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Abstract 
 
Tithis are the dates of Lunar Calendar. Sewell and Dikshit (1) have given a detailed 
procedure to calculate the Tithis as used in ancient Indian astronomy. The work is based 
on the principles defined in Surya Siddhanta (2) and other seminal ancient works. These 
calculations rely on tabulated values for some constants. The method of deriving these 
tables is not clear and no formal process of calculating these constants has been given. In 
the present paper we evaluate the formulation of the process of calculating the Tithis. We 
show that this formulation uses constants which can be calculated using trigonometric 
functions. Hence we re-formulate the method of calculating tithis and derive a self 
consistent equation of calculating tithis that still uses the same basic procedure. Using the 
data of solar eclipses from NASA website (3), we calculate the tithis from 2,000 BC till 
3,000 AD, we show that this method of calculating the constants from trigonometric 
formulae gives an accurate prediction around 500 AD when the tables were created. 
Outside this period, the discrepancies due to the Earth’s precession overwhelm the data 
and by 2,000 BC the discrepancies between calculated tithis and occurrence of eclipses 
can be as much as 7 days. We therefore fit this data with least square method and arrive 
at the correction factors. We add this empirical linear correction factor to correct for this 
and derive a method of calculating tithis which is accurate and self consistent from 2,000 
BC to 3,000 AD. We propose that the method may be accurate to as much as 10,000 BC 
to 10,000 AD. We then test this formulation against the predicted tithis (full Moon) of 
lunar eclipses and show that the formulation gives accurate tithis from at least 2,000 BC 
to 3,000 AD. 
 
1. Introduction 
 
The ancient Indian calendar dates back several thousand years and the relevant literature 
has been extensively collated in a major commentary called the Indian Calendar, by 
Sewell and Dikshit (1). The standard method of calculating tithis was formalised around 
500 AD when the calendar was standardised through a book called “Surya Siddhanta” 
(2). The methodology adopted in the book is not very clear and is often cryptic. In their 
seminal work more than a century ago, Sewell and Dikshit (1) have made a detailed 
analysis of the various Indian calendars and given a standardised method of calculating 
all aspects of the Indian calendar. In the present paper, we revisit their calculations of 
tithis in order to ascertain the accuracy of the method. We first list the various 
terminologies used in translations of Surya Siddhanta and also in Indian Calendars to 
help the readers access the original information more easily. We then discuss the method 

                                                
1 To appear in the Annals of Bhandarkar Oriental Research Institute, 2006 
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itself and suggest possible changes in the formulation to make the calculations more 
versatile. 
1.1 Some basic concepts in defining the calendar 

 
The Hindu calendar has five (pancha) limbs (anga), concerning five elements of 

time division. These are: v
�
ra, tithi, nakshtra, yoga and k

�
rana. These are defined as 

follows: 
 
Vara: It is the name of the day like Monday (Somavar), Tuesday (Mangalvar) etc. 
 
Tithi: The moment of new Moon, or that point of time when the longitudes of Sun and 
Moon are equal is called ‘amavasya’. The tithi is the time taken by the Moon in 
increasing its distance from the Sun by 12 degrees. The complete revolution of the Moon 
(29.5 days) occupies 30 tithis for 360 degrees. Since the motions of the Sun and Moon 
are always varying in speed the length of a tithi constantly alters. 
 
Nakshatra: The time, which the Moon requires to travel over the 27th part of the ecliptic, 
is called ‘nakshatra’. During the traversal of Moon around the Earth it was noticed that 
the Moon is close to some of the fixed heavenly bodies (stars). Twenty-seven stars that 
fall on the path of the Moon identified. In 29.5 days, that is, Moon’s one synodic 
revolution, Moon travels through 27 stars that were said to form the 27 Nakshatras. 
Hence, on an average Moon travels one nakshatra everyday. The star, which is closest to 
the Moon on its path, is called Moon’s Nakshatra.  
 
Yoga: The period of time during which the distance between the Sun and Moon is 
increased by 13° 20′. This is about 1 day. 
 
