
 
 
 
 
 
 
 
 
 

UNIX Custom Application Migration 
Guide  
Volume 3: Migrate Using Win32/Win64 
 
 
Published: May 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



ii UNIX Custom Application Migration Guide: Volume 3 

© 2006 Microsoft Corporation. This work is licensed under the Creative Commons Attribution-NonCommercial License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative Commons, 
543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

 

http://creativecommons.org/licenses/by-nc/2.5


                                                                                                                                                                         iii 

Contents 
About This Volume ..........................................................................................1 

Introduction to Volume 3 ............................................................................. 1 
Intended Audience................................................................................. 2 
Knowledge Prerequisites......................................................................... 2 

Layout of the Guide: Volume 3...................................................................... 3 
Organization of Content ............................................................................... 4 
Resources.................................................................................................. 5 

Acronyms............................................................................................. 5 
Document Conventions........................................................................... 5 
Code Samples....................................................................................... 5 

Chapter 1: Introduction to Win32/Win64........................................................7 
Overview of Win32/Win64 ............................................................................ 7 

Overview of 64-Bit Windows ................................................................... 7 
Overview of the Windows API.................................................................. 8 
64-Bit Programming in UNIX and Windows................................................ 8 
Comparison of Win32 and Win64 ........................................................... 10 
Porting from Win32 to Win64 ................................................................ 11 

Data Types ................................................................................... 11 
Architectural Differences Between UNIX and Windows .................................... 11 

Process and Thread Management........................................................... 11 
Multitasking .................................................................................. 12 
Multiple Users................................................................................ 12 
Multithreading ............................................................................... 12 
Process Hierarchy .......................................................................... 13 
Daemons and Services.................................................................... 13 
Summary of Processes and Threads.................................................. 13 

Memory Management........................................................................... 14 
File Management ................................................................................. 14 

File Names and Path Names ............................................................ 14 
UNIX File System Features .............................................................. 15 
Windows File System Features ......................................................... 15 
Networked File Systems.................................................................. 16 
Server Message Block and Common Internet File System..................... 16 
Windows and UNIX Network File System Interoperability ..................... 16 
Summary of File System Differences................................................. 17 

Infrastructure Services......................................................................... 17 
Security........................................................................................ 17 
Handles ........................................................................................ 21 
Signals, Exceptions, and Events ....................................................... 21 
Interprocess Communication ........................................................... 21 
Networking ................................................................................... 23 
User Interface Differences ............................................................... 23 

Chapter 2: Developing Phase: Process Milestones and Technology 
Considerations ..............................................................................................27 

   



iv UNIX Custom Application Migration Guide: Volume 3 

Goals for the Developing Phase................................................................... 27 
Major Tasks and Deliverables ................................................................ 27 

Starting the Development Cycle .................................................................. 28 
Building a Proof of Concept......................................................................... 29 

Proof of Concept Complete.................................................................... 29 
Developing the Solution Components ........................................................... 30 

Using the Development Environment...................................................... 30 
Platform SDK ...................................................................................... 31 

Using the Platform SDK................................................................... 32 
Visual Studio .NET 2003 ....................................................................... 33 

Using Visual Studio .NET 2003 ......................................................... 33 
64-Bit Programming in UNIX and Windows.............................................. 37 

New Explicitly Sized Data Types ....................................................... 37 
New Scalable Data Types ................................................................ 38 

Rules for Making Win32 Code Compatible with Win64 ............................... 39 
Developing the Testing Tools and Test Cases ................................................ 42 

Unit Testing........................................................................................ 43 
Building the Solution ................................................................................. 43 

Interim Milestone: Internal Release........................................................ 44 
Chapter 3: Developing Phase: Process and Thread Management...................45 

Process Management................................................................................. 45 
Creating a New Process ........................................................................ 46 
Replacing a Process Image (exec).......................................................... 48 
Process Information............................................................................. 49 
Waiting for a Spawned Process .............................................................. 49 
Processes vs. Threads .......................................................................... 52 
Managing Process Resource Limits ......................................................... 53 

Windows Job Objects ...................................................................... 53 
Limiting File I/O When Using Windows.................................................... 56 
Process Accounting .............................................................................. 56 
Managing and Scheduling Processes....................................................... 57 

Thread Management.................................................................................. 58 
Creating a Thread................................................................................ 59 
Canceling a Thread .............................................................................. 62 
Synchronization of Threads ................................................................... 65 

Synchronization with Interlocked Exchange........................................ 69 
Synchronization with Spinlocks ........................................................ 71 
Synchronization Using Mutexes ........................................................ 73 
Synchronization with Critical Sections ............................................... 77 
Synchronization Using Semaphores .................................................. 79 

Thread Attributes ................................................................................ 83 
Setting Thread Attributes ................................................................ 85 
Windows Security and Thread Objects............................................... 87 

Thread Scheduling and Prioritizing ......................................................... 88 
Managing Thread Priorities in Windows.............................................. 90 
Example of Converting UNIX Thread Scheduling into Windows .............. 91 



                                                                                                                                                                             v 

Managing Multiple Threads.................................................................... 95 
I/O Completion Ports ........................................................................... 98 

Chapter 4: Developing Phase: Memory and File Management......................101 
Memory Management ...............................................................................101 

Heap ................................................................................................101 
Thread Local Storage ..........................................................................101 

Thread Local Storage (TLS) Example................................................103 
Memory-Mapped Files .........................................................................105 
Shared Memory..................................................................................106 
Synchronizing Access to Shared Resources.............................................106 
Further Reading on Memory Management ..............................................107 

File Management .....................................................................................107 
Low-Level File Access..........................................................................108 
Standard (Stream) File Access..............................................................108 
ioctl Calls ..........................................................................................108 

Windows ioctlsocket ......................................................................108 
File Control........................................................................................110 
Directory Operation ............................................................................113 
Raw Device I/O ..................................................................................117 

Chapter 5: Developing Phase: Infrastructure Services ................................121 
Security..................................................................................................121 

User-Level Security.............................................................................121 
Retrieving the User Name of the Current User ...................................122 

Process-Level Security ........................................................................123 
Access Tokens ..............................................................................124 
Security Descriptors ......................................................................124 
Impersonation ..............................................................................124 

Handles..................................................................................................125 
Socket Handles ..................................................................................125 
File Handles.......................................................................................125 
Output Buffer or Event Queue Handling .................................................126 

Error and Exception Handling.....................................................................127 
Signals vs. Events....................................................................................127 

Using Native Signals in Windows...........................................................129 
Replacing UNIX Signals with Windows Messages .....................................131 
Replacing UNIX Signals with Windows Event Objects ...............................133 
Porting the Sigaction Call.....................................................................134 

Interprocess Communication (IPC) .............................................................135 
Pipes (Unnamed or Named, Half or Full Duplex) ......................................135 

Process Pipes ...............................................................................135 
Named Pipes (FIFOs).....................................................................137 
Back-Pressure in Pipes...................................................................138 

Shared Memory..................................................................................138 
Message Queues ................................................................................139 

Networking .............................................................................................139 
TCP/IP and Sockets ............................................................................139 

   



vi UNIX Custom Application Migration Guide: Volume 3 

Remote Procedure Calls.......................................................................140 
Windows Server 2003 Features .......................................................140 

Miscellaneous Features .............................................................................141 
Shells and Scripting ............................................................................141 

Command-Line Shells ....................................................................141 
Scripting Languages............................................................................142 
Daemons vs. Services .........................................................................142 
Middleware........................................................................................143 

OLTP Systems ..............................................................................143 
Queuing Systems..........................................................................144 
Component-based Development in Windows .....................................144 

Chapter 6: Developing Phase: Migrating the User Interface ........................147 
Comparing X Windows with Win32/Win64 GUI..............................................147 

User Interface Architecture ..................................................................147 
Elements of the UI..............................................................................149 

User Interface Programming in X Windows and Microsoft Windows ..................150 
Programming for Windows ...................................................................150 

Microsoft Foundation Classes (MFC) .................................................150 
Active Template Library (ATL).........................................................150 
GDI+ ..........................................................................................151 
.NET Languages............................................................................151 

Choosing the Programming Language....................................................151 
Programming Principles .......................................................................152 

Creating Windows .........................................................................154 
Common Dialog Boxes ...................................................................156 
Creating Dialogs Boxes ..................................................................156 
Creating Controls ..........................................................................160 

Libraries and Include Files .........................................................................164 
Core Libraries ....................................................................................164 
Motif and Windows API Common Dialog Boxes ........................................164 

Event Handling ........................................................................................165 
Capturing Mouse Events ......................................................................165 
Capturing Keyboard Events..................................................................167 

Keyboard Focus ............................................................................171 
Creating Keystrokes, Mouse Motions, and Button Click........................172 

Graphics Device Interface .........................................................................172 
Device Context...................................................................................172 
Getting Windows GDI Device Context ....................................................174 
Creating Windows API GDI Device Context .............................................175 

Display and Color Management ..................................................................177 
Drawing 2-D Lines and Shapes .............................................................178 

Drawing Lines...............................................................................179 
Drawing Rectangles.......................................................................181 

Windows Character Data Types ..................................................................183 
Text and Fonts ...................................................................................184 

Displaying Text.............................................................................184 



                                                                                                                                                                             vii 

Drawing Text................................................................................187 
Formatting Text ............................................................................190 

More Windows API Text Functions.........................................................193 
Text Widgets and Controls ...................................................................195 

Property Sheets.......................................................................................196 
Toolbars .................................................................................................197 

Update Command Handlers of Toolbar Buttons .......................................197 
Status Bars .............................................................................................197 
Printing ..................................................................................................198 

Printing Documents ............................................................................198 
Printing Using System Commands ...................................................198 
Printing Using APIs........................................................................198 

Plotting Documents.............................................................................204 
Using the Plotters in UNIX ..............................................................204 
Using the Plotters in Windows .........................................................204 

Imaging .................................................................................................205 
Image Handling in UNIX ......................................................................205 
Image Handling in Windows .................................................................206 

Mapping X Windows Terminology to Microsoft Windows .................................208 
Callback vs. WindowProc .....................................................................208 
Client vs. Client Window ......................................................................209 
Console Mode vs. Command Window.....................................................209 
DPI vs. Screen Resolution....................................................................209 
Graphics Context vs. Device Context .....................................................209 
Resources vs. Properties......................................................................210 
Resource Files vs. Registry...................................................................210 
Root Window vs. Desktop Window ........................................................210 
/bin vs. /System32 .............................................................................210 
/usr/bin vs. Program Files....................................................................210 
Pixmap (or Bitmap) vs. Bitmap.............................................................211 
Window Manager vs. Windows Server 2003 and Windows XP ....................211 
X Library [Xlib] [X11] vs. Gdi32.lib........................................................211 
X Toolkit [Intrinsics] [Xt] vs. User32.lib .................................................212 

Porting OpenGL Applications......................................................................212 
Chapter 7: Developing Phase: Migrating Fortran Code.................................215 

Data Gathering and Analysis......................................................................215 
Using Third-Party Libraries (Mixed Languages)........................................216 

Calling Conventions.......................................................................217 
Naming Conventions......................................................................219 
Using Intel Fortran for Calling Non-Fortran Subprograms ....................220 

Integrating Fortran with POSIX Applications ...........................................220 
Development Tools and Resources..............................................................220 
Design and Validation ...............................................................................221 

Sizing the Fortran Migration .................................................................221 
Assessing and Mitigating Risk ...............................................................221 

Migration Planning ...................................................................................222 

   



viii UNIX Custom Application Migration Guide: Volume 3 

Scoping the Fortran Migration ..............................................................222 
Porting Fortran to Interix .....................................................................222 
Porting UNIX Fortran Source to Windows Using the Windows API...............222 

Using C or C++ Libraries or Fortran Modules.....................................223 
Porting Fortran to Windows ............................................................223 

Debugging Fortran Using Visual Studio .NET 2003 ........................................223 
Summary of Fortran Code Migration ...........................................................225 

Chapter 8: Developing Phase: Deployment Considerations and Testing 
Activities .....................................................................................................227 

Deployment Considerations .......................................................................227 
Process Environment...........................................................................227 

Environment Variables ...................................................................228 
Temporary Files ............................................................................229 
Computer Information ...................................................................229 
Logging System Messages..............................................................232 

Migrating Scripts ................................................................................235 
Evaluating the Script Migration Tasks...............................................236 
Planning for Fundamental Platform Differences..................................236 
Scripting Environment ...................................................................239 

Database Connectivity.........................................................................239 
Building the Application .......................................................................241 
Deployment.......................................................................................241 
Configuration .....................................................................................241 
Packaging Tools and Installation ...........................................................242 

Windows Installer Service ..............................................................242 
Installation on Demand..................................................................242 
Installation Rollback ......................................................................243 
Installation Auditing ......................................................................243 
Security Rights and the Windows Installer Service .............................244 
Update Files .................................................................................244 
Window Installer Service Transforms ...............................................244 
Creating New Windows Installer Service Packages .............................245 
Repackaging Applications ...............................................................245 

Deploying Applications ........................................................................246 
Deploying Applications with Group Policy Objects...............................246 
Deploying Applications with Systems Management Server...................246 
Deploying Win32/Win64 Applications ...............................................247 

Managing Applications.........................................................................249 
Testing Activities......................................................................................249 

Integration Testing .............................................................................251 
Database Testing................................................................................252 
Security Testing .................................................................................252 
Management Testing...........................................................................253 

Interim Milestone: Internal Release n .........................................................254 
Closing the Developing Phase ....................................................................254 

Key Milestone: Scope Complete ............................................................254 



                                                                                                                                                                             ix 

Chapter 9: Stabilizing Phase........................................................................255 
Goals for the Stabilizing Phase ...................................................................255 

Major Tasks and Deliverables ...............................................................255 
Testing the Solution .................................................................................257 

User Acceptance Testing......................................................................257 
Regression Testing .............................................................................257 

Resolving Solution Defects ........................................................................257 
Bug Convergence ...............................................................................258 

Interim Milestone: Bug Convergence................................................258 
Zero Bug Bounce................................................................................258 

Interim Milestone: Zero Bug Bounce ................................................258 
Release Candidates.............................................................................258 

Interim Milestone: Release Candidate ..............................................258 
Interim Milestone: Preproduction Test Complete ................................258 

Conducting the Solution Pilot .....................................................................259 
Interim Milestone: Pilot Complete....................................................259 

Closing the Stabilizing Phase—Release Readiness Approved ...........................260 
Tuning ...................................................................................................260 

Performance Tuning............................................................................260 
Scaling Up and Scaling Out ..................................................................261 
Multiprocessor Considerations ..............................................................262 
Network Utilizations ............................................................................262 

Testing and Optimization Tools ..................................................................263 
Visual Studio .NET 2003 Tools ..............................................................263 
Platform SDK Tools.............................................................................263 

Debugging Tools ...........................................................................263 
File Management Tools ..................................................................264 
Performance Tools ........................................................................264 
Testing Tools................................................................................264 

Other Commonly Used Tools ................................................................264 
Monitoring Tools ...........................................................................264 
Testing Tools................................................................................265 
Source Test Tools..........................................................................265 

Further Reading.......................................................................................266 
Index...........................................................................................................267 

   





  

About This Volume 

Introduction to Volume 3 
Volume 1 of the UNIX Custom Application Migration Guide discussed how to apply the 
Envisioning and Planning Phases of the Microsoft® Solutions Framework (MSF) Process Model 
when conducting a UNIX to Microsoft Windows® migration project. This volume, Volume 3: 
Migrate Using Win32/Win64, applies the next phases in the Process Model, the Developing 
Phase and the Stabilizing Phase, and directs it specifically for using the Microsoft Win32® and 
Win64 APIs. This volume describes the architectural and potential coding differences between 
the UNIX and Windows environments and discusses various ways to implement these differences 
in the Windows environment using the Win32/Win64 API. This volume addresses these potential 
coding differences by looking at the solution from various categories.  
These categories are: 
• Process management.  
• Thread management.  
• Memory management.  
• File management.  
• Infrastructure services.  
• User interface migration.  
• Fortran code migration.  
• Deployment considerations and testing activities.  
• Stabilizing Phase activities.  
For each of these categories, this volume: 
• Describes the coding differences between UNIX and Windows. 
• Outlines options for converting the code using Win32/Win64 API.  
• Illustrates the options with source code examples. 
This information will help you choose the solution that is appropriate to your application. Sufficient 
code examples and references are provided in this volume to aid you in the migration process. 
You can also refer to the Platform SDK documentation to obtain more details on the Win32/Win64 
API. 
Additional information on activities in the Developing Phase as they relate to a migration project is 
available in Chapter 2, “Developing Phase: Process Milestones and Technology Considerations” 
and Chapter 8, “Developing Phase: Deployment Considerations and Testing Activities” of this 
volume. 

 
 
 
  



2 UNIX Custom Application Migration Guide: Volume 3 

Intended Audience 
The technical information in this volume is provided to support the activities undertaken during the 
Developing Phase of a migration project. It  is intended for developers and testers who are 
involved in migrating UNIX code to Windows using the Windows API. Using the guidance 
provided in this volume, a UNIX programmer will learn how to modify code so that it can be 
recompiled to run in a Windows environment using the Windows API, and a Windows 
programmer will learn how to port UNIX functions to Windows. 
The specific advantages that this volume provides developers and testers are as follows: 
• Developers. Developers can learn about the various alternative methods for migrating from 

UNIX to Windows using the Win32/Win64 API and how to choose the best strategy to fit their 
environment and the application types. 

• Testers. Testers can gain more insight on the testing methodology that is best suited for their 
migration scenario. With the help of this guide, they can test the application for various 
aspects, such as functionality, management, performance, and stability. 

Knowledge Prerequisites 
The readers of this volume should possess the following knowledge prerequisites: 
• Basic knowledge of UNIX and Windows internals such as process and thread management, 

file and memory management, and various infrastructure services features. 
• Hands-on experience on Windows environments. 
• Familiarity with UNIX administration skills. 
• Familiarity with development involving Win32/Win64 API in a Windows environment. 
It is also recommended that you read the “About This Guide” section in Volume 1: Plan as well as 
the rest of the Plan volume before reading this volume. 

 



About This Volume                                                                                                                                                3   

Layout of the Guide: Volume 3 
The following diagram depicts the layout of the guide and how the volumes of the guide correlate 
with the components of the MSF Process Model. The white-shaded portion indicates the position 
of the current volume in the layout of the entire guide. 

 
Figure 0.1. UCAMG organization 

  



4 UNIX Custom Application Migration Guide: Volume 3 

Organization of Content 
The content of this volume is organized into the following chapters: 
• About This Volume. This chapter provides information on the organization of the guide and 

about its intended audience. It also lists the knowledge prerequisites required for this volume 
and provides resources, such as document conventions, used in this guide. 

• Chapter 1: Introduction to Win32/Win64. This chapter describes how you can modify the 
source code of your UNIX applications so that the code compiles on the Microsoft Windows 
operating system using the Microsoft Win32 and Win64 application programming interfaces 
(APIs). This chapter also describes the improvements that Win64 offers over Win32. 

• Chapter 2: Developing Phase: Process Milestones and Technology Considerations. 
This chapter introduces the Developing Phase and discusses using Microsoft Visual Studio® 
.NET 2003 and the Platform Software Development Kit (SDK) for the Developing Phase. The 
chapter includes a section about how to make your code compliant with both 32-bit and 64-bit 
architectures. 

• Chapter 3: Developing Phase: Process and Thread Management. This chapter discusses 
the similarities and differences in the implementation of process and thread management in 
UNIX and Microsoft Windows operating systems. The chapter first discusses the UNIX and 
Windows process management mechanism and the Windows APIs related to processes. It 
then discusses threads and their implementation in Windows. 

• Chapter 4: Developing Phase: Memory and File Management. This chapter discusses the 
similarities and differences in memory and file management between the Microsoft Windows 
API and UNIX. It also provides various memory and file management-related functions and 
APIs that are available in both environments. 

• Chapter 5: Developing Phase: Infrastructure Services. This chapter discusses the 
potential coding differences between UNIX and Microsoft Windows operating systems with 
respect to infrastructure services. The infrastructure services discussed in this chapter 
include security, handles, error and exception handling, signals versus events, interprocess 
communication, and networking. 

• Chapter 6: Developing Phase: Migrating the User Interface. This chapter describes how 
to migrate from a UNIX-based user interface to a Microsoft Windows-based user interface. 
Because the majority of UNIX graphical interfaces are built on X Windows and Motif, the 
chapter focuses on porting code from X Windows to the Windows operating system. 

• Chapter 7: Developing Phase: Migrating Fortran Code. This chapter examines the 
process of migrating a Fortran code to the Microsoft Windows operating system from the 
UNIX environment. This migration may be to either the Windows subsystem or the Interix 
subsystem. 

• Chapter 8: Developing Phase: Deployment Considerations and Testing Activities. This 
chapter discusses the key aspects of deploying and testing a migrated application on 
Microsoft Windows operating systems. You will also be able to identify the deployment 
requirements, such as packaging and deploying of tools and administering the deployed 
Microsoft Win32 applications. This chapter also discusses various testing activities that you 
need to carry out in the Developing Phase. 

• Chapter 9: Stabilizing Phase. This chapter discusses the different levels of testing and 
tuning that must be administered to the applications that are migrated to Windows using 
Windows Services for UNIX 3.5. 

 



About This Volume                                                                                                                                                5                  

Resources 
This section describes the various resources that are included in the UNIX Custom Application 
Migration Guide and information that will assist in using the guide. 

Acronyms 
See the Acronyms list accompanying this guide for a list of the acronyms and their meanings 
used in this volume. 

Document Conventions 
The document conventions used in this volume are primarily designed to help you quickly identify 
the operating system and the interface (command line or graphical) being discussed—Windows or 
UNIX. In general, Windows operating-system commands are executed by clicking user interface 
(UI) elements, and these elements are visually distinguishable by the use of bold text. In contrast, 
the UNIX operating system typically uses a command-line interface, and these instructions are 
visually distinguished by the use of a Monospace font. 
These interface and execution differences are not absolute; and in case visual cues do not 
unambiguously distinguish between the two operating systems, the text will clearly make this 
distinction. Table 0.1 lists the document conventions used in this volume. 
Table 0.1. Document Conventions 

Text element Meaning 

Bold text Used in the context of paragraphs for commands; literal arguments to 
commands (including paths when they form part of the command); 
switches; and programming elements, such as methods, functions, data 
types, and data structures.  
Also used to identify the UI elements. 

Italic text Used in the context of paragraphs for variables to be replaced by the 
user.  
Also used to emphasize important information. 

Monospace font Used for excerpts from configuration files, code examples, and terminal 
sessions. 

Monospace bold font Used to represent commands or other text that the user types. 
Monospace italic font Used to represent variables the reader supplies in command-line 

examples and terminal sessions. 

Shell prompts The MS-DOS® prompt is used in Windows. 

Note Represents a note. 
Code Represents code. 

Code Samples 
The build volumes, Volume 2: Migrate Using Windows Service for UNIX 3.5, Volume 3: Migrate 
Using Win32/64, and Volume 4: Migrate Using .NET, of this guide contain several code samples 
to illustrate certain programming concepts. These code samples are available as source files in a 
Tools and Templates folder in the download version of this guide, available at 
http://go.microsoft.com/fwlink/?LinkId=30864.

  

http://go.microsoft.com/fwlink/?LinkId=30864




  

Chapter 1: Introduction to Win32/Win64 
This chapter describes how you can modify the source code of your UNIX applications so that the 
code compiles on the Microsoft® Windows® operating system using the Microsoft Win32® and 
Win64 application programming interfaces (APIs). This chapter also describes the improvements 
that Win64 offers over Win32. It discusses the differences in the Win64 design and the 64-bit 
UNIX design in terms of Windows and UNIX data models—namely, the P64 of Windows (also 
called LLP64) and the LP64 of UNIX. This chapter also includes a brief overview of the 
differences in the way the various resources are managed in UNIX and Windows. 

Overview of Win32/Win64 
This section gives an overview of the 32-bit and 64-bit APIs, their implementation mechanism on 
UNIX and Windows, and the differences between them. With this knowledge, you can identify key 
sections of the application to be modified for compatibility in the Win32/Win64 environment. You 
can also obtain information on the critical points to consider when porting the UNIX application to 
the Windows environment using the Win32/Win64 APIs. 
UNIX applications are mostly written in C or C++ languages or are based on shell scripts. In both 
cases, Microsoft provides good support for porting the applications to Windows. 
When porting UNIX applications to Windows, the UNIX system calls in the UNIX applications 
must be mapped to the corresponding Windows API calls. There are also differences in the UNIX 
architecture and 64-bit Windows (Windows Server™ 2003) architecture, which affect the 
performance of the UNIX application on Windows. 
The following sections discuss the improvements that Win64 offers over Win32 and also 
compares the 64-bit architecture of Windows to that of UNIX. 
Note   The Windows API was formerly called the Win32 API. The name Windows API more accurately 
reflects its roots in 16-bit Windows and its support on 64-bit Windows. The name Windows API is used in 
this volume except when comparing 32-bit Windows programming with 64-bit Windows programming. 
They are then referred to as Win32 and Win64 APIs, respectively. 

Overview of 64-Bit Windows 
The 64-bit versions of Windows operating systems support up to 16 terabytes of random access 
memory (RAM) whereas 32-bit versions can only support up to 4 gigabytes. Increased RAM 
support is a major benefit of using a 64-bit operating system because of the following reasons: 
• All or part of each application must be replicated for each user, which requires additional 

memory. Therefore, by having more memory, each application can support more users. 
• Increased memory allows more applications to run simultaneously and remain completely 

resident in the main memory of the system. Applications resident in the main memory provide 
better performance. 

• Data-intensive applications, such as databases and graphics modeling, also benefit from the 
larger amount of memory because they can store and manipulate large amounts of data 
more easily and reliably. 

• Scientific and high-performance computing applications also benefit from the large amount of 
memory available in the 64-bit version as they require relatively larger memory for high 
precision computations. 

 
 
 
  



8 UNIX Custom Application Migration Guide: Volume 3 

Overview of the Windows API 
The Windows API allows applications to take full advantage of the power of the Windows family 
of operating systems. Using the Windows API, you can develop applications that run successfully 
on all versions of Windows, thereby taking advantage of the features and capabilities unique to 
each version. 
The Windows API consists of the following functional categories: 
• Base Services 
• Common Control Library 
• Graphics Device Interface 
• Network Services 
• User Interface 
• Windows Shell 
The standard Windows API provides a uniform development environment. The Windows API 
provides a good interface to access and use kernel or system objects using handles. The 
Windows API also provides many synchronization and communication mechanisms. 
The Windows API also supports programming on 64-bit versions of Windows operating systems. 
The Win64 API takes advantage of the benefits of the 64-bit Windows architecture. The 
programming model and API functions are almost the same as in Win32; the main difference 
between them is the size of the pointers and, consequently, the parameters holding the pointers. 
In Win64, the size of the pointers is 64 bits; and in Win32, it is 32 bits. 
A new set of data types is also defined in Win64 to write cleaner code. In the Win32 API, data 
types long and pointers were of the same size, so data types such as DWORD and pointers 
could be used interchangeably and could also be used to typecast from one to another. The 
same code in Win64 would lead to errors because in the Win64 API, long is 32 bits while pointer 
is 64 bits. 

64-Bit Programming in UNIX and Windows 
The key difference between 64-bit programming in UNIX and Windows is the programming 
model. UNIX uses the LP64 model and Windows uses the LLP64 model. 
The LLP64 data model is sometimes described as a 32-bit model with 64-bit addresses. In this 
model, int and long are 32-bit types and pointers are 64 bits. Data objects such as structures, 
which do not contain pointers, are of the same size as on a 32-bit system. A 64-bit data type 
longlong (or int64) is introduced to substitute for a 64-bit type of int and long. 

 



Chapter 1: Introduction to Win32/Win64                                                                                                                9                  

In the LP64 data model, long is a 64-bit type, pointers are 64 bit, and no new data types are 
introduced. The difference in data types between the two models are listed in Table 1.1. 
Table 1.1. Differences Between LLP64 and LP64 Data Types 

Data Type LLP64 (size in bits) LP64 (size in bits) 

char 8  8 

short 16  16 

int 32  32 

long 32  64 

longlong (int64) 64   

pointer 64 64 

Following are some additional facts about the LLP64 and LP64 models: 
• In the data models of both UNIX/64 and 64-bit versions of Windows Server 2003 operating 

systems, abstract types are defined in terms of basic types. This means that when you use 
abstract types, you ensure that parameters and structure fields always contain the correctly 
sized data for 32-bit or 64-bit compilation. 

• In the UNIX/64 data model: 
• The size of int is 32 bits and the size of long and pointers is 64 bits. 
• There are some new explicitly sized types. 
• There are a few new functions. 
• The most scalable and biggest architecture data type is long. 

• In the Win64 model: 
• The Windows API follows the Uniform Data Model (UDM). UDM proposes to use 

identically named data types for both the Win32 and Win64 environments. Using this 
model, you can maintain a single source code development environment for both Win32 
and Win64, provided no architecture-specific design features are implemented. 

• The size of int and long is 32 bits; the size of int64 (new type) and pointers is 64 bits. 
Abstract types are identical for 32-bit and 64-bit environments, thus simplifying cross-
compilation for both of them.  

• There are explicitly sized and scalable data types. 
• Some types are "upgraded" and can also be used in Win32 sources. 

• The scalable and biggest architecture integral type depends upon the platform. Microsoft 
recommends using conditional compilation of either long or int64; a preprocessor macro 
can be defined to simplify this complication. 

• Some functions are revised because of polymorphism. Most of the other APIs remain the 
same. 

For more information on data type differences, refer to the “64-bit Programming in UNIX and 
Windows” section in Chapter 2, “Developing Phase: Process Milestones and Technology 
Considerations” of this volume. 

  



10 UNIX Custom Application Migration Guide: Volume 3 

Comparison of Win32 and Win64 
This section compares the major differences between the Win32 and Win64 APIs: 
• Data model. The Win64 data model is almost the same as that of Win32. However, new data 

types and pointers have been added. In the ILP32 data model (of Win32), integer, long, and 
pointer data types are 32 bits, whereas in the LLP64 (or P64) data model, the pointer data 
type is 64 bits. 
Note   You need to look at the sections of code where integer, long, and pointer are used 
interchangeably. Such code would work in Win32 but cause major issues in Win64, and you might 
face issues when migrating a UNIX 32-bit application to a Windows 64-bit environment. 

• Environment. The Win64 API environment is almost the same as the Win32 API 
environment—unlike the major shift from Win16 to Win32. The Win32 and Win64 APIs are 
now combined and called the Windows API. Using the Windows API, you can compile the 
same source code to run natively on either 32-bit Windows or 64-bit Windows. To port the 
application to 64-bit Windows, just recompile the code. 
The Windows header files are modified so that you can use them for both 32-bit and 64-bit 
code. The new 64-bit types and macros are defined in a new header file, Basetsd.h, which is 
present in the set of header files included by Windows.h. 
The Basetsd.h file includes the following:  
• New data-type definitions that you can use to make your application word-size 

independent. 
• Many helper functions for conversion such as: 

unsigned long HandleToUlong (const void *h) 

long HandleToLong (const void *h) 

void *LongToHandle (const long h) 

unsigned long PtrToUlong (const void *p) 

unsigned int PtrToUint (const void *p)  
• Data types. There are three categories of new data types that are supported on 64-bit 

Windows: fixed-precision data types, pointer-precision types, and specific-precision pointers. 
These new data types are available in the latest 64-bit SDK. There is also a set of functions 
available to perform conversions in a safe manner so that the same code would run on both 
the 32-bit and 64-bit platforms. 
When compiling, use the Win64 compiler to display warnings regarding truncation of pointers, 
invalid type casts, and any other 64-bit–specific issues. After the code is fixed and the 
compiler no longer shows these warnings, you can use the code safely on both 32-bit and 64-
bit platforms. 
For example, the following code can generate the C4311 warning: 
C4311 warning message is 'variable': pointer truncation from 'type' to 'type'. A 64-bit pointer 
was truncated to a 32-bit int or 32-bit long. 
buffer = (PUCHAR)srbControl; 

(ULONG)buffer += srbControl->HeaderLength; 

To correct the code, make the following changes: 
buffer = (PUCHAR)srbControl; 

(ULONG_PTR)buffer += srbControl->HeaderLength; 

Additional information about the Win64 compiler is available at 
http://msdn.microsoft.com/. 

 

http://msdn.microsoft.com/


Chapter 1: Introduction to Win32/Win64                                                                                                                11                  

• Process interoperability. Windows-32-On-Windows-64 (WOW64) is the x86 emulator that 
enables Win32 applications to be run on 64-bit Windows operating systems. 
Processes can load dynamic-link libraries (DLLs) of the same type. For example, a 64-bit 
application can load a 64-bit DLL but not a 32-bit DLL, whereas out-of-process Component 
Object Model (COM) servers can interact with both 32-bit and 64-bit clients. Therefore, the 
DLLs can be wrapped in an out-of-process COM server to allow communication with any kind 
of application. 

Porting from Win32 to Win64 
Programming in the Win64 API is the same as in the Win32 API. Apart from a few new data 
types, a few data types that have changed, and a few new APIs, the rest of the Win32 APIs 
remain the same. This is because the required functions have been modified internally to gain 
maximum benefit from the platform, but the interface stays the same. 
The data types that have changed from 32-bit to 64-bit need to be handled carefully in order to 
make the code compatible with Win64. Details of the same are covered in the "Rules for Making 
Win32 Code 64-bit Compatible" section in Chapter 2, “Developing Phase: Process Milestones 
and Technology Considerations” of this volume. 

Data Types 
Following are the three classes of data types available in Win64: 
• Fixed-precision. Fixed-precision data types are of the same length in both 32-bit and 64-bit 

Windows operating systems. 
• Pointer-precision. As the pointer-precision changes (that is, as it becomes 32 bits on 32-bit 

Windows and 64 bits with 64-bit Windows), these data types reflect the precision accordingly. 
Therefore, it is safe to cast a pointer to one of these types when you perform pointer 
arithmetic; if the pointer-precision is 64 bits, then the type is 64 bits. The count types also 
reflect the maximum size to which a pointer can refer. 

• Specific-precision pointer types. There are also new pointer types that explicitly size the 
pointer. Be cautious when using pointers in 64-bit code. If you declare the pointer using a 32-
bit type, the operating system creates the pointer by truncating a 64-bit pointer. (All pointers 
are 64 bits on 64-bit Windows.) 

Note   Additional information on data types in Win64 is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/win64/win64/the_new_data_types.asp. 

Architectural Differences Between UNIX 
and Windows 
This section discusses the architectural differences between UNIX and Windows relating to 
process and thread management, memory management, and file management. You can use this 
information to understand the existing implementation mechanism of the preceding aspects in the 
UNIX application and to identify the best approach to migrate them into the Windows environment 
using the Win32/Win64 APIs. 
Note   These topics are discussed in more detail in subsequent chapters of this volume. 

Process and Thread Management 
Multitasking operating systems, such as Windows and UNIX, must manage and control multiple 
processes at once. Each process has its own code, data, system resources, and state. 
Resources include virtual address space, files, and synchronization objects. Threads are a part of 
a process; each process has one or more threads running on its behalf. Like a process, a thread 
has resources and a state associated with it. The Windows and UNIX operating systems both 
provide processes and threads. 

  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/win64/win64/the_new_data_types.asp


12 UNIX Custom Application Migration Guide: Volume 3 

The following sections provide more information on how UNIX and Windows manage processes 
and threads. 

Multitasking 
UNIX was designed to be a multiprocessing, multiuser system that enables users to create and 
run many processes at the same time. 
Windows has evolved from the MS-DOS® operating system, which does not support preemptive 
multitasking. Preemptive multitasking is one of the major features of real-time applications. To 
port the UNIX real-time application to the Windows XP environment, Real-Time Extensions (RTX) 
for Windows XP can be used. Additional information on Real-Time Extensions for Windows XP is 
available at 
http://msdn.microsoft.com/embedded/getstart/testimonial/xp/xpqa/jaokeefe/default.aspx. 
Windows relies heavily on threads for multitasking instead of processes. A thread is a construct 
that enables parallel processing within a single process. A user can implement multitasking by 
using multithreading. Creating a new process in Windows is a relatively more resource-
consuming operation. 

Multiple Users 
One key difference between the UNIX and Windows operating systems is the way in which 
multiple users log on simultaneously to the same computer. 
On UNIX, when a user logs on, a shell process is started to service the user’s commands. The 
UNIX operating system keeps track of users and their processes and prevents processes from 
interfering with one another. 
On Windows, when a user logs on interactively, the Win32 subsystem’s Graphical Identification 
and Authentication (GINA) dynamic-link library creates the initial process for that user. This 
process is known as the user desktop. This desktop is where all user interaction or activity takes 
place. Only the logged-on user can control the computing environment (sometimes known as the 
shell). Other users are not able to log on to that computer at the same time. However, if a user 
uses Terminal Services or Citrix, Windows can operate in a server-centric mode, much as UNIX 
does. For more information, refer to the “Windows Terminal Services and Citrix” section later in 
this chapter. 

Multithreading 
UNIX threads are built upon the Portable Operating System Interface (POSIX) standard—
Pthreads. Implementing Pthreads can be user-based or kernel-based depending on the 
implementation used by the vendor. Most new UNIX kernels are multithreaded to take advantage 
of Symmetric Multiprocessing (SMP) computers. 
Initially, UNIX did not expose threads to programmers. However, POSIX does have user-
programmable threads. In fact, POSIX has two different implementations of threads, depending 
on the POSIX version. Windows applications use threads to take advantage of SMP computers 
and to maintain interactive capabilities when some threads take a long time to execute. 
Windows Server 2003 supports preemptive multitasking, which creates the effect of 
simultaneously executing multiple threads from multiple processes. 
In UNIX, in the case of multiple processes running at the same time, small intervals of central 
processing unit (CPU) cycles are assigned to each process so that, in actuality, only one process 
runs at any given point of time. Each process is also assigned a priority, and the process with the 
highest priority gets the CPU first. To prevent high-priority processes from starving other 
processes, the scheduler may decrease the priority of the currently running process at each clock 
tick. This enables preemption of the next process with the highest priority to start. 

 

http://msdn.microsoft.com/embedded/getstart/testimonial/xp/xpqa/jaokeefe/default.aspx


Chapter 1: Introduction to Win32/Win64                                                                                                                13                  

Windows XP uses a quantum-based, preemptive priority scheduling algorithm. The major 
difference is that threads are scheduled instead of processes. The currently running thread 
always has the highest priority. Preemption of any thread can happen when a higher priority 
thread becomes ready, the current thread terminates, or the time quantum for the current thread 
is exhausted. 

Process Hierarchy 
When a UNIX-based application creates a new process, the new process becomes a child of the 
creating process. This process hierarchy is important, and there are system calls for manipulating 
child processes. 
Unlike UNIX, Windows processes do not share a hierarchical relationship. The creating process 
receives the process handle and the ID of the process created by it so that a hierarchical 
relationship can be maintained or simulated if the application requires it to do so. However, the 
operating system treats all processes as belonging to the same generation. 
Note   Both Windows and UNIX processes inherit the security settings of the creating process by default. 

Daemons and Services 
In UNIX, a daemon is a process that the system starts to provide a service to other applications. 
Typically, the daemon does not interact with users. UNIX daemons are started at boot time from 
init or rc scripts. 
A Windows service is the equivalent of a UNIX daemon. It is a process that provides one or more 
facilities to client processes. Typically, a service is a long-running, Windows-based application 
that does not interact with users and consequently does not include a user interface. Services 
may start when the system boots and they continue running across logon sessions. Services are 
controlled by the Service Control Manager (SCM). One of the requirements for writing a service is 
that it must communicate with the SCM to handle starting, stopping, and installing applications. A 
service runs in user mode with a specific user identity because it runs in a separate process. The 
security context of that user determines the capabilities of the service. Most services run as the 
local system account. This account has elevated access rights on the local computer, but it has 
no privileges on the network domain. If a service needs to access network resources, it must run 
as a domain user with enough privileges to perform the required tasks. On UNIX, a daemon runs 
with an appropriate user name for the service that it provides or as the special user who is 
anonymous. 

Summary of Processes and Threads 
Table 1.2 lists the differences between Windows and UNIX in terms of processes and threads. 
Table 1.2. Windows and UNIX Processes and Threads 

Feature Windows UNIX 

Primary mechanism Threads Processes 

Processes Yes Yes 

Threads Yes Yes, but different 
implementations. 

Performance Very good at creating threads. Very good at creating 
processes. 

Process hierarchy No, but the information can be 
collected and acted on by the 
application itself. 

Yes 

Security inherited Yes Yes (except setuid) 

  



14 UNIX Custom Application Migration Guide: Volume 3 

Memory Management 
Both UNIX and Windows use virtual memory to extend the memory available to an application 
beyond the actual physical memory installed on the computer. In UNIX, virtual memory is handled 
by the kernel; while in Windows, it is handled by an executive service. Virtual memory uses a 
number of techniques to perform the following tasks: 
• Inform the application that additional memory is available. 
• Transparently enhance system performance (and therefore application performance) by 

reading for disk space as efficiently as possible. 
Virtual memory uses areas on the disk to extend real memory. In addition, the virtual memory 
manager moves program and data files from the hard disk into physical memory only when the 
files are needed. There is no need to consider virtual memory during the migration process 
because the virtual memory is managed by the operating system and is transparent to 
applications. 

File Management 
This section describes the file system characteristics of UNIX and Windows. Table 1.3 lists the 
basic features of modern file systems. 
Table 1.3. File System Features 

Feature Description 

File names User-defined name associated with the physical file, typically 255 
characters or more. 

Directories Named folders to store files, usually arranged in a hierarchical, tree-
like structure. 

Path names Way of referring to a specific file or directory at a particular place. 

Aliases, links, and 
shortcuts 

Methods for pointing one file at another or for giving a file multiple 
names. 

Security Method of protecting and controlling access to files and directories. 

File information Method of storing the properties of a file, such as creation date, 
modification time, size, and location on disk. 

Both UNIX and Windows support many different types of file system implementations. Some 
UNIX implementations support Windows file system types, and some products can be used to 
provide Windows support for some UNIX file system types.  

File Names and Path Names 
Everything in the file system is either a file or a directory. UNIX and Windows file systems are 
both hierarchical, and both operating systems support long file names of up to 255 characters. 
Almost any character is valid in a file name, except for the following: 
• Forward slash mark (/) in UNIX. 
• Question mark (?), straight quotation mark ("), forward slash mark and backslash (/ and \), 

greater than and less than (> and <), asterisk (*), vertical bar (|), and colon (:) in Windows. 
• Names that conflict with device names. 
In UNIX, a single directory, known as the root, is at the top of the hierarchy. You locate all files by 
specifying a path from the root. The UNIX notation for file paths is a series of directory names 
separated by a single forward slash mark, followed by the file or directory name. The root 
directory is named /, so a path begins with /, for example, /etc/passwd. Paths can also be 
specified as relative to the current working directory (represented as “.”) or the parent of the 
current working directory (represented as “..”). 

 



Chapter 1: Introduction to Win32/Win64                                                                                                                15                  

UNIX makes no distinction between files on a local hard drive partition, CD-ROM, floppy disk, or 
networked file system. All the files appear in one tree under the same root. To accomplish this, 
UNIX uses a process called mounting. New file systems (for example, a hard drive partition) are 
mounted on an empty directory and then appear as part of the file system directory tree. Hence, 
UNIX treats any external device as another directory by the process of mounting and places it 
under the root directory. 
The Windows file system uses a drive letter abstraction at the user level to distinguish one disk or 
partition from another. For example, it may assign a drive letter for each partition and for each 
network drive. As in UNIX, a path in Windows is defined by a series of directories and a file name, 
but the separator is a backslash. The drive name (for example, C or D) or the Universal Naming 
Convention (UNC) name (for example, \\SERVER\\SHARE) may also need to be specified. 
However, Windows can use “.” and “..” just as UNIX does. 

UNIX File System Features 
UNIX treats all files as streams of data with no boundaries or structure. In UNIX, each file in the 
file system is described by an inode. An inode is not the same as a file name. Instead, it refers to 
the following information about the file: 
• Permissions 
• Owner 
• Type 
• Date and time of creation, last access, and modification 
• Size 
• Pointers to the data blocks allocated to the file 
The inode does not contain the name of the file. A directory contains the file names and 
associated inodes. UNIX can also create hard links and symbolic links, which allow a file to 
appear in more than one directory with more than one name. In the UNIX file system, devices are 
also represented by files. Device files are usually found in the /dev directory. For example, you 
can run a program and ignore all of its output by redirecting the output to the null device, 
/dev/null. It is also possible to send data directly to a serial port or terminal by using this 
technique. Some versions of UNIX even expose memory and running processes in this manner 
(/dev/mem and /dev/proc, respectively). 
Applications, not the operating system, handle file structures. This design imparts a simplicity and 
uniformity to input/output (I/O), but it can cause performance issues for large files or busy 
systems if not handled carefully.  

Windows File System Features 
Windows supports three major file systems: FAT16, FAT32, and NTFS.  
• FAT16. This file system is supported by all Windows operating systems. It is allocated in 

clusters, the sizes of which are determined by the size of the partition. The larger the 
partition, the larger the cluster size. This file system is efficient in speed and storage on 
volumes smaller than 256 MB. 

• FAT32. This file system is supported by Windows, as well as a number of newer Microsoft 
operating systems. The major difference between FAT16 and FAT32 is the volume and 
cluster sizes. This file system can support drives up to 2 terabytes in size. It also uses smaller 
clusters, resulting in more efficient usage of disk space relative to the larger FAT16 drives. 

• NTFS. This is the preferred file system for all computers running Windows. It can support 
drives up to 16 exabytes and also manages disk space efficiently by using smaller clusters. It 
provides some other advantages, such as automatic data recovery techniques and 
compression capability on volumes, folders, files, and disk quotas to set the amount of usage 
allowed by end users. 

  



16 UNIX Custom Application Migration Guide: Volume 3 

The file allocation table (FAT) is a list of entries that map to each cluster on the partition. Each 
version of the FAT file system uses a different size for FAT entries. The FAT16 file system uses 
16 bits for each entry while the FAT32 file system uses 32 bits. It also uses a single linked list 
data structure to index and store file system data. In NTFS, all file attributes are stored as 
metadata, and it uses B+ trees to index file system data. 

