® 2000 -1000 0 1000 2000 3000 BC to 3000 BC

Year

5. Discussion and Conclusion

We have analysed the method employed to calculatétkiie on any given solar day
from Ujjain (lat 23 9 N, 75 43 E). We show that the formulation is amenable to
simpler mathematical compression. We have extendefbtheilation ofSurya Sidhanta
to get a more versatile formula to calculteis. The formulation given here makes the
following improvements:

a) Analyses the astronomical reasons for the cornestand give a formulation of
look up table for second order corrections introduced by npoksgnised
manner of all the periods and movements involved,

b) discusses and corrects for 19 year lunar cycle andiéwngerror build up,
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c) gives empirical formula to calculate ti@udi Padwaday andtithi index on the

day ofGudi Padwa

d) corrects for long-term deviation in the formulation dug® precession using the

data of solar eclipses based on modern ephemeris.

We have then checked the formulation by fitting the dat&uoar Eclipses and
shown that the formulation given here calculatesntw® moon days for Lunar Eclipse to
within an error of 1 day in most cases. We propose ¢hat be used to accurately
calculate the tithi (within 1 day error) from 10,000 BC to0DD, AD. We therefore
suggest that the formulation given here is more veesatid can be used for extended
periods.
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