Karana: The karana is half the tithi or during which the difference of the longitudes of 
Sun and Moon is increased by 6°. 
 

While the first three units are still in use, Karanas and Yogas are hardly used in 
day-to-day life. 
 
2. Calculation of Tithi 

 
The simplest definition of a tithi is that, it is the phase of Moon on a given time of 

the year (DOY). Since the Moon has a periodicity of 29.5 days and since a year begins 
with Sunrise at Gudi Padwa (the day after the New Moon day at the beginning of spring. 
In the year 300 AD, spring began on the amavasya that heralded the month of Chaitra), in 
its most simple form the tithi on a specific day of the year, tithi(DOY) can be calculated 
as 

 
tithi(DOY)  = longitude of Moon – Longitude of Sun (of the orbit of 360o)   … 1 
 
 In order to map it with observable parameters, an additional factor is added into 
this formulation. The 30 tithis (from Full Moon to New Moon and back) are given in 
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table 1. The waning phase (from Full Moon to New Moon) is called Krishna Paksha and 
the waxing phase (from New Moon to Full Moon) is called Shukla Paksha and the names 
of tithis are reversed.  

Table 1: Names of tithis starting with Full Moon 

Number Phase Tithi Number Phase Tithi 
1 Krishna Pratipada 16 Shukla Pratipada 
2 Krishna Dvitiya 17 Shukla Dvitiya 
3 Krishna Tritiya 18 Shukla Tritiya 
4 Krishna Chaturthi 19 Shukla Chaturthi 
5 Krishna Panchami 20 Shukla Panchami 
6 Krishna Shashthi 21 Shukla Shashthi 
7 Krishna Saptami 22 Shukla Saptami 
8 Krishna Ashtami 23 Shukla Ashtami 
9 Krishna Navami 24 Shukla Navami 
10 Krishna Dasami 25 Shukla Dasami 
11 Krishna Ekadasi 26 Shukla Ekadasi 
12 Krishna Dwadasi 27 Shukla Dwadasi 
13 Krishna Trayodasi 28 Shukla Trayodasi 
14 Krishna Chaturdashi 29 Shukla Chaturdashi 
15 Krishna Amavasya 30 Shukla Purnima  

 
In order to map this movement in the sky, different paths of the movement of the 

Moon are divided as per the nearest star or constellation. The names of the 27 regions, 
called the 27 Nakshatras that make this path are given in table 2. These are used to define 
a month. The name of a lunar month is given by the location of the Moon on the Full 
Moon day. Each region is about 13o 20′ in the sky. 

Table 2: Division of the path of Moon in the sky 

Number Star Names No Star name 
1 Ashvini 15 Swati 
2 Bharani 16 Vishakha 
3 Krittika 17 Anuradha 
4 Rohini 18 Jyeshtha 
5 Mrugashira 19 Mula 
6 Ardra 20 Purva Ashadha 
7 Punarvasu 21 Uttara Ashadha 
8 Pushya 22 Shravana 
9 Aslesha 23 Dhanishta 
10 Magha 24 Shatataraka 
11 Purva Falguni 25 Purva Bhadrapada 
12 Uttara Falguni 26 Uttara Bhadrapada 
13 Hasta 27 Revati 
14 Chitra   
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From the point of view of a calendar, a tithi begins on one day and ends on the 
following day. However, the length of the tithi alters quite often since the apparent 
motions are not linear. The length of a tithi may begin and end within the limits of same 
solar day. On other occasions, the Moon may remain in the same tithi for as many as 2 
days; occupying the whole of one and parts of the other solar day. 
 

One Tithi ends at the moment of time when the angular distance between the Sun 
and Moon becomes an integral multiple of 12°. In other words, a tithi ends at the same 
instant of time for all places on Earth and a tithi is not sensitive to the longitude (or 
latitude) of the region. The moment of Sunrise of course varies with longitude and 
therefore local time of Moon’s entry into any tithi will differ at different places. For the 
same reason expunction and repetition of tithis may differ by a day in different 
longitudes. 
 