Networked File Systems 
File systems do not have to be stored on a local drive (for example, a hard disk or CD-ROM). 
Users and applications can access them over the network from a server or peer computer. To do 
this, the operating system uses special file systems that work over the network and are called 
networked file systems. 
The standard UNIX network file system is the network file system (NFS). Developed by Sun 
Microsystems, this technology is licensed to most UNIX vendors and is designed to integrate into 
the UNIX file system model. An NFS server exports a directory, and an NFS client mounts the 
exported directory just as it would mount a local file system. To the user, the networked file 
system appears to be just another part of the directory tree. 
UNIX also has an automount mechanism. Automount directories are automatically made 
available when an application attempts to access them. They are then dismounted after a period 
of inactivity. The automount mechanism reduces the number of network file systems mounted, 
thereby simplifying administration. 
NFS is a client/server implementation. The actions that are executed on the server are minimal. 
The server does not keep any state associated with the client and all the state data is kept on the 
client. This method of retaining state ensures that the server can perform quickly and efficiently 
but places many requirements on the client. 

Server Message Block and Common Internet File System 
One of the earliest implementations of network resource sharing for the MS-DOS platform was 
network basic input/output system (NetBIOS). Features in NetBIOS allowed it to accept disk I/O 
requests and direct them to file shares on other computers. 
The protocol used for this was named server message block (SMB). Additions were made to 
SMB to apply it to the Internet, and now the protocol is known as Common Internet File System 
(CIFS). 
In Windows, the server shares a directory and the client connects to the UNC of that share. Each 
network drive usually appears with its own drive letter, such as X. 

Windows and UNIX Network File System Interoperability 
Windows and UNIX can interoperate by using NFS on Windows or CIFS on UNIX. A number of 
commercial NFS products are available for Windows. For UNIX, in addition to commercial 
implementations of CIFS, a software option called Samba is widely used. Samba is an alternative 
to installing NFS client software on Windows-based computers for interoperability with UNIX-
based computers. Samba is an open-source, freeware, server-side implementation of a UNIX 
CIFS server. To provide file and print services, it implements security in the form of authentication 
and authorization. It also implements NetBIOS-style name resolution and browsing. On Windows, 
NFS support can be obtained by installing the Windows Services for UNIX product. 
Note   Additional information on using Windows Services for UNIX NFS gateway to Windows clients is 
available at 

http://support.microsoft.com/kb/324085. 

 

http://support.microsoft.com/kb/324085


Chapter 1: Introduction to Win32/Win64                                                                                                                17                  

Summary of File System Differences 
The preceding sections discussed the architectures of the UNIX and Windows file systems, both 
of which are hierarchical but differ in many details. Table 1.4 lists the differences between the 
Windows and UNIX file systems. 
Table 1.4. Summary of File Systems Differences 

Feature Windows UNIX 

Overall structure Hierarchal, multiple trees Hierarchal, single tree 

Drive names Yes (for example C, D) No 

Mounting partitions Yes Yes 

Path separator \ / 

Case-sensitive 
names 

No Yes 

Hard links No Yes 

Symbolic links No Yes 

Shortcuts Yes No 

Network file system SMB NFS 

Device files No Yes 

Set user ID No Yes 

Security Access control lists (ACLs) Simple bit permissions 

Infrastructure Services 
This section discusses the differences in the architecture of UNIX and Windows in the following 
topics: 
• Security 
• Handles 
• Signals, exceptions, and events 
• Interprocess communication 
• Networking 

Security 
UNIX and Windows architectures differ in many ways, including security implementation. This 
section describes some of these security implementation details and differences. 

User Authentication 
A user can log on to a computer running UNIX by entering a valid user name and password. 
Some UNIX implementations require optional extra credentials, such as smart cards (for 
example, with pluggable authentication modules on Solaris and Linux). A UNIX user can be local 
to the computer or known to a Network Information System (NIS) domain (a group of cooperating 
computers). In most cases, the NIS database contains little more than the user name, password, 
and group. 
A user can log on to a computer running Windows by entering a valid user name and password. 
In addition, Windows requires optional credentials such as certificates and smart cards. A 
Windows user can be local to the computer, be known on a Microsoft Windows NT® domain, or 
be known in the Active Directory® directory service. The Windows NT domain contains only a 

  



18 UNIX Custom Application Migration Guide: Volume 3 

user name, password, and user groups. Although Active Directory contains the same information 
as the Windows NT domain, it may also contain additional information for the user, such as 
contact information, organizational data, and certificates. 

UNIX Security 
UNIX uses a simple security model. The operating system applies security by assigning 
permissions to files. This model works because UNIX uses files to represent devices, memory, 
and even processes. Security permissions are applied to users or to groups. 
In most cases, users are people who log on to the system, but users can be special users such 
as system services (daemons). In UNIX, each user has a user identifier (UID), which (unlike 
Windows) does not have to be unique. A user is logged on to the system when a shell process is 
running that has the UID of that user. Groups are sets of users. A UNIX group has a group 
identifier (GID). Every process has a UID and a GID associated with it. 
Note   The credentials that a user supplies when logging on are usually a user name and a password. 
Some implementations of UNIX support the use of smart cards for interactive logon. Smart cards support 
cryptography and help secure storage of private keys and certificates, enabling the strong authentication 
of users. 

Security Permissions 
When a user logs on to the system by entering a user name and a password, UNIX starts a shell 
with the UID and GID of that user. From then on, all access to files and other resources is 
controlled by the permissions assigned to the UID and GID or the process. The UIDs and GIDs 
are configured in two files: /etc/passwd and /etc/group, respectively. 
Each file in the file system has a bitmap that defines its permissions. Read, write, and execute 
are the permissions that can be granted. These permissions are grouped in three sets: the owner 
of the file, the group of the owner, and everybody else (world). A full (long) listing for a file shows 
the file permissions as a group of nine characters that indicate the permissions for owner, group, 
and world. The characters r, w, x, and - are used to indicate read, write, execute, and no 
permission, respectively. For example, if the owner of a file has all permissions but the group and 
world have only read permission, the string is as follows: 
rwxr--r-- 
Note   Some UNIX implementations have extended the basic security model to include ACLs similar to 
those used in Windows. However, ACLs are not implemented consistently across all versions of UNIX. 

Effective UID and Effective GID 
There are occasions when a process started by a particular user must access resources for 
which the user does not have permissions. UNIX has a mechanism to handle this situation. 
Processes can have effective UIDs and GIDs that are different from the UID and GID of the user 
or the parent process. An effective UID or GID is one that the operating system uses for the 
duration of the process. 
Network Information System 
The UNIX operating system was originally designed to run on a server by itself and not on a 
network, in a manner similar to stand-alone Windows-based computers. When computers can 
access resources on other computers on a network, synchronization of users (UIDs) and groups 
(GIDs) across computers becomes a problem. If the numeric identifiers are not properly 
synchronized, access requests across the network could incorrectly identify the user or group, 
which would result in security breaches. 
The Network Information System (NIS) solves this problem by using a client/server model for 
processing requests. One computer on a domain is designated the master computer. Computers 
that serve as backups to the master are known as subordinate computers. All other computers on 
the domain are clients. When a client application needs to check credentials, the call is forwarded 
to the master computer instead of being processed locally as it would be on a computer not 
running NIS. The master looks up the user information in a database file, called a map, and 
returns the results. 

 



Chapter 1: Introduction to Win32/Win64                                                                                                                19                  

Windows Security 
Windows uses a unified security model that protects all objects from unauthorized access. The 
system maintains security information for the following: 
• Users. The people who log on to the system, either interactively by entering a set of 

credentials (typically user name and password) or remotely through the network. The security 
context of every user is represented by a logon session. Each process that the user starts is 
associated with the logon session of the user. 

• Objects. The secured resources that a user can access. For example, files, synchronization 
objects, and named pipes represent kernel objects. 

Figure 1.1 illustrates the Windows security model and the relationship between the process-level 
access token, the security descriptor of the object, and the discretionary access control list 
(DACL) for the security descriptor. 

 
Figure 1.1. The Windows security model 
Access Tokens 
An access token is a data structure associated with every process that is started by a particular 
user and is associated with the logon session of that user. The access token identifies the user 
and identifies security groups that the user is a member of. Although users and groups have 
human-readable names to ease administration, for performance reasons they are uniquely 
identified internally by security identifiers (SIDs). 
Security Descriptors 
A security descriptor describes the security attributes of each object. The information in the 
security descriptor includes the owner of the object, a system access control list (SACL), and a 
DACL. The DACL contains a list of access control entries (ACEs) that define the access rights for 
particular users or groups of users. The owner of the object controls the DACL and uses it to 
determine who should and should not be allowed access to the object and what rights should be 
granted to them. 
The security descriptor also includes a system access control list (SACL), which is controlled by 
system administrators. Administrators use SACLs to specify auditing requirements for object 
access. For example, an administrator can establish a SACL that specifies the generation of an 
audit log entry whenever a user attempts to delete a particular file. 

  



20 UNIX Custom Application Migration Guide: Volume 3 

The sequence of events from the time a user logs on, to the time the user attempts to access a 
secure object, is as follows: 
1. The user logs on by entering a set of credentials. The system validates these credentials by 

comparing them against the information maintained in a security database (or Active 
Directory). 

2. If the user is authenticated, the system creates a logon session that represents the security 
context for the user. Every process created on behalf of the user (starting with the Windows 
shell process) contains an access token that describes the security context of the user. 

3. Every process subsequently started by the user is passed a copy of the access token. If one 
process results in additional processes, all child processes obtain a copy of the access token 
and are associated with the single logon session of the user. 

4. When a process (acting on behalf of the user) attempts to open a secure object, such as a 
file, the process must initially obtain a handle to the object. For example, when attempting to 
open a file, the process calls the CreateFile function. The process specifies a set of access 
rights on the call to CreateFile. 

5. The security system accesses the security descriptor of the object and uses the list of ACEs 
contained in the DACL to find a group or user SID that matches the one contained in the 
access token of the process. When this task is complete, the user is either granted a specific 
set of access rights to the object or denied access to the object (if a deny ACE is located). 
The granted rights may be the same as the rights initially requested or they may be a subset 
of the rights initially requested. For example, the CreateFile call can request read and write 
access to a file, but the DACL may allow only read access. 

Impersonation 
When a thread within a process attempts to access a secured object, the security context that 
represents the user making the access attempt is normally obtained from the process-level 
access token. 
However, you can associate a temporary access token with a specific thread. For example, within 
a server process, you can impersonate the security context of a client. The act of impersonation 
associates a temporary access token with the current thread. The temporary impersonation 
access token represents the security context of the client. As a result, the server thread uses the 
security context of the client when it attempts to access any secured object. When the temporary 
access token is removed from the thread, impersonation ceases and subsequent resource 
access reverts to using the process-level access token. 
Active Directory 
Windows Server 2003 introduced the Active Directory directory service, which is used to store 
information about objects. The objects can include users, computers, printers, and every domain 
on one or more wide area networks (WANs). Active Directory can scale from a single computer to 
many large computer networks. Active Directory provides the store for all domain security policy 
and account information. It replaces the flat account namespace in earlier versions of Windows 
with a hierarchical namespace for user, group, and computer account information. 
Windows Server 2003 includes new authentication protocols based on Internet standards, 
including Kerberos 5 and Transport Layer Security (TLS). For backward compatibility, 
Windows Server 2003 supports existing Windows NT LAN Manager Challenge/Response (NTLM) 
authentication protocols. 
The Windows implementation of secure channel security protocols, such as Secure Sockets 
Layer (SSL) 3.0/TLS, supports strong client authentication by mapping user credentials in the 
form of public-key certificates to existing Windows NT accounts. Administrators use common 
administration tools to manage account information and access control, whether the 
administrators are using password authentication or certificates. External users who do not have 
Windows Server 2003 accounts can be authenticated through public-key certificates and mapped 
to an existing Windows account. This allows businesses to give trading partners limited or full 
access to their internal networks. 

 



Chapter 1: Introduction to Win32/Win64                                                                                                                21                  

Handles 
The major differences in implementing system handles in UNIX versus Windows are described in 
the following sections. 

Socket Handles 
In UNIX, socket handles are small, non-negative integers. Socket handles can be passed to most 
of the low-level Portable Operating System Interface (POSIX) input/output (I/O) functions. 
Windows defines a new unsigned data type SOCKET that may take any value in the range 0 to 
INVALID_SOCKET–1, where INVALID_SOCKET is a predefined value for a nonexistent socket. 
Because the SOCKET type is unsigned, compiling existing source code from a UNIX environment 
may lead to compiler warnings about signed/unsigned data type mismatches. 

File Handles 
In UNIX, a file handle is an opaque number that is used to uniquely identify a file or other file 
system object. The only operations that can be carried out with the file handle in UNIX are to copy 
and compare it for equality with another file handle. 
In Windows, the file handle is used to identify a file. When a file is opened by a process using the 
CreateFile function, a file handle is associated with it until either the process terminates or the 
handle is closed by using the CloseHandle function. 

Signals, Exceptions, and Events 
UNIX and Windows have mechanisms by which processes can indicate an event or error. In both 
operating systems, these events are signaled by a form of software interrupts. In UNIX, these 
mechanisms are called signals and are used for ordinary events, such as simple interprocess 
communication (IPC), and abnormal conditions, such as floating point exceptions. Windows has 
the following two separate mechanisms: 
• An events mechanism handles expected events, such as communication between two 

processes. 
• An exception mechanism handles nonstandard events, such as the termination of a process 

by the user. Computer hardware may generate exceptions such as invalid memory access 
and math errors. Windows uses a facility named Structured Exception Handling (SEH) to 
handle these exceptions. 

Interprocess Communication 
An operating system designed for multitasking or multiprocessing must provide mechanisms for 
communicating and sharing data between applications. Such a mechanism is called interprocess 
communication (IPC). Some forms of IPC are designed for communication among processes 
running on the same computer, whereas other forms are for communicating across the network 
between different computers. 

UNIX Interprocess Communication 
UNIX has several IPC mechanisms that possess different characteristics and are appropriate for 
different situations. Shared memory, pipes, and message queues are all suitable for processes 
running on a single computer. Shared memory and message queues are suitable for 
communicating among unrelated processes. Pipes are the mechanism usually chosen for 
communicating with a child process through standard input and output. For more information 
about message queues, refer to the “Message Queues” section later in this chapter. 
For communication across the network, sockets are usually the chosen technique. Migration from 
UNIX sockets to Windows sockets is usually a straightforward process involving few changes to 
the code. 

  



22 UNIX Custom Application Migration Guide: Volume 3 

Windows Interprocess Communication 
Windows has many IPC mechanisms, some of which have no counterpart in UNIX. As with UNIX, 
Windows has shared memory, pipes, and events (equivalent to signals). These are appropriate 
for processes local to a computer. The shared memory implementation is based on file mapping 
because certain forms of shared memory can be used across the network. Named pipes can also 
be used for network communications. Other IPC mechanisms supported by Windows are the 
Clipboard/Dynamic Data Exchange (DDE), Component Object Model (COM), Distributed 
Component Object Model (DCOM), and send message. These are mostly used for local 
communications, but DDE and COM both have network capabilities. Winsock and Message 
Queuing (also known as MSMQ) are good choices for cross-network tasks. 
Windows provides two additional IPC mechanisms: remote procedure call (RPC) and mailslots. 
RPC is designed for use by client/server applications and is most appropriate for C and C++ 
programs. Mailslots are memory-based files that a program can access using standard file 
functions. The maximum size of mailslots is fairly small and their usage is often similar to named 
pipes except that mailslots are effective for broadcasting small messages. 

Synchronization 
Both UNIX and Windows have an extensive set of process and thread synchronization 
techniques. Both operating systems use semaphores, which are synchronization primitives used 
to control access to a resource that can support a limited number of users. Both UNIX and 
Windows also use mutex objects to control mutually exclusive access to a resource. 
Windows offers critical section objects for lightweight control of multithread access to a section of 
code. Critical sections are similar to mutexes, but access is limited to the threads of a single 
process. This makes them appropriate for controlling access to a shared resource. Threads can 
access the critical section in any order, but the order is not guaranteed. 

Message Queues 
In UNIX, a message queue is an IPC mechanism. One application sends messages to the queue 
and another application reads the messages from the queue. The queues are very fast because 
they are memory based. However, the messages disappear if the system fails. Message queues 
were introduced in AT&T System V UNIX. Because of this, many versions of UNIX that are based 
on BSD may not have them. POSIX has message queues, but the API is not exactly the same as 
in System V. 
In recent years, dedicated products have emerged with a more robust and persistent message 
queue paradigm available on many different platforms. Windows provides a reliable messaging 
system called Message Queuing. Message Queuing provides guaranteed message delivery, 
efficient routing, security, and priority-based messaging. In essence, a Message Queuing 
message is guaranteed to be delivered, but there is no specific guarantee about exactly when it 
will be received. The operation is the same as on UNIX: One application writes to the queue and 
another reads from it. The API, however, is completely different. 

Shared Memory 
As mentioned previously, both Windows and UNIX provide shared memory as one of the IPC 
mechanisms. In both, the mechanisms provide a section of memory that can be shared between 
processes to pass data and control information. However, the implementation details are 
different. 
In one of the UNIX implementations, the program must first call a function to get a shared 
memory identifier, shm_id, for the amount of shared memory. The identifier is then used in calls 
to attach the shared memory to the process. There are other functions for controlling and 
removing the shared memory. This type of shared memory mechanism was introduced in the 
AT&T System v2 version of UNIX. Later UNIX versions introduced shared memory based on the 
concept of file mapping. The mmap function sets up a segment of memory that can be read or 
written to by two or more programs. This mechanism is used to manipulate files.  

 



Chapter 1: Introduction to Win32/Win64                                                                                                                23                  

The mmap function creates a pointer to a region of memory associated with the contents of the 
file that is accessed through an open file descriptor. 
In Windows, implementation of shared memory can be done using the concept of file mapping or 
by sharing memory using the GlobalAlloc function. In the file mapping implementation, a 
common section of memory can be mapped into the address space of multiple processes. If no 
file is specified in the creation function, the shared memory is allocated from a section of the page 
file. As in the UNIX implementation, which uses an identifier, Windows uses a handle identifier to 
identify the memory that is mapped into the process at the requested address. The GlobalAlloc 
function allocates the specified number of bytes from the heap, which can be shared among 
processes. 
Both the UNIX and Windows file mapping solutions offer the capability of saving the contents in a 
permanent file. 

Pipes 
Pipes have similar functionality in both Windows and UNIX systems. Their primary use is to 
communicate between related processes. UNIX pipes can be named or unnamed. They also 
have separate read and write file descriptors, which are created through a single function call. 
With unnamed pipes, a parent process that must communicate with a child process creates a 
pipe that the child process will inherit and use. Two unrelated processes can use named pipes to 
communicate with each other. 
Windows pipes can also be named or unnamed. A parent process and a child process typically 
use unnamed pipes to communicate. The processes must create two unnamed pipes for 
bidirectional communication. Two unrelated processes can use named pipes, even across the 
network on different computers. Typically, a server process creates the pipe, and clients connect 
to the bidirectional pipe to communicate with the server process. 

Networking 
The primary networking protocol for both UNIX and Windows is Transmission Control 
Protocol/Internet Protocol (TCP/IP). The standard programming API for TCP/IP is called sockets. 
Sockets were created for UNIX at the University of California, Berkeley. Sockets provide an easy-
to-use, bidirectional stream between systems across a network. The Windows implementation of 
sockets is formally known as Windows Sockets but is usually called Winsock. Winsock conforms 
well to the Berkeley implementation, even at the API level. Most of the functions are the same, 
but slight differences in parameter lists and return values do exist. It is interesting to note that 
Winsock allows new transport providers to be installed, making Winsock an extensible 
environment. 

User Interface Differences 
The UNIX user interface was originally based on a character-oriented command line, whereas the 
Windows user interface was originally based on a GUI. This difference is due to the background 
of the two operating systems. UNIX originated at a time when graphic terminals were not 
available. Windows was (as the name suggests) designed to take advantage of advances in the 
graphics capabilities of computers. However, both UNIX and Windows now support a mixture of 
character and graphical interfaces. 

The UNIX Character-based Interface  
The standard UNIX shells and tools are all character-based and command-line oriented. For the 
UNIX shells and UNIX applications to be capable of communicating with different models of 
character terminals, they must be aware of the different functions available and the command 
sets for each terminal. 

  



24 UNIX Custom Application Migration Guide: Volume 3 

Termcap and Terminfo 
To minimize the amount of specific terminal information embedded in a program, UNIX has 
databases of terminal capabilities. These databases are known as termcap and terminfo. Instead 
of embedding terminal commands into an application, developers can use program libraries 
provided with the operating system to query the database for specific movement commands, thus 
allowing their applications to operate with a variety of hardware. 

Curses 
Another application development package specifically designed to alleviate the problem of 
terminal dependence is the curses library originally written at the University of California, 
Berkeley. Curses is a set of functions used to manipulate terminal input and output (mostly 
output). These perform actions, such as clearing the screen, moving the cursor to a specific row 
and column, and writing a character or string to the screen. The library also includes input 
functions to retrieve user input in various modes, such as read one character and read a string 
terminated by carriage return. 
Curses and similar libraries enable developers to create highly interactive, character-based 
applications, such as text editors. 

X Windows and Motif 
The standard windowing system for UNIX systems is the X Window System (or X Windows), 
developed at the Massachusetts Institute of Technology (MIT). X Windows is a platform-
independent, basic windowing system. It consists of a lower-level API called X library (or Xlib) 
and a higher-level library called X Toolkit Intrinsics. X Windows separates the server (which 
manages the display of graphical information) from the client (which is the application program 
that uses X Windows). The server and client can run on separate computers, so the application 
may run on a powerful numeric server while the output appears on a graphics workstation. This 
feature has also led to the development of X terminals, that is, computers equipped only to 
display graphics on a computer screen. 
Because X Windows is a set of toolkits and libraries, it does not have graphical user interface 
standards as Windows does. Motif is the most common windowing system, library, and user 
interface style built on X Windows. Motif handles Windows and a set of user interface controls 
known as widgets. Widgets cover the whole range of user interface controls, including buttons, 
scroll bars, menus, and high-functionality items such as a Web browser widget. 
X Windows has the capability to support multiple terminals, that is, multiple client sessions can 
connect to the same X Windows server simultaneously and interact with the server. Windows 
also has a similar capability known as Windows Terminal Services. This functionality enables 
users to run multiple interactive sessions on the server at the same time. 

Windows Terminal Server and Citrix 
Windows can provide sessions that run applications on a server but are displayed on a client 
workstation. These sessions can be implemented with both Terminal Server (on 
Windows Server 2003 and Windows XP) and Citrix. 
Both Terminal Server and Citrix use a server-based session, much as UNIX does. The difference 
is that Terminal Server and Citrix use a smart GUI terminal specific to running Windows-based 
programs. This is analogous to the way an X terminal operates in a UNIX environment. System 
managers can use Terminal Server to deliver Windows functionality to a low-end computer or 
even one that does not run Windows. Terminal Server can also be used to remotely administer a 
Windows-based server. 

 



Chapter 1: Introduction to Win32/Win64                                                                                                                25                  

Terminal Server is particularly useful for implementing server-based applications in a thin client 
environment. Additionally, Terminal Server provides a smart GUI protocol that works effectively 
on slow links. This protocol allows enterprises to consolidate applications in a remote location, 
without the loss of performance usually associated with slower remote networks. 
System managers can implement Terminal Server using network load balancing in scale-out 
server clusters. This configuration allows for both higher availability and the capability to add 
more servers when the load increases. Applications that use Terminal Server or Citrix usually fall 
into the following two categories: 
• Desktop applications, such as those in the Microsoft Office suite, moved from the desktop 

client to a central server. 
• Remote applications that require thin client connectivity and that are unable to operate 

through a Web-based interface. 

  





  

Chapter 2: Developing Phase: Process 
Milestones and Technology 
Considerations 

This chapter introduces the MSF Developing Phase and helps you prepare for it. It also discusses 
using Microsoft® Visual Studio® .NET 2003 and the Platform software development kit (SDK) for 
the Developing Phase. The chapter includes a section about how to make your code compliant 
with both 32-bit and 64-bit architectures. With this knowledge, you can identify the application 
development environments, configure the environment, and decide the development and testing 
methodology to use for the Win32/Win64 applications. 

Goals for the Developing Phase 
The primary goal during the Developing Phase is to build the solution components—the code 
migration and the documentation. Typically, the migration involves modifying the existing code in 
a way that enables the application to work in the Windows environment using the Windows API. 
In this context, both the modification of existing code and the development of new code are 
considered to be migration activities. Although the development work is the focus of this phase, 
all team roles are active in building and testing the deliverables. Also, some development work 
may continue into the Stabilizing Phase in response to test results. 
This phase formally ends with the Scope Complete Milestone. Your team achieves this major 
milestone by getting a formal approval from the sponsors and key stakeholders. The sponsors 
and key stakeholders must approve that all solution elements are built and that the solution 
features and functionality are complete in accordance with the functional specifications developed 
during the Planning Phase. 

Major Tasks and Deliverables  
The tasks and deliverables for the Developing Phase are listed in Table 2.1, along with the 
owners for the task. 
Table 2.1. Major Tasks and Deliverables 

Major Tasks and Deliverables Owners 

Starting the development cycle 
The team begins the development cycle by verifying that all tasks identified 
during the Envisioning and Planning Phases have been completed. 

Development  

Building a proof of concept 
Before development starts, the team performs a final verification of the 
concepts from the designs within an environment that mirrors production as 
closely as possible. 

Development  

Developing the solution components 
The team develops the solution using the core components and extends them 
to the specific needs of the solution. The team also develops and conducts 
unit functional tests to ensure that individual features perform according to the 
specifications. 

Development 
and Test  

 
  



28 UNIX Custom Application Migration Guide: Volume 3 

Major Tasks and Deliverables Owners 

Developing the testing tools and test cases 
The team develops the testing infrastructure and populates it with test cases. 
This ensures that the entire solution performs according to specifications. This 
solution test suite typically incorporates, as a subset, the individual feature 
tests used by developers to build the solution components. 

Test  

Building the solution 
A series of daily or frequent builds culminate with major internal builds and 
identification of points at which the development team will deliver key features 
of the solution. These builds are subjected to all or part of the entire project 
test suite to verify the percentage of completion and are used as a way of 
tracking the overall progress of the solution and the solution test suite. 

Development 
and Test  

Closing the Developing Phase 
The team completes all features, delivers the code and documentation, and 
considers the solution complete, thus initiating the approval process for the 
Scope Complete Milestone. 

Project  

Note   Refer to the UNIX Migration Project Guide (UMPG) for an overview of MSF, general information on 
the processes that belong to each phase, and additional information about the team roles responsible for 
the processes. The UMPG is meant to be used in conjunction with the technical and solution-specific 
information in this guide. 

Starting the Development Cycle 
During the Developing Phase, every component of the solution is analyzed in terms of how to 
apply code changes to adapt to the Microsoft Windows® environment. This section mainly 
focuses on identifying and addressing the risks in the Developing Phase and using a mitigation 
plan to address these risks. 
The Developing Phase of any UNIX migration project can be the most challenging part of the 
project. Major issues become evident at the beginning of this phase. For example, your team may 
realize that the Windows API does not have an equivalent of a particular UNIX function, which the 
code is using. This can be categorized as a risk because a replacement code might need to be 
written at this stage. Resolving such issues will be the distinguishing factor in determining 
whether schedules will change, whether the funding is sufficient and, ultimately, whether the 
project will be successful. 
If any item on the task lists of the Envisioning and Planning Phases is not completely satisfied, it 
could present a risk during the Developing Phase. 
The following actions might mitigate these risks: 
• Procure the required software licenses for Visual Studio .NET 2003 before starting the 

project. 
• Prepare a requirements specification document, which details the scope of the migration 

project and the design and architecture that must be followed. 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      29 

• Perform an impact analysis of the changes and obtain sign-off from the customer on the 
requested changes. Impact analysis plays a very important function during a migration 
project. The output from this activity helps the developer in determining the scope of the 
changes, identifying further activities required to fix the problem, and building and testing the 
changes due to the migration. An impact analysis also helps in identifying the boundaries of 
migration, identifying the affected elements, and understanding the configuration system for 
all sources in the application, changes in business process, and types of change with respect 
to technology changes. 

• Establish the existence of compatible versions of required third-party libraries on Windows 
and procure licenses for the required third-party libraries. 

Implementing these actions is easier if the risks are identified and mitigation plans are formulated 
and evaluated well ahead of time. Risk mitigation, as part of the risk management process, can 
be used to keep a project on track through adverse situations. 
Note   Additional information about risk mitigation is available at 

http://www.microsoft.com/office/solutions/accelerators/sixsigma/default.mspx. 

Building a Proof of Concept 
Typically, the proof of concept is a continuation of the initial development work (the preliminary 
proof of concept) that occurred during the Planning Phase. The proof of concept includes 
developing and testing some key elements of the solution in a nonproduction simulation of the 
proposed operational environment. The team guides the operations staff and users through the 
solution to validate their requirements. In addition, during such a review/concept process, the 
developers may discover design flaws or bugs in the original application being ported that need to 
be addressed. The proof of concept serves as a "dry run" that tests the worthiness and the ease 
of the migration process. Pilot migrations help to assess any complications that might occur in the 
actual migration and also help build confidence in the migration process. 
There may be some solution code or documentation that carries through to the eventual solution 
deliverables. However, the proof of concept is not meant to be production-ready. The proof of 
concept is considered as throwaway development that gives the team a final chance to verify 
functional specification content and to address any additional issues before moving into 
development. 

Proof of Concept Complete 
The Proof of Concept Complete interim milestone marks the completion of building the proof of 
concept for the key elements of the solution. The risks associated with the key elements of the 
solution are identified in this phase, which helps you implement risk management.  
Reaching this interim milestone marks the point where the team moves from conceptually 
validating to building the solution architecture and components. 

 

http://www.microsoft.com/office/solutions/accelerators/sixsigma/default.mspx


30 UNIX Custom Application Migration Guide: Volume 3 

Developing the Solution Components 
The Developing Phase is when the actual solution is built. The individual components are coded 
and tested to satisfy the project requirements in the Windows environment. Because differences 
exist between UNIX and Windows, the UNIX code must be modified to work in the Windows 
environment. 
Subsequent chapters of this volume address the potential coding differences related to the 
following categories: 
• Process management 
• Thread management 
• Memory management 
• File management 
• Infrastructure services 

• Security 
• Handles 
• Exception handling 
• Signals versus events 
• Interprocess communication 
• Networking 

• Migrating Graphical User Interface 
• Shells and scripting 
• Daemons versus services 
• Middleware  
• Component-based development in Windows 
For each of these categories, chapters 3, 4, 5, and 6 of this volume: 
• Describe the coding differences. 
• Outline options for converting the code. 
• Illustrate the options with source code examples. 
You can then choose the solution that is most appropriate to your application and use these 
instructions as the basis for constructing your Windows code. This guide gives you sufficient 
information to choose the best method of converting the code. After you have made your choice, 
you can refer to the MSDN or Microsoft Windows API documentation to ensure that you 
understand the details of the Microsoft Windows API functions.  

Using the Development Environment 
The development environment is the environment in which the user develops and builds the 
solution. The development environment provides the necessary compiler, linker, libraries, and 
reference objects. In some cases the integrated development environment (IDE) is also provided. 
The setting up of the development environment was discussed in general in Chapter 4, “Planning: 
Setting Up the Development and Test Environments” of Volume 1: Plan of this guide. In this 
volume, application development focuses on Microsoft® Win32®/Win64.  

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      31 

The application may be one of the following: 
• A 32-bit application to run on a 32-bit architecture. 
• A 64-bit application to run on a 64-bit architecture. 
• A 64-bit–ready application that will be executed on a 32-bit architecture and which can be 

directly ported to the 64-bit architecture just by recompiling. 
These three options suggest three alternate ways of deploying the application, but all three have 
the same code base. The first two are 32-bit and 64-bit applications running on respective 
architectures. A 64-bit–ready application can be run on both 32-bit and 64-bit computers. The 
third alternative suggests keeping the application 64-bit–ready on a 32-bit computer. This can be 
accomplished by using the 64-bit compiler on the 32-bit computer to compile and remove 
warnings that may come up when the same application is compiled on a 64-bit computer and 
thereby produce a clean code. 
Tools required for developing the solution using the Windows API are: 
• Latest Platform SDK. 
• Visual Studio .NET 2003. 
In Visual Studio .NET 2003, the native 64-bit IDE is still under development, hence no IDE exists 
for development of 64-bit applications. Therefore, Visual Studio .NET 2003 can be used in 
conjunction with the compiler for 64-bit applications present in the Platform SDK. The latest 
Platform SDK includes the compiler, the linker, and other tools for 64-bit development.  
The SDK also includes the C-Runtime (CRT) library, the Microsoft Foundation Classes (MFC), 
and the Active Template Library (ATL) versions for 64-bit production. 

Platform SDK 
The latest Platform SDK contains tools to build, debug, test, and deliver applications. It also 
contains all the definitions (include files) and libraries needed to compile programs. In general, 
SDK tools are run from the command line, just as applications are run from a shell prompt in 
UNIX. Output from SDK tools can be files created on the disk, text output to the console (such as 
stdout in UNIX), or graphical output to one or more dialog boxes. The Platform SDK also 
contains definitions and documentation for the Microsoft .NET enterprise servers, including 
Microsoft BizTalk™ Server, Microsoft Commerce Server, and Microsoft SQL Server™. 
The Platform SDK is available on CD or as a free download on the Web. It is also available with 
the Microsoft Visual C++® development system and Visual Studio .NET 2003, or with an MSDN® 
Professional or Universal subscription. 
Note   You can order or download the SDK at 

http://www.microsoft.com/downloads/details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-
40C0EC4F68E5&displaylang=en. 

 

http://www.microsoft.com/downloads/details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-40C0EC4F68E5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A55B6B43-E24F-4EA3-A93E-40C0EC4F68E5&displaylang=en


32 UNIX Custom Application Migration Guide: Volume 3 

Using the Platform SDK 
The Visual Studio .NET 2003 environment can be used as the development environment for 
development using the Platform SDK. It contains a series of compiler options that can be used to 
verify or generate various levels of information, as described in the following table. 
Table 2.2. Useful Compiler Options  

Debug 
Information 
Options 

Use 

/Zd Produces an .obj file or executable file containing only global and external 
symbols and line-number information, but no symbolic debugging information. 

/Z7 Produces an .obj file and an .exe file containing line numbers and full 
symbolic debugging information for use with the debugger. 

/Zi Creates a program debug database (.pdb) file. The debugger uses this file to 
step through the source during program execution. 

/ZI Similar to /Zi. However, the .pdb file also supports edit and continue. 

Additional 
Debug 
Information 
Options 

Use 

/Yd Places debug information in the .obj files. 

/Ylsymbol Places arbitrary symbol in the object module. 

/Yu,/Yufilename Specifies using a precompiled header (.pch) file during builds. 

/YX,/YXfilename Instructs the compiler to use a precompiled header file (.pch) if one exists or 
to create one if none exists. 

Runtime Check 
Options 

Use 

/RTCc Reports run-time truncation error. 

/RTCs Enables run-time stack checking, includes overrun and under-run of local 
variables, and enables verification of the stack register. 

/RTCu Enables reporting of variables used without initialization. 

/RTC1 Combination of RTCs and RTCu. 

To set these compiler options in the Visual Studio .NET 2003 development environment  
1. On the Project menu, click Properties to open the project's Property Pages dialog box. 
2. Click the C/C++ folder of Configuration Properties. 
3. Click General Property. 
4. Modify the Debug Information Format property to set the Debug Information options /Zd, 

/Z7, /Zi, and /ZI options. 
5. Type the compiler option in the Additional Options box of Command Line property to 

specify /Yd and /Yl. 
6. Click the Precompiled Headers property page. 
7. Create/Use Precompiled Header property to specify /Yu and /YX options. 
8. Click the Code Generation property page. 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      33 

9. Modify the properties Basic Runtime Checks or Smaller Type Check to specify the 
Runtime check options. 
Note   Additional information on compiler options is available at 

http://msdn2.microsoft.com/en-us/library/9s7c9wdw(en-US,VS.80).aspx. 

Any program written in languages that support the creation of the .pdb files can be used in the 
Windows debug environment. Thus you can debug an application source file where calls are 
made using C, C++, and Fortran languages. 
You can use the Platform SDK WinDBG tool to open a source file and then run the corresponding 
debug version of an executable file. WinDBG searches for debug symbol information for the 
modules that the executable file uses in the symbol image path. 
To use WinDBG to debug an executable file 
1. From the graphical user interface (GUI), open the source file corresponding to the executable 

file that you want to debug. 
2. Set the path for the symbols needed to debug the executable file. 
3. Set desired breakpoints in the source file. 
4. Open the executable file. 
Other options for using WinDBG include: 
• Attach to a running process. 
• Open a crash dump file. 
• Use a remote debug session to connect to another system. 
The command debugger (CDB) can also be used to debug programs. CDB is especially useful for 
debugging a running program or for debugging remotely. CDB can also analyze crash dumps by 
using symbols. For example, the following code uses CDB to analyze a crash dump file: 
cdb –y <Symbol Path> -i <Image Path> -z <Dumpfile> 

Visual Studio .NET 2003 
During the migration of an application from UNIX to Windows, one goal is to take advantage of 
the Visual Studio development tools. However, it can be a large manual task to manage the 
creation and administration of Visual Studio projects. This is especially true for large projects with 
hundreds or thousands of sources. But after the project has been created and the environment is 
set, the whole application becomes easily manageable. 
The Microsoft Visual Studio .NET 2003 IDE can be used to build 64-bit applications while you 
maintain the same code base for both 32-bit and 64-bit development. You can achieve this by 
configuring two different 32-bit and 64-bit build environments and compiling the same code base 
in both environments. 
To support developer productivity, Visual Studio .NET 2003 provides debugging and automation 
facilities, which are particularly useful for repetitive tasks. 

Using Visual Studio .NET 2003 
The following sections discuss configuring the development environment using the Visual Studio 
.NET 2003 IDE. 

Setting the 64-Bit Build Environment  
The process for configuring Visual Studio .NET 2003 to work with the 64-bit Windows is 
conceptually similar to that for reconfiguring Visual Studio 6, although some of the screens are 
different. 

 

http://msdn2.microsoft.com/en-us/library/9s7c9wdw(en-US,VS.80).aspx


34 UNIX Custom Application Migration Guide: Volume 3 

To set the 64-bit build environment variables 
1. In Programs of the Microsoft Platform SDK, select Open Build Environment Window. Then 

select Set Windows XP 64 Build Environment, and then click Set Windows XP 64 Build 
Environment (Debug). A console window with the build environment set for a 64-bit build is 
displayed. 

2. At the command prompt: 
a. Change the folder to C:\Program Files\Microsoft SDK. 
b. To load the 64-bit settings in Visual Studio .NET 2003, execute the commands: 

SetEnv.Bat /AMD64 /RETAIL 
devenv /useenv.  
Do not open a new command window to open devenv.exe. The Visual Studio .NET 2003 
IDE is displayed, but the include files, the library, and the executable directories are set 
for a 64-bit build environment. 
Note   If devenv.exe is not in the path, change the folder to the \Microsoft Visual Studio .NET 
2003\Common7\IDE folder before you run devenv.exe. 

3. To resume working with the 32-bit settings, quit Visual Studio .NET 2003 and execute the 
following statements at the command prompt to relaunch the IDE: 
a. Call "C:\Program Files\Microsoft Visual Studio .NET 2003\VC7\Bin\VCVARS32.BAT 
b. devenv /useenv 

4. After you have launched Visual Studio .NET 2003, in the Tools menu, click Options. Click 
Projects branch, and then VC++ Directories to view a sample of the environment, as shown 
in Figure 2.1. 

 
Figure 2.1. Visual Studio .NET 2003 environment 
After you have launched Visual Studio .NET 2003 with the proper environment, you must build 
the right type of release and debug project configurations for the AMD64 platform. 
Note   Visual Studio .NET 2003 picks up its default tool chain through environment variables defined at 
startup if you use the /USEENV option. 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      35 

To add a 64-bit debug configuration 
1. On the Build menu, click Configurations, and then click Add. 
2. Type a name in the Configuration text box, for example, Release AMD64 or Debug 

AMD64, and from the Copy settings list, choose the corresponding configuration for the 
Win32 platform, such as Win32 Release or Win32 Debug. Clear the Also create new 
project configuration(s) check box. 

3. Repeat step 2 for the debug configuration and any other configuration in the project so that 
for each Win32 configuration, there is a corresponding configuration for the AMD64 platform. 
Figure 2.2 shows how the configurations will look. 

 
Figure 2.2 Build configurations 

Several Visual Studio compiler and linker options do not apply to the 64-bit compiler and linker.  
To modify compiler or linker options 
1. On the Project menu, click Properties. 
2. In the Project Properties dialog box, click the General tab. Under Output directory and the 

Intermediate Directory edit boxes, type Debug64. 
3. On the C/C++ tab, under General, select Program Database (compiler option, /Zi) in the 

Debug information format list. Make sure that Program Database for Edit and Continue 
is not enabled. 

4. Under Detect 64-bit portability issues, select Yes (/Wp64). 
5. On the C/C++ tab, under Command Line, remove /FD compiler flag. (The /FD flag is 

generated when exporting makefiles from earlier versions of Visual Studio and should be 
deleted.) 

6. Remove the /Gm compiler flag. 
7. Add the /Wp64 and /W4 compiler flags to enable the most sensitive IA-64–related compiler 

warnings. 
8. If you want to use 32-bit pointer variables, add the /Ap32 compiler option (the default is 

/Ap64). 
9. If you want to use a maximum of 4 GB (2^32) of virtual address space (Small Address 

Space), add the /As32 compiler option (default is /As64). 
10. In case of an IA64 computer, on the Linker tab in Command Line, append /machine:IA64 

or /machine:AMD64 to the options list. Visual Studio .NET 2003 will not let you remove the 
/machine:I386 option, but if /machine:AMD64 comes after it, it can be removed. 

11. On the View menu, click Workspace. To delete the MyApplication.hpj file from the project, 
click the MyApplication.hpj file in the Solution Explorer window, and then press DEL key.  
Note   This file may have already been removed. 

12. In all 64-bit configurations, under the General branch, change the output directories in order 
to avoid mixing AMD64 and Win32 object files. 

 



36 UNIX Custom Application Migration Guide: Volume 3 

13. If your application is an MFC application, you must add an MFC path to avoid receiving 
Linkers Tool Error LNK1104 on the Mfc42d.lib file. To add an MFC path, perform the 
following steps:  
a. On the Tools menu, click Options. 
b. On the Projects tab, select VC++ Directories. 
c. On the Show Directories for drop-down box, select Library Files. 
d. Add the \Microsoft SDK\lib\IA64\mfc path if it is not listed.  

Note   If MyApplication is an MFC application and the project uses MFC .dll files, make sure that 
the .dll files are copied from the \Microsoft SDK\NoRedist\win64 folder to the \System32 folder 
on the IA64 computer. Following are the DLLs to be copied:  

MFC71.dll. 

This folder also contains the symbols for the MFC, ATL, and MSVCRT debug and release versions.  

To build or rebuild the project or solution 
1. To build the solution, in Solution Explorer, select or open the desired solution. 
2. On the Build menu, click Build Solution if you want to compile the project files and 

components that have changed since the last build. 
3. On the Build menu, click Rebuild Solution to clean the solution first, and then build all 

project files and components. 
4.  To build any specific project, in Solution Explorer, select or open the specific project. 
5. On the Build menu, click Build <project name> to build only the project files that have 

changed since the last build. 
6. On the Build menu, click Rebuild <project_name> to clean the project first, and then rebuild 

all the project files. 
 After a successful build, you will have a 64-bit application that is ready to be deployed to an IA64 
computer. 
To debug the .exe file from the Visual Studio .NET 2003 IDE on a 64-bit computer  
Note   You cannot debug the .exe file from the Visual Studio .NET 2003 IDE.  

1. Create a folder named C:\VS2003MSVSMON on the IA64 computer.  
2. Copy the following files from the x86 computer to this new folder:  

• Msvcmon.exe  
• Dm.dll  
• Msdis110.dll  
• Tln0t.dll 
These files are located in the \Microsoft Visual Studio .NET 
2003\Common7\Packages\Debugger folder.  

3. After you copy the files, run Msvcmon.exe on the IA64 computer, and then click Connect. 
4. In the Visual Studio .NET 2003 IDE on the x86 computer, on the Build menu, click Debugger 

Remote Connection. In the Remote Connection dialog box, click Network TCP/IP, and 
then click Settings. In the Target computer name or address box, type the name of the 
IA64 computer. To close the dialog box, click OK. 

5. In the Visual Studio C++ IDE, on the Project menu, click Settings. In the left pane, expand 
MyApplication, and then click the Debug tab. You will notice that the Executable for debug 
session textbox contains the path of MyApplication.exe. This will be 
C:\<X86Path>\MyApplication.exe. 

6. In the Remote executable path and file name textbox, type MyApplication.exe with a full 
path. This full path looks like \\<X86ComputerName>\C$\<x86Path>\MyApplication.exe. Click 
OK to close the window. 

7. To run the .exe file, press CTRL+F5 or click Execute MyApplication.exe on the Build menu. 
The .exe file runs on the IA64 computer. 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      37 

8. If MyApplication is an MFC application and if the project uses MFC .dll files, make sure that 
the .dll files are copied from the \Microsoft SDK\NoRedist\Win64 folder to the \System32 
folder on the IA64 computer. Following are the .dll files: 
• Mfc71.dll 
This folder also contains the symbols for the MFC, the ATL, and the MSVCRT debug and 
release versions. 

Note   The 64-bit versions of Microsoft Windows XP and Windows Server™ 2003 include NTSD, a symbolic 
debugger that works with both 32-bit and 64-bit applications. You can also use the regular WinDbg 
debugger to let you work on 32-bit applications under 64-bit Windows. 

New versions of WinDbg are available for Itanium and native x64 (beta) at  

http://www.microsoft.com/whdc/devtools/debugging/64bit-home.mspx. 