2.1 Mathematical formulation of tithi calculations 
 

Lunation is the time taken by the Moon to complete one revolution around the 
Earth. The 360o angular path of the Moon in the sky is divided into 10,000 parts and 1 
part, the finest possible resolution amounts 2.16 arc min (2.16� ). The time between two 
conjunctions is a synodic lunar month. The smallest unit of measure of a tithi is 
1/10,000th part of an apparent sidereal revolution of the Moon. 
 

When the angular difference between the Sun and Moon is less than +2.16�  
(measured eastward angle), the Sun and Moon are said to be in conjunction. This moment 
of time is said to be the amavasya moment or new Moon. To travel 21,600′ of arc, (360o) 
Moon takes 29.53 (solar) days or 42,480 minutes. So, to travel 2.16�  of arc it takes 4.25 
minutes. The Moon remains in this position for approximately 4.25 minutes. This interval 
defines the accuracy of all astronomical observations in ancient Indian calendar. Since 
Amavasya (new Moon) lasts for the movement of the Moon from -2.16�  to + 2.16�  around 
the Sun, it last for 8.50 minutes only, according to this formulation. 
 
2.1.1 Primary calculations – Calculation of tithi index ‘a’:  
 
As stated earlier, a lunation, i.e. rotation by 360° is divided into 30 tithis. 1/30th of a 
lunation represents the time duration of a tithi or the angular movement of 12°. Since the 
lunation is divided into 10,000 parts about 333 (10,000/30) parts go to one tithi, 667 to 2 
tithis and so on. Lunation parts are called tithi indices. The tithi index ‘a’ shows the 
position of the Moon in its orbit with respect to the position of the Sun at conjunction. 
For example 0 or 10,000 tithi index is the distance travelled from one new Moon to return 
back to the same relative position, and a tithi index of 5000 implies that the Moon has 
travelled from new Moon to full Moon. The value t=40 shows that the Moon has recently 
(40 × 29.53 × 24 × 60/10,000 = 170 minutes ago) passed the point or moment of 
conjunction. Hence if we know the tithi index (‘a’) we can find out the tithi of a given 
day. Therefore, Equation 1 can be written as 
 
a = (DOY – DOY of Gudi Padwa) ×  338.63                  ... 2 
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The constant 338.63 arises from the fact that the Moon travels 10,000 parts in 

29.5 days, or 338.63 parts in a day. It implicitly assumes that the moment after Amavasya 
was at Sunrise on the Gudi Padwa day, that is, the sunrise on Gudi Padwa day occurred 
8.5 minutes after Amavasya. Clearly, this not a good approximation and various 
corrections need to be made. Gudi Padwa day is defined as the first moment after New 
Moon after the Spring2.  
 
2.1.2 Correction factors 
 

The first correction comes from the fact that the exact moment of New Moon 
need not have occurred 8.5 minutes before Sunrise. Then the initial value of ‘a’ is non-
zero. For example, in the year 300 AD, the value of ‘a’  on Gudi Padwa day was 182 i.e. 
the Moon was 182 (1) units ahead of the Sun at Sunrise at Ujjain which was the central 
point for all calculations. That is, the Amavasya had occurred 773 minutes (12.9 hours) 
before the sunrise (for more details see page 57 of Swell and Dikshit (1)). Hence we add 
the first correction term to equation 2 and computer the value of ‘a’ in the following 
manner 
 
acalculated = a + a Gudi Padwa         … 3 
 
 acalculated is a number that tells how may lunation parts have been completed or lagging 
behind on the day in question.  
 

The calculation of tithi is further complicated than this since all the objects 
involved, the Moon, the Sun and the Earth have some movements. The correction for all 
this involves 2 additional parameters over acalculated namely, ‘b’ and ‘c’ . We discuss these 
below.  
 

While movement of the Moon is measured with respect to the Sun, the movement 
of the Sun itself (with respect to the background stars) is, in reality, a measure of the 
movement of the Earth with respect to the Sun. The Moon travels much faster than the 
Earth in the sky. Hence the absolute angular distance of Moon and Sun or their distance 
from one another increases continuously for the first half of the month and decreases 
during the second half of the month till another conjunction occurs. For measurements, 
all angles are calculated due east starting with 0 at conjunction and 5,000 parts at the 
maximum separation to 10,000 parts at the next conjunction, when the counter is re-set. 
Note that while the Moon completes 1 revolution in 10,000 parts, in the sky, the Sun 
itself has moved an additional 30o (to complete 360o in 12 months). Hence to calculate 
the correct tithi two corrections to the first number are added. Hence a total of 3 terms 
have to be evaluated to determine the tithi. The first number is simply the calculation of 
the Moon’s movement assuming the Sun to be stationary, the tithi index (term ‘a’) as 
discussed above. To this, an additional correction (term ‘b’) is added to correct for the 
                                                
2 In the year 500 AD, spring is defined as the period when the Sun enters Aries. Since 
then, the precession of the Earth’s axis means that this is no longer true. 
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rotation of the Earth. A third correction (term ‘c’) takes into account the revolution of the 
Earth. While in the original calculations, the term ‘a’  is calculated based on formula 
given in equation 3, the corrections for ‘b’  and ‘c’  are directly read out from a table. The 
values of ‘b’  and ‘c’  are tabulated by Sewell and Dikshit (1) and its method is not 
specified. However we fit the trigonometric sine curve to the values of ‘b’  and ‘c’  when 
drawn against angle (lunation parts) as a parameter. 
 

Since the relevant motions are not uniform, a given object (Moon, Earth or Sun) is 
sometimes behind and sometimes in front of its mean or average place. These distances 
are said to be ‘in defect’ (runa) or ‘in excess’ (adhik) depending on whether the object is 
behind, or in front of the expected location from the calculations of ‘a’. The parameter 
‘a’, corresponds to mean expected location and is also called ‘location of the centre’ and 
the correction over this is called ‘equation of correction from centre’ in lunar motion. 
This value sometimes needs to be added and sometimes to be subtracted from the mean 
longitude. In the method adopted in (1), the sign element is eliminated and the correction 
tables are prepared so that the sum to be worked out is always be one of addition. That is, 
the correct tithi is derived as 
 
a = acaclulated + C         . . . 4 
 
where C is the correction term that is derived empirically and tabulated. The value of the 
term C is the term of the equation of correction of the centre. 
 

The true value of ‘a’ which gives the correct tithi, that is ‘atrue’ is the true 
difference between the longitudes of Moon and Sun.  We therefore get 
 
atrue =  true longitude of the Moon - true longitude of the Sun  + C      … 5a  
 
or 
 
atrue = acalculated + b + c        …5b 
 

To get the true longitude of the Moon from the mean longitude, we must apply the 
equation of the centre to the mean longitude. The increase in mean longitude of Sun and 
Moon, i.e., eastward distance of Moon from the Sun, Sun’s mean anomaly (constant ‘c’) 
and Moon’s mean anomaly (constant ‘b’) are given in table 3. As per the conventional 
definition, the variable ‘b’ is moon’s mean anomaly, defined as the difference between 
the longitude of moon and it’s perigee. The constant ‘c’ is Sun’s mean anomaly, namely 
the difference between the longitude of Sun and it’s perigee. The mean values of these 
three constants, namely the eastward Moon (quantity ‘a’), is calculated as the angular 
travel by the moon in 1 lunar month (given by 10000/29.53), the mean anomaly of the 
Moon (quantity ‘b’ given by 1000/27.5546) and the Sun’s mean anomaly (quantity ‘c’ 
given by 1000/365.256) are given in table 3. The quantities b and c can also be 
interpreted the correction of the co-movement of the Moon with respect to the Earth 
(quantity b, for Earth’s rotation) and Earth with respect to the Sun (quantity c, for Earth’s 
revolution).  
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Table 3: Daily drifts of the Sun from the moon and the mean anomaly in this 
movement.  
No. of 
days 