Debugging with Visual Studio .NET 2003 
To debug a program using Visual Studio .NET 2003, the program must be compiled with the 
appropriate options set. For more information about the options, see Table 2.2 in “Using the 
Platform SDK” earlier in this chapter. To use the Visual Studio .NET 2003 debugger, in the 
configuration manager, set the active configuration to debug. When the project is compiled, the 
debug session can begin. 
You can run a debug session within a project opened in Visual Studio .NET 2003 or by opening a 
remote connection from the IDE. You can choose either option from the Build menu in the Visual 
Studio .NET 2003 IDE. More information on debugging using Visual Studio .NET 2003 is 
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsdebug/html/_asug_How_Do_I_Topics3a_Debugging.asp. 
Note   Do not install the 64-bit version of the WinDbg debugging tool on the same computer where Visual 
Studio .NET 2003 is installed. More information about the 64-bit version of WinDbg is available at the 
Platform SDK 64-bit Readme. 

Additional information is available in the Production Debugging for .NET Framework Applications section at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/DBGrm.asp. 

64-Bit Programming in UNIX and Windows 
The difference between UNIX/64 and Windows 64-bit programming is because of the different 
data models. This section describes the new data types in UNIX/64 and Win64 and how they 
affect your code. 

New Explicitly Sized Data Types 
Both UNIX/64 and Windows provide new fixed-length or explicitly sized data types. These data 
types are defined in header files that must be included for either UNIX/64 or 
Windows Server 2003 (64-bit) programming. In UNIX, they are defined in inttypes.h and in 
Windows in basetsd.h. 
Using explicitly sized types can be helpful in clarifying code purposes and making maintenance 
easier. However, as these types do not automatically scale with the target architecture, they 
should not be used for pointers, as pointers in the 64-bit architecture are commonly 64 bits. 
UNIX/64 and the Windows UDM have introduced different names for fixed-length types. 
Fortunately, ANSI standard names, such as short and int, can still be used for some of these 
types, which make code migration from UNIX to Windows easier. Whenever possible, it is best to 
use ANSI types. However, ANSI has no standardized, explicitly sized 64-bit types.  

 

http://www.microsoft.com/whdc/devtools/debugging/64bit-home.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsdebug/html/_asug_How_Do_I_Topics3a_Debugging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsdebug/html/_asug_How_Do_I_Topics3a_Debugging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/DBGrm.asp


38 UNIX Custom Application Migration Guide: Volume 3 

Table 2.3 lists new explicitly sized data types in 64-bit UNIX. 
Table 2.3. New UNIX*/64 Explicitly Sized Data Types 

Architecture New Data Types Old Data Types 

64-bit int64_t, uint64_t long long, quad_t, u_quad_t 

32-bit int32_t, uint32_t int, unsigned int 

16-bit int16_t, uint16_t short, unsigned short 

8-bit int8_t, uint8_t char 

Table 2.4 lists new explicitly sized data types in Win64. 
Table 2.4. New Win64 Explicitly Sized Data Types 

Architecture New Data Types Old Data Types 

64-bit INT64, UINT64, LONG64, 
ULONG64, DWORD64 

__int64, unsigned __int64 

32-bit INT32, UINT32, LONG32, 
ULONG32, DWORD32 

int, unsigned int 

16-bit  short, unsigned short 

8-bit  char, unsigned char 

Notice that with Windows you will no longer be using int, long, and dword. You will need to 
specify the length if you want to use an explicitly sized type. 

New Scalable Data Types 
Scalable, or pointer-precision, data types are polymorphic and adjust to the size of the 
architecture (and thus the pointer size) during compilation. If you use one of these types, it will 
compile with a 32-bit size under the 32-bit architecture and with a 64-bit size under the 64-bit 
architecture. You must conditionally compile for these types. 
UNIX/64 and Windows Server 2003 (64-bit) have their own respective scalable types. However, 
there are also some ANSI types available in both environments as listed in Tables 2.5 and 2.6.   
Note   Do not mix the scalable and fixed data types. 

The examples that accompany the tables help you identify how to use the new types. Table 2.5 
lists new scalable data types in 64-bit UNIX. 
Table 2.5. New UNIX*/64 Scalable Data Types 

Description Data Types 

Integral data types that may contain a type-cast 
pointer. 

intptr_t, uintptr_t 

Integral data types intended to always contain 
counting numbers. 

long, size_t, ssize_t 

 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      39 

Table 2.6 lists new scalable data types in Win64. 
Table 2.6. New Win64 Scalable Data Types 

Description Standard Data Types 

Integral data types that may 
contain a type-cast pointer. 

ANSI intptr_t, uintptr_t 

Integral data types that may 
contain a type-cast pointer. 

Win64 LPARAM, WPARAM, 
LRESULT, INT_PTR, 
UINT_PTR, WORD_PTR, 
LONG_PTR, ULONG_PTR 

Integral data types intended to 
always contain counting 
numbers. 

ANSI size_t, ssize_t 

Integral data types intended to 
always contain counting 
numbers. 

Win64 __int3264, SIZE_T, SSIZE_T 

Many Win32 APIs now use these new types, and your code must adapt to them.  
There are also new functions in Win64; these are discussed in detail in the following sections. 

Rules for Making Win32 Code Compatible with 
Win64  
In general, to ensure that porting occurs comfortably between 32-bit and 64-bit, a few rules must 
be followed. The following rules can be followed to write code that is compatible with a 64-bit 
environment, hence having the same code base for 32-bit and 64-bit architectures. 
• When using pointers in 64-bit code, if you declare the pointer using a 32-bit type, the 

operating system creates the pointer by truncating a 64-bit pointer. Pointers are 64 bits on 
64-bit Windows. To cast pointers to int, long, UINT, ULONG, or DWORD, use UINT_PTR, 
INT_PTR, ULONG_PTR, or DWORD_PTR. Make no assumptions about the length of a 
pointer or xxxx_PTR or xSIZE_T; assume that these are compatible precision. 
Note   Do not cast your pointers to the types ULONG, LONG, INT, UINT, or DWORD. 

HANDLE is defined as a void*, so typecasting a HANDLE value to a ULONG value to test, set, or 
clear the low-order 2 bits will cause an error on 64-bit Windows. 

• If you must truncate a pointer to a 32-bit value, use the PtrToLong or PtrToUlong function. 
Note   Once truncated, the pointers should never be used as a pointer again or unexpected results, 
including General Protection Faults, may occur. 

• The count types reflect the maximum size to which a pointer can refer. This can be used for a 
count that must span the full range of a pointer. 

• Be cautious when you use unions with pointers. 
• Use OUT parameters with caution. Instead, use ULONG_PTR as the data type for OUT 

parameters. 
Typecasting &ul to PULONG* prevents a compiler error, but the function will write a 64-bit 
pointer value into the memory at &ul. This code works on 32-bit Windows but will cause data 
corruption on 64-bit Windows.  

• Data structures stored on a disk or exchanged with 32-bit processes need to be handled. 
Structures that contain the types that change size, for example, LPARAM, WPARAM, and 
LRESULT, need to be handled. 

 



40 UNIX Custom Application Migration Guide: Volume 3 

• Be cautious with polymorphic interfaces. Do not create functions that accept DWORD 
parameters for polymorphic data. If the data can be a pointer or an integral value, use the 
UINT_PTR or PVOID type. 
For example, do not create a function that accepts an array of exception parameters typed as 
DWORD values. The array should be an array of DWORD_PTR values. Therefore, the array 
elements can hold addresses or 32-bit integral values. The general rule is that if the original 
type is DWORD and it needs to be pointer width, convert it to a DWORD_PTR value. That is 
why there are corresponding pointer-precision types. If you have code that uses DWORD, 
ULONG, or other 32-bit types in a polymorphic way (that is, you want the parameter or 
structure member to hold an address), use UINT_PTR in place of the current type. 

• Use the new window-class functions on both 32-bit and 64-bit Windows. Also available is a 
set of new functions to access pointers or handles in class private data. 
If you have window-class private data that contains pointers, your code must use the 
following new functions: 
• GetClassLongPtr 
• GetWindowLongPtr 
• SetClassLongPtr 
• SetWindowLongPtr 
Additionally, you must access pointers or handles in class private data using the new 
functions on 64-bit Windows. To aid you in finding these cases, the following indexes are not 
defined in Winuser.h during a 64-bit compile: 
• GWL_WNDPROC 
• GWL_HINSTANCE 
• GWL_HWDPARENT 
• GWL_USERDATA 
Instead, Winuser.h defines the following new indexes: 
• GWLP_WNDPROC 
• GWLP_HINSTANCE 
• GWLP_HWNDPARENT 
• GWLP_USERDATA  
• GWLP_ID 
For example, the following code does not compile: 
SetWindowLong(hWnd, GWL_WNDPROC, (LONG)MyWndProc); 

It must be changed to the following: 
SetWindowLongPtr(hWnd, GWLP_WNDPROC, (LONG_PTR)MyWndProc); 

• When setting the cbWndExtra member of the WNDCLASS structure, be sure to reserve 
enough space for pointers. For example, if you are currently reserving sizeof (DWORD) bytes 
for a pointer value, reserve sizeof (DWORD_PTR) bytes. 

• The LPARAM, WPARAM, and LRESULT types change size with the platform. When 
compiling 64-bit code, these types expand to 64 bits because they typically hold pointers or 
integral types. Do not mix these values with DWORD, ULONG, UINT, INT, int, or long 
values. Examine how you use these types and ensure that you do not inadvertently truncate 
values. 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      41 

• Access all window and class data using FIELD_OFFSET. Accessing window data using hard-
coded offsets is not portable to 64-bit Windows. To make your code portable, access your 
window and class data using the FIELD_OFFSET macro. Do not assume that the second 
pointer has an offset of 4. 
struct foo { 

DWORD NumberOfPointers; 

PVOID Pointers[1];  

} xx;  

Wrong: 

malloc(sizeof(DWORD)+100*sizeof(PVOID));  

Correct: 

malloc(offsetof(struct foo, Pointers)+100*sizeof(PVOID)); 
• The LRESULT type could be changed to represent a 64-bit value to avoid portability 

problems. 
• Use %p as a format specifier to print pointers. 
• Using %x format specifier does not work as expected in a 64-bit environment. Use %I32x or 

%I64x format specifier instead of %x. 
• HMODULE is a pointer to the beginning of an EXE or DLL module. In a 64-bit environment, 

an HMODULE must be 64 bits. 
• If you pass too few parameters to a function, even if the function is careful not to access that 

parameter until some other conditions are met, the compiler may find that it needs to discard 
the parameter, thereby raising the STATUS_REG_NAT_CONSUMPTION exception. 

• Assembly code is not x86 (IA32) assembler, so rewrite any assembly code to high-level 
languages. Also rewrite the 16-bit applications and 16-bit API-based code. 

• Be cautious when porting the code that accesses bit fields and bit-wise operations. 
• Avoid using hard-coded memory locations. 
• Be cautious when porting drivers to 64-bit Microsoft Windows. 
• Ensure plug-in interfaces are RPC compliant. 
• Enable COM objects to run out-of-process. 

 



42 UNIX Custom Application Migration Guide: Volume 3 

Developing the Testing Tools and Test 
Cases 
After developing the solution components, you need to perform testing for the code changes 
made as part of the development. The testing process helps identify and address potential issues 
prior to deployment. Testing spans the Developing and the Stabilizing Phases. It starts when you 
begin developing the solution and ends in the Stabilizing Phase, when the test team certifies that 
the solution components address the schedule and high-quality goals in the project plan. This 
also involves using the automated test tools and test scripts. 
Figure 2.3 illustrates where the testing activities occur within the phases of the MSF Process 
Model. 

 
Figure 2.3 MSF Process Model – Testing activities across the Developing and Stabilizing 
Phases 
Testing is performed, parallel to development, throughout the Developing Phase. This section 
discusses the unit testing activity that needs to be performed during the Developing Phase. The 
other necessary testing activities are discussed in Chapter 8, “Deployment Considerations and 
Testing Activities” and Chapter 9, “Stabilizing Phase” of this volume. 
During the Developing Phase, testing is not done as a stand-alone activity, but in conjunction with 
the building of the solution. When building software, the development team designs, documents, 
and writes the code. Testing is done at this stage through unit testing (discussed in the following 
section) and daily builds. The testing team designs and documents test specifications and test 
cases, writes automated scripts, and runs acceptance tests on components submitted for a 
formal round of testing. The testing team assesses the solution, makes a report on its overall 
quality and feature completeness, and certifies that the solution features, functions, and 
components meet the project goals. 

 



Chapter 2: Developing Phase: Process Milestones and Technology Considerations                                                      43 

Testing in migration projects involving infrastructure services is focused on finding discrepancies 
between the behavior of the original application, as seen by its clients, and that of the newly 
migrated application. All discrepancies must be investigated and fixed. It is best to add any new 
functionality to a migrated application or new capabilities to a migrated service in a separate 
project initiated after migration is complete. 

Unit Testing 
Unit testing is the process of verifying whether a specific unit (which can be a class, a program, or 
a specific functionality) of the code is working according to its functional specifications. It also 
helps in determining whether the specific unit will be capable of interacting with the other units as 
defined in the functional specifications. 
Unit testing in a UNIX to Windows migration project is the process of finding the discrepancies 
between the functionality and output of the individual units in the Windows application and the 
original UNIX application. This might not always be the case; in some cases the design in 
Windows may differ from the UNIX design, thereby identifying units that are different from the 
UNIX units. Basic smoke testing, boundary conditions, and error tests are done based on the 
functional specification of the unit. 
The test cases for unit testing include constraints on the inputs and outputs (pre-conditions and 
post-conditions), the state of the object (in case of a class), the interactions between methods, 
attributes of the object, and other units. 
The unit test cases for migrating UNIX to Win32/64 should mainly focus on the following: 
• Data type size validation to identify overflow and truncation errors. 
• Parameter data type validation to the APIs. 
• Memory allocation routines and usage. 
• File size and offset length validations. 
• Data type casting. 
• Extrapolate test cases on boundary conditions. 
• Usage of bit fields and bitwise operations. 

Building the Solution 
By this stage, the individual components of the solution are developed and tested in the Windows 
environment using Win32/Win64 APIs to satisfy the project requirements. This stage helps you 
build the solution with the developed and tested components, and then make the migrated 
application ready for internal release. 
As a good practice, MSF recommends that teams working on development projects perform daily 
builds of their solution. In migration projects, on the other hand, you typically have to examine 
large bodies of existing code to understand what they are intended for and to make changes to 
the code. However, code changes can happen only after addressing porting issues, hence daily 
builds may not be required. The process of creating interim builds allows a team to find issues 
early in the development process, which shortens the development cycle and lowers the cost of 
the project. Note that these interim builds are not deployed in the live production environment. 
Only when the builds are thoroughly tested and stable are they ready for a limited pilot release to 
a subset of the production environment. Rigorous configuration management is essential to 
keeping builds in synch. 

 



44 UNIX Custom Application Migration Guide: Volume 3 

Interim Milestone: Internal Release  
The project needs interim milestones to help the team measure their progress in the actual 
building of the solution during the Developing Phase. Each internal release signifies a major step 
toward the completion of the solution feature sets and achievement of the associated quality 
level. Depending on the complexity of the solution, any number of internal releases may be 
required. Each internal release represents a fully functional addition to the solution’s core feature 
set that is potentially ready to move on to the Stabilizing Phase. As each new release of the 
application is built, fewer bugs must be reported and triaged. Each release marks a significant 
progress in the approach of the team toward deployment. With each new candidate, the team 
must focus on maintaining tight control over quality. 
The subsequent chapters of this volume describe the necessary code changes required for the 
migration of the UNIX code to the Windows environment using Win32/Win64 APIs. You can use 
these instructions to develop the solution components in the Developing Phase. 

 



  

Chapter 3: Developing Phase: Process and 
Thread Management 

This chapter discusses the similarities and differences in the implementation of process and 
thread management in UNIX and Microsoft® Windows® operating systems. The chapter first 
discusses the UNIX and Windows process management mechanism and the Windows 
application programming interface (APIs) related to processes. It then discusses threads and their 
implementation in Windows. 

Process Management 
The UNIX and Windows process management mechanisms are very different, and the major 
difference between them lies in the creation of processes. UNIX uses fork to create a new copy 
of a running process and exec to replace the current process image with the new process image. 
Windows does not have a fork function. Instead, Windows creates processes in one step by 
using CreateProcess. In Windows, there is no need to execute the process after its creation as it 
will already be executing the new code. However, the standard exec functions are still available 
in Windows. These differences (and others) result in the need to convert the UNIX code before it 
can run on a Windows platform. 
The following sections discuss the following process management topics that need to be 
considered for migration: 
• Creating a New Process 
• Replacing a Process Image (exec) 
• Retrieving Process Information 
• Waiting for a Spawned Process 
• Processes vs. Threads 
• Managing Process Resource Limits 
• Limiting File I/O When Using Windows 
• Process Accounting 
• Managing and Scheduling Processes 
This section also introduces Windows jobs, which allow you to group processes together for 
management purposes. This functionality is not available in UNIX. With the information provided 
in this section, you will understand the process management routines in UNIX and Windows. 
Using this information, you will be able to replace UNIX process routines with the corresponding 
Windows-compatible routines. 
Note   There are a number of process management functions in the Windows API. For more information 
on these functions, refer to the Windows API reference on the Microsoft Developer Network (MSDN®) Web 
site. 

 
  



46 UNIX Custom Application Migration Guide: Volume 3 

Creating a New Process 
In UNIX, you can create a new process by using fork. The fork function creates a child process 
that is almost an exact copy of the parent process. The fact that the child is a copy of the parent 
ensures that the process environment is the same for the child as it is for the parent. 
In Windows, the CreateProcess function enables the parent process to create an operating 
environment for a new process. The CreateProcess function creates a new process and its 
primary thread. The environment includes the working directory, window attributes, environment 
variables, execution priority, and command-line arguments. The new process runs the specified 
executable file in the security context of the calling process. A handle is returned by the 
CreateProcess function, which enables the parent application to perform operations on the 
process and its environment while executing. Unlike UNIX, the executable file run by 
CreateProcess is not a copy of the parent process and must be explicitly specified in the call to 
the CreateProcess function. If the calling process is impersonating another user, the new 
process uses the token for the calling process, not the impersonation token. To run the new 
process in the security context of the user represented by the impersonation token, use the 
CreateProcessAsUser or CreateProcessWithLogonW functions. 
An alternative to using CreateProcess is to use one of the spawn functions that are present in 
the standard C runtime. There are 16 variations of the spawn function. Each spawn function 
creates and executes a new process. Many of these functions have the same functionality as the 
similarly named exec functions in UNIX. The spawn functions include an additional argument 
that permits the new process to replace the current process, suspend the current process until 
the spawned process terminates, run asynchronously with the calling process, or run 
simultaneously and detach as a background process. For a UNIX application to change the 
executable file run in the child process, the child process must explicitly call an exec function to 
overwrite the executable file with a new application. The combination of fork and exec is similar 
to, but not the same as, CreateProcess. The following example shows a UNIX application that 
forks to create a child process and then runs the UNIX ps command by using execlp. 
UNIX example: Creating a process using fork and exec 
#include <unistd.h> 

#include <stdio.h> 

#include <sys/types.h> 

 

int main() 

{ 

Pid_t pid; 

printf("Running ps with fork and execlp\n"); 

pid = fork(); 

switch(pid) 

{ 

case -1: 

perror("fork failed"); 

exit(1); 

case 0: 

if (execlp("ps", NULL) < 0) { 

perror("execlp failed"); 

exit(1); 

} 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               47 

break; 

default: 

break; 

} 

printf("Done.\n"); 

exit(0); 

} 

(Source File: U_CreateProc-UAMV3C3.01.c) 

 
You can port this code to Windows by using the Windows CreateProcess function discussed 
earlier, or by using a spawn function from the standard C runtime library. In both cases, the old 
and new processes run parallel and asynchronously. The following example shows how you can 
port the previous code using the CreateProcess function. 
Windows example: Creating a process using CreateProcess 
#include <Windows.h> 

#include <process.h> 

#include <stdio.h> 

 

void main() 

{ 

STARTUPINFO si; 

PROCESS_INFORMATION pi; 

GetStartupInfo(&si); 

printf("Running Notepad with CreateProcess\n"); 

CreateProcess(NULL, "notepad", // Name of app to launch 

NULL, // Default process security attributes 

NULL, // Default thread security attributes 

FALSE, // Don't inherit handles from the parent 

0, // Normal priority 

NULL, // Use the same environment as the parent 

NULL, // Launch in the current directory 

&si, // Startup Information 

&pi); // Process information stored upon return 

printf("Done.\n"); 

exit(0); 

} 

(Source File: W_CreateProc-UAMV3C3.01.c) 
 

 



48 UNIX Custom Application Migration Guide: Volume 3 

The arguments supported by CreateProcess (shown in the preceding example) give you a 
considerable degree of control over the newly created process. This contrasts with the spawn 
functions on UNIX, which do not provide options to set process priority, security attributes, or the 
debug status. The _spawn function creates and executes a new process on Windows. The 
following example shows how the same code was ported using the _spawnlp function. 
Windows example: Creating a process using spawn 
#include <Windows.h> 

#include <process.h> 

#include <stdio.h> 

 

void main() 

{ 

printf("Running Notepad with spawnlp\n"); 

_spawnlp( _P_NOWAIT, "notepad", "notepad", NULL ); 

printf("Done.\n"); 

exit(0); 

} 

(Source File: W_CreateProc-UAMV3C3.02.c) 

Replacing a Process Image (exec) 
Each of the functions in the exec family replaces the current process image with a new process 
image. 
In UNIX, the exec family of functions replaces the executing process image with that of another 
process image. The new image is constructed from a regular, executable file called the new 
process image file. As mentioned previously, a fork followed by an exec is similar to 
CreateProcess. Windows supports the six POSIX variants of the exec function plus two 
additional ones (execlpe and execvpe). The function signatures are identical and come as part 
of the standard C runtime. Porting UNIX code that uses exec to Windows is easy to understand. 
The following is a simple UNIX example showing the use of the execlp function. 
Note   For more information about exec support on Windows, refer to the standard C runtime library 
documentation that comes with the Microsoft Visual Studio® .NET 2003 development system. 

UNIX Example: Replacing a process image using exec 
#include <unistd.h> 

#include <stdio.h> 

 

int main() 

{ 

printf("Running ps with execlp\n"); 

execlp("ps", "ps", "-l", 0); 

printf("Done.\n"); 

exit(0); 

} 

(Source File: U_ReplaceProc-UAMV3C3.01.c) 
 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               49 

The preceding example compiles and runs on Windows with only minor modifications. However, it 
requires an executable file called ps.exe to be available (one is included with the Interix product). 
If Interix is not installed, this command can be replaced by any other Windows command. The 
<unistd.h> include file is not a valid header file when using Windows. To use this example when 
using Windows, you need to change the header file to <process.h>. Doing so allows you to 
compile, link, and run this simple application. 

Process Information 
In Windows, current process information is returned to the parent when a child is created.  
The structure of the process information returned is: 
typedef struct _PROCESS_INFORMATION { 

  HANDLE hProcess;  

  HANDLE hThread;  

  DWORD dwProcessId;  

  DWORD dwThreadId;  

} PROCESS_INFORMATION;  

When a process is started, information can be specified for its startup state. This is given in the 
_STARTUPINFO structure. Windows information is contained in this structure. For graphical user 
interface (GUI) processes, this information affects the first window created by the CreateWindow 
function. For console processes, this information affects the console window if a new console is 
created for the process. A process can use the GetStartupInfo function to retrieve the 
_STARTUPINFO structure specified when the process was created. 

Waiting for a Spawned Process 
In the preceding section, an example showed how you can create an asynchronous process 
where the parent and child processes execute simultaneously. No synchronization is performed. 
This section describes how to modify the previous example to include functionality that enables 
the parent process to wait for the child process to complete or terminate before continuing. To 
accomplish this in UNIX, a developer would use one of the wait functions to suspend the parent 
process until the child process terminates. The same semantics are available when using 
Windows. The functions used are different, but the results are the same. When you view the 
examples, remember that this is not an exhaustive comparison between the two platforms. 
A very simple scenario is described; but if you need to expand the scenario to include waiting for 
multiple child processes, the example of creating a process using spawn does not map 
adequately because it does not include support for this functionality. In this case, you need to 
consider the CreateProcess approach and WaitForMultipleObjects. The 
WaitForMultipleObjects function determines whether the wait criteria were met and accordingly 
returns a value when any one of the specified objects is in the signaled state or if the time-out 
interval elapses. 
The following example shows how UNIX code that waits for a child process can be migrated to 
Windows. 

 



50 UNIX Custom Application Migration Guide: Volume 3 

UNIX example: Waiting for a spawned process 
#include <unistd.h> 

#include <stdio.h> 

#include <sys/types.h> 

#include <sys/wait.h> 

 

int main() 

{ 

pid_t pid; 

int tstat; 

printf("Running ps with fork and execlp\n"); 

pid = fork(); 

switch(pid) 

{ 

case -1: 

perror("fork failed"); 

exit(1); 

case 0: 

if (execlp("ps", NULL) < 0) { 

perror("execlp failed"); 

exit(1); 

} 

break; 

default: 

break; 

} 

waitpid(pid, &tstat, 0); 

printf("Child process %d terminated with code %d.\n", pid, tstat); 

exit(0); 

} 

(Source File: U_WaitSpawn-UAMV3C3.01.c) 
 
Windows example: Waiting for a spawned process using CreateProcess 
#include <Windows.h> 

#include <process.h> 

#include <stdio.h> 

 

int main() 

{ 

STARTUPINFO si; 

PROCESS_INFORMATION pi; 

DWORD tstat; 

GetStartupInfo(&si); 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               51 

printf("Running ps with CreateProcess\n"); 

CreateProcess(NULL, "ps", // Name of app to launch 

NULL, // Default process security attributes 

NULL, // Default thread security attributes 

FALSE, // Don't inherit handles from the parent 

0, // Normal priority 

NULL, // Use the same environment as the parent 

NULL, // Launch in the current directory 

&si, // Startup Information 

&pi); // Process information stored upon return 

// Suspend our execution until the child has terminated. 

WaitForSingleObject(pi.hProcess, INFINITE); 

// Obtain the termination code. 

GetExitCodeProcess(pi.hProcess, &tstat); 

printf("Child process %d terminated with code %d.\n", pi.dwProcessId, 
tstat); 

exit(0); 

} 

(Source File: W_WaitSpawn-UAMV3C3.01.c) 
 

Windows example: Waiting for a spawned process using _spawnlp 
#include <Windows.h> 

#include <process.h> 

#include <stdio.h> 

 

int main() 

{ 

intptr_t pid; 

int tstat; 

printf("Running ps with spawnlp\n"); 

pid = _spawnlp( _P_NOWAIT, "ps", "ps", NULL ); 

// Suspend our execution until the child has terminated. 

// obtain termination code upon completion. 

_cwait(&tstat, pid, WAIT_CHILD); 

printf("Child process %d terminated with code %d.\n", pid, tstat); 

exit(0); 

} 

(Source File: W_WaitSpawn-UAMV3C3.02.c) 

 



52 UNIX Custom Application Migration Guide: Volume 3 

Processes vs. Threads 
In the next example, the UNIX code forks a process, but does not execute a separate run-time 
image. This creates a separate execution path within the application. When using Windows, this 
is achieved by using threads instead of processes. If your UNIX application creates separate 
threads of execution in this manner, you should use the Windows API CreateThread. The 
process of creating threads is discussed in the “Creating a Thread” section of this chapter. 
UNIX example: Code with forking executable 
#include <unistd.h> 

#include <stdio.h> 

#include <sys/types.h> 

 

int main() 

{ 

pid_t pid; 

int n; 

printf("fork program started\n"); 

pid = fork(); 

 

switch(pid) 

{ 

case -1: 

perror("fork failed"); 

exit(1); 

case 0: 

puts("I'm the child"); 

break; 

default: 

puts("I'm the parent"); 

break; 

} 

 

exit(0); 

} 

(Source File: U_Fork-UAMV3C3.01.c) 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               53 

Managing Process Resource Limits 
Developers often want to create processes that run with a specific set of resource restrictions. In 
some cases, they may impose limitations for the purposes of stress testing or forced failure 
condition testing. In other cases, the limitations may be imposed to restrict runaway processes 
from using up all the available memory, CPU cycles, or disk space. 
In UNIX, the getrlimit function retrieves resource limits for a process, the getrusage function 
retrieves current usage, and the setrlimit function sets new limits. The common limit names and 
their meanings are listed in Table 3.1. 
Table 3.1. Common Limit Names and Definitions 

Limit Description 

RLIMIT_CORE The maximum size (in bytes) of a core file created by this process. If the 
core file is larger than RLIMIT_CORE, the write is terminated at this 
value. If the limit is set to 0, then no core files are created. 

RLIMIT_CPU The maximum time (in seconds) of CPU time a process can use. If the 
process exceeds this time, the system generates SIGXCPU for the 
process. 

RLIMIT_DATA   Maximum size (in bytes) of a data segment of the process. If the data 
segment exceeds this value, the functions brk, malloc, and sbrk will fail. 

RLIMIT_FSIZE The maximum size (in bytes) of a file created by a process. If the limit is 
0, the process cannot create a file. If a write or truncation call exceeds 
the limit, further attempts will fail. 

RLIMIT_NOFILE The highest possible value for a file descriptor, plus one. This limits the 
number of file descriptors a process may allocate. If the number of files 
being allocated is more than the value of RLIMIT_NOFILE, functions 
allocating new file descriptors may fail with the error EMFILE. 

RLIMIT_STACK The maximum size (in bytes) of a stack of the process. The stack will not 
automatically exceed this limit; if a process tries to exceed the limit, the 
system generates SIGSEGV for the process. 

RLIMIT_AS Maximum size (in bytes) of the total available memory of a process. If this 
limit is exceeded, the memory functions brk, malloc, mmap, and sbrk 
will fail with errno set to ENOMEM, and automatic stack growth will fail as 
described for RLIMIT_STACK. 

Windows uses job objects to set job limits instead of process limits. Unlike in UNIX, Windows job 
objects do not have file input/output (I/O) source restrictions. If you require file I/O limits in your 
application, you need to create your own code to handle this. 

Windows Job Objects 
Windows supports the concept of job objects, which allows you to group one or more processes 
into a single entity. A job object allows groups of processes to be managed as a unit. Job objects 
are namable, securable, sharable objects that control attributes of the processes associated with 
them. Operations performed on the job object affect all processes associated with the job object. 
After a job object has been populated with the desired processes, the entire group can be 
manipulated for various purposes ranging from termination to imposing resource restrictions. 

 



54 UNIX Custom Application Migration Guide: Volume 3 

Job objects can be used to implement the concept of UNIX process groups. In Windows, process 
groups can be implemented by process control, which uses job objects. A process for which you 
have defined a process-execution rule can be placed into a process group. Process groups use 
job objects to define rules for the groups. Table 3.2 lists the Windows job objects structures. 
Table 3.2. Windows Job Objects Structures 

Member Description Notes 

JOBOBJECT_BASIC_ACCO
UNTING_INFORMATION 

Contains basic accounting 
information for a job object. 

This structure holds information on 
total amount of user-mode 
execution time and kernel-mode 
execution time, page faults, and the 
total number of processes 
associated with the a job for all 
active and terminated processes. 

JOBOBJECT_BASIC_AND_I
O_ACCOUNTING_INFORM
ATION 

Contains basic accounting 
and I/O accounting 
information for a job object. 

This structure holds information on 
the basic accounting and the I/O 
accounting information for the job. It 
includes information for all 
processes that have ever been 
associated with the job, in addition 
to the information for all processes 
currently associated with the job. 

JOBOBJECT_BASIC_LIMIT
_INFORMATION 

Contains basic limit 
information for a job object. 

This structure sets various 
restrictions on the job object such 
as time limit, working set size, and 
active process limit. Refer to Table 
3.3 for more information. 

JOBOBJECT_BASIC_PROC
ESS_ID_LIST 

Contains the process 
identifier list for a job object.

This structure holds the 
ProcessIdList, which holds 
information on process identifiers 
for the job object. 

JOBOBJECT_BASIC_UI_RE
STRICTIONS 

Contains basic user-
interface restrictions for a 
job object. 

This structure holds the 
UIRestrictionsClass, which restricts 
the processes associated with the 
job for creating/switching desktops, 
changing display settings and 
system parameters, and accessing 
global atoms, handles, and 
reading/writing to Clipboard. 

JOBOBJECT_END_OF_JO
B_TIME_INFORMATION 

Specifies the action the 
system will perform when 
the end-of-job time limit is 
exceeded. 

The default termination action is to 
terminate all processes and set the 
exit status. Another way is to post a 
completion packet to the completion 
port and, when the system clears 
the end-of-job time limit, processes 
in the job can continue their 
execution. 

JOBOBJECT_EXTENDED_
LIMIT_INFORMATION 

Contains basic and 
extended limit information 
for a job object. 

Contains basic limit information, 
such as per-process memory limit 
or per-job memory limit. These are 
ignored if the corresponding flags 
are not set in the LimitFlags 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               55 

Member Description Notes 
member of the JOBOBJECT_ 
BASIC_LIMIT_INFORMATION 
structure. It also holds peak 
memory used by processes in the 
job. 

JOBOBJECT_SECURITY_LI
MIT_INFORMATION 

Contains the security 
limitations for a job object. 

Holds the SecurityLimitFlags, which 
sets the security limitations for the 
job and pointers to tokens to specify 
privileges/control access. 

 
The restrictions that job objects allow you to enforce are in the 
JOBOBJECT_BASIC_LIMIT_INFORMATION structure. 
Table 3.3. Job Objects 

Member Description Notes 

PerProcessUser-
TimeLimit 

Specifies the 
maximum user-
mode time allotted 
to each process (in 
100 ns intervals). 

The system automatically terminates any 
process that uses more than its allotted time. 
To set this limit, specify the JOB_OBJECT_ 
LIMIT_PROCESS_TIME flag in the LimitFlags 
member. 

PerJobUser-TimeLimit Specifies how much 
more user-mode 
time the processes 
in this job can use 
(in 100 ns intervals). 

By default, the system automatically 
terminates all processes when the time limit is 
reached. You can change this value 
periodically as the job runs. To set this limit, 
specify the JOB_OBJECT_LIMIT_JOB_TIME 
flag in the LimitFlags member. 

LimitFlags Specifies the job 
restrictions to apply. 

Refer to the job objects API reference for 
more information. 

MinimumWorkingSetSize/ 
MaximumWorkingSetSize 

Specifies the 
minimum and 
maximum working 
set size for each 
process (not for all 
processes within the 
job). 

Normally, the working set of a process can 
grow beyond its maximum; setting 
MaximumWorkingSetSize forces a hard 
limit. When the working set of the process 
reaches this limit, the process pages against 
itself. Calls to SetProcessWorkingSetSize 
by an individual process are ignored unless 
the process is just trying to empty its working 
set. To set this limit, specify the 
JOB_OBJECT_LIMIT_WORKINGSET flag in 
the LimitFlags member. 

ActiveProcessLimit Specifies the 
maximum number 
of processes that 
can run concurrently 
in the job. 

Any attempt to go over this limit causes the 
new process to be terminated with a “not 
enough quota” error. To set this limit, specify 
the 
JOB_OBJECT_LIMIT_ACTIVE_PROCESS 
flag in the LimitFlags member. 

Affinity Specifies the subset 
of the CPUs that 
can run the 
processes. 

Individual processes can limit this even 
further. To set this limit, specify the 
JOB_OBJECT_ LIMIT_AFFINITY flag in the 
LimitFlags member. 

 



56 UNIX Custom Application Migration Guide: Volume 3 

Member Description Notes 

PriorityClass Specifies the priority 
class that all 
processes use. 

If a process calls SetPriorityClass, the call will 
return successfully even though it actually 
fails. If the process calls GetPriorityClass, the 
function returns what the process has set the 
priority class to even though this might not be 
the actual priority class of the process. In 
addition, SetThreadPriority fails to raise 
threads above typical priority but can be used 
to lower the priority of a process. To set this 
limit, specify the 
JOB_OBJECT_LIMIT_PRIORITY_CLASS 
flag in the LimitFlags member. 

SchedulingClass Specifies a relative 
time quantum 
difference assigned 
to threads in the job. 

Value can be from 0 to 9 inclusive; refer to the 
text after this table for more information. To 
set this limit, specify the 
JOB_OBJECT_LIMIT_SCHEDULING_CLASS 
flag in the LimitFlags member. 

As you may have observed by reviewing the table for setrlimit and job objects, the restrictions 
offered by job objects are comparable to UNIX except in one major area—file I/O. 

Limiting File I/O When Using Windows 
When a process is created in UNIX, the process control block (PCB) in kernel space contains an 
array of limits that is initialized with default values. In the case of the RLIMIT_FSIZE limit, the 
write procedures in the kernel are aware of the limit structure in the PCB, and these functions 
make checks to enforce the limits. The Windows operating system does not implement similar 
limits on files. To solve this problem, you must write your own solution and build it into your 
application. 
This section presents a solution that you can use in your application. This solution emulates the 
UNIX file resource limits with: 
• An array of limits held as a static variable. This is similar to how some of the C run-time 

functions use static variables. 
• Versions of the UNIX functions getrlimit() and setrlimit(). These functions manipulate the 

limit array. 
• Wrappers for each of the disk write functions. These wrappers are resource limit-aware. 
This solution is implemented as three files. Two of the files, resource.h and resource.c, implement 
the getrlimit(), setrlimit(), rfwrite(), and _rwrite() functions. Only fwrite() and _write() are 
wrapped because they are the most common disk write functions encountered in the UNIX world. 
The third file is rlimit.c, which is a very simple test program used to confirm that rfwrite() fails 
when the limit is reached. 

Process Accounting 
The Windows API has several functions for gathering process accounting information: 
• GetProcessShutdownParameters. Retrieves shutdown parameters for the currently calling 

process. 
• GetProcessTimes. Retrieves timing information for the specified process. 
• GetProcessWorkingSetSize. Retrieves the minimum and maximum working set sizes of the 

specified process. SetPriorityClass. Sets the priority class for the specified process. 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               57 

• SetProcessShutdownParameters. Sets shutdown parameters for the current calling 
process. 

• SetProcessWorkingSetSize. Sets the minimum and maximum working set sizes for the 
specified process. 

Alternatively, a better method of obtaining process information is through the Windows 
Management Instrumentation (WMI) API.  
Note   Additional information on WMI is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp. 

Managing and Scheduling Processes 
This section looks at how you can change the scheduling priority of a process in UNIX and 
Windows. 
In UNIX, getpriority(), setpriority(), and nice() functions can be used to change the priority of 
processes. The getpriority() call returns the current nice value for a process, process group, or a 
user. The returned nice value is in the range of [-NZERO, NZERO-1]. NZERO is defined in 
/usr/include/limits.h. The default process priority always has the value 0 for UNIX. The 
setpriority() call sets the current nice value for a process, process group, or a user to the value 
of value + NZERO. 
In Windows, processes are scheduled to run based on their scheduling priority. Each thread is 
assigned a scheduling priority. The priority levels range from zero (lowest priority) to 31 (highest 
priority). Only the zero-page thread can have a priority of zero. The zero-page thread is a system 
thread responsible for zeroing any free pages when there are no other threads that need to run. 
Each process belongs to one of the priority classes listed in Table 3.4. 
Table 3.4. Priority Classes 

Priority Classes 

IDLE_PRIORITY_CLASS 

BELOW_NORMAL_PRIORITY_CLASS 

NORMAL_PRIORITY_CLASS 

ABOVE_NORMAL_PRIORITY_CLASS 

HIGH_PRIORITY_CLASS 

REALTIME_PRIORITY_CLASS 

By default, the priority class of a process is NORMAL_PRIORITY_CLASS. Use the 
CreateProcess function to specify the priority class of a child process when you create it. If the 
calling process is IDLE_PRIORITY_CLASS or BELOW_NORMAL_PRIORITY_CLASS, the new 
process will inherit this class. The GetPriorityClass function and the SetPriorityClass function 
can be used to retrieve and set the priority class of processes, respectively.  

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp


58 UNIX Custom Application Migration Guide: Volume 3 

Table 3.5 lists the functions that are related to scheduling in UNIX and Windows. 
Table 3.5. Functions Related to Scheduling in UNIX and Windows 

UNIX Function Description Windows Function 

nice() 
 

Change the priority of a conventional 
process. 

SetPriorityClass 

getpriority() Get the maximum priority of a group of 
conventional processes. 

GetPriorityClass 

setpriority() Set the priority of a group of 
conventional processes. 

SetPriorityClass 

sched_getscheduler() Get the scheduling policy of a process. GetPriorityClass 

sched_setscheduler() Set the scheduling policy and priority of 
a process. 

SetPriorityClass and 
SetThreadPriority 

sched_getparam() Get the scheduling priority of a 
process. 

GetThreadPriority 

sched_setparam() Set the priority of a process. 
 

SetThreadPriority 

sched_yield() 
 

Relinquish the processor voluntarily 
without blocking. 
 

For this use 
SetPriorityClass and set to 
IDLE_PRIORITY_CLASS 

sched_rr_get_interval() Get the time quantum value for the 
Round Robin policy. 

Not available 

For threads, the scheduling priority is determined by the priority class of the process that they 
belong to and the priority level of the thread. Thread scheduling and priority is discussed in detail 
in the next section. 

Thread Management 
This section introduces the concept of threads. The following sections discuss the similarities and 
differences between UNIX and Windows APIs in managing threads:  
• Creating a Thread 
• Canceling a Thread 
• Synchronization of Threads 
• Thread Attributes 
• Thread Scheduling and Prioritizing 
• Managing Multiple Threads 
• I/O Completion Ports  
A thread is an independent path of execution in a process that shares the address space, code, 
and global data of the process. Time slices are allocated to each thread based on priority. 
Threads consist of an independent set of registers, stack, I/O handles, and message queue. 
Threads can usually run on separate processors on multiprocessor computers. Windows enables 
you to assign threads to a specific processor on a multiprocessor hardware platform. 
An application using multiple processes usually has to implement some form of interprocess 
communication (IPC). This can result in significant overhead and, possibly, a communication 
bottleneck. In contrast, threads share the process data between them, and interthread 
communication can be much faster. The problem with threads sharing data is that this can lead to 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               59 

data access conflicts between multiple threads. You can address these conflicts by using 
synchronization techniques, such as semaphores and mutexes.  
In UNIX, threads are implemented by using the POSIX pthread functions. In Windows, 
developers can implement UNIX threading by using the Windows API thread management 
functions. Although the functionality and operation of threads in UNIX and Windows is very 
similar, the function calls and syntax are very different. 
The following are some similarities between UNIX and Windows in their management of threads: 
• Every thread must have an entry point. The name of the entry point is entirely up to you as 

long as the signature is unique and the linker can adequately resolve any ambiguity. 
• Each thread is passed a single parameter when it is created. The contents of this parameter 

are entirely up to the developer and have no meaning to the operating system. 
• A thread function must return a value. 
• A thread function needs to use local parameters and variables as much as possible. When 

you use global variables or shared resources, threads must use some form of 
synchronization to avoid potentially corrupting data. 

This section discusses how you should go about converting UNIX threaded applications into 
Windows threaded applications. As a supplement to threads, Windows has a more primitive 
execution vehicle called a fiber. Windows fibers are used to provide full control over scheduling 
for special needs such as thread pooling, which is useful for certain server applications that 
manage worker threads for incoming requests. 
Note   Additional information on the use of fibers is available at  

http://msdn.microsoft.com/library/en-us/dllproc/base/fibers.asp. 

More information on programming with threads in Windows is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/HTML/_core_multithreading.3a_.programming_tips.asp. 

For details on thread management functions in the Windows API, see the Windows API reference 
in Visual Studio .NET 2003 or MSDN. 

Creating a Thread 
When creating a thread in UNIX, use the pthread_create function. This function has three 
arguments: a pointer to a data structure that describes the thread, an argument specifying the 
attributes of the thread (usually set to NULL, indicating default settings), and the function that the 
thread will run. The thread finishes execution with a pthread_exit where, in this case, it returns a 
string. The process can wait for the thread to complete using the function pthread_join. 
The following simple UNIX example creates a thread and waits for it to finish. 
UNIX example: Creating a single thread 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

char message[] = "Hello World"; 

 

void *thread_function(void *arg)  

{ 

printf("thread_function started. Arg was %s\n", (char *)arg); 

sleep(3); 

strcpy(message, "Bye!"); 

pthread_exit("See Ya"); 

 

http://msdn.microsoft.com/library/en-us/dllproc/base/fibers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_multithreading.3a_.programming_tips.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_core_multithreading.3a_.programming_tips.asp


60 UNIX Custom Application Migration Guide: Volume 3 

} 

 

int main()  

{ 

int res; 

pthread_t a_thread; 

void *thread_result; 

 

res = pthread_create(&a_thread, NULL, thread_function, (void 
*)message); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit (EXIT_FAILURE); 

} 

printf("Waiting for thread to finish...\n"); 

 

res = pthread_join(a_thread, &thread_result); 

if (res != 0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("Thread joined, it returned %s\n", (char *)thread_result); 

printf("Message is now %s\n", message); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_CreateThread-UAMV3C3.01.c) 
 
In Windows, threads are created using the CreateThread function, which requires: 
• The stack size of the thread. 
• The security attributes of the thread. 
• The address at which to begin execution of a procedure. 
• A pointer to a variable to be passed to the thread. 
• Flags that control the creation of the thread. 
• An address to store the system-wide unique thread identifier. 
After a thread is created, the thread identifier can be used to manage the thread (like get and set 
the priority of thread) until it has terminated. The next example demonstrates how you should use 
the CreateThread function to create a single thread. 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               61 

Windows example: Creating a single thread 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

char message[] = "Hello World"; 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

printf("thread_function started. Arg was %s\n", (char *)arg); 

Sleep(3000); 

strcpy(message, "Bye!"); 

return 100; 

} 

 

void main()  

{ 

HANDLE a_thread; 

DWORD a_threadId; 

DWORD thread_result; 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)message, 0, 

&a_threadId); 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("Waiting for thread to finish...\n"); 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

printf("Thread joined, it returned %d\n", thread_result); 

printf("Message is now %s\n", message); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_CreateThread-UAMV3C3.01.c) 

 



62 UNIX Custom Application Migration Guide: Volume 3 

 
Note   IA64 

1. Do not cast a function that returns void into a LPTHREAD_START_ROUTINE. The kernel raises a 
STATUS_REG_NAT_CONSUMPTION exception in the IA64 architecture. 

2. If you pass too few parameters to a function, even if the function is careful not to access that 
parameter until some other conditions are met, the compiler may find that it needs to spill the 
parameter, thereby raising the STATUS_REG_NAT_CONSUMPTION exception in the IA64 architecture. 