Eastward dist. of 
Moon from sun 
(a) Parts of tithi index 

Moon’s mean anomaly 
 
(b) Parts of tithi index 
 

Sun’s mean anomaly 
 
(c) Parts of tithi index 

1 338.6319 36.2916 2.7378 
 

In order to determine the relative angular displacement of the Moon from the Sun, 
the quantity (b+c) must be added to the eastward displacement of the Moon that can be 
calculated as given in equation 4. Since these quantities are small, their evaluation is done 
by dividing 1 Lunar month by 1,000 parts as compared to the division by 10,000 in 
evaluating ‘a’. In Sewell and Dikshit (1) the values of ‘b’ and ‘c’ are evaluated in parts of 
tithi index per day. Their method of calculations is not given and they are said to have 
been derived as best fit values over a long period of empirical studies. In figure 1, we 
have plotted the values of ‘b’ and ‘c’ as given in table VI and VII of Sewell and Dikshit 
(1). 
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Since both ‘b’ and ‘c’ are trigonometric we can calculate them by the equations 
given below.  
 
b = C1 sin(acalculated)+ C2  where C1 =140 C2 = 140   … 6a 
 
and 
 
c = C3 sin(acalclulated)+ C4  where C3 = -60  C4 = 60  … 6b 
 

The constants C1 to C4 are dependant on the period and speed of the objects 
concerned and can, in principle, be calculated from basic astronomy. However, we have 
used empirical values of C1 to C4 based on the amplitudes of the functions plotted in 
figure 1. We therefore derive the formula based on Surya Sidhanta formulation as, 
 
acalculated = aGudi Padwa + ( DOY - 29.5*months till Gudi Padwa) × 338.63  … 7 

Figure 1. Variation of ‘b’ 
and ‘c’ over 1 lunar month 
(divided into 1000 parts). 
See text for explanation. 
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This can be simplified to the equation for atrue as 
 
atrue= Tithi (DOY) = acalculated + C1sin(acalculated) + C2 + C3sin(acalculated) + C4 … 8 

 
From one full Moon to the next it takes 29.5 days. These many days correspond to 

one lunar month. Names of the lunar months are given in table 4. Twelve lunar months 
correspond to one lunar year and one lunar year is equivalent to 354 days. 

 
Table 4: Commonly used names of Lunar Months 

Sr No Name of lunar month Sr No Name of lunar month 
1 Chaitra 7 Ashvin 
2 Vaishakh 8 Kartik 
3 Jyeshtha 9 Mragshirsha 
4 Ashadha 10 Pausha 
5 Shravana 11 Magha 
6 Bhadrapada 12 Phalgun 

  
Earth takes 365.24 days to go around the Sun. So the lunar year is shorter by 

about 11 days. To map lunar year to solar year a luni-solar calendar has been used for 
several centuries (see e.g. Bag (3)).  
 

To define the exact day of the beginning of the so-called spring month of Chaitra 
the following procedure is used. In most of India luni-solar Chaitradi year commences 
with shukla paksha pratipada or 1st day of the Chaitra month. According luni-solar 
calendar, one extra month is added at a regular interval. This month is called ‘Adhik-
maas’ or intercalated month. Intercalations occur in the 3rd, 5th, 8th, 11th, 14th, 16th and 
19th year of a cycle of 19 years is called the Metonic Cycle and is Greek in origin. It 
arises from the fact that 19 Solar months (19 × 364.2422 = 6939.602 days) and 235 Lunar 
Months (235 × 29.53059 = 6939.689 days) are nearly identical and are used for re-setting 
the complete calendar. This is the method adopted by Sewell and Dikshit (1). The 
original Indian practice was to define 5 year periods with two intercalated months (See 
e.g. Abhyankar (4)). While we continue with the Metonic cycle as done by Sewell and 
Dikshit (1), since the true period of lunar orbit precession is 18.6 years rather than 19 
year, the 5 year method gives a more accurate method of corrections.  We simply note in 
the passing that Chandra Hari (5) has suggested that 19 year was cycle was also in use in 
India as far back as 2400 BC. 
 
 It is clear from equation 3 that the entire calculation depends critically on the 
mapping of Gudi Padwa on the Solar year. We therefore discuss the calculation of the 
DOY of Gudi Padwa below. 
 
2.1.3 Calculation of Gudi Padwa day: 
 

The initialisation of the calendar was done on the first day of the month of 
Chaitra at Ujjain (lat 23o 9′ N, 75o 43′ E) of the year 399. This day is called Gudi Padwa. 
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There after, all Gudi Padwa days are calculated based from this day, with a quasi 
periodicity of 354 days with re-normalisation done when an additional month is added 
every few years as discussed above. In some cases, this may imply that the month of 
Chaitra that is supposed to herald the beginning of spring may come earlier or later than 
the actual beginning of the season of spring. 
  

The years with intercalated month have 383-385 days and normal year has 353 –
355 days. All calculations are based on Gudi Padwa as the first day of the year. The Gudi 
Padwa day itself is the day after new Moon day of the month Chaitra. The lunar year is 
354 (29.5 × 12) days and hence the Gudi Padwa is earlier by 11 days every year, if no 
corrections are made. In order to synchronize with the solar year therefore an additional 
month “Adhik Maas” is added every 3rd, 5th, 8th, 11th, 14th, 16th and 19th year. In figure 2 
we have plotted the DOY of Gudi Padwa given in (1) for one cycle of 19 years. As can 
be seen from the figure the difference of Gudi Padwa day from previous year is about -11 
days in normal years and about +18 days for years with the Adhik maas.  

Difference in Gudi Padwa DOY from 
previous year

0

1 2

3

4

5

6 7

8

9 10

11

1213

14

15

16

1718

19

-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20

Year number

D
iff

er
en

ce
 in

 D
O

Y

 
 
 
 
 
The year 399 is the year of setting the calculations 

 
 
 
 

In order to calculate the Gudi Padwa day in any given year (y), we follow the 
following procedure: 

Figure 3: Plot of the Day of Gudi Padwa compared to previous year’s Gudi Padwa 
day as a function of years for one 19 year cycle. Year 1 is 400 AD. The number 
near each point corresponds to the year number in the sequence. Note that the 
difference is about – 11 days corresponding to the difference between the length of 
lunar and solar year. During the months of Adhika Maas (i.e. years with intercalary 
months, namely 3rd, 5th, 8th, 11th, 14th, 16th and 19th year) the difference changes 
from – 11 days to +18 days. A precession cycle of 19 years ensures that the pattern 
is repeated every 19 years and hence only one cycle is shown. 
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n = integer equivalent of [remainder (abs(y-399)/19)]    … 9 

 
Note that the remainder n is an integer number between 0 and 18. The number 399 
corresponds to the year of normalization. If n = 0, 3, 5, 8, 11, 14 or 16 then 
 
 Gudi Padwa day = Gudi Padwa day in 399 (DOY = 54) + 18 days   … 10a 
 
else 
  
Gudi Padwa day = Gudi Padwa day in 399-11 days×(from the year with last Adhik Maas) … 10b 
 

Since this drift is entirely due to the precession of Lunar orbit around the earth, 
we assume that it is not dependent on the precession of the earth's orbit around the Sun.  
 

It should be noted that while we have used the 19-year cycle to get the Gudi 
Padwa date of any required year, the periodicity is not exact. The value of ‘aGudi Padwa’ 
(Equation 7) does not return exactly to the same value after 19 year cycle. Hence for 
accurate calculations, the round off with years should not be used and the integer number 
of days from Gudi Padwa in 399 should be calculated. However, for 1 day accuracy, the 
approximations used here are acceptable. 
 

In table 5 we have given the value of aGudi Padwa for 19 years from the year 1753. It 
should be noted that the Moon travels 338.63 tithi indexes in 1 day. Also, for all the 
parameter values in table 5 with the values less than 338.63 or greater than 9661.37 
(10,000 – 338.63), the error introduced by slightly different correct values of aGudiPadwa 
for a specific year will not be significant and will be less than the error of 1 day 
introduced by longitude insensitivity of calculations.  
 