The UNIX and Windows examples have roughly equivalent semantics. There are only two 
notable differences: 
• The thread function in the Windows code cannot return a string value. Developers must use 

some other means to convey the string message back to the parent (for example, returning 
an index into a string array).  

• The Windows version of the thread function just returns a DWORD value instead of calling a 
function to terminate the thread. ExitThread could have been called, but this is not necessary 
because ExitThread is called automatically upon the return from the thread procedure. 
TerminateThread could also be called, but this is neither necessary nor recommended. This 
is because TerminateThread causes the thread to exit unexpectedly. The thread then has 
no chance to execute any user-mode code, and its initial stack is not deallocated. 
Furthermore, any DLLs attached to the thread are not notified that the thread is terminating. 

Note   Additional information on Windows threading routines is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/process_and_thread_functions.asp.  

The two solutions have vastly different syntaxes. Windows uses a different set of API calls to 
manage threads. As a result, the relevant data elements and arguments are considerably 
different. 

Canceling a Thread 
The details of terminating threads differ significantly between UNIX and Windows. While both 
environments allow threads to block termination entirely, UNIX offers additional facilities that 
allow a thread to specify if it is to be terminated immediately or deferred until it reaches a safe 
recovery point. Moreover, UNIX provides a facility known as cancellation cleanup handlers, which 
a thread can push and pop from a stack that is invoked in a last-in-first-out (LIFO) order when the 
thread is terminated. These cleanup handlers are coded to clean up and restore any resources 
before the thread is actually terminated. The Windows API allows you to terminate a thread 
asynchronously. Unlike UNIX, in Windows code you cannot create cleanup handlers and it is not 
possible for a thread to defer from being terminated. Therefore, it is recommended that you 
design your code so that threads terminate by returning an exit code and so that threads cannot 
be terminated forcibly. To do this, you should design your thread code to accept some form of 
message or event to signal that the threads should be terminated. 
Based on this notification, the thread logic can elect to execute cleanup handling code and return 
normally. To prevent a thread from being terminated, you should remove the security attributes 
for THREAD_TERMINATE from the thread object. Although forcing a thread to end by using the 
TerminateThread function is not recommended, for completeness, the following example shows 
how you could convert UNIX code that cancels a thread into Windows code that cancels a thread.  

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/process_and_thread_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/process_and_thread_functions.asp


Chapter 3: Developing Phase: Process and Thread Management                                                                               63 

UNIX example: Canceling a thread 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

void *thread_function(void *arg)  

{ 

int i, res; 

 

res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL); 

if (res != 0)  

{ 

perror("Thread pthread_setcancelstate failed"); 

exit(EXIT_FAILURE); 

} 

 

res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL); 

if (res != 0)  

{ 

perror("Thread pthread_setcanceltype failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("thread_function is running\n"); 

for(i = 0; i < 10; i++)  

{ 

printf("Thread is running (%d)...\n", i); 

sleep(1); 

} 

pthread_exit(0); 

} 

 

int main()  

{ 

int res; 

pthread_t a_thread; 

void *thread_result; 

 

res = pthread_create(&a_thread, NULL, thread_function, NULL); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

 



64 UNIX Custom Application Migration Guide: Volume 3 

exit(EXIT_FAILURE); 

} 

sleep(3); 

printf("Cancelling thread...\n"); 

 

res = pthread_cancel(a_thread); 

if (res != 0)  

{ 

perror("Thread cancellation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("Waiting for thread to finish...\n"); 

res = pthread_join(a_thread, &thread_result); 

if (res != 0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

exit(EXIT_SUCCESS); 

} 

(Source File: U_CancelThread-UAMV3C3.01.c) 
 
Windows example: Cancelling a thread  
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

printf("thread_function is running. Argument was %s\n", (char *)arg); 

for(int i = 0; i < 10; i++)  

{ 

printf("Thread is running (%d)...\n", i); 

Sleep(1000); 

} 

return 100; 

} 

 

void main()  

{ 

HANDLE a_thread; 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               65 

DWORD thread_result; 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)NULL, 0, 
NULL); 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

Sleep(3000); 

printf("Cancelling thread...\n"); 

if (!TerminateThread(a_thread, 0))  

{ 

perror("Thread cancellation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("Waiting for thread to finish...\n"); 

WaitForSingleObject(a_thread, INFINITE); 

GetExitCodeThread(a_thread, &thread_result); 

 

exit(EXIT_SUCCESS); 

} 

(Source File: W_CancelThread-UAMV3C3.01.c) 
 
When you compare the UNIX and Windows examples, you can see that in the Windows 
implementation, the setting for the deferred termination is absent. TerminateThread is not 
immediate, and it is not predictable. The termination resulting from a TerminateThread call can 
occur at any point during the thread execution. In contrast, UNIX threads tagged as deferred can 
terminate when they reach a safe cancellation point. 
If you need to match the UNIX behavior in your Windows application exactly, you must create 
your own cancellation code, thereby preventing the thread from being forcibly terminated. 

Synchronization of Threads 
UNIX and Windows provide mechanisms for controlling resource access. These mechanisms are 
referred to as synchronization techniques. In a multithreaded program, you must use 
synchronization objects whenever there is a possibility of conflict in accessing shared data or 
resources. For example, if your thread increments a global variable, you cannot predict the result 
because the variable may have been modified by another thread before or after the increment. 
The reason that you cannot predict the result is that the order in which threads have access to a 
shared resource is indeterminate.  
The following example illustrates code that is, in principle, indeterminate. 
Note   This is a very simple example and on most computers the result would always be the same, but 
the important point to note is that this is not guaranteed. 

 



66 UNIX Custom Application Migration Guide: Volume 3 

The main thread in the following example is represented by the parent. It generates a “P,” and the 
child or secondary thread outputs a “T.” A UNIX example and a Windows example are shown as 
follows: 
UNIX example: Multiple nonsynchronized threads 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

void *thread_function(void *arg)  

{ 

int count2; 

printf("thread_function is running. Argument was: %s\n", (char *)arg); 

for (count2 = 0; count2 < 10; count2++)  

{ 

sleep(1); 

printf("T"); 

} 

sleep(3); 

} 

char message[] = "Hello I'm a Thread"; 

 

int main()  

{ 

int count1, res; 

pthread_t a_thread; 

void *thread_result; 

 

res = pthread_create(&a_thread, NULL, thread_function, (void 
*)message); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("entering loop\n"); 

for (count1 = 0; count1 < 10; count1++)  

{ 

sleep(1); 

printf("P"); 

} 

 

printf("\nWaiting for thread to finish...\n"); 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               67 

res = pthread_join(a_thread, &thread_result); 

if (res != 0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("\nThread joined\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_MultiNonSync-UAMV3C3.01.c) 
 
Windows example: Multiple nonsynchronized threads 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

int count2; 

printf("thread_function is running. Argument was: %s\n", (char *)arg); 

 

for (count2 = 0; count2 < 10; count2++)  

{ 

Sleep(1000); 

printf("T"); 

} 

 

Sleep(3000); 

return 0; 

} 

 

char message[] = "Hello I'm a Thread"; 

 

void main()  

{ 

HANDLE a_thread; 

DWORD a_threadId; 

DWORD thread_result; 

int count1; 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)message, 0, 

 



68 UNIX Custom Application Migration Guide: Volume 3 

&a_threadId); 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("entering loop\n"); 

for (count1 = 0; count1 < 10; count1++)  

{ 

Sleep(1000); 

printf("P"); 

} 

 

printf("\nWaiting for thread to finish...\n"); 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

printf("\nThread joined\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_MultiNonSync-UAMV3C3.01.c) 
 
No actual synchronization between the main thread and child thread is performed; each thread 
prints different characters. The sequence of the characters printed to the output may be different 
in each execution. 
Once again, it is not possible to predict the output from these examples. In most applications, 
unpredictable results are an undesirable feature. Consequently, it is important that you take great 
care in controlling access to shared resources in threaded code. 
There are a variety of ways to coordinate multiple threads of execution. To synchronize access to 
a resource, use one of the synchronization objects in one of the wait functions. 
The wait functions allow a thread to block its own execution. The wait functions do not return 
until the specified criteria have been met. A synchronization object is an object whose handle can 
be specified in one of the wait functions to coordinate the execution of multiple threads. More 
than one process can have a handle to the same synchronization object, making interprocess 
synchronization possible. 
The next sections discuss the different synchronization techniques. 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               69 

Synchronization with Interlocked Exchange 
A simple form of synchronization is to use what is known as an interlocked exchange. An 
interlocked exchange performs a single operation that cannot be preempted. 
The functions InterlockedExchange, InterlockedCompareExchange, InterlockedDecrement, 
InterlockedExchangeAdd, and InterlockedIncrement provide a simple mechanism for 
synchronizing access to a variable that is shared by multiple threads. The threads of different 
processes can use this mechanism if the variable is in shared memory. 
(InterlockedCompareExchange is discussed in the next section.) 
The InterlockedExchange function atomically exchanges a pair of values. The function prevents 
more than one thread from using the same variable simultaneously. 
The variable pointed to by the target parameter must be aligned on a 32-bit boundary. These 
functions fail on multiprocessor x86 systems and any non-x86 systems. 
Because this is not the case in the example, the example has limited value; but it does illustrate 
the use of the InterlockedExchange functions. 
Note   The InterlockedExchange function should not be used on memory allocated with the 
PAGE_NOCACHE modifier. 

The following example demonstrates the usage of InterlockedExchange for synchronizing the 
shared resource or global variable. 
Windows example: Thread synchronization using interlocked exchange  
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

LONG new_value = 1; 

char message[] = "Hello I'm a Thread"; 

 

DWORD WINAPI thread_function(PVOID arg)  

{ 

int count2; 

printf("thread_function is running. Argument was: %s\n", (char *)arg); 

 

for (count2 = 0; count2 < 10; count2++)  

{ 

Sleep(1000); 

printf("(T-%d)", new_value); 

InterlockedExchange(&new_value, 1); 

} 

 

Sleep(3000); 

return 0; 

} 

 

void main()  

{ 

HANDLE a_thread; 

 



70 UNIX Custom Application Migration Guide: Volume 3 

DWORD a_threadId; 

DWORD thread_result; 

int count1; 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message, 0, 

&a_threadId); 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("entering loop\n"); 

for (count1 = 0; count1 < 10; count1++)  

{ 

Sleep(1000); 

printf("(P-%d)", new_value); 

InterlockedExchange(&new_value, 2); 

} 

 

printf("\nWaiting for thread to finish...\n"); 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

printf("\nThread joined\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_InterlockEx-UAMV3C3.01.c) 
 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               71 

Notes   IA64 

1. The InterlockedExchange function generates a full memory barrier (or fence) and performs 
the exchange operation. This ensures the strict memory access ordering that is necessary, 
but it can decrease performance. To operate on 64-bit memory locations and values, use the 
InterlockedExchange64 function. 

LONGLONG InterlockedExchange64( 

 LONGLONG volatile* Target, 

 LONGLONG Value 

); 
2. The variable pointed to by the Target parameter must be aligned on a 64-bit boundary. 
3. Be cautious about the variable pointed to by the Target parameter and the Value parameter; 

they must be of the data type longlong. 

Synchronization with Spinlocks 
In the previous example, as noted, you still have no synchronization between the two threads. 
The output may still be out of order. One simple mechanism that offers synchronization is to 
implement a spinlock. To accomplish this, a variant of the Interlocked function called 
InterlockedCompareExchange is used. 
The InterlockedCompareExchange function performs an atomic comparison of the specified 
values and exchanges the values, based on the outcome of the comparison. The function 
prevents more than one thread from using the same variable simultaneously. The 
InterlockedCompareExchange function performs an atomic comparison of the destination value 
with the comperand value. If the destination value is equal to the comperand value, the exchange 
value is stored in the address specified by destination, otherwise no operation is performed.  
The variables for InterlockedCompareExchange must be aligned on a 32-bit boundary; 
otherwise, this function will fail on multiprocessor x86 systems and any non-x86 systems. 
Note   This function and all other functions of the InterlockedExchange and InterlockedExchange64 
family should not be used on memory allocated with the PAGE_NOCACHE modifier because this may cause 
hardware faults on some processor architectures. To ensure ordering between reads and writes to 
PAGE_NOCACHE memory, use explicit memory barriers in your code. 

 
Windows example: Thread synchronization using InterlockedCompareExchange 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

LONG run_now = 1; 

char message[] = "Hello I'm a Thread"; 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

int count2; 

printf("thread_function is running. Argument was: %s\n", (char *)arg); 

 

for (count2 = 0; count2 < 10; count2++)  

{ 

if (InterlockedCompareExchange(&run_now, 1, 2) == 2) 

printf("T-2"); 

 



72 UNIX Custom Application Migration Guide: Volume 3 

else 

Sleep(1000); 

} 

 

Sleep(3000); 

return 0; 

} 

 

void main()  

{ 

HANDLE a_thread; 

DWORD a_threadId; 

DWORD thread_result; 

int count1; 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message, 0, 

&a_threadId); 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("entering loop\n"); 

for (count1 = 0; count1 < 10; count1++)  

{ 

if (InterlockedCompareExchange(&run_now, 2, 1) == 1) 

printf("P-1"); 

else 

Sleep(1000); 

} 

 

printf("\nWaiting for thread to finish...\n"); 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

printf("\nThread joined\n"); 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               73 

exit(EXIT_SUCCESS); 

} 

(Source File: W_SpinLck-UAMV3C3.01.c) 
 
Spinlocks work well for synchronizing access to a single object, but most applications are not this 
simple. Moreover, using spinlocks is not the most efficient means for controlling access to a 
shared resource. Running a While loop in the user mode while waiting for a global value to 
change wastes CPU cycles unnecessarily. A mechanism is needed that does not waste CPU 
time while waiting to access a shared resource. 
When a thread requires access to a shared resource (for example, a shared memory object), it 
must either be notified or scheduled to resume execution. To accomplish this, a thread must call 
an operating system function, passing parameters to it that indicate what the thread is waiting for. 
If the operating system detects that the resource is available, the function returns and the thread 
resumes. If the resource is unavailable, the system places the thread in a wait state, making the 
thread nonschedulable. This prevents the thread from wasting any CPU time. When a thread is 
waiting, the system permits the exchange of information between the thread and the resource. 
The operating system tracks the resources that a thread needs and automatically resumes the 
thread when the resource becomes available. The execution of the thread is synchronized with 
the availability of the resource. Mechanisms that prevent the thread from wasting CPU time 
include: 
• Mutexes  
• Critical sections  
• Semaphores 
Windows includes all three of these mechanisms, and UNIX provides both semaphores and 
mutexes. These three mechanisms are described in the following sections. 

Synchronization Using Mutexes 
A mutex is a kernel object that provides a thread with mutually exclusive access to a single 
resource. The state of a mutex object is set to signaled when it is not owned by any thread, and 
nonsignaled when it is owned. Only one thread at a time can own a mutex object, whose name 
comes from the fact that it is useful in coordinating mutually exclusive access to a shared 
resource. 
Any thread of the calling process can specify the mutex-object handle in a call to one of the wait 
functions. The single-object wait functions return when the state of the specified object is 
signaled. When the state of the mutex is signaled, one waiting thread is granted ownership, the 
state of the mutex changes to nonsignaled, and the wait function returns. The owning thread 
uses the ReleaseMutex function to release its ownership. 
The next example looks at the use of mutexes to coordinate access to a shared resource and to 
handshake between two threads. 

 



74 UNIX Custom Application Migration Guide: Volume 3 

UNIX example: Thread synchronization using mutexes 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <semaphore.h> 

 

#define SHARED_SIZE 1024 

 

char shared_area[SHARED_SIZE]; 

pthread_mutex_t shared_mutex; /* protects shared_area */ 

 

void *thread_function(void *arg)  

{ 

pthread_mutex_lock(&shared_mutex); 

while(strncmp("done", shared_area, 4) != 0)  

{ 

printf("You input %d characters\n", strlen(shared_area) -1); 

pthread_mutex_unlock(&shared_mutex); 

pthread_mutex_lock(&shared_mutex); 

} 

pthread_mutex_unlock(&shared_mutex); 

pthread_exit(0); 

} 

 

int main()  

{ 

int res; 

pthread_t a_thread; 

void *thread_result; 

 

res = pthread_mutex_init(&shared_mutex, NULL); 

if (res != 0)  

{ 

perror("Mutex initialization failed"); 

exit(EXIT_FAILURE); 

} 

 

res = pthread_create(&a_thread, NULL, thread_function, NULL); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               75 

} 

 

pthread_mutex_lock(&shared_mutex); 

printf("Input some text. Enter 'done' to finish\n"); 

while (strncmp("done", shared_area, 4) != 0) { 

fgets(shared_area, SHARED_SIZE, stdin); 

pthread_mutex_unlock(&shared_mutex); 

pthread_mutex_lock(&shared_mutex); 

} 

 

pthread_mutex_unlock(&shared_mutex); 

printf("\nWaiting for thread to finish...\n"); 

 

res = pthread_join(a_thread, &thread_result); 

if (res != 0) { 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("\nThread joined\n"); 

pthread_mutex_destroy(&shared_mutex); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_Mutex-UAMV3C3.01.c) 
 
Windows example: Thread synchronization using mutexes 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

#define SHARED_SIZE 1024 

char shared_area[SHARED_SIZE]; 

LPCTSTR lpszMutex = "MUTEX-EXAMPLE"; 

HANDLE shared_mutex; 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, lpszMutex); 

WaitForSingleObject( hMutex, INFINITE ); 

 

while(strncmp("done", shared_area, 4) != 0)  

{ 

printf("You input %d characters\n", strlen(shared_area) -1); 

 



76 UNIX Custom Application Migration Guide: Volume 3 

ReleaseMutex(hMutex); 

WaitForSingleObject(hMutex, INFINITE); 

} 

ReleaseMutex(hMutex); 

CloseHandle(hMutex); 

return 0; 

} 

 

void main()  

{ 

HANDLE a_thread; 

DWORD a_threadId; 

DWORD thread_result; 

// Initialize Semaphore object. 

 

shared_mutex = CreateMutex( NULL, TRUE, lpszMutex ); 

if (shared_mutex == NULL)  

{ 

perror("Mutex initialization failed"); 

exit(EXIT_FAILURE); 

} 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)NULL, 0, 

&a_threadId); 

if (a_thread == NULL) { 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

printf("Input some text. Enter 'done' to finish\n"); 

WaitForSingleObject(shared_mutex, INFINITE); 

while(strncmp("done", shared_area, 4) != 0) { 

fgets(shared_area, SHARED_SIZE, stdin); 

ReleaseMutex(shared_mutex); 

WaitForSingleObject(shared_mutex, INFINITE); 

} 

ReleaseMutex(shared_mutex); 

 

printf("Waiting for thread to finish...\n"); 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) { 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               77 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

CloseHandle(shared_mutex); 

 

printf("Thread joined\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_Mutex-UAMV3C3.01.c) 

Synchronization with Critical Sections 
Another mechanism for solving this simple scenario is to use a critical section. A critical section is 
similar to InterlockedExchange except that you have the ability to define the logic that takes 
place as an atomic operation. 
Critical section objects provide synchronization similar to that provided by mutex objects, except 
that critical section objects can be used only by the threads of a single process. Critical section 
objects provide a slightly faster, more efficient mechanism for mutual-exclusion synchronization 
(a processor-specific test and set instruction) as compared to event, mutex, and semaphore 
objects, which can also be used in a single-process application. There is no guarantee about the 
order in which threads will obtain ownership of the critical section; however, the system will be fair 
to all threads. Unlike a mutex object, there is no way to tell whether a critical section has been 
abandoned. 
The process is responsible for allocating the memory used by a critical section. Typically, this is 
done by just declaring a variable of type CRITICAL_SECTION. Before the threads of the process 
can use it, initialize the critical section and then request ownership of a critical section. If the 
critical section object is currently owned by another thread, the process waits indefinitely for 
ownership. In contrast, when a mutex object is used for mutual exclusion, the wait functions 
accept a specified time-out interval. The TryEnterCriticalSection function attempts to enter a 
critical section without blocking the calling thread. 
A thread uses the InitializeCriticalSectionAndSpinCount or SetCriticalSectionSpinCount 
functions to specify a spin count for the critical section object. On single-processor systems, the 
spin count is ignored and the critical section spin count is set to 0. On multiprocessor systems, if 
the critical section is unavailable, the calling thread will spin dwSpinCount times before 
performing a wait operation on a semaphore associated with the critical section. If the critical 
section becomes free during the spin operation, the calling thread avoids the wait operation. 
Any thread of the process can release the system resources that were allocated when the critical 
section object was initialized. After this function has been called, the critical section object can no 
longer be used for synchronization. 
Windows example: Thread synchronization using critical sections 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

CRITICAL_SECTION g_cs; 

char message[] = "Hello I'm a Thread"; 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

int count2; 

 



78 UNIX Custom Application Migration Guide: Volume 3 

printf("\nthread_function is running. Argument was: %s\n", (char 
*)arg); 

 

for (count2 = 0; count2 < 10; count2++)  

{ 

EnterCriticalSection(&g_cs); 

printf("T"); 

LeaveCriticalSection(&g_cs); 

} 

Sleep(3000); 

return 0; 

} 

 

void main()  

{ 

HANDLE a_thread; 

DWORD a_threadId; 

DWORD thread_result; 

int count1; 

InitializeCriticalSection(&g_cs); 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)message, 0, 
&a_threadId); 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("entering loop\n"); 

for (count1 = 0; count1 < 10; count1++)  

{ 

EnterCriticalSection(&g_cs); 

printf("P"); 

LeaveCriticalSection(&g_cs); 

} 

printf("\nWaiting for thread to finish...\n"); 

 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               79 

} 

 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

printf("\nThread joined\n"); 

DeleteCriticalSection(&g_cs); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_CriticalSec-UAMV3C3.01.c) 

Synchronization Using Semaphores 
A semaphore object is a synchronization object that maintains a count between zero and a 
specified maximum value. The count is decremented each time a thread completes a wait for the 
semaphore object and incremented each time a thread releases the semaphore. When the count 
reaches zero, no more threads can successfully wait for the semaphore object state to become 
signaled. The state of a semaphore is set to signaled when its count is greater than zero, and 
nonsignaled when its count is zero. The semaphore object is useful in controlling a shared 
resource that can support a limited number of users. 
In the following examples, two threads are created that use a shared memory buffer. Access to 
the shared memory is synchronized using a semaphore. The primary thread (main) creates a 
semaphore object and uses this object to handshake with the secondary thread (thread_function). 
The primary thread instantiates the semaphore in a state that prevents the secondary thread from 
acquiring the semaphore while it is initiated. 
After the user types in text at the console and presses ENTER, the primary thread relinquishes 
the semaphore. The secondary thread then acquires the semaphore and processes the shared 
memory area. At this point, the main thread is blocked waiting for the semaphore and will not 
resume until the secondary thread has relinquished control by calling ReleaseSemaphore. 
In UNIX, the semaphore object functions of sem_post and sem_wait are all that are required to 
perform handshaking. With Windows, you must use a combination of WaitForSingleObject and 
ReleaseSemaphore in both the primary and the secondary threads in order to facilitate 
handshaking. The two solutions are also very different from a syntactic standpoint. The primary 
difference between their implementations is with the API calls that are used to manage the 
semaphore objects. 
One aspect of CreateSemaphore that you need to be aware of is the last argument in its 
parameter list. This is a string parameter specifying the name of the semaphore. You should not 
pass a NULL for this parameter. All the kernel objects, including semaphores, are named. All 
kernel object names are stored in a common namespace except if it is a server running Microsoft 
Terminal Server, in which case there will also be a namespace for each session. If the 
namespace is global, one or more unassociated applications could attempt to use the same 
name for a semaphore. To avoid namespace contention, applications should use some unique 
naming convention. One solution would be to base your semaphore names on globally unique 
identifiers (GUIDs). 

 



80 UNIX Custom Application Migration Guide: Volume 3 

Terminal Server and Naming Semaphore Objects 
As mentioned earlier, Terminal Server has multiple namespaces for kernel objects. There is one 
global namespace, which is used by kernel objects that are accessible by any and all client 
sessions and is usually populated by services. Additionally, each client session has its own 
namespace to prevent namespace collisions between multiple instances of the same application 
running in different sessions. 
In addition to the session and global namespaces, Terminal Server also has a local namespace. 
By default, the named kernel objects of an application reside in the session namespace. It is 
possible, however, to override what namespace will be used. This is accomplished by prefixing 
the name with Global\ or Local\. These prefix names are reserved by Microsoft, are case-
sensitive, and are ignored if the computer is not operating as a Terminal Server. 
UNIX example: Synchronization using semaphores 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <semaphore.h> 

 

#define SHARED_SIZE 1024 

 

char shared_area[SHARED_SIZE]; 

sem_t bin_sem; 

 

void *thread_function(void *arg) { 

sem_wait(&bin_sem); 

while(strncmp("done", shared_area, 4) != 0) { 

printf("You input %d characters\n", strlen(shared_area) -1); 

sem_wait(&bin_sem); 

} 

pthread_exit(NULL); 

} 

 

int main()  

{ 

int res; 

pthread_t a_thread; 

void *thread_result; 

 

res = sem_init(&bin_sem, 0, 0); 

if (res != 0)  

{ 

perror("Semaphore initialization failed"); 

exit(EXIT_FAILURE); 

} 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               81 

 

res = pthread_create(&a_thread, NULL, thread_function, NULL); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

printf("Input some text. Enter 'done' to finish\n"); 

while(strncmp("done", shared_area, 4) != 0)  

{ 

fgets(shared_area, SHARED_SIZE, stdin); 

sem_post(&bin_sem); 

} 

printf("\nWaiting for thread to finish...\n"); 

 

res = pthread_join(a_thread, &thread_result); 

if (res != 0)  

{ 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

printf("\nThread joined\n"); 

 

sem_destroy(&bin_sem); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_Semph-UAMV3C3.01.c) 
 

Windows example: Synchronization using semaphores 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

#define SHARED_SIZE 1024 

 

char shared_area[SHARED_SIZE]; 

LPCTSTR lpszSemaphore = "SEMAPHORE-EXAMPLE"; 

HANDLE sem_t; 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

LONG dwSemCount; 

 



82 UNIX Custom Application Migration Guide: Volume 3 

HANDLE hSemaphore = OpenSemaphore( SYNCHRONIZE | 
SEMAPHORE_MODIFY_STATE, FALSE, lpszSemaphore ); 

 

WaitForSingleObject( hSemaphore, INFINITE ); 

 

while(strncmp("done", shared_area, 4) != 0)  

{ 

printf("You input %d characters\n", strlen(shared_area) -1); 

ReleaseSemaphore(hSemaphore, 1, &dwSemCount); 

WaitForSingleObject( hSemaphore, INFINITE ); 

} 

 

ReleaseSemaphore(hSemaphore, 1, &dwSemCount); 

CloseHandle( hSemaphore ); 

return 0; 

} 

 

void main()  

{ 

HANDLE a_thread; 

DWORD a_threadId; 

DWORD thread_result; 

LONG dwSemCount; 

// Initialize Semaphore object. 

sem_t = CreateSemaphore( NULL, 0, 1, lpszSemaphore ); 

 

if (sem_t == NULL)  

{ 

perror("Semaphore initialization failed"); 

exit(EXIT_FAILURE); 

} 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)NULL, 0, 

&a_threadId); 

 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

WaitForSingleObject(sem_t, INFINITE); 

printf("Input some text. Enter 'done' to finish\n"); 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               83 

while(strncmp("done", shared_area, 4) != 0) { 

fgets(shared_area, SHARED_SIZE, stdin); 

ReleaseSemaphore(sem_t, 1, &dwSemCount); 

WaitForSingleObject(sem_t, INFINITE); 

} 

 

printf("\nWaiting for thread to finish...\n"); 

if (WaitForSingleObject(a_thread, INFINITE) != WAIT_OBJECT_0) { 

perror("Thread join failed"); 

exit(EXIT_FAILURE); 

} 

 

// Retrieve the code returned by the thread. 

GetExitCodeThread(a_thread, &thread_result); 

printf("\nThread joined\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_Semph-UAMV3C3.01.c) 

Thread Attributes 
There are a number of attributes associated with threads in UNIX that you need to convert to 
equivalent attributes in Windows. This section contrasts the UNIX and Windows thread attributes 
and describes how you should convert your code. Table 3.6 lists the relevant UNIX thread 
attributes. 
Table 3.6. UNIX Thread Attributes 

Attribute Default values Description 

detachstate PTHREAD_CREATE_JOINABLE 
PTHREAD_CREATE_DETACHED 

Thread may be joined by other threads. 
Threads may not be waited on for 
termination. 

inheritsched PTHREAD_INHERIT_SCHED 
 
PTHREAD_EXPLICIT_SCHED 

Scheduling parameters, policy, and scope 
are inherited from creating thread. 
Scheduling parameters for the newly 
created thread are specified in the thread 
attribute. 

schedparam - Priority set to default for scheduling policy. 

schedpolicy SCHED_OTHER 
 
SCHED_FIFO 
 
SCHED_RR 

Scheduling policy is determined by the 
system. 
Threads are scheduled in a first-in-first-out 
order. 
Threads are scheduled in a round-robin 
fashion. 

Scope PTHREAD_SCOPE_SYSTEM 
PTHREAD_SCOPE_PROCESS 

Threads are scheduled system-wide. 
Threads are scheduled based on other 
threads in the owning process. 

 



84 UNIX Custom Application Migration Guide: Volume 3 

Attribute Default values Description 

Stackaddr N/A Attribute not supported; address selected 
by the operating system. 

Stacksize 0 Stack size inherited from process stack 
size attribute. 

Detachstate indicates whether a thread can be waited on for termination. In Windows, the same 
effect is achieved by closing any handles that exist for a given thread. Because a handle is 
required for one of the wait and thread management functions, without a handle, you are 
effectively stopped from acting on a thread. You can also control thread objects based on a 
security descriptor that is provided at the time the thread is created. 
Note   Additional information on access control is available at 

http://msdn.microsoft.com/library/en-us/security/Security/access_control.asp. 

The handle returned by the CreateThread function has THREAD_ALL_ACCESS access to the 
thread object. When you call the GetCurrentThread function, the system returns a pseudohandle 
with the maximum access that the security descriptor of the thread allows the caller. 
The valid access rights for thread objects include the DELETE, READ_CONTROL, 
SYNCHRONIZE, WRITE_DAC, and WRITE_OWNER standard access rights, in addition to the 
thread-specific access rights listed in Table 3.7. 
Table 3.7. Thread-Specific Access Rights 

Value Meaning 

SYNCHRONIZE A standard right required to wait for the thread to exit. 

THREAD_ALL_ACCESS Specifies all possible access rights for a thread object. 

THREAD_DIRECT_IMPERSONATION Required for a server thread that impersonates a client. 

THREAD_GET_CONTEXT Required to read the context of a thread by using 
GetThreadContext. 

THREAD_IMPERSONATE Required to directly use the security information of a 
thread without calling it using a communication 
mechanism that provides impersonation services. 

THREAD_QUERY_INFORMATION Required to read certain information from the thread 
object. 

THREAD_SET_CONTEXT Required to write the context of a thread. 

THREAD_SET_INFORMATION Required to set certain information in the thread object. 

THREAD_SET_THREAD_TOKEN Required to set the impersonation token for a thread. 

THREAD_SUSPEND_RESUME Required to suspend or resume a thread. 

THREAD_TERMINATE Required to terminate a thread. 

Inheritsched/schedparam/schedpolicy/scope indicates that the scheduling is either inherited 
from the thread that created the new thread or that it is set explicitly. It also defines the policy and 
scope applied to scheduling threads. In Windows, by default, the priority of a thread is 
THREAD_PRIORITY_NORMAL. 
You can use the GetThreadPriority function to determine the current priority of a thread and the 
SetThreadPriority function to change the priority of a thread. 
Stacksize indicates the stack size applied to a thread at the time of its creation by using the 
CreateThread function. The initial size of the stack is specified in bytes. The system rounds this 
value to the nearest page. If this parameter has a zero value, the new thread uses the default 
stack size for the executable. 

 

http://msdn.microsoft.com/library/en-us/security/Security/access_control.asp


Chapter 3: Developing Phase: Process and Thread Management                                                                               85 

Setting Thread Attributes 
This section presents a simple example of how the attributes of a thread can be set. The UNIX 
example makes some basic use of thread attributes. The corresponding Windows example does 
not need to use attributes to accomplish the same functionality. All that is required with Windows 
is to create a thread that cannot be acted upon by a wait. This can be accomplished by passing 
NULL as the dwThreadId parameter to the CreateThread function and by closing the handle that 
is returned by the call. 
The net effect of these combined activities effectively hinders the capability of an application to 
manage the thread. This issue is addressed in the “Thread Scheduling and Prioritizing” section 
later in this chapter. 
UNIX example: Setting thread attributes 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

char message[] = "Hello I'm a Thread"; 

int thread_finished = 0; 

 

void *thread_function(void *arg)  

{ 

printf("thread_function running. Arg was: %s\n", (char *)arg); 

sleep(4); 

printf("Second thread setting finished flag, and exiting now\n"); 

thread_finished = 1; 

pthread_exit(NULL); 

} 

 

int main()  

{ 

int count=0, res; 

pthread_t a_thread; 

void *thread_result; 

pthread_attr_t thread_attr; 

 

res = pthread_attr_init(&thread_attr); 

if (res != 0) { 

perror("Attribute creation failed"); 

exit(EXIT_FAILURE); 

} 

 

res = pthread_attr_setdetachstate(&thread_attr, 
PTHREAD_CREATE_DETACHED); 

if (res != 0) { 

perror("Setting detached attribute failed"); 

 



86 UNIX Custom Application Migration Guide: Volume 3 

exit(EXIT_FAILURE); 

} 

 

res = pthread_create(&a_thread, &thread_attr, thread_function, (void 
*)message); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

(void)pthread_attr_destroy(&thread_attr); 

while(!thread_finished) { 

printf("Waiting for thread to finish (%d)\n", ++count); 

sleep(1); 

} 

 

printf("Other thread finished, See Ya!\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_ThreadAttr-UAMV3C3.01.c) 
 
Windows example: Setting thread attributes 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

char message[] = "Hello I'm a Thread"; 

int thread_finished = 0; 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

printf("\nthread_function running. Arg was: %s\n", (char *)arg); 

Sleep(4000); 

printf("Second thread setting finished flag, and exiting now\n"); 

thread_finished = 1; 

return 100; 

} 

 

void main()  

{ 

int count=0; 

HANDLE a_thread; 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               87 

 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (PVOID)message, 0, 
NULL); 

 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

CloseHandle(a_thread); 

 

while(!thread_finished)  

{ 

printf("Waiting for thread to finish (%d)\n", ++count); 

Sleep(1000); 

} 

 

printf("Other thread finished, See Ya!\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_ThreadAttr-UAMV3C3.01.c) 

Windows Security and Thread Objects 
Threads are kernel objects that are protected by Windows security; therefore, a process must 
request permission before attempts are made to manipulate an object. The creator of the object 
can deny access to an unauthorized user. 
Object flags are covered as part of the thread discussion here, but this information also pertains 
to other kernel objects that are obtained by using one of the Windows Create functions. 
Until now, threads have been created in these solutions with a NULL security attribute. This 
indicates that the thread should be created using the default security and that the returned handle 
should be inheritable. If you want to change the behavior of the previous example to prevent the 
thread handle from being inherited or closed, you can use the SetHandleInformation function as 
follows: 
#define HANDLE_FLAG_INHERIT 0x00000001 

#define HANDLE_FLAG_PROTECT_FROM_CLOSE 0x00000002 

 

SetHandleInformation(hThread, HANDLE_FLAG_INHERIT, 
HANDLE_FLAG_INHERIT); 

SetHandleInformation(hThread, HANDLE_FLAG_PROTECT_FROM_CLOSE, 

HANDLE_FLAG_PROTECT_FROM_CLOSE); 

 

To change both flags in a single call, you should join the flags by using a bitwise OR operator. 
After this call, attempting to close the handle by using the CloseHandle function results in an 
exception being raised. 

 



88 UNIX Custom Application Migration Guide: Volume 3 

Thread Scheduling and Prioritizing 
This section looks at how you can change the scheduling priority of a thread in UNIX and 
Windows. 
Ideally, you want to map Windows priority classes to UNIX scheduling policies and Windows 
thread priority levels to UNIX priority levels, but unfortunately, it is not this simple. The priority 
level of a Windows thread is determined by both the priority class of its process and its priority 
level. The priority class and priority level are combined to form the base priority of each thread. 
Every thread in Windows has a base priority level determined by the priority value of the thread 
and the priority class of its owning process. The operating system uses the base priority level of 
all executable threads to determine which thread gets the next slice of CPU time. Threads are 
scheduled in a round-robin fashion at each priority level, and scheduling of threads at a lower 
level will only take place when there are no executable threads at a higher level. 
UNIX offers both round-robin and FIFO scheduling algorithms, whereas Windows uses only 
round-robin. This does not mean that Windows is less flexible; it just means that any fine-tuning 
that was performed on thread scheduling in UNIX has to be implemented differently when using 
Windows. Table 3.8 lists the base priority levels for combinations of priority class and priority 
value for Windows. 
Table 3.8. Process and Thread Priority for Windows 

# Process Priority Class Thread Priority Level 

1 IDLE_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

1 HIGH_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

2 IDLE_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

3 IDLE_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

4 IDLE_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

4 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

5 IDLE_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

5 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

5 Background 
NORMAL_PRIORITY_CLASS 

THREAD_PRIORITY_LOWEST 

6 IDLE_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

6 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

6 Background 
NORMAL_PRIORITY_CLASS 

THREAD_PRIORITY_BELOW_NORMAL 

7 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

7 Background 
NORMAL_PRIORITY_CLASS 

THREAD_PRIORITY_NORMAL 

7 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

8 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               89 

# Process Priority Class Thread Priority Level 

8 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

8 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

8 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

9 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

9 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

9 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

10 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

10 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

11 Foreground NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

11 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

11 HIGH_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

12 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

12 HIGH_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

13 HIGH_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

14 HIGH_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

15 HIGH_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

15 HIGH_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

15 IDLE_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

15 NORMAL_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

15 BELOW_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

15 ABOVE_NORMAL_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

16 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_IDLE 

17 REALTIME_PRIORITY_CLASS -7 

18 REALTIME_PRIORITY_CLASS -6 

19 REALTIME_PRIORITY_CLASS -5 

20 REALTIME_PRIORITY_CLASS -4 

21 REALTIME_PRIORITY_CLASS -3 

22 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_LOWEST 

23 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL 

24 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_NORMAL 

25 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL 

26 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST 

27 REALTIME_PRIORITY_CLASS 3 

28 REALTIME_PRIORITY_CLASS 4 

 



90 UNIX Custom Application Migration Guide: Volume 3 

# Process Priority Class Thread Priority Level 

29 REALTIME_PRIORITY_CLASS 5 

30 REALTIME_PRIORITY_CLASS 6 

31 REALTIME_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL 

Managing Thread Priorities in Windows 
The Windows API provides a number of functions for managing thread priorities, including the 
following: 
• GetThreadContext. This function returns the execution context of the specified thread. The 

following is an example showing the thread context: 
CONTEXT context; 

TCHAR szBuffer[128]; 

Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS; 

GetThreadContext( GetCurrentThread(), &context); 

printf("CS=%X, EIP=%X, FLAGS=%X, DR1=%X\n", 

context.SegCs, context.Eip, context.EFlags, context.Dr1); 
• GetThreadPriority. This function returns the assigned thread priority level for the specified 

thread. To see how thread priority affects the system, a simple test, such as the one that 
follows, could be added to a simple Windows application: 
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_LOWEST); 

DWORD dwTicks = GetTickCount(); 

for(long i = 0; i < 200000; i ++) 

for(long j = 0; j < 2000; j ++) 

printf("Test time=%ld\n", GetTickCount() – dwTicks); 

Adjusting the thread priority should yield different time deltas. 
• GetThreadPriorityBoost. This function retrieves the priority boost control state of the 

specified thread. Threads have dynamic priority, which is the priority that the scheduler uses 
to identify which thread will execute. Initially, the priority of a thread is the same as its base 
priority, but the system may increase or decrease the priority to maintain thread 
responsiveness. Only threads with a priority between 0 and 15 are eligible for dynamic 
priority boost. 
The system boosts the dynamic priority of a thread to enhance its responsiveness as follows: 
• When a process that uses NORMAL_PRIORITY_CLASS is brought to the foreground, 

the scheduler boosts the priority class of the process associated with the foreground 
window so that it is equal to or greater than the priority class of any background 
processes. The priority class returns to its original setting when the process is no longer 
in the foreground. In Microsoft Windows, the user can control the boosting of processes 
that use NORMAL_PRIORITY_CLASS through Control Panel. 

• When a window receives input, such as timer messages, mouse messages, or keyboard 
input, the scheduler boosts the priority of the thread that owns the window. 

• When the wait conditions for a blocked thread are satisfied, the scheduler boosts the 
priority of the thread. For example, when a wait operation associated with disk or 
keyboard I/O finishes, the thread receives a priority boost. 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               91 

• SetThreadIdealProcessor. This function specifies the preferred processor for a specific 
thread. The system schedules threads on the preferred processor when possible. 

• SetThreadPriority. This function changes the priority level for a thread. For details on the 
different priority levels, see the Windows API reference. 

• SetThreadPriorityBoost. This function enables or disables dynamic priority boosts by the 
system. 

Example of Converting UNIX Thread Scheduling into Windows 
In this example, the thread priority level is set to the lowest level within the given policy or class 
for UNIX and Windows respectively. For UNIX, lowering the thread priority level requires creating 
an attribute object prior to instantiating the thread and then setting the policy of the attribute 
object. After this activity is complete, the thread is created with the modified attribute. Upon 
successful instantiation of the thread, the priority level is adjusted to the lowest level within the 
designated policy and class. In UNIX, this is accomplished by a call to 
pthread_attr_setschedparam. When using the Windows API, it is accomplished by a call to 
SetThreadPriority. 
UNIX example: Thread scheduling 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

char message[] = "Hello I'm a Thread"; 

int thread_finished = 0; 

 

void *thread_function(void *arg)  

{ 

printf("thread_function running. Arg was %s\n", (char *)arg); 

sleep(4); 

printf("Second thread setting finished flag, and exiting now\n"); 

thread_finished = 1; 

pthread_exit(NULL); 

} 

 

int main()  

{ 

int count=0, res, min_priority, max_priority; 

struct sched_param scheduling_params; 

pthread_t a_thread; 

void *thread_result; 

pthread_attr_t thread_attr; 

 

res = pthread_attr_init(&thread_attr); 

if (res != 0)  

{ 

perror("Attribute creation failed"); 

 



92 UNIX Custom Application Migration Guide: Volume 3 

exit(EXIT_FAILURE); 

} 

 

res = pthread_attr_setschedpolicy(&thread_attr, SCHED_OTHER); 

if (res != 0)  

{ 

perror("Setting schedpolicy failed"); 

exit(EXIT_FAILURE); 

} 

 

res = pthread_attr_setdetachstate(&thread_attr, 
PTHREAD_CREATE_DETACHED); 

if (res != 0)  

{ 

perror("Setting detached attribute failed"); 

exit(EXIT_FAILURE); 

} 

 

res = pthread_create(&a_thread, &thread_attr, thread_function, (void 
*)message); 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

max_priority = sched_get_priority_max(SCHED_OTHER); 

min_priority = sched_get_priority_min(SCHED_OTHER); 

scheduling_params.sched_priority = min_priority; 

 

res = pthread_attr_setschedparam(&thread_attr, &scheduling_params); 

if (res != 0)  

{ 

perror("Setting schedparam failed"); 

exit(EXIT_FAILURE); 

} 

 

(void)pthread_attr_destroy(&thread_attr); 

while(!thread_finished)  

{ 

printf("Waiting for thread to finish (%d)\n", ++count); 

sleep(1); 

} 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               93 

 

printf("Other thread finished, See Ya!\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_ThreadSched-UAMV3C3.01.c) 
 
Windows example: Thread scheduling 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

DWORD WINAPI thread_function(LPVOID arg); 

 

char message[] = "Hello I'm a Thread"; 

int thread_finished = 0; 

 

void main()  

{ 

int count=0; 

HANDLE a_thread; 

// Create a new thread. 

a_thread = CreateThread(NULL, 0, thread_function, (LPVOID)message, 0, 
NULL); 

 

if (a_thread == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

 

if (!SetThreadPriority(a_thread, THREAD_PRIORITY_LOWEST))  

{ 

perror("Setting sched priority failed"); 

exit(EXIT_FAILURE); 

} 

CloseHandle(a_thread); 

 

while(!thread_finished)  

{ 

printf("Waiting for thread to finished (%d)\n", ++count); 

Sleep(1000); 

} 

 

 



94 UNIX Custom Application Migration Guide: Volume 3 

printf("Other thread finished, bye!\n"); 

exit(EXIT_SUCCESS); 

} 

 

DWORD WINAPI thread_function(LPVOID arg)  

{ 

printf("thread_function running. Arg was %s\n", (char *)arg); 

Sleep(4000); 

printf("Second thread setting finished flag, and exiting now\n"); 

thread_finished = 1; 

return 100; 

} 

(Source File: W_ThreadSched-UAMV3C3.01.c) 
 
In the preceding Windows example, the priority level of the thread is adjusted to the lowest level 
within the priority class of the owning process. If you want to change the priority class as well as 
the priority level, insert the following code just before the SetThreadPriority call: 
SetPriorityClass(GetCurrentProcess(), PriorityClass) 

Where, PriorityClass will be one of the values shown in Table 3.9.  
Table 3.9 summarizes how to change the scheduling priority for a thread and priority class for the 
owning process. 
Table 3.9. PriorityClass Values 

PriorityClass Meaning 

ABOVE_NORMAL_PRIORITY_CLASS Windows Server™ 2003 and Windows® XP: Indicates 
a process that has priority above 
NORMAL_PRIORITY_CLASS but below 
HIGH_PRIORITY_CLASS. 

BELOW_NORMAL_PRIORITY_CLASS Windows Server 2003 and Windows XP: Indicates a 
process that has priority above 
IDLE_PRIORITY_CLASS but below 
NORMAL_PRIORITY_CLASS. 

HIGH_PRIORITY_CLASS Specify this class for a process that performs time-
critical tasks that must be executed immediately. The 
threads of the process preempt the threads of normal 
or idle priority-class processes. An example is the Task 
List, which must respond quickly when called by the 
user, regardless of the load on the operating system. 
Use extreme care when using the high-priority class 
because a high-priority class application can use nearly 
all available CPU time. 