Table 5: Approximate values of aGudi Padwa as a function of n (equation 9) 

Value of n (equation 8) Value of aGudi Padwa 

0 74 
1 9950 
2 9825 
3 9860 
4 9736 
5 9770 
6 9985 
7 199 
8 234 
9 109 
10 9985 
11 20 
12 9896 
13 9771 
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14 9806 
15 20 
16 55 
17 269 
18 145 

 
 

In one day the eastward distance of Moon from Sun was found to be 338.63. 
Number of days between the Gudi Padwa day and the solar eclipse day under 
consideration was found and the value of ‘a’ for these many days was calculated.  
 

For example, for the year 1937 Gudi Padwa was on March 11th. To calculate the 
tithi of December 2nd 1937 (solar eclipse day), one has to find the difference between 
March 11th and December 2nd, i.e., 266 days. Then the tithi index of the day was 
calculated as follows in line with equation 3. 

 
acalc  = 338.63 * 266 + ‘a’ on Gudi Padwa of 1937AD (from equation 9)  

= 90075.58 +145 = 90220.58  
 

The counter is initialised to 0 once t=10000. Accordingly, the correct value of 
tithi index of the day is 220. According to tithi index value it is a Shukla Paksha 
Pratipada. 
 
2.1.4 Final formulation 
  
 To summarise, in order to calculate the tithi on any day (dy) of any Solar year (y) 
the following steps must be performed. 
 

a) Calculate the day of Gudi Padwa as given by equation 10a or b as per the 
parameter n defined in Equation 9. 

b) Now calculate the number of days from the Gudi Padwa for dy by subtraction. 
c) To determine the value of aGudiPadwa use table 5. Using the appropriate value of 

aGudiPadwa compute equation 7 to get the value of acalculated using the values of C1 to 
C4 from equations 6a and b. 

d) Compute equation 8 using the parameters from earlier steps to get atrue to arrive at 
the tithi for the dy.  

 
Since the corrections introduced by ‘b’ and ‘c’ are less than 338.63, as a first 

approximation, these can be ignored for average daily tithis. However, since the sum of 
maximum error of b and c is 400, these calculations can introduce an error of 1 day. In 
addition, the approximations used in table 5 when added for maximum error, the error 
can go up to 2 days. 
 

Note that these calculations will have an inaccuracy of 1 day due to usage of table 5. 
To calculate the tithi with an accuracy of better than 1 day, it is necessary that the DOY is 
computed from DOY 54 (Gudi Padwa day) in 399 and performing the above calculations 
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ignoring the round off with years. However, this procedure will introduce an additional 
error due to the precession of the Earth’s axis with a period of about 25,800 years. We 
correct for this in the formulation below. 
 
3. Verification of the tithi using solar eclipse dates 
 
 In order to check the accuracy of the formulation given above, we calculated the 
tithis of the days on which Solar eclipses were observed. NASA website (3) gives a list of 
solar and lunar eclipses from 2000 BC to 4000 AD using current ephemeris. In the first 
step, we calculated the tithi corresponding to the dates of solar eclipse given there. We 
tolerated an error of + 1 day in view of the approximations discussed earlier. That is, if 
our calculated tithi was Chaturdashi, Amavasya or Pratipada, we considered the 
calculations to be accurate. Apart from the approximations, the error of 1 day can also 
arise due to the fact that we calculate the average tithi as seen at Ujjain on that day while 
it is very likely that the tithi index itself did reach 0 sometime during the day, since we 
have taken all eclipses in the data base and not restricted to those seen from Ujjain. We 
find that our calculated tithis can be substantially different from the expected tithi when 
the calculations are extended into past or future. 
 

The error arises due to the fact that the year is not synchronised to the length of 
the day. The short term error in the calculations is due to the 19 year precession of the 
Moon around the Earth which was discussed while discussing the calculation of Gudi 
Padwa above. The long term deviation occurs due to the fact that the year is not 365.24 
days but has fractions that go to third and fourth decimal places. This error builds up into 
a significant (linear) error over a few hundred years. We empirically correct for both 
these below. 
 

We verified our calculations with more than 100 solar eclipse dates from 2000 BC 
to 3000 AD taken from (6, 7). However a systematic increase in the deviation from the 
central value was noticed both for AD and BC dates (Figure 4, 5). This deviation can 
occur due to the difference in number of days in one year.  
 

We analysed the data between 2000 BC and 3000 AD with least square fit. The 
corrections thus obtained were incorporated in our program and the correct value of tithi 
was obtained. 
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As the figures above show, long term corrections are linear. Hence in order to 
determine the correct tithi, the DOY of Gudi Padwa should be re-calculated as per 
equations given below. 
 
From 2000 BC to 1582 AD 
Difference in days = -0.003 × year +0.6994    .   ....11a 
 
From 1583 AD to 3,000 AD 
Difference in days = 0.0041× year –7.6017       ….11b 
 

The change over from 11a to 11b is done in the year 1582 since that is the year 
when the Julian year was changed to Gregorian year. As seen from the value of χ2 the 
best-fit equations are equation 11a and 11b and we use this formulation to extend the 
calculations to determine the tithi over an extended period from 2,000 BC to 3000 AD. 

 

Tithi Vs Year

-6

-4

-2

0

2

4

6

8

10

-2000 -1000 0 1000 2000 3000

Year

D
ay

s 
of

 d
ev

ia
tio

n 
of

 th
e 

T
ith

i

Figure 4: Difference between 
calculated tithi and New 
Moon days determined from 
Solar Eclipse. The best fit line 
is Difference in days = -0.003 
× year +0.6994. The reduced 
χ2 is 0.9401. Note that the 
year is in AD. 

Figure 5: Difference between 
calculated tithi and New Moon days 
determined from Solar Eclipse. The 
best fit line is y = 0.0041 × x -
7.6017. The reduced χ2 is 0.9156 
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The formulation was checked for the Eclipses from 3000 AD to 4000 AD tabulated in 
(6).  

 
The present formulation has taken into account all possible sources of 

accumulated errors due to various approximations. Hence it should be possible to extend 
the calculations from 10,000 BC to 10,000 AD. However, since we have no independent 
ways of confirming this, we only mention this here. 
 
4.0 Testing of data for Lunar Eclipse 
 
We have tested the calculated tithi dates based on equation 7 against the calculation of 
Lunar Eclipse data which was not used in deriving the parameters here, as well as Solar 
eclipse till 4000 AD. The figures given below show the lunar eclipse data fit. 
 

In figure 6 we have plotted sample calculations of the tithi on the day on which a 
lunar eclipse was calculated using modern ephemeris (3) for different years on which 
data are available. As can be seen from the figure, for the same values of the various 
constants our calculated dates of lunar eclipse agree with the observed date of Lunar 
Eclipse validating the formulation given here. 

 

 

Deviation between calculated tithi  and dates of Lunar 
Eclipse
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5. Discussion and Conclusion  
 
We have analysed the method employed to calculate the tithis on any given solar day 
from Ujjain (lat 23o 9′ N, 75o 43′ E). We show that the formulation is amenable to 
simpler mathematical compression. We have extended the formulation of Surya Sidhanta 
to get a more versatile formula to calculate tithis. The formulation given here makes the 
following improvements: 
 

a) Analyses the astronomical reasons for the corrections and give a formulation of 
look up table for second order corrections introduced by non-synchronised 
manner of all the periods and movements involved, 

b) discusses and corrects for 19 year lunar cycle and long term error build up, 

Figure 6: Difference 
between Calculated 
and expected values 
of tithis (purnima) 
on days of Lunar 
Eclipse from 2000 
BC to 3000 BC 
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c) gives empirical formula to calculate the Gudi Padwa day and tithi index on the 
day of Gudi Padwa, 

d) corrects for long-term deviation in the formulation due to the precession using the 
data of solar eclipses based on modern ephemeris. 

  
We have then checked the formulation by fitting the data to Lunar Eclipses and 

shown that the formulation given here calculates the new moon days for Lunar Eclipse to 
within an error of 1 day in most cases. We propose that can be used to accurately 
calculate the tithi (within 1 day error) from 10,000 BC to 10,000 AD. We therefore 
suggest that the formulation given here is more versatile and can be used for extended 
periods. 
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