IDLE_PRIORITY_CLASS Specify this class for a process whose threads run only 
when the system is idle. The threads of the process are 
preempted by the threads of any process running in a 
higher priority class. An example is a screen saver. 
The idle-priority class is inherited by child processes.  

NORMAL_PRIORITY_CLASS Specify this class for a process with no special 
scheduling needs. 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               95 

PriorityClass Meaning 

REALTIME_PRIORITY_CLASS Specify this class for a process that has the highest 
possible priority. The threads of the process preempt 
the threads of all other processes, including the 
operating system processes, which may be performing 
important tasks. For example, a real-time process that 
executes for more than a very brief interval can prevent 
disk caches from flushing or can cause the mouse to 
be unresponsive. 

Managing Multiple Threads 
In the next two examples, numerous threads are created that terminate at random times. Their 
termination and display messages are then caught to indicate their termination status. Although 
these examples are contrived, they do illustrate one key point— the semantics of creating multiple 
threads and waiting for their completion are similar on both platforms. 
UNIX example: Multiple threads 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

#define NUM_THREADS 5 

 

void *thread_function(void *arg)  

{ 

int t_number = *(int *)arg; 

int rand_delay; 

printf("thread_function running. Arg was %d\n", t_number); 

// Seed the random-number generator with current time so that 

// the numbers will be different each time function is run. 

srand( (unsigned)time(NULL)); 

// random time delay from 1 to 10 

rand_delay = 1+ 9.0*(float)rand()/(float)RAND_MAX; 

sleep(rand_delay); 

printf("See Ya from thread #%d\n", t_number); 

pthread_exit(NULL); 

} 

 

int main()  

{ 

int res; 

pthread_t a_thread[NUM_THREADS]; 

void *thread_result; 

int multiple_threads; 

 



96 UNIX Custom Application Migration Guide: Volume 3 

for(multiple_threads = 0; multiple_threads < NUM_THREADS; 
multiple_threads++) 

{ 

res = pthread_create(&(a_thread[multiple_threads]), NULL, 
thread_function,(void *)&multiple_threads); 

 

if (res != 0)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

sleep(1); 

} 

 

printf("Waiting for threads to finish…\n"); 

 

for(multiple_threads = NUM_THREADS - 1; multiple_threads >= 0; 
multiple_threads--)  

{ 

res = pthread_join(a_thread[multiple_threads], &thread_result); 

if (res == 0)  

{ 

printf("Another thread\n"); 

} 

else  

{ 

perror("pthread_join failed"); 

} 

} 

 

printf("All done\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: U_MultiThread-UAMV3C3.01.c) 
 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               97 

Windows example: Multiple threads 
#include <Windows.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

 

#define NUM_THREADS 5 

 

DWORD WINAPI thread_function(LPVOID arg) { 

int t_number = *(int *)arg; 

int rand_delay; 

printf("thread_function running. Arg was %d\n", t_number); 

 

// Seed the random-number generator with current time so that 

// the numbers will be different each time function is run. 

srand((unsigned)time(NULL)); 

 

// random time delay from 1 to 10 

rand_delay = 1 + (rand() % 10); 

Sleep(rand_delay*1000); 

printf("See Ya from thread #%d\n", t_number); 

return 100; 

} 

 

void main()  

{ 

HANDLE a_thread[NUM_THREADS]; 

int multiple_threads; 

 

for(multiple_threads = 0; multiple_threads < NUM_THREADS; 
multiple_threads++) 

{ 

// Create a new thread. 

a_thread[multiple_threads] = 

CreateThread(NULL, 0, thread_function,(LPVOID)&multiple_threads, 
0,NULL); 

if (a_thread[multiple_threads] == NULL)  

{ 

perror("Thread creation failed"); 

exit(EXIT_FAILURE); 

} 

Sleep(1000); 

} 

 



98 UNIX Custom Application Migration Guide: Volume 3 

 

printf("Waiting for threads to finish...\n"); 

 

for(multiple_threads = NUM_THREADS - 1; multiple_threads >= 0; 
multiple_threads--)  

{ 

if (WaitForSingleObject(a_thread[multiple_threads], INFINITE) == 
WAIT_OBJECT_0)  

{ 

printf("Another thread\n"); 

} 

else  

{ 

perror("WaitForSingleObject failed"); 

} 

} 

 

printf("All done\n"); 

exit(EXIT_SUCCESS); 

} 

(Source File: W_MultiThread-UAMV3C3.01.c) 

I/O Completion Ports 
There should always be enough live threads to fully use the available CPUs, but there should 
never be so many threads that the overhead becomes too large. Multiplexing a large number of 
clients across a smaller number of live threads is difficult for an application to do. The application 
cannot always know when a given thread is going to block; and without this knowledge, it cannot 
activate another thread to take its place. To solve this problem and make it easy for programmers 
to write efficient and scalable applications, Windows provides a mechanism called the I/O 
completion port. 
An I/O completion port is designed for use with overlapped I/O. A completion port is created with 
the CreateIoCompletionPort function. 
HANDLE CreateIoCompletionPort( 

HANDLE FileHandle, 

HANDLE ExistingCompletionPort, 

DWORD CompletionKey, 

DWORD NumberOfConcurrentThreads 

); 

The CreateIoCompletionPort function associates the port with multiple file handles. When 
asynchronous I/O initiated on any of these file handles completes, an I/O completion packet is 
queued to the port. This combines the synchronization point for multiple file handles into a single 
object. If each file handle represents a connection to a client (usually through a named pipe or 
socket), a handful of threads can manage I/O for any number of clients by waiting on the I/O 
completion port. Instead of directly waiting for overlapped I/O to complete, these threads use 
GetQueuedCompletionStatus to wait on the I/O completion port. Any thread that waits on a 
completion port becomes associated with that port. The Windows kernel keeps track of the 
threads associated with an I/O completion port. 

 



Chapter 3: Developing Phase: Process and Thread Management                                                                               99 

The WaitForMultipleObjects function can produce similar behavior, but the most important 
property of I/O completion ports is the controllable concurrency they provide. The concurrency 
value of an I/O completion port is specified when it is created. This value limits the number of 
runnable threads associated with the port; after the number of runnable threads exceeds the 
concurrency value, the rest of the threads are blocked. As a result, when a thread calls the 
GetQueuedCompletionStatus function, it only returns when a completed I/O is available and the 
number of runnable threads associated with the completion port is less than the concurrency of 
the port. Because there is one central synchronization point for all the I/O, a small pool of worker 
threads can service many clients.  
Unlike the other Windows synchronization objects, threads that block on an I/O completion port, 
by using GetQueuedCompletionStatus(), unblock in last-in-first-out (LIFO) order. 
A dozen threads can easily service a large set of clients by thread pooling, although this will vary 
depending on how often each transaction needs to wait.  
Note   For more information on writing multithreaded scalable applications, refer to MSDN at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/msdn_scalabil.asp. 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndllpro/html/msdn_scalabil.asp




  

Chapter 4: Developing Phase: Memory and 
File Management 

This chapter discusses the similarities and differences in memory and file management between 
the Microsoft® Windows® application programming interface (API) and UNIX. It also provides 
various memory and file management-related functions and APIs that are available in both 
environments. 

Memory Management 
For developers, memory management has always been one of the most important and interesting 
aspects of any operating system. Like UNIX, the Microsoft Windows operating system provides 
the standard heap management functions, as well as functions to manage memory on a thread 
basis. The basic functional mapping is covered in the next sections. 
The information provided in this chapter will help you understand the memory and file 
management implementations in the UNIX and Windows applications. You will also be able to 
identify the areas that may need to be modified for compatibility in the Windows environment.  

Heap 
The heap is an area of memory that is separate from the program code and the stack. It is 
reserved for the memory allocation needs of the program that Windows provides similar to UNIX 
with respect to heap management. The standard C runtime in Windows includes comparable 
functions for such UNIX functions as calloc, malloc, realloc, and free. Windows has additional 
functions that may not be available in UNIX, which are covered briefly in the following sections. 

Thread Local Storage 
Thread Local Storage (TLS) is another area of memory management that defines memory on a 
per-thread basis. All threads of a process share its virtual address space, where the static and 
global variables are shared by all threads in the process, and the local variables of a function are 
unique to each thread that runs the function. With TLS, you can provide unique data for each 
thread that the process accesses by using a global index. One thread allocates the index, which 
can be used by the other threads to retrieve the unique data associated with the index. 
The typical scenario in which TLS is used in Windows is within a dynamic-linked library (DLL), but 
this is not its only possible use. In the case of the DLL scenario, the use of TLS includes the 
following details: 
• When a DLL attaches to a process, the DLL uses TlsAlloc to allocate a TLS index. The DLL 

then allocates some dynamic storage to be used exclusively by the initial thread of the 
process. It uses the TLS index in a call to the TlsSetValue function to store the address in 
the TLS slot. This concludes the per-thread initialization for the initial thread of the process. 
The TLS index is stored in a global or static variable of the DLL. 

• Each time the DLL attaches to a new thread of the process, the DLL allocates some dynamic 
storage for the new thread and uses the TLS index in a call to TlsSetValue to store the 
address in the TLS slot. This concludes the per-thread initialization for the new thread. 

• Each time an initialized thread makes a DLL call requiring the data in its dynamic storage, the 
DLL uses the TLS index in a call to TlsGetValue to retrieve the address of the dynamic 
storage for that thread. 

 



102 UNIX Custom Application Migration Guide: Volume 3 

The following functions are used to manage TLS in UNIX and Windows: 
• Allocating memory. In the Windows environment, the TlsAlloc function allocates a TLS 

index. A TLS index is used by a thread to store and retrieve values that are local to the 
thread. The minimum number of indexes available to each process is defined by 
TLS_MINIMUM_AVAILABLE. TLS indexes are not valid across process boundaries. The 
prototype of the function is as follows: 
DWORD TlsAlloc(void); 
In the UNIX environment, pthread_key_create creates a thread-specific data key visible to 
all the threads in the process. Upon key creation, the value NULL is associated with the new 
key in all active threads. An optional destructor function may be associated with each key 
value. The prototype of the function is as follows: 
int pthread_key_create(pthread_key_t *key,   void   (*destructor, 
void*)); 

• Deleting memory. In the Windows environment, TlsFree releases a TLS index. This, 
however, does not release the data allocated and set in the TLS index slot. The prototype of 
the function is as follows: 
BOOL TlsFree(DWORD dwTlsIndex); 
In the UNIX environment, the pthread_key_delete function deletes the thread-specific data 
key. 
int pthread_key_delete(pthread_key_t key); 

• Storing a value. In the Windows environment, the TlsSetValue function stores memory in a 
TLS index. The prototype of the function is as follows: 
BOOL TlsSetValue(DWORD dwTlsIndex, LPVOID lpTlsValue); 
In the UNIX environment, the pthread_setspecific function associates a thread-specific 
value with the key. The prototype of the function is as follows: 
int   pthread_setspecific(pthread_key_t key, const void *value);  

• Retrieving a value. In the Windows environment, the TlsGetValue function returns a 
memory element stored in a specified TLS index. The prototype of the function is as follows: 
LPVOID TlsGetValue(DWORD dwTlsIndex); 
In the UNIX environment, the pthread_getspecific function returns the values currently 
bound to the specific key. The prototype of the function is as follows: 
void *pthread_getspecific(pthread_key_t key); 

Note   Additional information is available at  

http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_reference.asp. 

 

http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_reference.asp


Chapter 4: Developing Phase: Memory and File Management                                                                                   103 

Thread Local Storage (TLS) Example 
The following section shows a portion of an example application. It illustrates allocation and 
access to a memory space on a per-thread basis. First, the main thread of the process allocates 
a memory slot. The memory slot is then accessed and modified by a child thread. If several 
instances of the thread are active, each thread procedure will have a unique TLS index value to 
ensure the separation and isolation of data and state. 
UNIX example: Using TLS with pthread library 
#include <pthread.h> 

#include <stdio.h> 

#include <string.h> 

int main(void)  

{ 

      pthread_key_t k1; 

      int ret; 

      int val = 100; 

      int *pval = NULL; 

      ret = pthread_key_create(&k1, NULL); 

      if (ret)  

 { 

      printf("pthread_key_create: %s\n", strerror(ret)); 

      return -1; 

      } 

      ret = pthread_setspecific(k1, (void *) &val); 

      if (ret)  

 { 

         printf("pthread_setspecific: %s\n", strerror(ret)); 

         return -2; 

      } 

      pval =   (int*)pthread_getspecific(k1); 

      if(pval == NULL) 

      { 

         printf("pthred_getspecific: NULL returned"); 

         return -3; 

      } 

      printf("pthread_getspecific value: %d\n",*pval); 

      ret = pthread_key_delete(k1); 

      if (ret)  

    { 

  printf("pthread_key_delete: %s\n", strerror(ret)); 

  return -4; 

      } 

 return 0; 

} 

 



104 UNIX Custom Application Migration Guide: Volume 3 

 

Windows example: Using TLS with Platform SDK 
DWORD TLSIndex = 0; 

DWORD WINAPI ThreadProc( LPVOID lpData) 

{ 

HWND hWnd = (HWND) lpData; 

LPVOID lpVoid = HeapAlloc( GetProcessHeap(), 0, 128 ); 

TlsSetValue( TLSIndex, lpVoid ); 

// Do your processing on the memory within the thread here… 

HeapFree( GetProcessHeap(), 0, lpVoid ); 

Return(0); 

} 

 

LRESULT CALLBACK WndProc( HWND … 

{ 

switch( uMsg ) 

{ 

case WM_CREATE: 

TLSIndex = TlsAlloc(); 

// Start your threads using CreateThread… 

Break; 

Case WM_DESTROY: 

TlsFree( TLSIndex ); 

Break; 

Case WM_COMMAND: 

Switch( LWORD( wParam )) 

{ 

case IDM_TEST: 

// Do something with the TLS value by a call to TlsGetValue(DWORD) 

break; 

} 

} 

} 

 



Chapter 4: Developing Phase: Memory and File Management                                                                                   105 

Memory-Mapped Files 
Memory-mapped files offer a unique memory management feature that allows applications to 
access files on disk in the same way they access dynamic memory. It associates a file's contents 
with a portion of the virtual address space of a process. It can be used to share a file or memory 
between two or more processes. Windows supports memory-mapped files and memory-mapped 
page files. Memory-mapped page files are covered in the “Shared Memory” section as part of an 
exercise to port System V interprocess communication (IPC) shared memory to Windows using 
memory-mapped files. Creating and using shared memory in UNIX and Windows are 
conceptually the same activities, but syntactically different. 
UNIX example: Creating and mapping a shared memory area 
if ( (fd = open("/dev/zero", O_RDWR)) < 0) 

err_sys("open error"); 

if ( (area = mmap(0, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) 
== (caddr_t) -1) 

err_sys("mmap error"); 

close(fd); // can close /dev/zero now that it's mapped 

 

Windows example: Creating and mapping a shared memory area 
hMapObject = CreateFileMapping( 

INVALID_HANDLE_VALUE, // use paging file 

NULL, // no security attributes 

PAGE_READWRITE, // read/write access 

0, // size: high 32-bits 

SHMEMSIZE, // size: low 32-bits 

"dllmemfilemap"); // name of map object 

 

if (hMapObject != NULL)  

{ 

// Get a pointer to the file-mapped shared memory. 

lpvMem = MapViewOfFile( 

hMapObject, // object to map view of 

FILE_MAP_WRITE, // read/write access 

0, // high offset: map from 

0, // low offset: beginning 

0); // default: map entire file 

if (lpvMem == NULL)  

{ 

CloseHandle(hMapObject); 

} 

} 
Note   For details on the CreateFileMapping and MapViewOfFile functions, refer to the Windows API 
documentation. 

 



106 UNIX Custom Application Migration Guide: Volume 3 

Shared Memory 
Shared memory permits two or more threads or processes to share a region of memory. 
Interprocess communication (IPC) through shared memory provides the best performance among 
all the IPC mechanisms. This is because instead of copying the data, the same physical area of 
memory is accessed by both the client and the server. Windows does not support the System V 
IPC mechanisms for shared memory (the shm* APIs). However, it does support memory-mapped 
files and memory-mapped page files, which you can use as an alternative to the shm* APIs. 
Note   System V IPC support is available with MKS and Cygwin on Win32®/Win64. 

The GlobalAlloc functions can also be used on Windows for sharing memory. The GlobalAlloc 
function allocates the specified number of bytes from the heap, which can be shared among 
processes. 
Note   Additional information on GlobalAlloc is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/globalalloc.asp. 

Synchronizing Access to Shared Resources 
The technical challenge of using shared memory is to ensure that the server and client do not 
attempt to access the shared resource simultaneously. This is particularly troublesome if one or 
both are writing to the same shared memory area. For example, if the server is writing to the 
shared memory, the client must not try to access the data until the server has completed the write 
operation. 
To address this, several forms of synchronization are available in Windows. These are: 
• Semaphore 
• Mutex 
• Event 
• Critical section 
UNIX has two of these mechanisms—the semaphore and the mutex—as well as an additional 
mechanism called file locking.  
Note   These mechanisms are also discussed in Chapter 3, “Developing Phase: Process and Thread 
Management” of this volume. 

The first three mechanisms have two states: signaled and nonsignaled. The synchronization 
object is considered busy when it is in a nonsignaled state. When the object is busy, a waiting 
thread will block until the object switches to a signaled state. At this time, the pending thread 
continues to execute. The last form of synchronization is the critical section object. The critical 
section object is only for synchronizing threads within a single process. This synchronization 
mechanism only works for a single instance of the example application. Nonetheless, you can still 
consider its use as an IPC synchronization mechanism. This form of synchronization is 
appropriate for cases where you want to migrate your existing application from a multiprocessor 
architecture to a single multithreaded processor architecture. 
The synchronization objects should be used carefully to prevent deadlocks. Deadlocks occur 
when some subset of the threads is waiting on one another so that none can execute. 
Note   Applications that need to control the size of the stack or heap space can use linker switches for this 
purpose. The default size for both the stack and heap on Windows is 1 MB. Use the /STACK linker option 
to set the size of the stack and the /HEAP linker option to set the heap size. Both options take the size in 
bytes. Additional information on how to use these linker options is available at 

http://msdn2.microsoft.com/en-us/library/f90ybzkh.aspx or 

http://msdn2.microsoft.com/en-us/library/8cxs58a6(en-US,VS.80).aspx. 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/globalalloc.asp
http://msdn2.microsoft.com/en-us/library/f90ybzkh.aspx
http://msdn2.microsoft.com/en-us/library/8cxs58a6(en-US,VS.80).aspx


Chapter 4: Developing Phase: Memory and File Management                                                                                   107 

Further Reading on Memory Management 
For further information about memory management, refer to the following: 
• Richter, Jeffrey. Programming Applications for Microsoft Windows, Fourth Edition. Redmond, 

WA: Microsoft Press®, 1999. (See Part III, Chapters 13–18.) 
• Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading, MA: 

Addison-Wesley Publishing Co., 1992. 

File Management 
This section discusses the differences in file handling, file access, file control, and directory 
operations. You can use this information to understand the file management implementations in 
UNIX and Windows applications. You can also identify the areas that may need to be modified for 
compatibility within the Windows environment. 
Every program that runs from the UNIX shell opens three standard files. These files have integer 
file descriptors, provide the primary means of communication between the programs, and exist for 
as long as the process runs. You associate other file descriptors with files and devices using the 
open system call. Table 4.1 lists the UNIX standard file descriptors. 
Table 4.1. UNIX Standard File Descriptors 

File File Descriptor Description 

Standard input 0 Standard input file provides a way to send data to 
a process. By default, the standard input is read 
from the keyboard. 

Standard output 1 Standard output file provides a means for the 
program to output data. By default, the standard 
output goes to the display. 

Standard error 2 Standard error is where the program reports any 
errors that occurred during the program 
execution. By default, the standard error goes to 
the display. 

In Windows, when a program begins execution, the startup code automatically opens the 
following files (streams): 
• Standard input (pointed to by stdin) 
• Standard output (pointed to by stdout) 
• Standard error (pointed to by stderr) 
These stream files are directed to the console (keyboard and screen) by default. Use freopen to 
redirect stdin, stdout, or stderr to a disk file or a device. 
The stdout and stderr stream files are flushed whenever they are full or, if you are writing to a 
character device, after each library call. If a program terminates abnormally, output buffers may 
not be flushed, resulting in loss of data. Use fflush or _flushall to ensure that the buffer 
associated with a specified file or that all open buffers are flushed to the operating system, which 
can cache data before writing it to disk. The commit-to-disk feature ensures that the flushed 
buffer content is not lost in the event of a system failure. 

 



108 UNIX Custom Application Migration Guide: Volume 3 

Low-Level File Access 
The low-level I/O functions directly invoke the operating system for lower-level operation, instead 
of the operation provided by standard (or stream) I/O. Function calls relating to low-level input 
and output do not buffer or format data. Low-level I/O functions can access the standard streams 
opened at program startup using the standard file descriptors. They deal with bytes of 
information, which implies that you are using binary files, not text files. Instead of file pointers, you 
use low-level file handles or file descriptors, which give a unique integer number to identify each 
file. 
The read and write method used in UNIX have equivalents in the Windows environment as _read 
and _write. These methods can be used to read data from standard input and write data to 
standard output.  
Information about the prototype and additional details about the low-level I/O routines available in 
Windows can be found at 
http://msdn2.microsoft.com/en-us/library/40bbyw78.aspx. 
Note   Just as in UNIX, the Windows cmd.exe shell redirects standard error from the command line with 
the 2> operator. 

Standard (Stream) File Access 
The standard or stream I/O functions process data in different sizes and formats, and from single 
characters to large data structures. They also provide buffering, which can improve performance. 
These routines affect only buffers created by the run-time library routines and have no effect on 
buffers created by the operating system. The standard I/O library and its header file stdio.h 
provide low-level file I/O system calls. This library is part of ANSI standard C, so they can be 
ported directly to Windows. 
Both UNIX and Windows support the standard I/O library functions for several file access 
purposes. 
Note   Additional information on the list of I/O library functions and their prototypes is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_crt_stream_i.2f.o.asp. 

ioctl Calls 
The ioctl function performs a variety of control operations on devices and streams. For 
nonstream files, the operations performed by this call are device-specific control operations. The 
prototype of the ioctl function is as follows. 
int ioctl(int fildes, int request, /* arg */ …); 

In Windows, a subset of the operations on a socket is provided by the ioctlsocket function. The 
ioctlsocket function supports only the SIOCATMARK command and does not have a command 
parameter equivalent to the FIOASYNC parameter of the ioctl function. 

Windows ioctlsocket 
The ioctlsocket function controls the I/O mode of a socket. 
int ioctlsocket(SOCKET s, long cmd, u_long FAR *argp); 

The ioctlsocket function can be used on any socket in any state. It is used to set or retrieve 
operating parameters associated with the socket, independent of the protocol and 
communications subsystem. Table 4.2 lists the supported commands to use in the command 
parameter and their semantics. 

 

http://msdn2.microsoft.com/en-us/library/40bbyw78.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/HTML/_crt_stream_i.2f.o.asp


Chapter 4: Developing Phase: Memory and File Management                                                                                   109 

Table 4.2. ioctlsocket Parameters and Semantics 

Command Description 

FIONBIO Use with a nonzero argp parameter to enable the nonblocking mode of 
sockets. Set the argp parameter to zero if nonblocking is to be disabled. The 
argp parameter points to an unsigned long value. When created, a socket 
operates in blocking mode by default (nonblocking mode is disabled). This is 
consistent with BSD sockets. The WSAAsyncSelect and WSAEventSelect 
functions automatically set a socket to nonblocking mode. If 
WSAAsyncSelect or WSAEventSelect has been issued on a socket, then 
any attempt to use ioctlsocket to set the socket back to blocking mode will 
fail with WSAEINVAL. To set the socket back to blocking mode, an application 
must first disable WSAAsyncSelect by calling WSAAsyncSelect with the 
lEvent parameter set to zero or by calling WSAEventSelect with the 
lNetworkEvents parameter set to zero. The prototypes of the 
WSAAsyncSelect and WSAEventSelect functions are as follows: 
int WSAAsyncSelect(SOCKET s, HWND hWnd, unsigned int 
wMsg, long lEvent) 
int WSAEventSelect(SOCKET s, WSAEVENT hEventObject, long 
lNetworkEvents) 

FIONREAD Use to determine the amount of data pending in the input buffer of the network 
that can be read from sockets. The argp parameter points to an unsigned 
long value in which ioctlsocket stores the result. FIONREAD returns the 
amount of data that can be read in a single call to the recv function, which 
may not be the same as the total amount of data queued on the socket. If s is 
message oriented (for example, type SOCK_DGRAM), FIONREAD still 
returns the amount of pending data in the network buffer. However, the 
amount that can actually be read in a single call to the recv function is limited 
to the data size written in the send or sendto function call. The prototypes of 
the recv, send, and sendto functions are as follows: 
int recv (int s, void *buf, int len, int flags) 
int send (SOCKET s, const char FAR* buf, int len, int 
flags) 
int sendto (SOCKET s, const char FAR* buf, int len, int 
flags, const struct SOCK_ADDR* to, int tolen) 

SIOCATMARK Use to determine whether all out-of-band (OOB) data has been read. For a 
discussion of OOB data, refer to the "Windows Sockets 1.1 Blocking Routines 
and EINPROGRESS" section in the Microsoft Platform SDK: Windows 
Sockets 2 reference available on MSDN®. This applies only to a stream-
oriented socket (for example, type SOCK_STREAM) that has been configured 
for inline reception of any OOB data (SO_OOBINLINE). If no OOB data is 
waiting to be read, the operation returns TRUE. Otherwise, it returns FALSE, 
and the next recv or recvfrom performed on the socket will retrieve some or 
all of the data preceding the mark. The application should use the 
SIOCATMARK operation to determine whether any data remains. If there is 
any typical data preceding the urgent (out-of-band) data, it will be received in 
order. A recv or recvfrom never mixes OOB and typical data in the same call. 
The argp parameter points to an unsigned long value in which ioctlsocket 
stores the boolean result. 

 

 



110 UNIX Custom Application Migration Guide: Volume 3 

File Control 
File control in UNIX is implemented using the fcntl function. The fcntl function performs one of a 
number of miscellaneous operations on file descriptors. 
#include <unistd.h> 

#include <fcntl.h> 

int fcntl(int fd, int cmd); 

int fcntl(int fd, int cmd, long arg); 

int fcntl(int fd, int cmd, struct flock *lock); 

Table 4.3 lists the commands and semantics. 
Table 4.3. File Control Commands and Semantics 

Command Description 

F_DUPFD Find the lowest numbered file descriptor available that is equal to or 
greater than arg and make it a copy of fd. On success, the new descriptor 
is returned. 

F_GETFD Read the close-on-exec flag. On success, the value of the flag is returned. 

F_SETFD Set the close-on-exec flag to the value specified by the FD_CLOEXEC bit 
of arg. 

F_GETFL Read the flags of the descriptor. All flags, as set by open, are returned.  

F_SETFL Set the flags of the descriptor to the value specified by arg. O_APPEND, 
O_NONBLOCK, and O_ASYNC may be set; the other flags are 
unaffected. 

F_GETLK, 
F_SETLK, and 
F_SETLKW 

These commands are used to manage discretionary file locks. The third 
argument lock is a pointer to a struct flock, which may be overwritten by 
this call. 

F_GETLK Return the first flock structure that prevents the requested lock from being 
created or set the l_type field of the lock to F_UNLCK if there is no 
obstruction. 

F_SETLK The lock is set (when l_type is F_RDLCK or F_WRLCK) or cleared (when 
it is F_UNLCK). If the lock is held by another user, this call returns -1 and 
sets errno to EACCES or EAGAIN. 

F_SETLKW Like F_SETLK, but instead of returning an error, wait for the lock to be 
released. If a signal that is to be caught is received while fcntl is waiting, it 
is interrupted and (after the signal handler has returned) returns 
immediately with a return value of -1 and errno set to EINTR. 

F_GETOWN, 
F_SETOWN, 
F_GETSIG and 
F_SETSIG 

These commands are used to manage I/O availability signals. 
 

F_GETOWN Get the process ID or process group currently receiving SIGIO and 
SIGURG signals for events on file descriptor fd. Process groups are 
returned as negative values. 

F_SETOWN Set the process ID or process group that will receive SIGIO and SIGURG 
signals for events on file descriptor fd. Process groups are specified using 
negative values. F_SETSIG can be used to specify a different signal 
instead of SIGIO. 

 



Chapter 4: Developing Phase: Memory and File Management                                                                                   111 

Command Description 

F_GETSIG Get the signal sent when input or output becomes possible. A value of 
zero means SIGIO is sent. Any other value (including SIGIO) is the signal 
sent instead. In this case, additional information is available to the signal 
handler if installed with SA_SIGINFO. 

F_SETSIG Sets the signal to be sent when input or output becomes possible. A value 
of zero sends the default SIGIO signal. Any other value (including SIGIO) 
is the signal to send instead. In this case, additional information is 
available to the signal handler if installed with SASIGINFO. 

In Windows, the following equivalent functions are available for some, but not all, of the UNIX 
fcntl commands: 
• Use the _dup function in Windows for the F_DUPFD command in fcntl function in UNIX. 
• Use the LockFile, LockFileEx, and UnLockFile functions in Windows for the F_SETLK and 

F_SETLKW commands of fcntl function in UNIX. The following example demonstrates this. 
 
UNIX example: Using fcntl 
The following sample opens a file, sets the read lock, and unlocks the file. If any errors occur, an 
error message is output to the standard error file descriptor. 
#include <unistd.h> 

#include <fcntl.h> 

 

int main() 

{ 

struct flock l; 

int fd = open("/tmp/locktest", O_RDWR|O_CREAT, 0644); 

 

if (fd < 0) 

{ 

perror("file open error"); 

exit(1); 

} 

 

l.l_type = F_RDLCK; 

l.l_whence = SEEK_SET; 

l.l_start = 0; 

l.l_len = 0; 

if (fcntl(fd, F_SETLK, &l) == -1) 

{ 

perror("fcntl error – F_RDLCK"); 

exit(1); 

} 

 

l.l_type = F_UNLCK; 

if (fcntl(fd, F_SETLK, &l) == -1) 

 



112 UNIX Custom Application Migration Guide: Volume 3 

{ 

perror("fcntl error – F_UNLCK"); 

exit(1); 

} 

 

exit(0); 

} 

(Source File: U_Fcntl-UAMV3C4.02.c) 
 

Windows example: Using fcntl 
The following sample opens a file, sets the read lock, and unlocks the file. If any errors occur, an 
error message is output to the console. 
#include <stdio.h> 

#include <fcntl.h> 

#include <windows.h> 

#include <io.h> 

 

int main() 

{ 

HANDLE hFile; 

DWORD dwBytesRead, dwPos; 

BOOL fResult; 

 

// Open the existing file. 

hFile = CreateFile("ONE.TXT", // open ONE.TXT 

GENERIC_READ, // open for reading 

0, // do not share 

NULL, // no security 

OPEN_EXISTING, // existing file only 

FILE_ATTRIBUTE_NORMAL, // normal file 

NULL); // no attr. template 

 

if (hFile == INVALID_HANDLE_VALUE) 

{ 

printf("Could not open ONE.TXT\n"); // process error 

} 

 

// Lock the file 

fResult = LockFile(hFile, dwPos, 0, dwPos + dwBytesRead, 0); 

if (fResult == 0) 

{ 

printf("Could not lock ONE.TXT\n"); 

} 

 



Chapter 4: Developing Phase: Memory and File Management                                                                                   113 

 

// Unlock the file 

UnlockFile(hFile, dwPos, 0, dwPos + dwBytesRead, 0); 

if (fResult == 0) 

{ 

printf("Could not unlock ONE.TXT\n"); 

} 

  

// Close file. 

CloseHandle(hFile); 

return(0); 

} 

(Source File: W_Fcntl-UAMV3C4.02.c) 

Directory Operation 
Directory operations involve calling the appropriate functions to perform directory scanning or to 
list the contents of a directory. Directory scanning involves traversing a directory hierarchy. 
Table 4.4 provides details about the related functions for directory operations in UNIX and their 
replacements in Windows. 
Table 4.4. Directory Operations Functions in UNIX and Their Replacements in Windows 

UNIX Functions Description Suggested Replacement in 
Windows 

getcwd 
getwd 

Gets the current working 
directory. 

The _getcwd function does the 
same action. The prototype of the 
function is as follows: 
char *_getcwd(char 
*buffer, int maxlen);

get_current_dir_name 
 

Gets the current working 
directory. 

The GetCurrentDirectory 
function gives the same result. 
The prototype of the function is 
as follows: 
DWORD 
GetCurrentDirectory(DWORD 
nBufferLength, LPTSTR 
lpBuffer) 

The following examples illustrate additional directory handling functions in UNIX and Windows. 
UNIX example: Using directory handling functions 
This sample prints out the current directory, and then recurses through subdirectories. 
#include <unistd.h> 

#include <stdio.h> 

#include <dirent.h> 

#include <string.h> 

#include <sys/stat.h> 

 

void ScanDir(char *dir, int indent) 

 



114 UNIX Custom Application Migration Guide: Volume 3 

{ 

DIR *dp; 

struct dirent *dir_entry; 

struct stat stat_info; 

 

if((dp = opendir(dir)) == NULL) 

{ 

fprintf(stderr,"cannot open directory: %s\n", dir); 

return; 

} 

chdir(dir); 

 

while((dir_entry = readdir(dp)) != NULL)  

{ 

lstat(dir_entry->d_name,&stat_info); 

if(S_ISDIR(stat_info.st_mode))  

{ 

/* Directory, but ignore . and .. */ 

if(strcmp(".",dir_entry->d_name) == 0 || strcmp("..",dir_entry->d_name) 
== 0) 

continue; 

printf("%*s%s/\n",indent,"",dir_entry->d_name); 

/* Recurse at a new indent level */ 

ScanDir(dir_entry->d_name,indent+4); 

} 

else printf("%*s%s\n",indent,"",dir_entry->d_name); 

} 

chdir(".."); 

 

closedir(dp); 

} 

 

int main(int argc, char* argv[]) 

{ 

char *topdir, defaultdir[2]="."; 

 

if (argc != 2) { 

printf("Argument not supplied - using current directory.\n"); 

topdir=defaultdir; 

} 

else 

topdir=argv[1]; 
 

 



Chapter 4: Developing Phase: Memory and File Management                                                                                   115 

printf("Directory scan of %s\n",topdir); 

ScanDir(topdir,0); 

printf("done.\n"); 

exit(0); 

} 

(Source File: U_Dir-UAMV3C4.01.c) 
 
Windows example: Using directory handling functions 
This sample prints out the current directory and then recurses through subdirectories. It uses the 
FindFirstFile, FindNextFile, and FindClose Windows API functions. 
#include <windows.h> 

#include <stdio.h> 

 

void ScanDir(char *dirname, int indent) 

{ 

BOOL fFinished; 

HANDLE hList; 

TCHAR szDir[MAX_PATH+1]; 

TCHAR szSubDir[MAX_PATH+1]; 

WIN32_FIND_DATA FileData; 

 

// Get the proper directory path 

sprintf(szDir, "%s\\*", dirname); 

 

// Get the first file 

hList = FindFirstFile(szDir, &FileData); 

if (hList == INVALID_HANDLE_VALUE) 

{ 

printf("No files found\n\n"); 

} 

else 

{ 

// Traverse through the directory structure 

fFinished = FALSE; 

while (!fFinished) 

{ 

// Check the object is a directory or not 

if (FileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) 

{ 

if ((strcmp(FileData.cFileName, ".") != 0) && 

(strcmp(FileData.cFileName, "..") != 0)) 

{ 

printf("%*s%s\\\n", indent, "", FileData.cFileName); 

 



116 UNIX Custom Application Migration Guide: Volume 3 

// Get the full path for sub directory 

sprintf(szSubDir, "%s\\%s", dirname, FileData.cFileName); 

ScanDir(szSubDir, indent + 4); 

} 

} 

else 

printf("%*s%s\n", indent, "", FileData.cFileName); 

if (!FindNextFile(hList, &FileData)) 

{ 

if (GetLastError() == ERROR_NO_MORE_FILES) 

{ 

fFinished = TRUE; 

} 

} 

} 

} 

FindClose(hList); 

} 

 

void main(int argc, char *argv[]) 

{ 

char *pszInputPath; 

char pwd[2] = "."; 

 

if (argc < 2) 

{ 

printf("Argument not supplied - using current directory.\n"); 

pszInputPath = pwd; 

} 

else 

{ 

pszInputPath = argv[1]; 

printf("Input Path: %s\n\n", pszInputPath); 

} 

ScanDir(pszInputPath, 0); 

 

printf("\ndone.\n"); 

} 

(Source File: W_Dir-UAMV3C4.01.c) 

 



Chapter 4: Developing Phase: Memory and File Management                                                                                   117 

Raw Device I/O 
A raw device can be bound to an existing block device (for example, a disk) and can be used to 
perform raw I/O with that block device. Raw I/O does not involve the kernel caching that is 
normally associated with block devices. In UNIX, the system calls for character devices can be 
used to operate on raw devices. Device-specific files are created by the mknod system call. 
There is an additional system call, ioctl, for manipulating the underlying device parameters of 
special files. The prototype of the mknod and ioctl functions is as follows: 
int mknod( char *pathname, mode_t mode, dev_t dev); 

int ioctl(int fildes, int request, /* arg */ ...); 
The following example describes the usage of mknod function for creating the device-specific 
files. 
UNIX example: Raw device I/O 
#include <errno.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/stat.h> 

#include <sys/sysmacros.h> 

#include <unistd.h> 

int main(int argc,char **argv) 

{ 

            int major =0,minor=0; 

            char *path = "test.x"; 

            int mode = 0666 | S_IFBLK; 

            char *end; 

            /* get the major and minor numbers for device files */ 

            major = strtol("01",&end,0); 

            if(*end) 

            { 

                        printf("error in minor number:%d\n",minor); 

                        return 1; 

            } 

            minor = strtol("01",&end,0); 

            if(*end) 

            { 

                        printf("error in minor number:%d\n",minor); 

                        return 1; 

            } 

            /* creating device file */ 

          if(mknod(path,mode,makedev(major,minor))) 

          { 

            printf("error in creating the device file: 
%s\n",strerror(errno)); 

            return 2; 

 



118 UNIX Custom Application Migration Guide: Volume 3 

            } 

            return 0; 

} 
 

Raw device I/O is common in Windows. Device I/O in Windows can be done with asynchronous 
I/O (or overlapped I/O). A process can open a file for asynchronous I/O with a call to CreateFile 
by specifying the FILE_FLAG_OVERLAPPED flag in the parameter. When the file is opened for 
asynchronous I/O, a pointer to an OVERLAPPED structure is passed into the call to ReadFile 
and WriteFile. You can also create an event and put the handle in the OVERLAPPED structure; 
the wait functions can then be used to wait for the I/O operation to complete by waiting on the 
event handle. The prototype of the Createfile, WriteFile, and ReadFile methods are as follows. 
HANDLE CreateFile(LPCTSTR lpFileName, DWORD dwDesiredAccess, DWORD 
dwShareMode, LPSECURITY_ATTRIBUTES lpSecurityAttributes, DWORD 
dwCreationDisposition, DWORD dwFlagsAndAttributes, HANDLE 
hTemplateFile); 

BOOL WriteFile(HANDLE hFile, LPCVOID lpBuffer, DWORD 
nNumberOfBytesToWrite, LPDWORD lpNumberOfBytesWritten, LPOVERLAPPED 
lpOverlapped); 

BOOL ReadFile(HANDLE hFile, LPVOID lpBuffer, DWORD 
nNumberOfBytesToRead, LPDWORD lpNumberOfBytesRead, LPOVERLAPPED 
lpOverlapped); 

BOOL DeviceIoControl(HANDLE hDevice, DWORD dwIoControlCode, LPVOID 
lpInBuffer, DWORD nInBufferSize, LPVOID lpOutBuffer, DWORD 
nOutBufferSize, LPDWORD lpBytesReturned, LPOVERLAPPED lpOverlapped); 

 
Windows example: Raw device I/O 
The following example describes the usage of raw device I/O with the Windows API. 
#include <windows.h> 

#include <stdio.h> 

 

 

 

int main() 

{ 

 int nDiskNumber = 0; 

char buf[64]; 

memset(buf,0,sizeof(buf)); 

sprintf ( buf, "\\\\.\\PHYSICALDRIVE%c", (char)nDiskNumber+'0'); 

//Open the physical disk handle 

HANDLE hDiskHandle =   CreateFile ( buf , GENERIC_READ | GENERIC_WRITE 

                        , FILE_SHARE_READ | FILE_SHARE_WRITE ,  

NULL,OPEN_EXISTING, 0 , NULL ); 

if (hDiskHandle == INVALID_HANDLE_VALUE) 

{ 

    printf ("PhysicalDisk:: can not open physical disk"); 

    return 1; 

 



Chapter 4: Developing Phase: Memory and File Management                                                                                   119 

}  

 

int nSide,nTrack,nSector; 

nSide = nTrack = nSector = 200 ; 

 

LARGE_INTEGER li; 

li.QuadPart = UInt32x32To64 (nSide*nTrack*nSector, 512); 

//Move the physical disk pointer to the required position 

DWORD dwPos = SetFilePointer ( hDiskHandle, li.LowPart, &li.HighPart, 
FILE_BEGIN); 

DWORD dwError = GetLastError(); 

if(dwError != NO_ERROR) 

{ 

 printf("error in moving the file position\n"); 

 return 1; 

} 

unsigned long bytesRead; 

char inBuffer[512]; 

memset(inBuffer,0,sizeof(bytesRead)); 

//Read the data from the physical disk 

BOOL result = ReadFile( hDiskHandle,inBuffer,512 , &bytesRead , NULL ); 

 dwError = GetLastError(); 

 if( bytesRead <= 0 || dwError) 

 { 

  printf("error in reading the file\n"); 

  return 2; 

 } 

 CloseHandle(hDiskHandle); 

 return 0; 

}    
Note   More information on raw I/O and file systems in Windows is available at the MSDN Web site. 

 

 





  

Chapter 5: Developing Phase: 
Infrastructure Services 
This chapter discusses the potential coding differences between UNIX and Microsoft® Windows® 
operating systems with respect to infrastructure services. 
Infrastructure services are discussed in the following sections: 
• Security 
• Handles 
• Error and Exception Handling 
• Handles 
• Signals vs. Events 
• Interprocess Communication (IPC) 
• Networking 
This chapter describes the implementation of the preceding infrastructure services in the 
Windows environment and provides a detailed comparison with the corresponding 
implementation in UNIX. 
Using the information provided in this chapter, you can identify any incompatibilities in your 
applications in these areas and also learn about the suggested replacement mechanisms for the 
Windows environment. 

Security 
The UNIX and Windows security models are quite different. The Windows application 
programming interface (API) uses the underlying Windows security model. This results in key 
differences between the way Windows security works and the way UNIX security works. Some of 
these differences are covered in the “Architectural Differences” section in Chapter 1, “Introduction 
to Win32/Win64” of this volume. This chapter covers the differences in their respective security 
models. This section describes various security features available in Windows, such as user-level 
security and process-level security, and compares them with UNIX. With this information, you can 
modify the security-related code in your applications to operate in Windows. 

User-Level Security 
This section discusses the differences in implementing user-level security in UNIX and Windows. 

 



122 UNIX Custom Application Migration Guide: Volume 3 

Retrieving the User Name of the Current User 
The following examples illustrate the migration of code from UNIX to Windows to retrieve the user 
name of the current user. 
UNIX example: Retrieving the user name of the current user 
This example uses the getlogin function to retrieve the user name of the user currently logged 
onto the system. 
#include <stdio.h> 

#include <unistd.h> 

 

main() 

{ 

// Get and display the user name. 

printf("User name: %s\n", getlogin()); 

} 

(Source File: U_GetUser-UAMV3C5.01.c) 
 
Windows example: Retrieving the user name of the current user 
This example uses the GetUserName function to retrieve the user name of the current thread. 
This is the name of the user currently logged on to the system. 
The GetUserNameEx function can be used to retrieve the user name in a specified format. 
#include <windows.h> 

#include <stdio.h> 

#include <lmcons.h> 

 

void main() 

{ 

LPTSTR lpszSystemInfo; // pointer to system information string 

DWORD cchBuff = 256; // size of user name 

TCHAR tchBuffer[UNLEN + 1]; // buffer for expanded string 

lpszSystemInfo = tchBuffer; 

 

// Get and display the user name. 

GetUserName(lpszSystemInfo, &cchBuff); 

printf("User name: %s\n", lpszSystemInfo); 

} 

(Source File: W_GetUser-UAMV3C5.01.c) 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             123 

Process-Level Security 
In UNIX, access rights are determined by the permissions on files. Each user has a UID, which 
(unlike Windows) does not have to be unique. A user is logged on to the system when a shell 
process is running that has the UID of the user. Groups are sets of users. A UNIX group has a 
Group ID (GID). Every process has a UID and a GID associated with it. 
When a user logs on to the system with a user name and a password, UNIX starts a shell with the 
UID and GID of that user. From then on, all access to files and other resources is controlled by 
the permissions assigned to the UID and GID or the process. The UIDs and GIDs are configured 
in two files: /etc/passwd and /etc/group. 
Security permissions are applied to files based on users or groups. The permissions that can be 
granted are read, write, and execute. These permissions are grouped in three sets: the owner of 
the file, the group of the owner, and everyone else. A full (long) listing for a file shows the file 
permissions as a group of nine characters that indicate the permissions for owner, group, and 
everyone. The characters r, w, x, and - are used to indicate read, write, execute, and no 
permission, respectively. For example, if the owner of a file has all permissions but the group and 
everyone have only read permission, the string is as follows: 
rwxr--r-- 
Note   Some UNIX implementations have extended the basic security model to include access control lists 
(ACLs) similar to those used in Windows. However, ACLs are not implemented consistently across all 
versions of UNIX. 

A process can take the identity of another user in order to gain the access permissions of that 
user or to use resources that may be accessible to the other user. This can be done using the 
setuid function in UNIX. The following example changes the real, effective, and saved-set-UIDs. 
UNIX example: Set the UID of the process to a specific user 
#include <unistd.h> 

#include <stdio.h> 

  

int main(void)  

{ 

printf ( "prior to setuid(), uid = %d, effective uid = %d\n" 

(int) getuid(), (int) geteuid() ); 

if ( setuid(25) != 0 ) 

perror( "setuid() error" ); 

else 

printf ( "after setuid(),     uid = %d, effective uid = %d\n",  

(int) getuid(), (int) geteuid() ); 

    return 0; 

} 

(Source File: U_SetUid-UAMV3C5.01.c) 
 
Windows uses a unified security model that protects all objects from unauthorized access. The 
system maintains security information for the following: 
• Users. The people who log on to the system, either interactively by entering a set of 

credentials (user name and password) or remotely through the network. The security context 
of every user is represented by a logon session. Each process that the user starts is 
associated with the logon session of the user.  

• Objects. The secured resources that a user can access. For example, files, synchronization 
objects, and named pipes represent kernel objects. 

 
  



124 UNIX Custom Application Migration Guide: Volume 3 

Access Tokens 
An access token is a data structure associated with every process that is started by a particular 
user and is associated with the logon session of that user. The access token identifies who the 
user is and which security groups he or she belongs to. Although users and groups have human-
readable names to ease administration, for performance reasons they are uniquely identified, 
internally, by security identifiers (SIDs). 

Security Descriptors 
A security descriptor describes the security attributes of each object. The information in the 
security descriptor includes the owner of the object, the system access control list (SACL), and a 
discretionary access control list (DACL). The DACL contains a list of access control entries 
(ACEs) that defines the access rights for particular users or groups of users. The owner of the 
object controls the DACL and uses it to determine who should and should not be allowed access 
to the object, and what rights should be granted to them. 
The security descriptor also includes a system access control list (SACL), which is controlled by 
system administrators. Administrators use SACLs to specify auditing requirements for object 
access. For example, an administrator can establish a SACL that specifies the generation of an 
audit log entry whenever a user attempts to delete a particular file. 
The sequence of events from the time a user logs on, to the time the user attempts to access a 
secure object, is as follows: 
1. The user logs on with a set of credentials. The system validates these credentials by 

comparing them against the information maintained in a security database (or Microsoft 
Active Directory® directory service). 

2. If the details of the user are authenticated, the system creates a logon session that 
represents the security context for the user. Every process created on behalf of the user 
(starting with the Windows shell process) contains an access token that describes the 
security context of the user. 

3. Every process subsequently started by the user is passed a copy of the access token. If one 
process results in additional processes, all child processes obtain a copy of the access token 
and are associated with the single logon session of the user. 

4. When a process (acting on behalf of the user) attempts to open a secure object such as a 
file, the process must initially obtain a handle to the object. For example, when attempting to 
open a file, the process calls the CreateFile function. The process specifies a set of access 
rights on the call to CreateFile. 

5. The security system accesses the security descriptor of the object and uses the list of ACEs 
contained in the DACL to find a group or user SID that matches the one contained in the 
access token of the process. When this task is complete, the user is either denied access to 
the object (if a deny ACE is located) or the user is granted a specific set of access rights to 
the object. The granted rights may be the same as the rights initially requested or they may 
be a subset of the rights initially requested. For example, the CreateFile call can request 
read and write access to a file, but the DACL may allow only read access. 

Impersonation 
When a thread within a process attempts to access a secured object, the security context that 
represents the user who is making the access attempt is normally obtained from the process-level 
access token. You can, however, associate a temporary access token with a specific thread. 
For example, within a server process, you can impersonate the security context of a client. The 
act of impersonation associates a temporary access token with the current thread. The temporary 
impersonation access token represents the security context of the client. As a result, the server 
thread uses the security context of the user when it attempts to access any secured object. When 
the temporary access token is removed from the thread, impersonation ceases and subsequent 
resource access reverts to using the process-level access token. 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             125 

The ImpersonateLoggedOnUser function can be used for this. The user is represented by a 
token handle. 
BOOL ImpersonateLoggedOnUser( 

HANDLE hToken 

); 

 

Here, hToken is a handle to a primary or impersonation access token that represents a logged-on 
user. This can be a token handle returned by a call to the LogonUser, CreateRestrictedToken, 
DuplicateToken, DuplicateTokenEx, OpenProcessToken, or OpenThreadToken functions.  
The impersonation lasts until the thread exits or until it calls RevertToSelf. The calling thread 
does not need to have any particular privileges to call ImpersonateLoggedOnUser. 

Handles  
This section discusses the differences in implementing system handles in UNIX versus Windows. 
This section covers the following topics: 
• Socket handles 
• File handles 
• Output buffer or event queue handling 
By understanding the implementation of handles in Windows and UNIX, you will be able to 
identify the unsupported handle-specific features in the UNIX application and the replacement 
mechanisms in the Windows environment specific to signal and error handling. 

Socket Handles 
In UNIX, socket handles are small, non-negative integers. Socket handles can be passed to most 
of the low-level Portable Operating System Interface (POSIX) input/output (I/O) functions. For 
example: 
read(s, buffer, buffer_len); 

In the earlier example, s could either be a socket or a file handle. It is common to use read 
instead of recv to read data from a socket, for example. Similarly, the write function call is 
equivalent to send and sendto. 
Windows defines a new unsigned data type SOCKET that may take any value in the range 0 to 
INVALID_SOCKET–1, where INVALID_SOCKET is a predefined value for a nonexistent socket. 
Because the SOCKET type is unsigned, compiling existing source code from a UNIX environment 
may lead to compiler warnings about signed/unsigned data type mismatches. 
A socket handle can optionally be a file handle in Windows Sockets 2. It is possible to use socket 
handles with the ReadFile, WriteFile, ReadFileEx, WriteFileEx, DuplicateHandle, and other 
functions. However, for an application to run over the widest possible number of service 
providers, it should not assume that socket handles are file handles. 

File Handles 
In UNIX, a file handle is an opaque number that is used to uniquely identify a file or other file 
system objects. 
The fact that the file handle is opaque means that no information can be obtained from the file by 
inspecting the contents of the file handle. The only operations that can be done with the file 
handle are to copy and compare it for equality with another file handle. 

 
  



126 UNIX Custom Application Migration Guide: Volume 3 

The traditional contents of a file handle are:  
• An identifier for the file system, such as the device number from which the file system is 

mounted. 
• An identifier for the inode within the file, such as the inode number.  
• A field to indicate when an inode has been reused; this is typically called a generation 

number for the inode. 
In Windows, the file handle is used to identify a file. When a file is opened by a process using the 
CreateFile function, a file handle is associated with it until either the process terminates or the 
handle is closed using the CloseHandle function. 
Each file handle is generally unique to each process that opens a file. The only exceptions to this 
are when a file handle held by a process is duplicated or when a child process inherits the file 
handles form the parent process. These file handles are unique, but they refer to a single, shared 
file object. 
Note   Although the file handles are typically private to a process, the file data that the file handles point 
to is not. Therefore, processes and threads that share the same file must synchronize their access. For 
most operations on a file, a process identifies the file through its private pool of handles. 

Output Buffer or Event Queue Handling 
The operating system may respond to events immediately or put them in an EventQueue for later 
processing. The select function can be used in UNIX for this. This function indicates which of the 
specified file descriptors are ready for reading or writing or which have an error condition pending. 
If none of the specified file descriptors is ready for reading/writing or has an error condition 
pending, the select function keeps blocking itself for a predefined timeout interval until one of the 
file descriptors is ready. The select function supports regular files, terminal and pseudo-terminal 
devices, stream-based files, FIFOs, and pipes. 
In Windows, this is possible with the WaitForMultipleObjects or WaitForSingleObject functions 
as well. The WaitForMultipleObjects function determines whether the given input objects meet 
the wait criteria. It returns a value when either of the specified objects is in the signaled state or 
when the time-out interval elapses. WaitForSingleObject also behaves in the same way as 
WaitForMultipleObjects except that it works with the single input object. If the criteria are not 
met, the calling thread enters the wait state. It does not use any processor cycles while waiting for 
the criteria to be met. 
These functions can specify handles of any of the following object types as the input parameter: 
• Change notification 
• Console input 
• Event  
• Job 
• Memory resource notification  
• Mutex  
• Process 
• Semaphore 
• Thread 
• Waitable timer 
Use caution when calling the wait functions and code that directly or indirectly creates windows. If 
a thread creates any window, it must process messages. Message broadcasts are sent to all 
windows in the system. A thread that uses a wait function with no time-out interval may cause the 
system to enter a deadlock. Therefore, if you have a thread that creates windows, use the 
MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx function instead of 
WaitForMultipleObjects. There is no corresponding function to WaitForSingleObject in this 
context. 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             127 

The WaitForMultipleObjects function takes a HANDLE*, but HANDLEs to files and sockets are 
not allowed to be in that array. Instead, asynchronous I/Os can take synchronization objects as 
input parameters, which in turn can be made to wait using the WaitForMultipleObjects function. 
The WaitForMultipleObjectEx can wake the thread automatically with a special result when any 
asynchronous I/O scheduled by the calling thread is completed. 
An alternative solution would be that all communication is performed through file descriptors. This 
requires modifying the operating system for something as simple as adding a new EventQueue. 
WinSocket solves that by putting all socket events in the window EventQueue. All petitions 
made to the operating system are responded to through the event queue. Each event has all the 
necessary information to know what needs to be done with the result. 

Error and Exception Handling 
In UNIX, when an error occurs in a function, a negative value is often returned and the integer 
errno is usually set to a value that gives information about the error. The file errno.h defines the 
variable errno and the constants for each value that errno can assume. The application can 
retrieve and set the last error with the errno value. The function strerror gets the error message, 
and the perror function produces the error message on the standard error stream based on the 
value of errno. 
In Windows, when an error occurs, most functions return an error code, usually zero, NULL, or a 
negative value. Functions can also set an internal error code called the last-error code. The 
SetLastError function sets the last-error code for the calling thread. Information on the last error 
that occurred can be gotten from the function GetLastError. To retrieve the description text for 
the error in your application, use the FormatMessage function with the 
FORMAT_MESSAGE_FROM_SYSTEM flag. The last-error code is kept in the thread local 
storage (TLS) so that multiple threads do not overwrite each other's values. The signature of the 
functions is defined as follows. 
void SetLastError(DWORD dwErrCode); 

DWORD GetLastError(void); 

DWORD FormatMessage(DWORD dwFlags, LPCVOID lpSource, DWORD dwMessageId, 
DWORD dwLanguageId, LPTSTR lpBuffer, DWORD nSize, va_list* Arguments); 

Error codes are defined in the WinError.h header file. Error codes are 32-bit values (bit 31 is the 
most significant bit), as in UNIX. However, the error codes and names are different in UNIX and 
Windows. UNIX error names begin with an E and Windows error names begin with ERROR_. 
Note   More information on error codes and error handling in Windows is available at “Debugging and 
Error Handling” topic on MSDN®. 

Signals vs. Events 
This section maps the signals in UNIX to their equivalent objects in Windows. In addition, it 
provides different alternatives for converting UNIX code to Windows code and suggests the pros 
and cons of each alternative. The following topics are discussed in this section: 
• Using native signals in Windows. 
• Replacing UNIX signals with Windows messages. 
• Replacing UNIX signals with Windows event objects. 
• Porting the Sigaction call. 
This section provides you with information regarding signal-specific implementation in your UNIX 
application and provides the best replacements, such as native signals, messages, and event 
objects, for the Windows environment. 

 
  



128 UNIX Custom Application Migration Guide: Volume 3 

The UNIX operating system supports a wide range of signals. UNIX signals are software 
interrupts that catch or indicate different types of events. Windows, on the other hand, supports 
only a small set of signals that is restricted to exception events. Consequently, converting UNIX 
code to Windows requires the use of new techniques to replace the use of some UNIX signals. 
The Windows signal implementation is limited to the signals listed in Table 5.1. 
Table 5.1. Windows Signals 

Signal Meaning 

SIGABRT Abnormal termination 

SIGFPE Floating-point error 

SIGILL Illegal instruction 

SIGINT CTRL+C signal 

SIGSEGV Illegal storage access 

SIGTERM Termination request 

Note   When a CTRL+C interrupt occurs, Windows generates a new thread to handle the interrupt. This 
can cause a single-thread application, such as one ported from UNIX, to become multithreaded, which 
may result in an unexpected behavior. 

The signal function allows a process to choose one of the several ways to handle an interrupt 
signal from the operating system. The sig argument is the interrupt to which the signal responds. 
The argument must be one of the manifest constants defined in SIGNAL.H. 
By default, signal terminates the calling program with exit code 3, regardless of the value of sig. 
When an application uses other signals not supported in Windows, you have the option of using 
Messages or Events. This section focuses on the Windows mechanisms that you can use to 
replace some UNIX signals. 
Table 5.2 lists the recommended mechanisms that you can use to replace common UNIX signals. 
Following are the three main mechanisms: 
• Native signals 
• Messages 
• Event objects 
Table 5.2. UNIX Signals and Replacement Mechanisms 

Signal name Description Suggested Replacement on 
Windows 

SIGABRT Abnormal termination SIGABRT 

SIGALRM Time-out alarm SetTimer – WM_TIMER - 
CreateWaitableTimer 

SIGCHLD Change in status of child WaitForSingleObject 

SIGCONT Continue stopped process WaitForSingleObject 

SIGFPE Floating point exception SIGFPE 

SIGHUP Hang-up NA 

SIGILL Illegal hardware instruction SIGILL 

SIGINT Terminal interrupt character SIGINT 

SIGKILL Termination WM_QUIT 

SIGPIPE Write to pipe with no readers WaitForSingleObject 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             129 

Signal name Description Suggested Replacement on 
Windows 

SIGQUIT Terminal Quit character WM_CHAR 

SIGSEGV Invalid memory reference SIGSEGV 

SIGSTOP Stop process WaitForSingleObject 

SIGTERM Termination SIGTERM 

SIGTSTP Terminal Stop character WM_CHAR 

SIGTTIN Background read from control tty NA 

SIGTTOU Background write to control tty NA 

SIGUSR1 User-defined signal SendMessage – WM_APP 

SIGUSR2 User-defined signal SendMessage – WM_APP 

Note   Only POSIX signals are considered in this table. Seventh Edition, System V, and BSD signals have 
been excluded. 

Another mechanism that can be useful when converting some UNIX signals to Windows is event 
kernel objects. 

Using Native Signals in Windows 
In the following example, the simple case of catching SIGINT to detect CTRL-C is demonstrated. 
As you can see from the two examples, support for handling native signals in UNIX and Windows 
is very similar. 
UNIX example: Managing signals 
#include <unistd.h> 

#include <stdio.h> 

#include <signal.h> 

/* The intrpt function reacts to the signal passed in the parameter 
signum. 

This function is called when a signal occurs. 

A message is output, then the signal handling for SIGINT is reset 

(by default generated by pressing CTRL-C) back to the default behavior. 

*/ 

void intrpt(int signum) 

{ 

printf("I got signal %d\n", signum); 

(void) signal(SIGINT, SIG_DFL); 

} 

/* main intercepts the SIGINT signal generated when Ctrl-C is input. 

Otherwise, sits in an infinite loop, printing a message once a second. 

*/ 

int main() 

{ 

(void) signal(SIGINT, intrpt); 

while(1) { 

 
  



130 UNIX Custom Application Migration Guide: Volume 3 

printf("Hello World!\n"); 

sleep(1); 

} 

} 

(Source File: U_ManageSignl-UAMV3C5.01.c) 
 
Windows example: Managing signals 
#include <windows.h> 

#include <signal.h> 

#include <stdio.h> 

 

void intrpt(int signum) 

{ 

printf("I got signal %d\n", signum); 

(void) signal(SIGINT, SIG_DFL); 

} 

 

/* main intercepts the SIGINT signal generated when Ctrl-C is input. 

Otherwise, sits in an infinite loop, printing a message once a 
second.*/ 

void main() 

{ 

(void) signal(SIGINT, intrpt); 

 

while(1)  

{ 

printf("Hello World!\n"); 

Sleep(1000); 

} 

} 

(Source File: W_ManageSignl-UAMV3C5.01.c) 
 
Note   By default, the signal terminates the calling program with exit code 3, regardless of the value of 
sig. Additional information is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_signal.asp. 

With the exception of requiring an additional header file and the different signature of the sleep 
function, the two examples are identical.  

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_signal.asp


Chapter 5: Developing Phase: Infrastructure Services                                                                                             131 

Replacing UNIX Signals with Windows Messages 
UNIX uses signals to send alerts to processes when specific actions occur. A UNIX application 
uses the kill function to activate signals internally. As discussed earlier, Windows provides only 
limited support for signals. As a result, you must rewrite your code to use another form of event 
notification in Windows. 
The following example illustrates how you can convert UNIX code to Windows messages or event 
objects. It shows a simple main function that forks a child process, which issues the SIGALRM 
signal. The parent process catches the signal and outputs a message when it is received. 
UNIX example: Using the SIGALRM signal 
#include <unistd.h> 

#include <stdio.h> 

#include <signal.h> 

 

static int alarm_fired = 0; 

 

/* The alrm_bell function simulates an alarm clock. */ 

void alrm_bell(int sig) 

{ 

alarm_fired = 1; 

} 

 

int main() 

{ 

int pid; 

/* Child process waits for 5 sec's before sending SIGALRM to its 
parent. */ 

printf("alarm application starting\n"); 

if((pid = fork()) == 0)  

{ 

sleep(5); 

kill(getppid(), SIGALRM); 

exit(0); 

} 

/* Parent process arranges to catch SIGALRM with a call to signal 

and then waits for the child process to send SIGALRM. */ 

 

printf("waiting for alarm\n"); 

(void) signal(SIGALRM, alrm_bell); 

pause(); 

 

if (alarm_fired) 

printf("Ring...Ring!\n"); 

printf("alarm application done\n"); 

 
  



132 UNIX Custom Application Migration Guide: Volume 3 

exit(0); 

} 

(Source File: U_SigAlrm-UAMV3C5.01.c) 
 
In the example that follows, a form of Microsoft Windows messages is used to signal the parent 
process. The SetTimer function is used to signal to the parent process that an alarm has been 
activated. Although code can be created to do the timing, using the SetTimer function greatly 
simplifies this example. 
Another advantage of using SetTimer is that the callback function is invoked in the same thread 
that calls SetTimer; therefore no synchronization is necessary. 
If the requirements are simple, consider using a thread to act as a timer thread that calls Sleep to 
create the desired delay. At the end of the delay, a call is made to a timer callback function. The 
problem with this approach is that the callback function is not called from your primary thread. If 
the callback function requires resources that are thread-specific, use one of the appropriate 
synchronization mechanisms discussed in the “Synchronization of Threads” section in Chapter 3: 
“Process and Thread Management” of this volume. 
Additional code is added to the example so that an application using this code can catch any 
standard Windows message as well as application and user-defined messages. You can use 
these messages to engineer solutions to other signals that are not directly supported by the 
native signal implementation in Windows. 
Windows example: Replacing SIGALRM using messages 
#include <windows.h> 

#include <stdio.h> 

#include <conio.h> 

#include <stdlib.h> 

 

static int alarm_fired = 0; 

/* The alrm_bell function simulates an alarm clock. */ 

 

VOID CALLBACK alrm_bell(HWND hwnd, UINT uMsg, UINT idEvent, DWORD 
dwTime ) 

{ 

alarm_fired = 1; 

printf("Ring...Ring!\n"); 

} 

 

void main() 

{ 

printf("alarm application starting\n"); 

/* Set up a 5 second timer which calls alrm_bell */ 

SetTimer(0, 0, 5000, (TIMERPROC)alrm_bell); 

printf("waiting for alarm\n"); 

MSG msg = { 0, 0, 0, 0 }; 

/* Get the message, & dispatch. This causes alrm_bell to be invoked. */ 

 

while(!alarm_fired) 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             133 

if (GetMessage(&msg, 0, 0, 0) )  

{ 

if (msg.message == WM_TIMER) 

printf("WM_TIMER\n"); 

DispatchMessage(&msg); 

} 

printf("alarm application done\n"); 

exit(0); 

} 

(Source File: W_SigAlrm-UAMV3C5.01.c) 
 
Notice in this example that the WM_TIMER message is issued by the SetTimer function and 
captured by the GetMessage function. If you remove the call to DispatchMessage, the 
alrm_bell function is never called, but the WM_TIMER message is received. With this simple 
application, you can capture a variety of Windows messages. Moreover, if you want to trigger the 
callback function before the specified time, you can use the PostMessage(WM_TIMER) call. 
This is analogous to using the kill function to send a signal in UNIX. 

Replacing UNIX Signals with Windows Event 
Objects 
Some events that UNIX handles through signals are represented in Windows as event objects. 
Functions are available to integrate these event objects. An example of these functions is the 
WaitForSingleObject function. 
In the example code that follows, a timer object is used to signal when a timed interval has 
elapsed. Again, this example provides the same functionality as the preceding UNIX SIGALRM 
example. 
Note   While this illustration encompasses the process in a single thread, this is not a requirement. The 
timer object can be tested and waited for in other threads if necessary. 

Windows example: Replacing SIGALRM using event objects 
#define _WIN32_WINNT 0X0500 

 

#include <windows.h> 

#include <stdio.h> 

#include <conio.h> 

#include <stdlib.h> 

 

void main() 

{ 

HANDLE hTimer = NULL; 

LARGE_INTEGER liDueTime; 

liDueTime.QuadPart = -50000000; 

printf("alarm application starting\n"); 

 

// Set up a 5 second timer object 

hTimer = CreateWaitableTimer(NULL, TRUE, "WaitableTimer"); 

SetWaitableTimer(hTimer, &liDueTime, 0, NULL, NULL, 0); 

 
  



134 UNIX Custom Application Migration Guide: Volume 3 

 

// Now wait for the alarm 

printf("waiting for alarm\n"); 

 

// Wait for the timer object 

WaitForSingleObject(hTimer, INFINITE); 

printf("Ring...Ring!\n"); 

printf("alarm application done\n"); 

exit(0); 

} 

(Source File: W_SigAlrm-UAMV3C5.02.c) 

Porting the Sigaction Call 
Windows does not support the sigaction function. The UNIX example that follows shows how the 
sigaction function is typically used in a UNIX application. In this example, the handler for the 
SIGALRM signal is set. Conversion of this code to use Windows messages was shown earlier. 
For the corresponding Windows example, refer to the previous section “Replacing UNIX Signals 
with Windows Messages.” 
Note   To terminate the following application from the keyboard, press CTRL+\. 

UNIX example: Using sigaction 
#include <unistd.h> 

#include <stdio.h> 

#include <signal.h> 

 

void intrpt(int signum) 

{ 

printf("I got signal %d\n", signum); 

} 

 

int main() 

{ 

struct sigaction act; 

act.sa_handler = intrpt; 

sigemptyset(&act.sa_mask); 

act.sa_flags = 0; 

sigaction(SIGINT, &act, 0); 

 

while(1)  

{ 

printf("Hello World!\n"); 

sleep(1); 

} 

} 

(Source File: U_SigActn-UAMV3C2.01.c) 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             135 

Interprocess Communication (IPC) 
Like UNIX, Windows has various forms of interprocess communication (IPC). Following are the 
IPC forms that are most familiar to UNIX developers: 
• Process pipes 
• Named pipes 
• Message queues 
• Sockets 
• Memory-mapped files 
• Shared memory 
• Remote procedure call (RPC) 
Windows supports implementations of all of these forms except for message queues. Windows 
provides two additional IPC mechanisms: remote procedure call (RPC) and mailslots. RPC is 
designed for use by client/server applications and is most appropriate for C and C++ programs. 
Mailslots are memory-based files that a program can access using standard file functions. The 
maximum size of mailslots is fairly small.  
In addition to these mechanisms, there are two forms of IPC that are not part of the Windows API. 
These are Message Queuing (also known as MSMQ) and COM+. 
This section looks at how UNIX code that uses different forms of IPC can be converted to 
Windows IPC techniques. It also introduces new methods of IPC that are not available in UNIX  
but may provide a better solution for interprocess communication of your application. You can use 
this information to analyze the IPC implementations in your UNIX application and to identify the 
best porting approach for corresponding IPC implementation in the Windows environment. 

Pipes (Unnamed or Named, Half or Full Duplex) 
Pipes have similar functionality on both Windows and UNIX systems. Their primary use is to 
communicate between related processes. UNIX pipes can be named or unnamed. They also 
have separate read and write file descriptors, which are created through a single function call. 
With unnamed pipes, a parent process that must communicate with a child process creates a 
pipe that the child process will inherit and use. Two unrelated processes can use named pipes to 
communicate. 
Windows pipes can also be named or unnamed. A parent process and a child process typically 
use unnamed pipes to communicate. Unnamed pipes are half duplex. The processes must create 
two unnamed pipes for bidirectional communication. Two unrelated processes can use named 
pipes even across the network on different computers. Typically, a server process creates the 
pipe, and clients connect to the bidirectional pipe to communicate with the server process. 
Named pipes are full duplex. 

Process Pipes 
Process pipes are supported in Windows by using the standard C run-time library. As discussed 
in the following sections, they are largely equivalent to process pipes in UNIX. Three UNIX 
examples are considered in this section, and a slightly modified Windows version of each is also 
provided. 

 
  



136 UNIX Custom Application Migration Guide: Volume 3 

High-Level popen Call 
Note that this text assumes the presence of the Uname.exe executable program on the Windows-
based system. If your system does not contain this executable, these samples will not work, and 
you must modify them to use an equivalent tool. 
In the first example of process pipes, a process called uname is executed and passes the output 
of this process to standard output. As you review these examples, notice that the differences 
between the UNIX and Windows implementations are the header files that are required and the 
function names for popen and pclose. The names of these functions in Windows are preceded 
by an underscore ( _ ). The function syntax is the same and the behavior is largely compatible. 

Low-Level pipe Call 
This section demonstrates the process of converting code that uses the pipe function call to 
communicate between two parts of an application. The following example demonstrates how you 
can write to one end of the pipe (fd[1]) and read from the other (fd[0]). This is an example of a half 
duplex pipe. The differences between the UNIX and the Windows implementations are the 
required header files and the underscore that precedes the pipe function. 
However, in this case, an additional modification must be made for the solution to work on 
Windows. If you look at the online documentation for pipe, you will notice that it requires two 
additional arguments. Providing these arguments specifies the amount of memory that must be 
used as a buffer for the pipe and the mode of the pipe (O_TEXT or O_BINARY). 
UNIX example: Low-level pipe call 
#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

int main() 

{ 

int data_out, data_in, file_pipes[2]; 

const char data[] = "ABCDE"; 

char buffer[BUFSIZ + 1]; 

memset(buffer, '\0', sizeof(buffer)); 

 

if (pipe(file_pipes) == 0)  

{ 

data_out = write(file_pipes[1], data, strlen(data)); 

printf("Wrote %d bytes\n", data_out); 

data_in = read(file_pipes[0], buffer, BUFSIZ); 

printf("Read %d bytes: %s\n", data_in, buffer); 

exit(EXIT_SUCCESS); 

} 

 

exit(EXIT_FAILURE); 

} 

(Source File: U_LowLvlPip-UAMV3C5.01.c) 
 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             137 

Windows example: Low-level pipe call 
#include <windows.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <io.h> 

#include <fcntl.h> 

#include <process.h> 

 

void main() 

{ 

size_t data_out, data_in; 

int file_pipes[2]; 

const char data[] = "ABCDE"; 

char buffer[BUFSIZ + 1]; 

memset(buffer, '\0', sizeof(buffer)); 

 

if (_pipe(file_pipes, 32, O_BINARY) == 0)  

{ 

data_out = write(file_pipes[1], data, strlen(data)); 

printf("Wrote %d bytes\n", data_out); 

data_in = read(file_pipes[0], buffer, BUFSIZ); 

printf("Read %d bytes: %s\n", data_in, buffer); 

exit(EXIT_SUCCESS); 

} 

 

exit(EXIT_FAILURE); 

} 

(Source File: W_LowLvlPip-UAMV3C5.01.c) 

Named Pipes (FIFOs) 
In this section, a few examples of named pipes are shown. These are sometimes referred to as 
first-in-first-out (FIFO). 

Interprocess Communication with Named Pipes 
To show how you can convert code using FIFO from UNIX to Windows, a simple example that 
creates a named pipe is shown. This example uses minimal security restrictions for simplicity. 
The example uses the mkfifo function in UNIX and the CreateNamedPipe function in Windows. 
There are considerable differences between these two functions. Both functions have the same 
purpose, but the CreateNamedPipe function offers a greater degree of control over the 
configuration of the pipe.  

 
  



138 UNIX Custom Application Migration Guide: Volume 3 

The major difference between UNIX and Windows pipes exists in security attributes, buffering, 
and opening modes. The mkfifo() system call creates a new FIFO file with name path. The 
access permissions are specified by mode and restricted by the umask routine of the calling 
process. In the case of Windows pipes, the access control list (ACL) from the security attributes 
parameter defines the discretionary access control for the named pipe. If SecurityAttributes is 
NULL, the default security descriptor and the handle cannot be inherited. The ACLs in the default 
security descriptor for a named pipe grant full control to the LocalSystem account, administrators, 
the creator owner, and read access to members of the Everyone group and the anonymous 
account. The details are beyond the scope of this guide, but you can find the links for 
CreateNamedPipe on the MSDN Web site. 
Note   Additional information on named pipes on Windows is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/ipc/base/named_pipe_type_read_and_wait_modes.asp. 

Back-Pressure in Pipes 
There is an important difference between pipes in UNIX and Windows involving the concept of 
back-pressure. UNIX uses the buffer concept for dealing with programs that use pipes whereas 
Windows uses the file system object. This difference becomes a major point to consider when 
migrating to Windows if the program in question has a tendency to acquire back-pressure. This 
issue arises in sequences of programs connected by pipes because there is a finite capacity for 
the pipe in UNIX versus a Windows file system object that will almost never be exhausted, based 
on page-file size. 
Note   The point of the guidance is that a set of UNIX applications, which rely on pipe back-pressure to 
throttle a process, should be reexamined when moved to use native Windows pipes. Instead of relying on 
back-pressure, a more explicit mechanism should be selected by redesigning the application to remove its 
dependency on back-pressure. 

Shared Memory 
Shared memory is an efficient means of passing data between programs. One program will 
create a memory portion, which other processes (if permitted) can access. 
UNIX supports System V shared memory, which allows multiple processes to attach a segment of 
physical memory to their virtual address spaces. When write access is allowed for more than one 
process, an outside protocol or mechanism such as a semaphore can be used to prevent 
inconsistencies and collisions. The other efficient way to implement shared memory in UNIX 
applications is to rely on the mmap function and on the native virtual memory facility of the 
system. The mmap function establishes a mapping of a named file system object (or part of one) 
into a process address space. 
Windows implementation of shared memory can be done using the concept of file mapping or by 
making use of memory in a heap using the GlobalAlloc function. A common section of memory 
can be mapped into the address space of multiple processes. If no file is specified in the creation 
function, the shared memory is allocated from a section of the page file. As in the UNIX 
implementation, which uses an identifier, Windows uses a handle identifier to identify the memory 
that is mapped into the process at the requested address. The GlobalAlloc function allocates the 
specified number of bytes from the heap. For more information on the global functions, refer to 
the MSDN Web site. 
Both the UNIX and Windows file mapping solutions offer the capability of saving the contents in a 
permanent file. 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ipc/base/named_pipe_type_read_and_wait_modes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ipc/base/named_pipe_type_read_and_wait_modes.asp


Chapter 5: Developing Phase: Infrastructure Services                                                                                             139 

Message Queues 
The Microsoft Windows API does not support message queues as standard. If you want to use 
message queuing in your application, you should use Message Queuing (also known as MSMQ). 
Message Queuing is covered comprehensively in other Microsoft documentation and is therefore 
only briefly described here. 
Message Queuing technology enables applications running at different times to communicate 
across heterogeneous networks and systems that may be temporarily offline. Applications send 
messages to queues and read messages from queues. Message Queuing provides guaranteed 
message delivery, efficient routing, security, and priority-based messaging. It can be used to 
implement solutions for both asynchronous and synchronous scenarios that require high 
performance. 
Note   Additional information on Message Queuing is available at 

http://www.microsoft.com/windows2000/technologies/communications/msmq/default.mspx.  

Networking 
The primary networking protocol for UNIX and Windows is TCP/IP. The standard programming 
API for TCP/IP is called sockets. The Windows implementation of sockets is Winsock 2 (formerly 
known as Windows Sockets). Winsock conforms well to the Berkeley implementation, even at the 
API level. Most of the functions are the same, but slight differences in parameter lists and return 
values do exist. RPC is another networking concept. Microsoft RPC provides RPC mechanisms 
for Windows-based applications. The following sections describe sockets and RPC mechanisms 
in UNIX and Windows. With this knowledge, you will be able to analyze UNIX networking 
applications and identify the appropriate porting approach for corresponding sockets and RPC 
implementations in the Windows environment. 

TCP/IP and Sockets 
Winsock 2 uses the sockets paradigm that was first popularized by Berkeley Software Distribution 
(BSD) UNIX. It was later adapted for Microsoft Windows in Winsock 1.1. One of the primary goals 
of Winsock has been to provide a protocol-independent interface that is fully capable of 
supporting emerging networking capabilities, such as real-time multimedia communications. 
Winsock is an interface, not a protocol. As an interface, it is used to discover and use the 
communications capabilities of any number of underlying transport protocols. Because it is not a 
protocol, it does not in any way affect the bits on the wire and does not need to be used on both 
ends of a communications link. 
Winsock programming previously centered on TCP/IP. Some of the programming practices that 
worked with TCP/IP do not work with every protocol. As a result, the Winsock API added new 
functions that were necessary to handle several protocols. 
Winsock has changed its architecture to provide easier access to multiple transport protocols. 
Following the Windows Open System Architecture (WOSA) model, Winsock now defines a 
standard service provider interface (SPI) between the API with its functions exported from 
Ws2_32.dll and the protocol stacks. Consequently, Winsock support is not limited to TCP/IP 
protocol stacks as is the case for Windows Sockets 1.1. More information is available at the 
discussion on "Windows Sockets 2 Architecture" in Microsoft Visual Studio® .NET 2003. 
There are new challenges in developing Winsock 2 applications. When sockets only supported 
TCP/IP, a developer could create an application that supported only two socket types: 
connectionless and connection-oriented. Connectionless protocols use SOCK_DGRAM sockets, 
and connection-oriented protocols use SOCK_STREAM sockets. 

 
  

http://www.microsoft.com/windows2000/technologies/communications/msmq/default.mspx


140 UNIX Custom Application Migration Guide: Volume 3 

Because of the many new socket types introduced, developers can no longer rely on the socket 
type to describe all the essential attributes of a transport protocol. 
Sockets are not a part of the Windows API. You will need to consult the Platform SDK for detailed 
information about the Winsock APIs. The help for the Platform SDK contains complete samples 
that demonstrate how to implement socket-based client and server applications. For an in-depth 
comparison between UNIX sockets and Winsock, refer to the discussion of "Porting Socket 
Applications to Winsock" in the Microsoft Platform SDK. 
Note   More information is available in the “Write Scalable Winsock Apps Using Completion Ports” MSDN 
article at http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp. 

Remote Procedure Calls 
In UNIX, routines that allow C programs to make remote procedure calls (RPCs) are in the 
rpc/rpc.h library. 
In Windows, RPC for the C and C++ programming languages is provided by the Microsoft RPC. 
Microsoft RPC is compatible with Open Software Foundation (OSF) Distributed Computing 
Environment (DCE) RPC. Microsoft RPC differs from DCE RPC in the location service, which 
Microsoft RPC does not offer. When you have located an RPC service, you have binary 
compatibility. Microsoft RPC fully supports 64-bit Windows. Using RPC, developers can 
transparently communicate between different types of processes. RPC automatically manages 
process differences behind the scenes. 
The process for creating a client/server application using Microsoft RPC is: 
1. Develop the interface. 
2. Develop the server that implements the interface. 
3. Develop the client that uses the interface. 
All interfaces for programs using RPC must be defined in Microsoft Interface Definition Language 
(MIDL) and compiled with the MIDL compiler. 

Windows Server 2003 Features  
RPC includes a collection of new capabilities and improvements in Microsoft 
Windows Server™ 2003. Some of these capabilities are available in Windows XP as well, but are 
new for the server family of Windows. 
The following capabilities are new in Windows Server 2003:  
• NDR64. NDR64 is a new transfer syntax optimized for 64-bit environments. 
• RPC over HTTP. RPC now enables its clients to securely and efficiently connect across the 

Internet to RPC server programs and execute remote procedure calls. More information is 
available in “Remote Procedure Calls Using RPC over HTTP” on the MSDN Web site. 

• Improved troubleshooting. RPC has improved its troubleshooting capabilities and extended 
error information. Refer to “Obtaining Extended RPC Error Information” on the MSDN Web 
site. 

Other new capabilities include better configuration using RPC NetShell extensions, improved 
SDK samples such as FileRep, and support for RPC verifier to automatically check for errors in 
RPC code. 
Note   Guidance can be found on the MSDN Web site at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/best_rpc_programming_practices.asp.  

Also, refer to the following URL at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/overviews.asp. 

 

http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/best_rpc_programming_practices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/best_rpc_programming_practices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/overviews.asp


Chapter 5: Developing Phase: Infrastructure Services                                                                                             141 

Miscellaneous Features 
This section focuses on the miscellaneous infrastructure areas of the UNIX and Windows 
environments, listed as follows: 
• Shells and scripting 
• Scripting languages 
• Daemons versus services 
• Middleware 
These topics give you information regarding how you can replace these specific implementations 
in your UNIX application with the equivalent features of the Windows environment. 

Shells and Scripting 
A shell is a command-line interpreter that accepts typed commands from a user and executes 
them. In addition to executing programs, shells usually support advanced features such as the 
capability to recall recent commands and a built-in scripting language for writing programs. 
Programs written through the programming features of a shell are called shell scripts. In addition 
to scripts written through the use of shells, there are also languages specifically designed for 
writing scripts. As with shell scripts, these scripting languages are interpreted.  
The use of scripting languages leads to rapid development, often with relaxed syntax checking, 
but slower performance. Windows and UNIX support a number of shells and scripting languages, 
some of which are common to both operating systems. 

Command-Line Shells 
On the Windows platform, Cmd.exe is the command prompt, or the shell. With the command 
prompt, a user can run programs or scripts and invoke applications. The command prompt has a 
memory or buffer for recent commands, so the user can retrieve, run, and edit them using various 
techniques. 
On UNIX, a number of standard shells provide the UNIX user interface. These shells include: 
• The Bourne shell (sh). This is the simplest shell, often set as the default. It can invoke 

programs and create pipes, but it has no command memory or advanced scripting 
capabilities. 

• The C shell (csh). This shell includes command memory and a scripting language similar to 
the C language. An Interix/UNIX version of the C shell comes with the Interix product. 

• The Korn shell (ksh). The Korn shell also features command memory and a built-in 
language for creating script files. The Korn shell is based on the Bourne shell but includes 
additional features, such as job control, command-line editing, functions, and aliases. 
Interix/UNIX versions of the Korn shell are delivered with Windows Services for UNIX and 
Interix products. 

 
  



142 UNIX Custom Application Migration Guide: Volume 3 

Scripting Languages 
The following sections explain the scripting languages and scripting-language support provided in 
Windows and UNIX. 
• Windows Script Host. Windows Script Host (WSH) is a language-independent environment 

for running scripts and is often used to automate administrative tasks and logon scripts. WSH 
provides objects and services for scripts, establishes security, and invokes the appropriate 
script engine, depending on script language. Objects and services supplied allow the script to 
perform such tasks as displaying messages on the screen, creating objects, accessing 
network resources, and modifying environment variables and registry keys. WSH natively 
supports Microsoft Visual Basic® Scripting Edition (VBScript) and Microsoft JScript®. Other 
languages that are available for this environment are Perl, REXX, and Python. WSH is built in 
to all versions of Windows after Microsoft Windows® 95. It can also be downloaded or 
upgraded from the Microsoft Web site. 

• Perl. Perl is an acronym for Practical Extraction and Report Language. It is an interpreted 
language that was originally designed for UNIX, but it has since been ported to many 
platforms. Perl provides a cross-platform scripting environment that developers can use to 
write scripts that can be run on both Windows and UNIX. Perl is effective for string 
manipulation. Although Perl is not delivered with Windows, there are many versions of Perl 
available that are designed to run on Windows. Perl also comes with Windows Services for 
UNIX. 

• REXX. REXX is an acronym for Restructured Extended Executor Language and was 
originally developed by IBM United Kingdom Laboratories. It is a procedural language that is 
designed for application programs to use as a macro or scripting language. Although REXX 
can issue commands to its host environment and can call programs and functions written in 
other languages, it is designed to be independent of a specific operating system. Versions of 
REXX are available for both UNIX and Windows. 

• Python. Python, just like Perl, is an interpreted language. Many of its features are similar to 
Perl, but its programming structure and syntax are clearer, thus making Python code easier 
to read and maintain. Although it was designed for UNIX, it is now widely available on other 
platforms, including Windows. Python is object-oriented and includes dynamic data structures 
and dynamic typing. Python is ideal for rapid software development where maintainable code 
is important. Python is not shipped with Windows, but it can be downloaded from the Python 
Web site at http://www.python.org/download/. 

• Tcl/Tk. Tcl/Tk is yet another interpreted language. Like Perl, it is effective for string 
manipulation and is available across UNIX and Windows platforms. Tcl/Tk is particularly 
applicable to the development of cross-platform GUIs. Tcl/Tk is not shipped with Windows, 
but it can be downloaded from the Tcl/Tk Web site at http://www.tcl.tk. 

Daemons vs. Services 
A UNIX daemon is a process that runs in the background and does not require a user interface. A 
service application is the equivalent of a daemon on Windows. Normally, a daemon is started 
when the system is booted and runs without supervision until the system is shut down. Similarly, 
a Windows service can be started at boot time and run until system shutdown. However, the 
Service Control Manager (SCM) controls all services. To convert daemon code to run on 
Windows, you must add code to interface with SCM. This section briefs you on the Windows API 
functions to convert UNIX daemons to Windows services. 
Unless the main function of the daemon is extremely simple, the best strategy is to rename it to 
something else, such as service_main. Then create a new main that contains code to install, 
uninstall, and run the service depending on command-line arguments. 
To install the program as a service, the program must call OpenSCManager to get a handle to 
the SCM. It must then call CreateService, passing the SCM handle and several arguments, 
including the service name, display name, service type, and path to the executable, and identity 

 

http://www.python.org/download/
http://www.tcl.tk/


Chapter 5: Developing Phase: Infrastructure Services                                                                                             143 

the service uses to run. After the service is installed, the administrative tools services applet can 
be used to examine and modify many of these values. 
Uninstalling the service is similar to installing it. Call OpenSCManager to get a handle to the 
SCM, and then call OpenService to get a handle to the service. If it is running, the service should 
be stopped by calling the ControlService function. Finally, call DeleteService, passing the 
service handle, and close the handles to clean up. 
Running the daemon as a service is also fairly straightforward. The new main function sets up a 
SERVICE_TABLE_ENTRY structure that contains a name and a pointer to the main function of 
the service, which is the old main function renamed service_main. This structure is passed to the 
StartServiceCtrlDispatcher function, which does not return until the service stops. Note that 
more than one service entry can be present in the service entry structure, so a single executable 
can support more than one service. The definitions are the same as a main function; however, 
the arguments to the main function of the service are supplied by SCM and can be set through 
the services applet or the CreateService call. 
The main function of the service needs new code to call the SetServiceStatus function, which 
keeps SCM informed of the status of the service during startup. If the SCM does not receive 
status updates within a specified time period, it assumes that the service has stopped running 
and logs an error. The SCM must also be given the address of a service control function that the 
SCM can use to request actions such as requesting the service to stop.  
Call the RegisterServiceCtrlHandler or RegisterServiceCtrlHandlerEx function to set this 
address. When the service is fully initialized, it should call SetServiceStatus with the 
SERVICE_RUNNING status to complete the startup sequence. 
Note   For sample service programs and details of the service functions, refer to the MSDN Web site at 
http://msdn.microsoft.com/. 

Middleware 
This section compares the various middleware solutions available for UNIX-based and Windows-
based applications. With the information provided in this section, you will be able to identify the 
various middleware technologies available on UNIX and the alternative Windows technologies to 
use in migrating UNIX middleware to the Windows environment. 

OLTP Systems 
Online transaction processing (OLTP) systems have been implemented in UNIX environments for 
many years. These systems perform such functions as resource management, threading, and 
distributed transaction management. OLTP systems typically provide support for multiple 
languages and development environments. 
Common OLTP systems include: 
• Tuxedo from BEA Systems. 
• TOP END from NCR Corporation. 
• Encina for DCE (distributed computing environment) from Transarc. 
Although OLTP was originally developed for UNIX, many OLTP systems also have Windows 
versions. Additionally, gateways exist to integrate systems that use different transaction 
monitors—for example, the Tuxedo gateway to Top End. OLTP systems currently face the 
challenge of integrating with Web and e-business systems. Many OLTP systems provide a bridge 
to the Java programming language and provide gateways to Common Object Request Broker 
Architecture (CORBA) and COM. 
When considering transaction and resource management during a UNIX migration, developers 
should remember that OLTP systems provide many of the same features as COM+. As with most 
cross-platform products, OLTP monitors achieve these features by introducing new APIs to the 
development environment. Introducing COM+ for transaction and resource management during a 
migration can lessen this type of dependency. 

 
  

http://msdn.microsoft.com/


144 UNIX Custom Application Migration Guide: Volume 3 

Queuing Systems 
Message queuing is provided as a feature in AT&T System V UNIX and can be achieved through 
sockets in Berkeley UNIX versions. These types of memory queues are most often used for 
interprocess communications and do not meet the requirements for persistent store and forward 
messaging. 
To help meet these requirements in UNIX, versions of MQSeries from IBM and MessageQ 
(formally the DEC MessageQ) from BEA Systems are available. A reliable and resilient store-and-
forward message queue provides a key building block for enterprise integration and highly 
available, loosely coupled systems. 
Microsoft provides similar functionality for Windows through Message Queuing. IBM and BEA 
Systems also provide versions of their queuing systems for Windows. Gateway offers products 
that bridge the various queuing systems. One reason for migrating to Windows may be the need 
to integrate with commercial off-the-shelf applications. The queuing system for such a migration 
would need to provide an API that easily integrates into these applications. For example, 
Message Queuing provides for a COM Automation Interface API and .NET classes. 

Component-based Development in Windows 
The Windows platform offers developers a wide range of component-based development tools 
and technologies. One of these is the Component Object Model (COM). 

Component Object Model 
COM is the first component-based development technology from Microsoft. Developers can use 
COM to develop component-based software by exploiting a set of well-defined development 
techniques and run-time services. By adhering to the COM development model and by using one 
of the many COM-aware development environments, developers can easily build component-
based software that is capable of interacting with other components developed by different 
organizations, potentially in different development languages. 
Although many of the required development techniques—such as how functionality should be 
exposed through interfaces—are complex, the development environments available on the 
Windows platform mask this complexity. One of the most popular development environments is 
Visual Basic. 
Some of the key features of the COM programming model are as follows: 
• COM objects expose functionality through well-defined interfaces, the binary format of which 

is defined by the COM specification. This functionality matches the classic C++ virtual 
function table [v-table] layout in memory. 

• An interface consists of a set of methods. However, most development environments also 
allow properties to be exposed at the interface level through a pair of property-get and 
property-set methods. 

• COM supports component versioning. 
• COM components can be hosted in-process (through DLLs), out-of-process (through 

executable files), or in executable files on remote computers. 
• All COM components and COM interfaces on a particular computer are logged centrally in 

the Windows registry, which is a hierarchical configuration database for the Windows 
platform. 

 



Chapter 5: Developing Phase: Infrastructure Services                                                                                             145 

The Windows registry contains such information as system hardware details, hardware and 
system configuration, and details of applications installed on the system. For COM, the registry 
stores a globally unique identifier (GUID) to identify each component class and interface installed. 
GUIDs are 128-bit integers that are guaranteed to be unique. COM uses this information to 
determine which component class to create when an application make a request for an object 
(component) to be instantiated. 
Each component also has a user-friendly name known as a ProgID, or programmatic identifier, 
that is created by the component vendor. The ProgID is not guaranteed to be unique. The 
recommended format for a ProgID is vendor.component.version, where vendor and component 
are alphanumeric names. 
When an application needs to use an object, it starts by calling the CoCreateInstance COM 
function to create the component. This function takes the registered GUID for the object class 
(CLSID) as an argument. If the developer chooses to use the user-friendly ProgID instead, the 
application first  calls a function to get the CLSID from the ProgID. The application may also pass 
the initial interface GUID to CoCreateInstance, or it may pass a null entry to receive the default 
interface. COM finds the server for the class, loads the class into memory if necessary, and 
marshals the call if the server is in another process or across the network. 
After a COM component is created, the application can query a particular interface and use the 
interface to perform work. Because the interfaces are identified by GUIDs just as the components 
are, the QueryInterface call takes the GUID as an argument and either returns the interface 
requested or returns a null entry if the interface is not implemented by the class. 
Note   Additional information about COM is available at  

http://www.microsoft.com/com. 

 
  

http://www.microsoft.com/com




  

Chapter 6: Developing Phase: Migrating 
the User Interface  

This chapter describes how to migrate from a UNIX-based user interface to a Microsoft® 
Windows® user interface. Because the majority of UNIX graphical interfaces are built on X 
Windows and Motif, the chapter focuses on porting code from X Windows to the Windows 
operating system. 
This chapter describes: 
• The architectural and visual differences between the two environments. 
• The programming principles used by X Windows and Windows. 
• How to migrate each type of graphical construct from one environment to the other. 
With this knowledge, you will be able to choose the most suitable methodology for migrating your 
applications from the UNIX user interface to the Windows user interface. You will also be able to 
map between X Windows UI routines and Windows UI routines in order to migrate X Windows 
applications. 

Comparing X Windows with Win32/Win64 
GUI 
This section describes the difference in architectures between X Windows and the Microsoft 
Win32®/Win64 GUI. The main user interface type in use on the UNIX platform today is built on 
the X Windows set of standards, protocols, and libraries. When migrating such a user interface, it 
is important to compare the user interface architecture and the resulting “look and feel” of the two 
models. It is also useful to understand the differences in user interface terminology between the 
two environments. 

User Interface Architecture 
The X Windows-based interfaces architecture differs from that of Windows. The first and most 
fundamental difference is the orientation of client and server. For X Windows, the client is the 
application that requests services and receives information from the user interface. 
The user-facing elements of the interface are based on what is termed the X Server. In the X 
Windows-based system, the client application sends requests to the server to display graphics 
and to send mouse and keyboard events. The X Server is responsible for doing all the work on 
behalf of the client. The client can run on a remote system with no graphics hardware or on the 
same physical computer as the server. In either case, the client does not interact with the display, 
mouse, or keyboard. This is shown in Figure 6.1, which represents the X Windows client/server 
architecture. 

 



148 UNIX Custom Application Migration Guide: Volume 3 

 
Figure 6.1. The X Windows architectural model 
The Windows environment is implemented as a client/server system. Applications are bound to 
the application programming interface (API) exported by the operating system by link-time 
binding. 
The environment is the server and the Windows API programs are the clients. The Windows API 
application links to the client-side dynamic-link libraries (DLLs), such as GDI32.dll or user32.dll. 
When the application makes any Graphics Device Interface (GDI) function calls, the client-side 
GDI DLL will invoke the native system call in the kernel mode. This is because the GDI 
components reside in the kernel mode. This results in a switch from the user mode to kernel 
mode and does not require any kind of message passing and context switching, thereby 
improving performance. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     149 

Figure 6.2 illustrates the Windows architectural model. 

 
Figure 6.2. The Microsoft Windows UI architectural model 

Elements of the UI 
Windows types are very similar in both the X Windows and Windows environments, as detailed 
as follows: 
• Application window. The application window is the interface between the user and the 

application. Elements such as a menu bar, status bar, window menu, minimize and maximize 
buttons, close button, title bar, sizing border, client area, and scroll bars typically appear in 
the application window. 

• Dialog boxes. A user typically accesses a dialog box as a temporary window used to create 
some additional input. A dialog box contains one or more controls, such as buttons and check 
boxes, to extract user input. Windows API programs can be entirely dialog-based just as in 
UNIX. 

• Controls. Controls such as X Windows widgets come in all shapes, sizes, colors, and 
functions. There are two ways to create controls in a Windows API environment. One is by 
using the resource editor, where you can drag and drop the controls from the tool bar onto 
the window because controls are also windows. The other method of creating a control is by 
using the CreateWindow API by specifying the required attributes. 

• Property sheets. Property sheets are tabbed dialog boxes. They can be used to select a 
number of settings for a particular application. 

 
  



150 UNIX Custom Application Migration Guide: Volume 3 

User Interface Programming in X Windows 
and Microsoft Windows 
The basics of getting a Windows-based application and an X Windows/Motif-based application 
started are similar conceptually. Also, the libraries and core functions are similar in both 
environments. This section discusses the programming principles for developing user interfaces 
in the two environments. Using the information provided in this section, you will be able to choose 
the appropriate technology for migrating from the X Windows UI to the Windows UI and 
understand the Windows UI programming concepts. 

Programming for Windows 
When programming for Windows, you can use either the C style API or the C++ style API. As far 
as the C++ style API is concerned, the programming approach is object-oriented programming.  
Note   X Servers are available for Windows. These run Win32/Win64 unmanaged code programs. Third-
party tools, such as MKS and Hummingbird XDK, are available to run X Windows applications in Win32. 

To program in C++ on Windows, the following libraries are available: 
• Microsoft Foundation Classes (MFC) 
• Active Template Library (ATL) 
• GDI+ 
• .NET Languages 

Microsoft Foundation Classes (MFC) 
In Visual C++®, Microsoft provides a class library called Microsoft Foundation Classes (MFC) 
with around 200 classes. The classes in MFC provide a wrapper around the Windows API, 
thereby providing the user with a set of object-oriented programming (OOP) tools for Windows 
programming. MFC encapsulates the Windows API. MFC provides various sets of classes for the 
following categories: 
• MFC application architecture classes 
• Window support classes 
• Drawing and printing classes 
• Simple datatype classes 
• Collection classes 
• File and database classes 
• Internet and networking classes 
• OLE Linking and Embedding classes 
• Debugging and exception classes 

Active Template Library (ATL) 
Active Template Library (ATL) is known primarily for its COM support. It also provides several 
classes that simplify Microsoft Windows programming. Like the rest of ATL, these classes are 
template-based C++ classes and have very low overhead. ATL can be used to create windows 
and dialog boxes and to handle messages. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     151 

GDI+ 
GDI+ is a class-based API for C/C++ programmers. It enables applications to use graphics and 
formatted text on video and on print. Windows API-based applications do not access graphics 
hardware directly. Instead, GDI+ interacts with device drivers on behalf of applications. GDI+ is 
also supported by the 64-bit Windows operating system. 
To use GDI+, the developer must copy the Gdiplus.dll library to the system directory of the user’s 
computer. For information about the operating systems required in order to use a particular class 
or method, refer to the “Requirements” section of the documentation for the class or method. 
All Windows-based applications can use GDI+, a new technology in the Microsoft Windows XP 
and Windows Server™ 2003 operating systems. It is also available for applications that run on 
older operating systems, such as Microsoft Windows NT® 4.0 SP6, Windows 98, Windows 2000, 
and Windows Millennium Edition operating systems. 
Note   You can download the latest redistributable at 

http://www.microsoft.com/downloads/search.aspx?displaylang=en. 

.NET Languages 
Microsoft .NET is the latest component-based development platform from Microsoft. From a high-
level perspective, .NET facilitates component-based development in addition to radically 
extending the development platform and providing the tools and technologies that developers can 
use to develop a new kind of Internet-based distributed application. 
Note   For more information, refer to Volume 4, Migrate Using .NET of this guide. 

Choosing the Programming Language 
When developing components and applications, you can choose between any of the approaches 
described in this section. 
• Using ATL. ATL is a fast and easy way to create a COM component in C++ and to maintain 

a small footprint. ATL can be used to create a control that does not need all of the built-in 
functionality that MFC automatically provides. 

• Using MFC. MFC allows you to create full applications, ActiveX controls, and active 
documents. If you have created a control with MFC, you may want to continue development 
in MFC. When creating a new control, consider using ATL if you do not need all of the built-in 
functionality of MFC. 

• Using .NET languages. This is a good choice in situations where modules are being 
developed in different .NET languages and they need to communicate with each other 
without any marshalling, as is needed in the case of COM. For more information, refer to 
Volume 4, Migrate Using .NET of this guide. 

In the remainder of this chapter, examples will be given in both the C style API as well as the C++ 
style API. 

 
  

http://www.microsoft.com/downloads/search.aspx?displaylang=en


152 UNIX Custom Application Migration Guide: Volume 3 

Programming Principles 
The basic structure of an X Windows-based application that uses Motif is quite similar to the 
structure of a Windows-based application. 
To initiate an X Windows-based interface 
1. Initialize the toolkit. 
2. Create widgets. 
3. Manage widgets. 
4. Set up callbacks. 
5. Display widgets. 
6. Enter the main program event handler. 
The following code illustrates these steps: 
topWidget = XtVaAppInitialize(); 

frame = XtVaCreateManagedwidget("frame",xmFrameWidgetFrams, 
topWidget,,,); 

button = XmCreatePushButton( frame, "EXIT", NULL, 0 ); 

XtManageChild(button) 

XtAddCallback( button, XmNactivateCallback, myCallback, NULL ); 

XtRealizeWidget( topWidget ); 

XtAppMainLoop(); 

 
To initiate a Microsoft Windows-based application 
1. Initialize an instance and register the Window class. 
2. Set up callbacks. 
3. Create the window. 
4. Display the window. 
5. Enter the main program message loop. 
The following C style API code illustrates these steps: 
windowClassStruct.hInstance = thisApplicationInstance; 

windowClassStruct.lpfnWndProc = (WNDPROC)myCallback; 

RegisterClass( &windowClassStruct ); 

myWindow = CreateWindow(); 

ShowWindow(myWindow); 

while( GetMessage(,,,) ) {…} 

 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     153 

X Windows clients and Windows API-based applications rely on events and messages from the 
outside to manage input devices. The X Windows and Windows APIs use a similar method for 
this: a message loop where a callback function or inline code executes based on the nature of 
the event or message. 
The following code shows a simple Windows API message loop: 
while ( GetMessage( &msg, NULL, 0, 0 ) ) { 

TranslateMessage( &msg ); 

DispatchMessage( &msg ); 

} 

The GetMessage API returns an MSG structure (&msg). Right now, only the message member 
of this structure (UINT message in the following example) is of interest. Windows places the 
message identifier in this field. The developer can use this in the message loop to capture device 
events. 
typedef struct tagMSG { 

HWND hwnd; 

UINT message; 

WPARAM wParam; 

LPARAM lParam; 

DWORD time; 

POINT py; 

} MSG, *PMSG; 

 
In ATL, the event handling is implemented with the MESSAGE MAP macros defined within a 
window class.  
To make use of the message handling feature in the CWindowImpl ATL class  
1. Define a class CMyWindow derived from CWindowImpl. 
2. Define the Message Map. 
3. Define the member functions of CMyWindow that can handle the messages. 
4. Create an instance of CMyWindow class. 
5. Create the Window using the Createmember function of the CWindowImpl class. 
// Step1 Define the new class and the new class's name must be passed 
as an  

// argument to the CWindowImpl template. 

class CMyWindow : public CWindowImpl<CMyWindow> 

{ 

//Note  

//Step 2 Define the Message Map 

BEGIN_MSG_MAP(CMyWindow) 

// Implies that the OnPaint member function  

//will be invoked for the message WM_PAINT 

  MESSAGE_HANDLER(WM_PAINT,OnPaint)  

  MESSAGE_HANDLER(WM_CREATE,OnCreate) 

  MESSAGE_HANDLER(WM_DESTROY,OnDestroy) 

END_MSG_MAP() 

 

 
  



154 UNIX Custom Application Migration Guide: Volume 3 

//Step3 Define the member functions that handle the messages: 

 

LRESULT OnPaint( 

  UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled ) 

{ ...  

} 

LRESULT OnCreate( 

  UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled ) 

{ ... 

} 

LRESULT OnDestroy( 

  UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled ) 

{ ...  

} 

}; // CMyWindow 

…… 

//Step 4 Create an object of class CMyWindow 

CMyWindow wnd;   // constructs a CMyWindow object 

//Step5 Create a window on the screen 

wnd.Create( NULL, CWindow::rcDefault, _T("Hello"), 

  WS_OVERLAPPEDWINDOW|WS_VISIBLE ); 

 
Detailed information on message maps in ATL is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmfc98/html/_atl_message_maps.asp. 
Note   IA64 

LPARAM, WPARAM, and LRESULT are the typical polymorphic types; they hold pointers or integral types. 
When returning data from wParam and lParam fields of the MSG type variable, do not assign these values 
to variables of data types DWORD, ULONG, UINT, INT, int, or long values. 

In this case, the Win64 compiler will give the following warning: 

Warning C4244: 'return': conversion from 'WPARAM' to 'int', possible loss of data 

Creating Windows 
The code examples in this section show X Windows and Windows API implementations of 
window management. It is not likely that any large-scale X Windows client or Windows API-based 
application would actually be implemented as these short code examples. However, it is easy to 
see the conceptual similarities and some differences as well.  
An X Windows X11 client might use the XtAppInitialize, XtVaAppInitialize,  
XtOpenApplication, or XtVaOpenApplication function to get a top-level widget to create a 
window, as shown in the following example code. 
main (int argc, char *argv[] ) 

{ 

Widget toplevel; /* Conceptual Application Window */ 

XtAppContext app; /* context of the app */ 

toplevel = XtVaAppInitialize( &app, 

"myClassName", 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/_atl_message_maps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/_atl_message_maps.asp


Chapter 6: Developing Phase: Migrating the User Interface                                                                                     155 

NULL,0,&argc,argv,NULL,NULL ); 

OR 

toplevel = XtOpenApplication( &app, 

"myClassName", 

NULL,0,&argc,argv,NULL, 

whateverWidgetClass, NULL,0); 

} 

In the following code, a Windows API-based graphical application creates a main window. 
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) 

{ 

WNDCLASS wndclass; 

   wndclass.style =   CS_HREDRAW | CS_VREDRAW; 

   wndclass.lpfnWndProc =  WndProc; 

   wndclass.hInstance =  hInstance; 

   wndclass.hIcon = LoadIcon(NULL,  IDI_APPLICATION); 

   wndclass.hCursor =  LoadCursor(NULL, IDC_ARROW); 

   wndclass.hbrBackground = GetStockObject(WHITE_BRUSH); 

   wndclass.lpszMenuName = NULL; 

   wndclass.lpszClassName = " myClassName "; 

 

   RegisterClass(&wndclass); 

 

 

HWND hWnd; // handle to the Application Window 

hWnd = CreateWindow( "myClassName", 

"myWindowsName", 

WS_OVERLAPPEDWINDOW, 

CW_USEDEFAULT, 

0, 

CW_USEDEFAULT, 

0, 

NULL, 

NULL, 

hInstance, // context of the app 

NULL); 

 
Note   IA64  

When setting the cbWndExtra member of the WNDCLASS structure, be sure to reserve enough space 
for pointers. 

 
  



156 UNIX Custom Application Migration Guide: Volume 3 

User-exposed, named kernel objects such as HWND are 32 bits only. Ensure that explicit values of 
HANDLE are not used. For example, use INVALID_HANDLE_VALUE instead of 0xffffffff. 

In ATL, the class CWindow can be used to create the window as shown in the following code. 
CWindow win; 

win.Create( "button", NULL, CWindow::rcDefault, "Click me", 

  WS_CHILD ); 

win.ShowWindow( nCmdShow ); 

win.UpdateWindow(); 

Common Dialog Boxes 
The Common Dialog Box Library contains a set of dialog boxes for performing common tasks, 
such as opening files and printing documents. The common dialog boxes provide a uniform user 
interface that lets users carry out these common tasks in the same way for each application, 
which makes for a rapid migration of the UI. 
The common dialog boxes include: 
• The Open and Save As file dialog boxes. 
• The Find and Replace editing dialog boxes. 
• The Print, Print Setup, Print Property Sheet, and Page Setup printing dialog boxes. 
• The Color and Font dialog boxes. 
Note   Additional information on the Common Dialog Box Library is available at 

http://msdn.microsoft.com/library/en-
us/winui/WinUI/WindowsUserInterface/UserInput/CommonDialogBoxLibrary.asp. 

Creating Dialogs Boxes 
The following section describes different types of dialog boxes and their implementation. Dialog 
boxes can be of either modal or modeless. 

Modeless Dialog Box 
When the system creates a modeless dialog box, it becomes the active window. The modeless 
dialog box does not disable its parent window or send messages to its parent window. However, 
it stays at the top of the z-order even if its parent window becomes the active window. 
Applications can create a modeless dialog box by using the CreateDialog function, with 
arguments to specify the identifier of a dialog box template and the pointer to the callback 
procedure that handles messages for the window. The main characteristic of the modeless dialog 
boxes is that they allow the event loop of their parent to continue processing messages while they 
operate. For example, a progress dialog that displays progress indicators of processing done by 
the parent. 

Modal Dialog Box 
A modal dialog box becomes the active window when the system creates it. Until a call to 
EndDialog, the dialog box remains the active window. Neither the application nor the user can 
make the parent window active before calling EndDialog. An application uses the DialogBox 
function with a resource identifier to create a modal dialog box. Use a modal dialog box when it is 
desirable to force user input before proceeding. All common dialog boxes are modal except the 
Find and Replace dialog boxes. 
A dialog box procedure is similar to a window procedure in that the system sends messages to 
the procedure when it has information to give or tasks to carry out. Unlike a window procedure, a 
dialog box procedure never calls the DefWindowProc function. Instead, it returns TRUE if it 
processes a message or FALSE if it does not. 

 

http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/CommonDialogBoxLibrary.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/CommonDialogBoxLibrary.asp


Chapter 6: Developing Phase: Migrating the User Interface                                                                                     157 

The following is a sample dialog box procedure: 
INT_PTR CALLBACK MyDialogProc(HWND hWnd, UINT uMsg, WPARAM wParam, 
LPARAM lParam) 

{ 

switch (uMsg) 

{ 

case WM_COMMAND: 

switch (wCommand) 

{ 

case IDOK: 

 

hList = GetDlgItem(hWnd, IDC_LISTNAMES); 

GetDlgItemText(hWnd, IDC_TEXT, buffer, 10); 

SendMessage(hList,LB_ADDSTRING,i_count,(LPARAM) buffer); 

MessageBox(hWnd, buffer, _T("Names"), MB_OK); 

 

return TRUE; 

} 

case WM_CLOSE: 

{ 

 EndDialog(hWnd, 0); 

 return TRUE; 

} 

 return FALSE; 

} 
Note   IA64  

To prepare the code for Win64, the DialogBox Procedure return type must be INT_PTR. If the return type 
is BOOL, the compiler throws an error while creating the dialog. This is because, on the Windows API, the 
return types BOOL and INT_PTR are of the same size, whereas on Win64 the INT_PTR return type size is 
64 bits. 

If you use the LRESULT as the return type, both Win32 and Win64 display no warning because the 
LRESULT and LONG_PTR result types map to each other. The INT_PTR and LONG_PTR result types are of 
the same size on both x86 and Itanium. 

 
The following CreateDialog function creates the dialog box and all the controls that it contains. 
Note that the second parameter is the name of the dialog box as it appears in the first line of the 
resource text. 
/* 

** Create modeless dialog box. 

*/ 

hExampleDlg = CreateDialog( hInstance, 

MAKEINTRESOURCE(IDD_DIALOG1), 

(HWND)NULL, 

MyDlgProc ); 

 

 
  



158 UNIX Custom Application Migration Guide: Volume 3 

The following DialogBoxParam function creates a modal dialog box and all the controls that it 
contains, once again from a dialog box template resource. 
/* 

** Create modal dialog box. 

*/ 

int value = 1; 

DialogBoxParam(GetModuleHandle(NULL), 

MAKEINTRESOURCE(IDD_DIALOG1),  

(HWND)NULL,  

MyDialogProc, 

value); 
Note   IA64 

The last parameter of the DialogBoxParam function is an IN parameter that specifies the value to pass 
to the dialog box in the LPARAM parameter of the WM_INITDIALOG message.  

It is acceptable to have an integer variable in place of LPARAM because the conversion does not result in 
any loss of data. 

 
EndDialog must be invoked to destroy a modal dialog box, and DestroyWindow must be 
invoked to close a modeless dialog box. The following sample shows the usage of the 
DestroyWindow function. 
  LRESULT OnClose( UINT, WPARAM, LPARAM, BOOL& ) 

 { 

        DestroyWindow();  

  return 0; 

 } 

 ….. 

}; 

 
In the case of ATL, you can create dialog boxes using the ATL class CDialogImpl.  
The following C++ code example creates a dialog box by defining a new class CMyDialog 
derived from the ATL class CDialogImpl. 
IDD_DIALOG1 is the dialog template resource identifier. WM_INITDIALOG is the event to be 
handled to perform any initialization before the dialog box is displayed. In the following code 
example, this is done in the event handler OnInitDialog, which is a member function of the 
CMyDialog class. 
class CMyDialog: public CDialogImpl<CMyDialog> 

{ 

public: 

  enum { IDD = IDD_DIALOG1 }; 

  BEGIN_MSG_MAP( CMyDialog ) 

   MESSAGE_HANDLER( WM_INITDIALOG, OnInitDialog ) 

  END_MSG_MAP() 

 

  LRESULT OnInitDialog( UINT, WPARAM, LPARAM, BOOL& ) 

  { 

   //Initialize here 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     159 

…. 

   return 0; 

  } 

 

  }; 

 
The CDialogImpl class can be used to create both modal as well as modeless dialog boxes. The 
following code illustrates how to display a modal dialog box: 
STDMETHODIMP CMyApplication::InfoBoxModal() 

{ 

  CMyDialog dlg; 

  dlg.DoModal(); // Displays a modal Dialog box 

  return S_OK; 

} 

 

The following code displays a modeless dialog using the Create member function, which takes as 
parameter the object representing the parent window. 
int APIENTRY WinMain( HINSTANCE hInstance, HINSTANCE, LPSTR, int ) 

{ 

  _Module.Init( NULL, hInstance ); 

 

 CMyWindow wnd;  

 

   wnd.Create( NULL, CWindow::rcDefault, _T("Hello"), 

     WS_OVERLAPPEDWINDOW|WS_VISIBLE ); 

  CMyDialog dlg1;  

 dlg1.Create(wnd); 

 

// If the dialog box resource does not have the WS_VISIBLE style 
invoke  

// ShowWindow 

 

dlg1.ShowWindow( SW_SHOW );  

} 

 

 
  



160 UNIX Custom Application Migration Guide: Volume 3 

The following code example uses the BEGIN_MSG_MAP message map macro. Message map 
associates a handler function with a particular message, command, or notification. By using 
message map macros of ATL, you can specify a message map for a window. The window 
procedures in CWindowImpl, CDialogImpl, and CContainedWindow direct messages form a 
window to its message map. 
Note   Additional information on message maps is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/_atl_message_maps.asp.  

class CMyDialog: public CDialogImpl<CMyDialog> 

{ 

public: 

  enum { IDD = IDD_DIALOG1 }; 

  BEGIN_MSG_MAP( CMyDialog ) 

   MESSAGE_HANDLER( WM_INITDIALOG, OnInitDialog ) 

  MESSAGE_HANDLER( WM_CLOSE, OnClose ) 

  END_MSG_MAP() 

  …… 

Creating Controls 
Controls, such as X Windows widgets, come in all shapes, sizes, colors, and functions. There are 
two ways to create controls in a Windows API environment. The first and simplest method is by 
using one of the many dialog box editors. Use these tools to drag and drop controls onto a 
window or dialog box, which in X Windows is a widget itself. In the Windows API, controls are 
also windows in every respect. The second method is to call the CreateWindow function with the 
necessary parameters to produce the desired control at the desired location inside a parent 
window. This section describes the usage of X Windows widgets and Windows controls. An X 
Windows client can create a control or widget, as shown in the following example. 
X Windows example: Display a control on parent window 
main (int argc, char *argv[] ) 

{ 

Widget toplevel; /* Conceptual Application Window */ 

Widget button; 

XtAppContext app; /* context of the app */ 

toplevel = XtVaAppInitialize( &app, "Example", 
NULL,0,&argc,argv,NULL,NULL ); 

button = XtVaCreateManagedWidget( "command", // button text 

commandWidgetClass, //the type of widget 

toplevel, // parent widow or parent widget 

XtNheight, 50, 

XtNwidth, 100, 

XtNlabel, "Press To Exit", 

NULL ); 

} 

(Source File: U_CreateCtrl-UAMV3C6.01.c) 
 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/_atl_message_maps.asp


Chapter 6: Developing Phase: Migrating the User Interface                                                                                     161 

Following is a Windows example to display the control on a parent window. 
Windows example: Display a control on parent window 
HWND handleToThisButton; 

handleToThisButton = 

CreateWindow( "BUTTON", // the type of control 

"Fire Phasers",// button text 

WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,// the button style 

XpositionInParent, 

yPositionInnParent, 

BUTTONWIDTH, 

BUTTONHEIGHT, 

handleOfParentWindow,// parent window 

(HMENU)NUMBER_USED_TO_ID_THIS_CONTROL, 

hInst, 

NULL ); 

Identifying a Control 
To communicate with or respond to a control, it is necessary to identify it. This is done using the 
window handle and a unique ID associated with the control. You can use the handle to a control 
just as a handle to any window. For example, calling SetWindowPos with the window handle of 
the control can move the control or make it larger. Use the ID in the WindProc switch statement 
to send or capture messages to and from the control. 
The following API calls use the ID of the control along with the handle of the parent window: 
• SetDlgItemText 
• GetDlgItemText 
• GetDlgItemInt 
• SetDlgItemInt 
If the developer uses CreateWindow to build the control, both identification pieces—the ID of the 
control and the handle of the parent window—are known. CreateWindow returns the handle to 
the control, and the ninth parameter in the call to CreateWindow is the unique ID the application 
associates with that control. 

Communicating with a Control 
After the application identifies a control, it can communicate with it. The following are some 
examples of sending and receiving commands or messages from controls. 
X Windows example: Sending and receiving commands or messages from control 
// X11/Motif 

// 

XmString newString; 

newString = XmStringCreateLocalized("String One"); 

XmListAddItem( listWidget, newString, 0); 

XmStringFree(newString); 

newString = XmStringCreateLocalized("String Two"); 

XmListAddItem( listWidget, newString, 0); 

XmStringFree(newString); 

newString = XmStringCreateLocalized("String Three"); 

 
  



162 UNIX Custom Application Migration Guide: Volume 3 

XmListAddItem( listWidget, newString, 0); 

XmStringFree(newString); 

 

Windows example: Sending and receiving commands or messages from control 
//+ 

// programmatically add strings to the list box , part of the Dialog 
Procedure is // given below 

//- 

// ATL  

// 

class CMyDialog: public CDialogImpl<CMyDialog> 

{ 

public: 

  enum { IDD = IDD_DIALOG1 }; 

  BEGIN_MSG_MAP( CMyDialog ) 

   COMMAND_ID_HANDLER( IDOK, OnOK ) 

   COMMAND_ID_HANDLER( IDCANCEL, OnCancel) 

   MESSAGE_HANDLER( WM_INITDIALOG, OnInitDialog ) 

  MESSAGE_HANDLER( WM_CLOSE, OnClose ) 

  END_MSG_MAP() 

 

  LRESULT OnInitDialog( UINT, WPARAM, LPARAM, BOOL& ) 

  { 

 // Get the handle to the ListBox control whose ID is IDC_LIST1 

    hList = GetDlgItem(IDC_LIST1 );  

i_count = 0; 

   return 0; 

  } 

   

  LRESULT OnClose( UINT, WPARAM, LPARAM, BOOL& ) 

 { 

   

   DestroyWindow(); 

   return 0; 

 } 

  LRESULT OnOK( UINT, WPARAM, HWND, BOOL& ) 

 { 

  // Get the text from the Edit control whose ID is IDC_EDIT1 

   GetDlgItemText( IDC_EDIT1 , str,20 ); 

  // Add items to the list box on clicking OK 

   SendMessage(hList,LB_ADDSTRING,i_count,(LPARAM) str); 

   i_count++; 

   return 0; 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     163 

 } 

  LRESULT OnCancel( UINT, WPARAM, HWND, BOOL& ) 

 { 

  //Close the Dialog on clicking Cancel   

   DestroyWindow(); 

   return 0; 

 } 

 

 

 TCHAR str[22]; 

 HWND hList; 

 int i_count; 

}; 

  
Note   SendMessage returns a LRESULT and takes as parameters HWND, an UINT, a WPARAM, and an 
LPARAM.  

The WPARAM and LPARAM data types have been tailored for the appropriate operating systems such that 
they are 32 bits on a 32-bit target operating system and 64 bits on a 64-bit platform. 

So when passing an LPARAM-type value as the fourth parameter, the cast, if any, should be done to 
LPARAM and not to DWORD so that the code is 64-bit compliant. 

In the case of ATL, we can set the focus to a particular control on the dialog by first attaching the 
child control to a Window handle and then invoking SetFocus, as shown in the code of an event 
handler. 
// Windows ATL 

LRESULT OnFocusListBox( UINT, WPARAM, HWND, BOOL& ) 

 {  

   CWindow hWnd; 

  hWnd.Attach(hList); 

  hWnd.SetFocus(); 

     return 0; 

 } 

 
In the case of a modeless dialog box, to ensure that the TAB key and mnemonics work properly, 
a call to IsDialogMessage must be made in the main message loop of the application as shown. 
For more information on IsDialogMessage, refer to MSDN®. 
while( GetMessage( &msg, NULL, 0, 0 ) ) 

{ 

   if ( dlg1 ==NULL || !IsDialogMessage(dlg1, &msg) ) 

   { 

  TranslateMessage( &msg ); 

  DispatchMessage( &msg ); 

   } 

}  

 

 
  



164 UNIX Custom Application Migration Guide: Volume 3 

Table 6.1 describes X Windows and Windows routines for setting focus and selecting the list box 
item. 
Table 6.1. X Windows and Windows Routines 

X Windows Windows 
XSetInputFocus(Display display, 
Window focus, int RevertToParent, 
Time timeNow) 
 

HWND SetFocus( HWND hwnd ) 
. 

XmListSelectPos(Widget listWidget, 
int position, Boolean notify) 
 

LRESULT SendMessage(HWND hwnd, UINT 
message,WPARAM wParam,LPARAM lParam ) 
 

Libraries and Include Files 
Despite differences in their underlying architectures, many of the graphical functions used in 
X Windows and Windows perform similar tasks. These include the core libraries and the Motif 
and Windows API common dialog boxes. You can identify the necessary header files and 
libraries to port UNIX/Motif core GUI components and common dialogs to the Windows UI. 

Core Libraries 
A number of functions exist to support the core API used in a graphical user interface. X Windows 
includes the libraries X and Xlib and the X Windows Intrinsics toolkit. The Windows API 
equivalent is Windows.h, which includes a large number of additional header files. 
The Microsoft compiler includes Windows API USER32.LIB and GDI32.LIB import libraries, which 
can be roughly compared to X Library and X Toolkit Intrinsics because they provide nearly all of 
the basic window management and 2-D graphics APIs. These Windows API libraries are called 
import libraries because they provide information to the linker. When a Windows API-based 
program references the CreateWindow function, User32.lib tells the linker that this function is in 
the User32.dll dynamic-link library. This information goes to the .exe file, which enables Windows 
to perform dynamic linking by using the User32.dll and Gdi32.dll DLLs when the program is 
executed. 

Motif and Windows API Common Dialog Boxes 
Dialog box functionality is provided by Motif and by the Windows Common Dialog Box Library. If 
the code migrates from Motif, there is probably an equivalent Windows API common dialog box 
for each Motif function. 
Windows API provides a set of functions to create commonly used windows. If Commdlg.h is 
included in a project, the project has access to the Windows API common dialog box functions. 
The Comdlg32.dll library stores templates for these dialog boxes, along with the code to drive 
them. By using these, a developer can save time and provide a consistent look and feel in the 
application being migrated. 
For example, the Motif function XmCreateFileSelectionDialog is very similar to the Windows 
API function GetOpenFileName. The X/Motif code must include the Xm/ FileSB.h header file. 
The Windows API-based application must include Commdlg.h and must link to Comdlg32.lib. 
Calling the GetOpenFileName API displays the Open File dialog box. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     165 

In addition to Windows.h, the Windowsx.h library has roots in Windows version 3.1 and provides 
many useful macros that can be used in code migration. These macros are not used as often or 
in the same ways now, but they can be helpful. For example, using the SelectPen and 
DeletePen macros can be more intuitive than calling SelectObject and DeleteObject with all the 
required type specifications: 
#define SelectPen(hdc, hpen)((HPEN)SelectObject((hdc), 
(HGDIOBJ)(HPEN)(hpen))) 

#define DeletePen(hpen) DeleteObject((HGDIOBJ)(HPEN)(hpen)) 

Event Handling 
This section describes the X Windows and Windows mouse and key board event handling 
messages. You can use this information to identify the suitable windows routines for the existing 
X Windows mouse and keyboard event handling routines. 

Capturing Mouse Events 
There are more than 30 mouse input messages, divided into two cases: 
• Client-area mouse messages 
• Nonclient-area mouse messages 
A window receives client-area mouse messages when a mouse event occurs in the client area of 
that window. The file Winuser.h (included by Windows.h) defines these message values, as listed 
in Table 6.2. 
Table 6.2. Mouse Event Definitions 

Message Event 

WM_LBUTTONDBLCLK  The left mouse button was double-clicked. 

WM_LBUTTONDOWN The left mouse button was pressed. 

WM_LBUTTONUP  The left mouse button was released. 

WM_MBUTTONDBLCLK The middle mouse button was double-clicked. 

WM_MBUTTONDOWN  The middle mouse button was pressed. 

WM_MBUTTONUP  The middle mouse button was released. 

WM_RBUTTONDBLCLK  The right mouse button was double-clicked. 

WM_RBUTTONDOWN The right mouse button was pressed. 

WM_RBUTTONUP  The right mouse button was released. 

WM_XBUTTONDBLCLK  Windows 2000 or Windows XP: An X mouse button was 
double-clicked. 

WM_XBUTTONDOWN  Windows 2000 or Windows XP: An X mouse button was 
pressed. 

WM_XBUTTONUP Windows 2000 or Windows XP: An X mouse button was 
released. 

 

 
  



166 UNIX Custom Application Migration Guide: Volume 3 

Client and Nonclient-Area Mouse Messages  
A window receives client-area mouse messages when a mouse event occurs within the client 
area and nonclient-area mouse messages when a mouse event occurs in the window outside the 
client area. The nonclient area includes the border, title bar, scroll bar, menu, and minimize and 
maximize buttons. Each client area message has a corresponding nonclient-area message. A 
nonclient-area message is defined by including NC in its name, for example, 
WM_NCLBUTTONUP. 
The lParam member of the MSG structure consists of two SHORT values representing the 
POINTS structure shown in the following code. This can give the current location of the mouse 
pointer. For client-area messages, the (x,y) pair is relative to the client area of the window. For 
nonclient-area messages, the (x,y) pair is relative to the upper-left corner of the screen. 
The following code shows the handler for the message WM_LBUTTONDOWN that represents 
client-area mouse messages. The handler determines the (x,y) coordinates of the mouse pointer. 
(This example shows only the code relevant to the handler.) 
Windows example: Handling mouse messages 
BEGIN_MSG_MAP( CMyDialog ) 

MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown) 

MESSAGE_HANDLER(WM_NCLBUTTONUP, OnNCLButtonUP) 

END_MSG_MAP() 

 

LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& 
bVal) 

 { 

  POINT pnt; 

  pnt.x = LOWORD(lParam); 

  pnt.y = HIWORD(lParam); 

  return 0; 

 } 

LRESULT OnNCLButtonUP(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& 
bVal) 

 { 

  MessageBox("Non Client Area : Mouse Button UP"); 

  return 0; 

 } 

 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     167 

The process for handling client-area mouse messages in X11 is very similar, as shown in the 
following code. 
X Windows example: Handling mouse messages 
void main() { 

Display *xdisplay; 

XEvent xEvent; 

int mouseX; 

int mousey; 

while (1) { 

 

/* wait for next event */ 

XNextEvent (xdisplay, &xevent); 

switch (xevent.type) { 

case ButtonPress: 

mouseX = xevent.xbutton.x; 

mousey = xevent.xbutton.y; 

break; 

} 

} 

Capturing Keyboard Events 
In UNIX, a KeyPress event is generated when the user presses a key on the keyboard. Similarly, 
a KeyRelease event is generated when the user releases the pressed key. Both events arrive 
with the XKeyEvent structure. A KeySym is a portable number to identify a key with a given 
engraving. The Xlib function, XLookupString, converts a KeyPress event into both a KeySym and 
an ASCII string. After you have a KeySym, you can deal with the key itself. The Xlib function 
XKeysymToString returns the string name for a given KeySym. The following example illustrates 
how these functions are used in capturing the keyboard events in UNIX. 
X Windows example: Process keyboard events 
void PrintKeyEvent(XKeyEvent* event) 

{ 

    KeySym keysym; 

    XComposeStatus compose_status; 

    int length; 

    char string[10]; 

    switch(event->type) 

    { 

        case KeyPress: 

            printf("KeyPress ");break; 

        case KeyRelease: 

            printf("KeyRelease ");break; 

        default: 

            printf("not a key event \n"); 

            return; 

    } 

 
  



168 UNIX Custom Application Migration Guide: Volume 3 

    length = XLookupString(event,string,9,&keysym,&compose_status); 

    if((length > 0) && (length <=9)) 

    { 

        string[length]='\0'; 

        printf("result of xlookupstring [%s] ", string); 

    } 

    printf("keysym [%s] \n", XKeysymToString(keysym)); 

} 

In Windows, a scan code identifies each physical key on the keyboard. The device driver 
responsible for servicing the keyboard maps this number to a virtual-key code. The include file 
Winuser.h defines these virtual key codes. After mapping the scan code, the system places a 
message that includes the scan code and virtual key code along with other information in the 
system message queue. Some additional system processing takes place, and then the system 
sends the keyboard message to the process that has the keyboard focus. 
Pressing a key causes a WM_KEYDOWN or WM_SYSKEYDOWN message to be placed in the 
thread message queue attached to the window that has the keyboard focus. Releasing a key 
causes a WM_KEYUP or WM_SYSKEYUP message to be placed in the queue. 
The system posts a WM_CHAR message to the window with the keyboard focus when the 
TranslateMessage function translates a WM_KEYDOWN message. The WM_CHAR message 
contains the character code of the key that was pressed. 
The following example shows how to manually catch and process keystrokes. 
Windows example: Process keyboard events 
//+ 

// contrived union used only to show how the bits of the 

// lParam parameter are arranged 

// when handling WM_KEYDOWN messages 

//- 

typedef union { 

struct { 

unsigned long repeatCount :16; 

unsigned long scanCode :8; 

unsigned long extendedChar :1; 

unsigned long reserved :4; 

unsigned long altKeyDown :1; 

unsigned long previousState :1; 

unsigned long transition :1; 

}bits; 

LPARAM lParam; 

}tyKeyData; 

 

BEGIN_MSG_MAP( CMyDialog ) 

MESSAGE_HANDLER(WM_KEYDOWN, OnKeyDown) 

MESSAGE_HANDLER(WM_CHAR, OnChar) 

END_MSG_MAP() 

 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     169 

//+ 

// ATL WM_KEYDOWN event handler 

//- 

LRESULT OnKeyDown(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& 
bHandled) 

{ 

tyKeyData keyData; 

TCHAR characterCode; 

 

//+ 

// just for clarity showing what is in 

// the wParam parameter when WM_KEYDOWN is 

// sent to the window proc 

//- 

characterCode = ((TCHAR)(wParam)); 

//+ 

// the tyKeyData union is defined above 

// this union displays how the bits are defined 

//- 

keyData.lParam = lParam; 

if ( keyData.bits.altKeyDown ) { 

//+ 

// using the keyboard hardware scan code 

// to determine what key was pressed 

//- 

switch ( keyData.bits.scanCode ) { 

case 0x3B : // <Alt-F1> 

break; 

case 0x3C : // <Alt-F2> 

break; 

default : 

break; 

} 

} 

else { 

//+ 

// VK_XX Key Codes are found in winuser.h 

// These are not the keyboard hardware scan codes!!! 

// using the wParam to determine 

// what key was pressed 

//- 

switch ( characterCode ) { 

case VK_F1 : // <F1> 

 
  



170 UNIX Custom Application Migration Guide: Volume 3 

break; 

case VK_F2 : // <F2> 

break; 

default : 

break; 

} 

} 

return 0; 

} 

 

LRESULT OnChar(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled) 

{ 

  characterCode = ((TCHAR)(wParam)); 

switch ( characterCode ) { 

//+ 

// VK_XX codes can be used here 

// VK_XX Key Codes are found in winuser.h 

//- 

case 0x08: // backspace 

case 0x0A: // linefeed 

case 0x1B: // escape 

break; 

case VK_LEFT : // left arrow 

case VK_UP : // up arrow 

case VK_INSERT : // the insert key 

break; 

//+ 

// convert TAB to Spaces 

//- 

case 0x09: // tab 

for ( int i = 0; i < 4; i++) 

SendMessage(hWnd, WM_CHAR, 0x20, 0); 

} 

return 0; 

} 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     171 

Keyboard Focus 
Keyboard focus is a temporary property of a window or widget. At any given time, only one 
component can listen to the keyboard for events. The window or widget that is listening is said to 
have the current focus, keyboard focus, or just focus. Processing focus in a Windows API-based 
application involves processing the WM_KILLFOCUS and WM_SETFOCUS Windows messages. 
This is similar to using XmNfocusCallback and XmNlosingFocusCallback for focus callbacks 
set up within X/Motif.  
The following code shows the window procedure for a subclassed button that is handling focus 
messages: 
LRESULT CALLBACK CSoftKeyProc(HWND hWnd,UINT iMsg, WPARAM wParam,LPARAM 
lParam) 

{ 

LRESULT lResult = FALSE; 

//+ 

// this is a trick to retrieve data (in this case a pointer ) that is 
attached to // this window object. 

// SetWindowLongPtr() was used to initially attach this data to the 
window. 

//The reason for this 

// being used here is that this function may be the callback for any 
number 

//of these type 

// objects and this data is "state" for this particular instance 

//- 

CvtSoftKey *pSoftKey = (CvtSoftKey *)GetWindowLongPtr( hWnd, 0 ); 

switch (iMsg) { 

default : 

break; 

//+ 

// this window (button in this case) is receiving the focus 

// so we can do whatever processing we like 

// Draw a new border – Highlight the text – whatever! 

//- 

case WM_SETFOCUS : 

lResult = pSoftKey->OnSetFocus( hWnd,iMsg,wParam,lParam); 

break; 

//+ 

// this window ( button in this case ) is losing focus 

//- 

case WM_KILLFOCUS : 

lResult = pSoftKey->OnKillFocus( hWnd,iMsg,wParam,lParam); 

break; 

} 

return DefWindowProc(hWnd,iMsg,wParam,lParam); 

 
  



172 UNIX Custom Application Migration Guide: Volume 3 

} 
Note   If a pointer or a handle is being retrieved, the GetWindowLongPtr function supersedes the 
GetWindowLong function. (Pointers and handles are 32 bits on 32-bit Windows and 64 bits on 64-bit 
Windows.) To write code that is compatible with both 32-bit and 64-bit versions of Windows, use 
GetWindowLongPtr. 

Creating Keystrokes, Mouse Motions, and Button Click 
You can simulate keystrokes, mouse motions, or button clicks by using the SendInput function to 
serially insert events into the mouse or keyboard stream. 
Note   Additional information about handling the keyboard is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/userinput/keyboardinput/keyboardinputreference/keyboardinputfunc
tions/keybd_event.asp.  

Graphics Device Interface 
The Graphics Device Interface (GDI) is a set of API functions and data structures that can be 
used to generate graphics for devices such as displays and printers. These functions help you in 
creating such graphic objects as Pens, Brush, and Palette to draw such shapes as lines, circles, 
and rectangles. Functions are available to display the text of different fonts and to draw images 
as well. 
This section describes the GDI-specific routines and functions used in X Windows applications 
and their corresponding replacements in the Windows environment. You can use this information 
to identify the best approach to migrate the GDI-specific routines in your UNIX application to the 
Windows environment using the Win32/Win64 API. 

Device Context 
Applications on both platforms use a context to control how drawing functions behave. On 
X Windows systems, this context is known as the graphics context (GC). On Windows API-based 
GDI systems, this context is known as the device context (DC). One difference between the two 
platforms is in the location where the operating system stores and manages drawing attributes 
such as the width of lines or the current font. 
In X Windows, these values belong to the graphics context. When using XCreateGC or XtGetGC, 
it is necessary to provide a values mask and values structure. These values are used to store 
settings such as line width, foreground color, background color, and font style. 
The following code is an example of the process of setting the foreground and background colors: 
GC gcRedBlue; 

XGCValues gcValues; 

unsigned long gcColorRed; 

unsigned long gcColorBlue; 

unsigned long gcColorWhite; 

Widget myWidget; 

int main (int args, char **argv) 

{ 

// initialize colors - widget - etc. 

gcValues.foreground = gcColorRed; 

gcValues.background = gcColorBlue; 

gcRedBlue = XtGetGC ( myWidget, GCForeground | GCBackground, 
&gcValues); 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/keyboardinputreference/keyboardinputfunctions/keybd_event.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/keyboardinputreference/keyboardinputfunctions/keybd_event.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/keyboardinputreference/keyboardinputfunctions/keybd_event.asp


Chapter 6: Developing Phase: Migrating the User Interface                                                                                     173 

} 

Windows API-based applications use a different approach. The device context is a structure that 
defines a set of graphic objects and their associated attributes and the graphic modes that affect 
output. To keep this simple, the graphic objects include a font for displaying text, a pen for line 
drawing, and a brush for painting and filling. To draw lines, rectangles, and text, it is necessary to 
get or create one of these objects and select it into the desired device context. 
Instead of creating several specialized graphics context objects as X Windows does, Windows 
API-based applications create several drawing objects and then select them into the device 
context as and when required. This methodology is similar to what an X Windows client 
application could do by getting a single graphics context and then repeatedly calling 
XChangeGC. The following code shows a Windows API-based application that creates several 
pens and uses them to draw lines and rectangles; the same code could be called from an event 
handler member function in the case of ATL classes: 
#define onePixel 1 

#define threePixels 3 

#define thinLine onePixel 

#define thickLine threePixels 

COLORREF colorRed; 

COLORREF colorBlue; 

void drawSomthing( HDC hDC ) 

{ 

HPEN thinRedPen; 

HPEN thinBluePen; 

HPEN oldPen; 

int x; 

int y; 

// initialize colors - etc. 

//+ 

// create two pens. 

// this could be done more statically somewhere so that 

// it would not be necessary to create them each time 

// this method is called. 

//- 

colorRed = RGB(255,0,0); 

colorBlue = RGB(0,0,255); 

thinRedPen = CreatePen( PS_SOLID, thinLine, colorRed ); 

thinBluePen = CreatePen( PS_SOLID, thinLine, colorBlue ); 

x = 100; 

y = 200; 

//+ 

// draw a line with the current pen, 

// whatever it is at this time for this DC 

//- 

LineTo( hDC, x,y ); 

//+ 

 
  



174 UNIX Custom Application Migration Guide: Volume 3 

// make our pen the current pen for the DC 

// and save the existing one so we can put it back 

//- 

oldPen = (HPEN)SelectObject( hDC, thinRedPen ); 

//+ 

// draw a line with our pen 

//- 

LineTo( hDC, x,y ); 

//+ 

// make our other pen current in the DC. 

// we are not saving the old one. 

//- 

SelectObject ( hDC, thinBluePen ); 

//+ 

// draw a line using our second pen 

//- 

LineTo( hDC, x, y ); 

//+ 

// put back the original pen 

//- 

SelectObject( hDC, oldPen ); 

//+ 

// get rid of our pen resources 

//- 

DeleteObject( thinRedPen ); 

DeleteObject( thinBluePen ); 

} 

Getting Windows GDI Device Context 
Windows API-based applications can retrieve the device context from the window handle, as 
shown in the following example: 
void myFunction ( HWND hWnd ) 

{ 

//+ 

// The following example attaches the Window handle hWnd to the CWindow 
object 

// and calls CWindow::GetDC to retrieve the DC of the client 

// area of the window wrapped by CWindow Object.  

//- 

CWindow myWindow; 

myWindow.Attach(hWnd);  

HDC hDC = myWindow.GetDC();// draw using the device context hDC 

//+ 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     175 

// release the DC 

//- 

myWindow.ReleaseDC(hDC); 

hDC = NULL; 

 
Windows API-based applications can also retrieve the device context from the window handle by 
using BeginPaint and EndPaint, as shown in the following example: 
LRESULT CALLBACK WndProc( HWND hWnd, 

UINT message, 

WPARAM wParam, 

LPARAM lParam) 

{ 

HDC hDC; 

PAINTSTRUCT ps; 

switch ( message ) { 

case WM_PAINT: 

//+ 

// Retrieve the device context (DC) 

// for the window referenced by hWnd 

//- 

hDC = BeginPaint( hWnd, &ps ); 

//+ 

// draw with hDC or ps.hdc 

//- 

//+ 

// always follow BeginPaint() with EndPaint() 

//- 

EndPaint( hWnd, &ps ); 

break; 

} 

} 

Creating Windows API GDI Device Context 
It is often useful to draw in an off-screen buffer and then move that buffer into the display 
memory. This hides the live drawing function calls from the user and eliminates flicker in the 
window. This technique is called double buffering and is used extensively for programming 
games. 
To create this off-screen context 
1. Calculate the width and height that are needed. 
2. Get the device context of the target (dialog box, button, or any other window object). 
3. Call CreateCompatibleDC. 
4. Call CreateCompatibleBitmap. 
// m_hButton is the window handle to a button. 

// m_clientRect is a RECT structure. 

 
  



176 UNIX Custom Application Migration Guide: Volume 3 

// Step 1. Calculate the size. 

GetClientRect( m_hButton, &m_clientRect ); 

m_width = ((int)( m_clientRect.right - m_clientRect.left )); 

m_height = ((int)( m_clientRect.bottom - m_clientRect.top )); 

// Step 2. Get the DC of the target window. 

hdc = GetDC( m_hButton ); 

// Step 3. Create a compatible device context. 

m_hdcMem = CreateCompatibleDC(hdc); 

// Step 4. Create a compatible bitmap - our X Windows drawable. 

m_hbmpMem = CreateCompatibleBitmap( hdc,m_width,m_height ); 

 
To use and display this off-screen bitmap 
1. Select the compatible bitmap into the compatible device context. 
2. Draw on that device context. 
3. Get the target window device context. 
4. Transfer the compatible memory image to the screen. 
5. Select the old bitmap into the device context. 
// Step 1. Select the compatible bitmap into the compatible DC. 

// hbmpOld is a handle to a bitmap 

// m_hdcMem is the compatible device context 

// m_hbmpMem is the compatible bitmap 

hbmpOld = (HBITMAP)SelectObject( m_hdcMem, m_hbmpMem ); 

// Step 2. Draw on that DC. 

// FillRect() cleans out the rectangle 

FillRect( m_hdcMem, &m_clientRect, hBackgroundBrush ); 

// Draw a line 

LineTo( m_hdcMem, x,y ); 

// Step 3. Get the target DC. 

targetDC = GetDC( hTargetWindow ); 

// Step 4. Transfer the compatible image to the screen. 

// transfer everything to the screen 

// hdcMem is what we drew on 

//- 

BitBlt( targetDC, 

0, 

0, 

m_width, 

m_height, 

m_hdcMem, 

0, 

0, 

SRCCOPY ); 

// Step 5. Put the old bitmap back into the compatible DC. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     177 

SelectObject( m_hdcMem, hbmpOld ); 

// based on program logic - Release the DC of the target window 

ReleaseDC( hTargetWindow, targetDC ); 

 
For more information about Windows API-based GDI device context, search the MSDN Web site 
for GetDC, CreateDC, CreateCompatibleDC, and DeleteDC. 

Display and Color Management 
The X Windows and Windows API-based GDI are both constrained by the physical limitations of 
the available display hardware. One such limitation is the number of colors a display adapter is 
capable of showing. You can use the information provided in this section to identify the 
corresponding Windows routines for Drawing and Graphics Device management. You will also be 
able to port X Windows applications with drawing and graphics code to the Windows 
environment. 
All X Windows applications use a color map. This map can be shared or private. A shared color 
map is used by all other applications that do not use a private map. Using a private map gives an 
application better color control and potentially a greater number of colors. There is one problem 
with private maps: When the mouse moves on or off the client that is using a private map, the 
screen colors change. Windows API-based applications typically use color with no regard for the 
display device. 
If the application uses a color that is beyond the capabilities of the display device, the system 
approximates that color within the limits of the hardware. On display devices that support a color 
palette, applications sensitive to color quality can create and manage one or more logical 
palettes. 
A palette is similar to an X Windows color map. Both of these methodologies are used to map 
some desired colors onto the physical capabilities of the display hardware. For example, if a 
Windows API-based program needs more than 16 colors and is running on an 8-bits-per-pixel 
(bpp) display adapter, the program must create and use a palette. 
The Windows API system palette can be thought of as being similar to an X Windows shared 
color map. A logical palette created and realized by an application can be thought of as an 
X Windows private color map. 
A Windows API-based application that uses a logical palette exhibits some of the same behaviors 
as an X Windows application that uses a private color map. The application that gets priority in 
color selection is the one with the current focus. When the application that has the current focus 
calls RealizePalette, the system palette changes and the WM_PALETTECHANGED message is 
sent to all top-level and overlapped windows. This message enables a window that uses a color 
palette but does not have the keyboard focus to realize its logical palette and update its client 
area. The wParam parameter identifies the owner window. Inspecting this value prevents the 
originating window from realizing a logical palette repeatedly upon receipt of this message. 
Today, most display hardware is capable of 24-bit or better color depth. For palette examples, 
see the many samples both on the MSDN Web site and in the Microsoft Windows Platform SDK. 
To create a logical color palette 
1. Allocate a LOGPALETTE structure and assign values to it. 
2. Call CreatePalette with a pointer to the LOGPALETTE structure. 
3. Call SelectPalette by using the pointer returned from CreatePalette. 
4. Call RealizePalette to make the system palette the same as the device context. 
5. Call UnrealizeObject when finished with the palette. 

 
  



178 UNIX Custom Application Migration Guide: Volume 3 

To determine the capabilities of the hardware and to calculate the best possible behaviors of the 
display, an X Windows program can use such functions as: 
• DefaultColorMap 
• DefaultVisual 
• DisplayCells 
• DisplayPlanes 
• XGetVisualInfo 
• XGetWindowAttributes 
A Windows API-based application can rely on GetDeviceCaps for this information. The 
GetDeviceCaps function retrieves device-specific information for the specified device. The 
following code example shows a few examples of device information that can be retrieved by 
using GetDeviceCaps. For a full list of the possible values of the nIndex parameter, refer to the 
operating system Help or search the MSDN Web site. 
int GetDeviceCaps( 

HDC hdc, // handle to DC 

int nIndex // index of capability 

); 

void myFunction( HWND hThisWindow ) 

{ 

HDC hDC; 

hDC = GetDC( hThisWindow ); 

widthOfScreenInPixels = GetDeviceCaps( hDC, HORZRES ); 

numberOfColorPlanes = GetDeviceCaps( hDC, PLANES ); 

numberOfColors = GetDeviceCaps( hDC, NUMCOLORS ); 

numberOfFonts = GetDeviceCaps( hDC, NUMFONTS ); 

} 

Drawing 2-D Lines and Shapes 
The device context of a drawing surface contains attributes that directly affect how lines, curves, 
and rectangles are drawn. These attributes include the current brush and pen and the current 
position. 
The default current position for any given device context is (0,0) in logical two-dimensional (2-D) 
space. The value of the current position can be changed by calling MoveToEx, as shown in the 
following code example. The MoveToEx function updates the current position to the specified 
point and optionally returns the previous position. This function affects all drawing functions. 
BOOL MoveToEx( 

HDC hdc, // handle to device context 

int X, // x-coordinate of new current position 

int Y, // y-coordinate of new current position 

LPPOINT lpPoint // old current position 

); 

 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     179 

The POINT structure defines the x and y coordinates of a point, as shown in the following code 
example: 
typedef struct tagPOINT { 

LONG x; 

LONG y; 

} POINT, *PPOINT; 

Drawing Lines 
Two sets of line and curve drawing functions are provided in the Windows API and GDI API. 
These two sets of functions are identified by the letters “To” at the end of the function name. 
Functions ending with “To” use and set the current position. Those functions that do not end with 
“To” leave the current position as it was. The LineTo function draws a line from the current 
position up to, but not including, the specified point, as shown in the following code example: 
BOOL LineTo( 

HDC hdc, // device context handle 

int nXEnd, // x-coordinate of ending point 

int nYEnd // y-coordinate of ending point 

); 

The PolylineTo function draws one or more straight lines that use and update the current 
position. A line is drawn from the current position to the first point specified by the lppt parameter 
by using the current pen. For each additional line, the function draws from the ending point of the 
previous line to the next point specified by lppt, as shown in the following code example: 
BOOL PolylineTo( 

HDC hdc, // handle to device context 

CONST POINT *lppt, // array of points 

DWORD cCount // number of points in array 

); 

The Polyline function draws a series of line segments by connecting the points in the specified 
array, as shown in the following code example. The lines are drawn from the first point through 
subsequent points by using the current pen. Unlike the LineTo or PolylineTo functions, the 
Polyline function neither uses nor updates the current position. 
BOOL Polyline( 

HDC hdc, // handle to device context 

CONST POINT *lppt, // array of endpoints 

int cPoints // number of points in array 

); 

 
X Windows example: Drawing lines 
The following X Windows example shows the use of XDrawLine. 
int main (int argc, char **argv) 

{ 

XtToolkitInitialize (); 

myApplication = XtCreateApplicationContext (); 

myDisplay = XtOpenDisplay( myApplication, 

NULL, 

NULL, 

 
  



180 UNIX Custom Application Migration Guide: Volume 3 

"XBlaat", 

NULL, 

0, 

&argc, 

argv); 

myWindow = RootWindowOfScreen(DefaultScreenOfDisplay (mydisplay)); 

//+ 

// now we need a surface to draw on 

//- 

myMap = XCreatePixmap ( myDisplay,myWindow,64,64, 1 ); 

values.foreground = 

BlackPixel (myDisplay, DefaultScreen (myDisplay)); 

myGC = XCreateGC (myDisplay, mySurface, GCForeground, &values); 

//+ 

// draw two diagonal lines across the 64x64 surface 

// 

XDrawLine( myDisplay,mySurface,myGC,0,0,63,63 ); 

XDrawLine( myDisplay,mySurface,myGC,0,63,63,0 ); 

… 

} 

 
Windows example: Drawing lines 
The following Windows ATL example shows the use of MoveToEx and LineTo. 
BEGIN_MSG_MAP( CMyWindow ) 

  MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown) 

  MESSAGE_HANDLER(WM_LBUTTONUP, OnLButtonUP) 

  MESSAGE_HANDLER(WM_MOUSEMOVE, OnMouseMove) 

END_MSG_MAP() 

POINTS current; 

POINTS start; 

LRESULT OnMouseMove(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& 
bHandled) 

{ 

   

COLORREF red = RGB(255,0,0); 

// retrieve the current position from lParam 

current.x = LOWORD(lParam); 

current.y = HIWORD(lParam); 

   

//Obtain the current device context 

HDC hdc = GetDC(); 

 

//Create the red pen 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     181 

HPEN pen = CreatePen(PS_SOLID, 2, red); 

 

//Save the oldpen 

HPEN oldpen = (HPEN)SelectObject(hdc, pen); 

 

if (start.x != -1 ) 

{ 

//Move to the starting point selected in MouseUp event 

  MoveToEx(hdc, start.x, start.y, NULL); 

//Draw a line from the previous point to the current point 

  LineTo(hdc, current.x, current.y); 

  start.x = current.x; 

  start.y = current.y; 

} 

} 

Drawing Rectangles 
In the Windows API, a rectangle shape is a filled shape. Filled shapes are geometric forms that 
the current pen can outline and the current brush can fill. 
Following are the five filled shapes: 
• Ellipse 
• Chord 
• Pie 
• Polygon 
• Rectangle 
In X Windows, the XRectangle shape is quite different from the Windows API equivalent. When 
porting between the two, it is necessary to understand the conceptual difference. 
The X Windows version uses an upper-left–corner point and the width and height. The Windows 
API version uses the upper-left and lower-right points. This difference is also true for the 
XDrawRectangle and Windows API Rectangle functions. 
The X Windows structure is as follows: 
typedef struct { 

short x,y; 

unsigned short width,height; 

} XRectangle; 

Its Windows API equivalent is as follows: 
typedef struct _RECT { 

LONG left; 

LONG top; 

LONG right; 

LONG bottom; 

} RECT, *PRECT; 

 

 
  



182 UNIX Custom Application Migration Guide: Volume 3 

The Rectangle function draws a rectangle and is outlined by using the current pen and filled by 
using the current brush. Because it does not fill the rectangle, this function is quite different from 
the XDrawRectangle function. 
BOOL Rectangle( 

HDC hdc, // handle to DC 

int nLeftRect, // x-coord of upper-left corner of rectangle 

int nTopRect, // y-coord of upper-left corner of rectangle 

int nRightRect, // x-coord of lower-right corner of rectangle 

int nBottomRect // y-coord of lower-right corner of rectangle 

); 

 
Rectangle functions that fill the rectangle are as follows: 
• X Windows: XFillRectangle 
• Windows API: Rectangle 
• Windows API: FillRect 
Rectangle functions that draw the outline only are as follows: 
• X Windows: XDrawRectangle 
• Windows API: FrameRect 
Note   The Windows API functions Rectangle and FillRect differ in the parameters they take. For more 
information, refer to the Visual Studio® Help or the MSDN Web site. 

X Windows example: Handling rectangle functions 
The following X Windows example demonstrates rectangle functions: 
void drawSomeRectangles() 

{ 

//+ 

// fill the rectangle and then draw a black border around it 

//- 

XFillRectangle (myDisplay, mySurface, myWhiteGC, 0, 0, 31, 31); 

XDrawRectangle (myDisplay, mySurface, myBlackGC, 0, 0, 31, 31); 

//+ 

// draw an empty rectangle ten pixels square 

//- 

XDrawRectangle( myDislay, mySurface, myBlackGC, 0,0, 10,10 ); 

} 

 
Windows example: Handling rectangle functions 
The following ATL code example demonstrates rectangle functions on the Mouse left button down 
event: 
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& 
bHandled){ 

RECT myRectangle; 

//+ 

// fill the rectangle and then draw a black border around it 

// assume that the current pen in this DC is black and the 

// current brush selected is red 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     183 

// The rectangle top left corner is the point where the left mouse 
button  

// is clicked  

//- 

HBRUSH myredBrush = CreateSolidBrush(RGB(255, 0, 0)); 

SelectObject(hdc, myredBrush); 

Rectangle( hDC, LOWORD(lParam), HIWORD(wParam),31,31 ); 

//+ 

// draw an empty rectangle ten pixels square 

// The FrameRect() function draws a border around the specified 

// rectangle by using the specified brush rather than the current 

// pen. 

// 

// The width and height of the border are always one logical unit. 

//- 

myRectangle.top = 0; 

myRectangle.left = 0; 

myRectangle.bottom = 10; 

myRectangle.right = 10; 

HBRUSH myGreenBrush = CreateSolidBrush(RGB(255, 0, 0)); 

FrameRect( hdc, &myRectangle, myGreenBrush ); 

} 

Windows Character Data Types 
This section describes various routines and functions related to fonts and character sets used in 
X Windows applications and their alternatives in the Windows environment. You can use the 
information provided in this section to identify the front-specific and text-specific routines in your 
UNIX applications and implement the replacements in the Windows environment using the 
Win32/Win64 API. 
Most of the pointer-type names are prefixed with a P or LP. For more information about character 
sets used by fonts, see the operating system Help documentation, or search the MSDN Web site. 
A best practice with characters is to declare all characters and strings as TCHAR and use the 
TEXT macro to declare static strings. For example: 
TCHAR myString[255]; 

wsprintf( myString, 

TEXT("This is a good example %d is a %s \n" ), 

1950, 

TEXT("Year") 

); 

For more information about wsprintf and the rest of the string functions, see the operating 
system Help documentation or search the MSDN Web site. 

 
  



184 UNIX Custom Application Migration Guide: Volume 3 

Text and Fonts 
Text can be formatted by creating and using fonts and making intelligent decisions about 
mapping modes and kerning. 

Displaying Text 
This section discusses the use of fonts to display text. 

Using Fonts 
Fonts control the display characteristics of text. An X Windows client application can use the 
XLoadQueryFont and XSetFont functions to apply a font to a given graphics context, as shown 
in the following code. 
X Windows example: Applying a font to given graphics context 
#define FONT1 "-*-lucida-medium-r-*-*-12-*-*-*-*-*-*-*" 

Font font1; 

XFontStruct *font1Info; 

main() { 

Display *pDisplay; 

int iScreen; 

GC gc; 

pDisplay = XOpenDisplay("myDisplay"); 

iScreen = DefaultScreen(pDisplay); 

//+ 

// get the Graphics Context 

//- 

gc = DefaultGC(pDisplay,iScreen); 

//+ 

// attempt to load the font 

//- 

font1Info = XLoadQueryFont( pDisplay,FONT1 ); 

font1 = font1Info->fid; 

//+ 

// Set the font in the GC 

//- 

XSetFont( pDisplay, gc, font1 ); 

… 

… 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     185 

A Windows API-based application follows the same logic. That is, it creates or selects a font, 
retrieves a device context, and then selects the font object for that device context. This is shown 
in the following example. 
Windows example: Applying a font to given graphics context 
#define FONT1 TEXT(“Lucida Console”); 

HFONT hFont1; 

void fontDemo( HWND hWnd ) 

{ 

HDC hDC; 

HFONT hOldFont; 

//+ 

// get the Device Context 

//- 

hDC = GetDC( hWnd ); 

//+ 

// attempt to load the system font 

//- 

hFont1 = (HFONT)GetStockObject (SYSTEM_FONT); 

//+ 

// Set the font in the GC 

//- 

hOldFont = (HFONT)SelectObject( hDC, hFont1 ); 

… 

Creating Fonts 
The short example in this section uses the font specified by SYSTEM_FONT, which duplicates 
the default, although developers are likely to use something more creative. The Windows API 
CreateFont, CreateFontIndirect, CreateScalableFontResource, and CreateFontIndirectEx 
functions provide the capability to create logical fonts based on the fonts loaded on the system. 
Windows example: Creation of fonts 
#define MY_FONT_FACE TEXT("Lucida Console") 

//+ 

// fontAttribute Option Bits 

//- 

#define fontAttribute_BOLD 0x01 

#define fontAttribute_CROSSED_OUT 0x02 

#define fontAttribute_UNDERLINED 0x04 

#define fontAttribute_ITALIC 0x08 

typedef struct { 

unsigned char fontSize; 

unsigned char fontStyle; 

TCHAR *fontFace; 

} tyFONT_ATTRIBUTE; 

HFONT createFont( tyFONT_ATTRIBUTE *fontAttributeObject ) 

{ 

 
  



186 UNIX Custom Application Migration Guide: Volume 3 

HFONT hFont; 

LOGFONT lf; 

//+ 

// these are completely arbitrary values for this example code. 

// they simply associate a width and height with a 

// font size number found in the tyFONT_ATTRIBUTE struct. 

// 

// For example fontSize == 2 (used to index these two arrays) 

// will produce a 12x8 font 

//- 

int fontHeight[] = {8,8,12,16,16,24,32, 32,48,64,64,96,128,128,192}; 

int fontWidth [] = {6,8, 8,12,16,16,24, 32,32,48,64,64, 96,128,128}; 

//+ 

// pick a font face 

//- 

lstrcpy( lf.lfFaceName, fontAttributeObject->fontFace ); 

//+ 

// protect against running out of the arrays above 

// and pick a default behavior of "2" 

//- 

if ( fontAttributeObject->fontSize > 14 ) 

fontAttributeObject->fontSize = 2; 

if ( fontAttributeObject->fontStyle & fontAttribute_BOLD ) 

lf.lfWeight = FW_MEDIUM; 

else 

lf.lfWeight = FW_LIGHT; 

lf.lfItalic = (unsigned char)( fontAttributeObject->fontStyle & 

fontAttribute_ITALIC ); 

lf.lfUnderline = (unsigned char)( fontAttributeObject->fontStyle & 

fontAttribute_UNDERLINED ); 

lf.lfStrikeOut = (unsigned char)( fontAttributeObject->fontStyle & 

fontAttribute_CROSSED_OUT ); 

lf.lfEscapement = 0; 

lf.lfOrientation = 0; 

lf.lfCharSet = ANSI_CHARSET; 

lf.lfClipPrecision = CLIP_DEFAULT_PRECIS; 

lf.lfQuality = DRAFT_QUALITY; 

lf.lfPitchAndFamily = FF_MODERN | FIXED_PITCH; 

lf.lfHeight = fontHeight [ fontAttributeObject->fontSize ]; 

lf.lfWidth = fontWidth [ fontAttributeObject->fontSize ]; 

hFont = CreateFontIndirect(&lf); 

return( hFont ); 

} 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     187 

//+ 

// example using createFont() 

//- 

void fontDemo( HWND hWnd ) 

{ 

HDC hDC; 

HFONT hOldFont; 

HFONT hFont1; 

tyFONT_ATTRIBUTE fontAttribute; 

//+ 

// get the Device Context 

//- 

hDC = GetDC( hWnd ); 

//+ 

// attempt to create a font 

//- 

fontAttribute.fontSize = 2; 

fontAttribute.fontStyle = (fontAttribute_BOLD | fontAttribute_ITALIC ); 

lstrcpy( fontAttribute.fontFace, MY_FONT_FACE ); 

hFont1 = createFont( &fontAttribute ); 

//+ 

// Set the font in the GC 

//- 

hOldFont = (HFONT)SelectObject( hDC, hFont1 ); 
Note   Additional information about creating and using logical fonts in a Windows API-based application is 
available on the MSDN Web site at  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnprogwin/html/ch17-03.asp. 

Drawing Text 
Because simple is often better, this discussion starts with the X Windows XDrawString function 
and the Windows API TextOut function. Both functions require a context to draw on the x and y 
coordinates, the string, and the string length in characters. The examples in this section draw the 
string “Hello World” in the current font and colors at the specified coordinates. 
It is often desirable to set a particular font or color before writing the text. These examples show 
how the two systems perform these tasks. 
A programmer can code font and text display in X Windows as shown in the following code: 
font = XLoadQueryFont (display, “fixed”); 

XSetFont (display, gc, font->fid); 

XSetBackground(display, gc, WhitePixel(display, screen)); 
XSetForeground(display, 

gc, BlackPixel(display, screen)); 

XDrawString( display, d, gc, x, y, “Hello World”, 11 ); 

 
X Windows provides explicit definitions of 8-bit and 16-bit character functions with XDrawString 
and XDrawString16. Likewise, the Windows API provides TextOutA for ASCII (8-bit characters) 
and TextOutW for Wide Char (16-bit UNICODE characters). 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnprogwin/html/ch17-03.asp


188 UNIX Custom Application Migration Guide: Volume 3 

The TextOut function is actually a macro that resolves correctly to TextOutA or TextOutW based 
on the status of the UNICODE definition, as follows:  
#define UNICODE 

#define _UNICODE 

TextOut()… // this will result in TextOutW() 

#undef UNICODE 

#undef _UNICODE 

TextOut()… // this will result in TextOutA() 

 
One drawback of using XDrawString and TextOut is that nothing is done about erasing the 
background. Continually outputting strings to the same x and y coordinates results in a jumble of 
unreadable text strings, one upon the other. The X Windows library provides the 
DrawImageString function, which calculates a rectangle containing the string and fills it with the 
background pixel color before drawing the text in the foreground pixel color. The Windows API 
supports the ExtTextOut function to provide this capability. Using the Windows API ExtTextOut 
function requires the bounding rectangle to be calculated and passed into the function. This 
requires knowledge about the current font and logical display units. 
A programmer can code font and text display in the Windows API as follows: 
#define rgbBlack (COLORREF)RGB( 0x00,0x00,0x00 ) 

#define rgbWhite (COLORREF)RGB( 0xFF,0xFF,0xFF ) 

font = (HFONT)GetStockObject(OEM_FIXED_FONT); 

oldFont = (HFONT)SelectObject( hdc, font ); // save old font 

SetTextColor (hdc, rgbBlack); 

SetBkColor (hdc, rgbWhite); 

TextOut( hdc, x, y, "Hello World", 11); 

The preceding Windows API code example uses the COLORREF type, the RGB macro, and the 
GetStockObject function in the following sequence: 
1. The COLORREF value specifies an RGB color and is defined as follows: 

typedef DWORD COLORREF; 

typedef DWORD *LPCOLORREF; 
2. The RGB macro selects the red, green, blue (RGB) color combination based on the 

arguments supplied and the color capabilities of the output device, as follows: 
COLORREF RGB( 

BYTE byRed, // red component of color 

BYTE byGreen, // green component of color 

BYTE byBlue // blue component of color 

); 
3. The GetStockObject(int objectType) function retrieves a handle to one of the stock pens, 

brushes, fonts, or palettes. The return value must be cast to the expected type, as follows: 
void foo() { 

HFONT hFont; 

HBRUSH hBrush; 

hfont = (HFONT)GetStockObject(DEFAULT_GUI_FONT); 

hBrush = (HBRUSH)GetStockObject(BLACK_BRUSH); 

} 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     189 

Following are the other APIs that are used for text output: 
• DrawText  
• DrawTextEx  
• PolyTextOut  
• TabbedTextOut  
The DrawText function draws formatted text in the specified rectangle, as shown in the following 
example. It formats the text according to the specified method, expanding tabs, justifying 
characters, and breaking lines. 
int DrawText( 

HDC hDC, // handle to DC 

LPCTSTR lpString, // text to draw 

int nCount, // text length 

LPRECT lpRect, // formatting dimensions 

UINT uFormat // text-drawing options 

); 

To specify additional formatting options, use the DrawTextEx function: 
int DrawTextEx( 

 HDC hdc,           // handle to DC 

 LPTSTR lpchText,       // text to draw 

 int cchText,         // length of text to draw 

 LPRECT lprc,         // rectangle coordinates 

 UINT dwDTFormat,       // formatting options 

 LPDRAWTEXTPARAMS lpDTParams // more formatting options 

); 

The PolyTextOut function draws several strings using the font and text colors currently selected 
in the specified device context.  
BOOL PolyTextOut( 

 HDC hdc,        // handle to DC 

 CONST POLYTEXT *pptxt, // array of strings 

 int cStrings      // number of strings in array 

); 

The TabbedTextOut function writes a character string at a specified location, expanding tabs to 
the values specified in an array of tab-stop positions. The text is written in the currently selected 
font, background color, and text color.  
LONG TabbedTextOut( 

 HDC hDC,             // handle to DC 

 int X,              // x-coord of start 

 int Y,              // y-coord of start 

 LPCTSTR lpString,        // character string 

 int nCount,           // number of characters 

 int nTabPositions,        // number of tabs in array 

 CONST LPINT lpnTabStopPositions, // array of tab positions 

 int nTabOrigin          // start of tab expansion 

); 

 
  



190 UNIX Custom Application Migration Guide: Volume 3 

Formatting Text 
The formatting functions can be divided into the following three categories: 
• Those that retrieve or set the text-formatting attributes for a device context. 
• Those that retrieve character widths. 
• Those that retrieve string widths and heights. 

Text-Formatting Attribute APIs 
Text-formatting attribute APIs are a set of APIs used to set or retrieve text-formatting attributes for 
a device context. The text formatting attributes could be the text alignment, inter character 
spacing, text justification, or text and background colors.  
Table 6.3 lists the APIs and their functions. 
Table 6.3. APIs and Their Functions 

APIs Description 

SetBkColor Sets the current background color to the specified color value 
or to the nearest physical color if the device cannot represent 
the specified color value. 

SetBkMode Sets the background mix mode of the specified device 
context. 

SetTextAlign Sets the text alignment flags for a device context. 

SetTextCharacterExtra Sets the intercharacter spacing. 

SetTextColor Sets the text color for a device context. 

SetTextJustification Specifies the amount of space the system should add to the 
break characters in a string. 

GetBkColor Returns the current background color for the specified device 
context. 

GetBkMode Returns the current background mix mode for a specified 
device context. 

GetTextAlign Gets the text-alignment setting for a device context. 

GetTextCharacterExtra Gets the current intercharacter spacing for a device context. 

GetTextColor Gets the text color for a device context. 

APIs to Retrieve Character Widths  
Applications must retrieve character-width data when they perform such tasks as fitting strings of 
text to page or column widths. 
An application can use the GetCharWidth32 and GetCharWidthFloat functions to retrieve the 
advance width for individual characters or symbols in a string of text. The advance width is the 
distance that the cursor on a screen or the print-head on a printer must advance before printing 
the next character in a string of text. The GetCharWidth32 function returns the advance width as 
an integer value. If greater precision is required, an application can use the GetCharWidthFloat 
function to retrieve fractional advance-width values. 
An application can retrieve actual character-width data by using the GetCharABCWidths and 
GetCharABCWidthsFloat functions. The GetCharABCWidthsFloat function works with all 
fonts. The GetCharABCWidths function only works with TrueType and OpenType fonts. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     191 

APIs to Retrieve String Widths and Heights 
In X Windows you can rely on XTextWidth to get the length of a character string in pixels. With 
the Windows API, you must work a little harder to get this number. 
It is necessary to understand the mapping mode. The mapping mode defines the unit of measure 
used to transform page-space units into device-space units. It also defines the orientation of the x 
and y axes of the device. 
A mapping mode is a scaling transformation that specifies the size of the units used to draw 
operations. The mapping mode can also perform translation. In some cases, the mapping mode 
alters the orientation of the x and y axes in the device space. 
The default mapping mode is MM_TEXT. One logical unit equals one pixel. Positive x-axis is to 
the right, and positive y-axis is down. This mode maps directly to the coordinate system of the 
device. 
The Windows API SetMapMode function sets the mapping mode of the specified device context, 
as shown in the following code: 
int SetMapMode( 

HDC hdc, // handle to device context 

int fnMapMode // new mapping mode 

); 

 
To calculate the size of a string in pixels, it is necessary for the current mapping mode to be 
MM_TEXT. The Windows API programmer can either assume the current mapping mode as the 
default MM_TEXT and set it to MM_TEXT by calling SetMapMode, or make sure it is MM_TEXT 
by using GetMapMode to retrieve it. (For more information, search for MM_TEXT on the MSDN 
Web site.) 
The Windows API GetTextExtentPoint32 function returns the width and height of a string of text 
in logical units, as shown in the following code. Recall that setting the mapping mode to 
MM_TEXT returns logical units as pixels. 
BOOL GetTextExtentPoint32( 

HDC hdc, // handle to DC 

LPCTSTR lpString, // text string 

int cbString, // characters in string 

LPSIZE lpSize // string size 

); 

 
The size structure resembles the following code, and is defined in Windef.h: 
typedef struct tagSIZE { 

LONG cx; 

LONG cy; 

} SIZE, *PSIZE, *LPSIZE; 

 
The Windows API GetTextMetrics function fills a TEXTMETRIC structure with all the information 
about the currently selected font of the device context, as shown in the following code. The 
programmer can use this information to perform any number of scaling or text size calculations. 
BOOL GetTextMetrics( 

HDC hdc, // handle to DC 

LPTEXTMETRIC lptm // text metrics 

); 

 
  



192 UNIX Custom Application Migration Guide: Volume 3 

 
The TEXTMETRIC structure contains basic information about a physical font, as shown in the 
following example. All sizes are specified in logical units; that is, they depend on the current 
mapping mode of the display context. 
typedef struct tagTEXTMETRIC { 

LONG tmHeight; 

LONG tmAscent; 

LONG tmDescent; 

LONG tmInternalLeading; 

LONG tmExternalLeading; 

LONG tmAveCharWidth; 

LONG tmMaxCharWidth; 

LONG tmWeight; 

LONG tmOverhang; 

LONG tmDigitizedAspectX; 

LONG tmDigitizedAspectY; 

TCHAR tmFirstChar; 

TCHAR tmLastChar; 

TCHAR tmDefaultChar; 

TCHAR tmBreakChar; 

BYTE tmItalic; 

BYTE tmUnderlined; 

BYTE tmStruckOut; 

BYTE tmPitchAndFamily; 

BYTE tmCharSet; 

} TEXTMETRIC, *PTEXTMETRIC;  

 
The Windows API GetTextExtentExPoint gets the number of characters in a string that will fit 
within a space. 
BOOL GetTextExtentExPoint( 

 HDC hdc,     // handle to DC 

 LPCTSTR lpszStr, // character string 

 int cchString,  // number of characters 

 int nMaxExtent, // maximum width of formatted string 

 LPINT lpnFit,  // maximum number of characters 

 LPINT alpDx,   // array of partial string widths 

 LPSIZE lpSize  // string dimensions 

); 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     193 

More Windows API Text Functions 
The following Windows API functions are also useful for working with text: 
• CreateSolidBrush 
• GetSysColor 
• SetTextColor 
• GrayString 
This section discusses these functions and shows examples of their use. 
The CreateSolidBrush function creates a logical brush that has the specified solid color, as 
shown in the following example: 
HBRUSH CreateSolidBrush( 

COLORREF crColor // brush color value 

); 

 
The GetSysColor function retrieves the current color of the specified display element, as shown 
in the following example. Display elements are the parts of a window. 
DWORD GetSysColor( int nIndex ); 

 
The SetTextColor function sets the text color for the specified device context to the 
specified color, as shown in the following example: 
COLORREF SetTextColor( 

HDC hdc, // handle to DC 

COLORREF crColor // text color 

); 

 
The following example incorporates the use of DrawText, CreateSolidBrush, 
GetSysColor, and SetTextColor: 
RECT myRectangle; 

//+ 

// create a brush 

//- 

HBRUSH myBackgroundBrush = 

CreateSolidBrush( 

GetSysColor(COLOR_BACKGROUND) // color of system background 

); 

//+ 

// set the text color to the system's button text color 

//- 

SetTextColor( 

hdc, 

GetSysColor(COLOR_BTNTEXT) //color of text on buttons 

); 

// calculate myRectangle 

//+ 

 
  



194 UNIX Custom Application Migration Guide: Volume 3 

// fill in (erase) the area inside the rectangle with the 

// system's background color 

//- 

FillRect( hdc, &myRectangle, myBackgroundBrush); 

//+ 

// The DrawText function uses the device context's selected font, text 

// color, and background color to draw the text. Unless the DT_NOCLIP 

// format is used, DrawText clips the text so that it does not appear 

// outside the specified rectangle. 

//- 

DrawText( hdc, 

myString, 

_tcsclen(myString), // use _tcsclen() vs. strlen() 

&myRectangle, 

(DT_CENTER | DT_SINGLELINE ) 

); 

 
The GrayString function draws gray text at the specified location, as shown in the following 
example. The function draws the text by copying it into a memory bitmap, graying the bitmap, and 
then copying the bitmap to the screen. The function grays the text regardless of the selected 
brush and background. GrayString uses the font currently selected for the specified device 
context. 
BOOL GrayString( 

HDC hDC, // handle to DC 

HBRUSH hBrush, // handle to the brush 

GRAYSTRINGPROC lpOutputFunc, // callback function 

LPARAM lpData, // application-defined data 

int nCount, // number of characters 

int X, // horizontal position 

int Y, // vertical position 

int nWidth, // width 

int nHeight // height 

); 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     195 

Text Widgets and Controls 
A text widget or control is used to display, enter, and edit text. The exact functionality of a text 
widget or control depends on how its resources are set. 
X Windows example: Widget functionality 
In X Windows, the widget functionality is set as shown in the following example: 
text = XtVaCreateManagedWidget ( "myTextWidget", 

asciiTextWidgetClass, 

parentWidget, 

XtNfromHoriz, 

quit, 

XtNresize, 

XawtextResizeBoth, 

XtNresizable, 

True, 

NULL); 

 
Windows example: Widget functionality 
In Windows API and GDI, the control functionality is set as shown in the following example: 
//+ 

// Create an edit Control. 

//- 

HWND handleToThisEditControl; 

handleToThisEditControl = 

CreateWindow( TEXT("EDIT"), //ß the type of control 

TEXT("Some Text"), //ß edit control text 

(WS_CHILD | 

WS_VISIBLE | 

ES_READONLY | 

ES_LEFT | 

ES_UPPERCASE), //ß the control style 

XpositionInParent, 

yPositionInnParent, 

CONTROL_WIDTH_IN_DEVICE_UNITS, 

CONTROL_HEIGHT_IN_DEVICE_UNITS, 

handleOfParentWindow, //ß parent window 

(HMENU)NUMBER_USED_TO_ID_THIS_EDIT_CONTROL, 

appContext, 

NULL ); 

//+ 

// Turn off Read Only 

//- 

SendMessage( handleToThisEditControl , 

 
  



196 UNIX Custom Application Migration Guide: Volume 3 

EM_SETREADOINLY, 

(WPARAM)FALSE, //ß set read only false 

(LPARAM)NULL ); 

//+ 

// set the edit control's text 

//- 

SetWindowText( handleToThisEditControl, TEXT("Some New Text") ); 

//+ 

// retrieve the edit control's text as text 

//- 

GetWindowText( handleToThisEditControl, 

myStringBuffer, 

myStringBufferMaxSize ); 

//+ 

// retrieve the edit control's text as an integer 

//- 

myIntegerValue = 

GetDlgItemInt( handleOfParentWindow, 

NUMBER_USED_TO_ID_THIS_EDIT_CONTROL, 

&resultFlag, // did the translation succeed ? 

FALSE ); // no this is an unsigned number 

Property Sheets 
A property sheet is a modal secondary window that allows the user to view and edit the properties 
of an item. You can also implement a property sheet as a modeless dialog. For example, property 
sheets can be used to display font and border properties for a worksheet, to set the properties of 
a device (such as a disk drive, printer, or mouse), or to display file system properties for a folder 
view. 
A property sheet consists of a number of property pages. It is an instance of CPropertySheet. 
After a property page is designed, while creating the class for this dialog box, ensure that the 
base class is CPropertyPage. It is attached to a property sheet using the 
CPropertySheet::AddPage function, as shown in the following code: 
// CPage1, CPage2 and CPage3 are CPropertyPage derived classes 

CPage1 p1; 

CPage2 p2; 

CPage3 p3(this); 

CPropertySheet dlg; 

dlg.SetTitle("Functions"); 

dlg.AddPage(&p1); 

dlg.AddPage(&p2); 

dlg.AddPage(&p3); 

 

dlg.DoModal(); 

  

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     197 

CPropertySheet::SetTitle can be used to set the title for the property sheet. And as seen in the 
previous code, a property sheet can be invoked using DoModal. 

Toolbars 
The toolbar is an object of the CToolBar class. Toolbars are control bars derived from the 
CControl Bar. 
The toolbar is made up of a number of bitmaps, which can be painted using various tools. These 
bitmaps represent the toolbar buttons. Clicking them sends a command message. These buttons 
are associated with an ID, which can be viewed using the Properties window. The Properties 
window appears when you double-click the toolbar button. The prompt and ToolTip appear when 
the mouse passes over a button. The prompt is the message in the Status Bar.  
The toolbar buttons and the menu items can be mapped to the same ID if their functionalities are 
the same, so that they can use the same handler. 
The toolbar can be loaded using the LoadToolBar method of the CToolBar MFC class. 

Update Command Handlers of Toolbar Buttons 
Command handlers of toolbar buttons are similar to the Menu UpdateCommad handlers. The 
toolbars and status bars are displayed all the time and get updated during the idle time 
processing and during display of menu popups. 
Update messages for toolbar buttons can be processed using the CCmdUI::Enable member 
function and the CCmdUI::SetCheck member function. 

Status Bars 
Status bars are control bars derived from the CControlBar class and can be created using the 
CStatusBar MFC class. Status bars are made up of a number of panes; the text for the panes is 
set using the SetPaneText function.  
Following is the code to create a Status Bar, where m_wndStatusBar is an object of the MFC 
class CStatusBar. 
static UINT indicators[] = 

{ 

 ID_SEPARATOR,      // status line indicators  

 ID_INDICATOR_CAPS, 

 ID_INDICATOR_NUM, 

 ID_INDICATOR_SCRL, 

}; 

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators, 

   sizeof(indicators)/sizeof(UINT))) { 

  TRACE0("Failed to create status bar\n"); 

  return -1;   // fail to create } 

 
  



198 UNIX Custom Application Migration Guide: Volume 3 

Printing 
This section discusses the APIs involved with printing in UNIX and Windows. You can use the 
information provided in this section to analyze various routines and APIs used in your UNIX 
applications and to identify the replacement implementation in the Windows environment using 
the Win32/Win64 API. 

Printing Documents 
The following topics discuss the various ways of printing documents in the UNIX and Windows 
environments. 

Printing Using System Commands 
In UNIX, system commands such as lp (in System V) and lpr (in BSD) are used to print 
documents. Windows provides the print system command for printing documents. Following is 
the syntax of print command: 
PRINT [/D:device] [[drive:][path]filename[...]] 

Where,  
/D:device 

Specifies a print device, 
drive  

Specifies the drive in which the file to be printed is located,  
path  

Specifies the path in which the file is located, and 
filename  

Specifies the exact name of the file to be printed with its extension. 
The following command when entered at the MS-DOS® prompt prints the document called 
MyDocument.doc through the printer named MyPrinter. 
PRINT /D:MyPrinter C:\MyDocument.doc 

The print command can be executed by invoking the system command within application 
programs written in C/C++ or any other supporting language. Using the system command in an 
application for the earlier mentioned DOS command would be: 
System(“PRINT /D:MyPrinter C:\MyDocument.doc”); 

Printing Using APIs 
X Windows libraries provide extended facilities for printing options in UNIX systems.  
X Windows example: Printing a document 
The following is sample code in X Windows that helps in printing a document. 
#include <X11/Xlib.h> 

#include <X11/extensions/Print.h> 

main() 

{ 

  Display *pdpy; 

  Screen *pscreen; 

  Window pwin; 

  XPPrinterList plist; 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     199 

  XPContext pcontext; 

  int plistCnt; 

  char *attrPool; 

  #define NPOOLTYPES 5   

  XPAttributes poolType[NPOOLTYPES] = 
{XPJobAttr,XPDocAttr,XPPageAttr,XPPrinterAttr,XPServerAttr}; 

  int i; 

  unsigned short width, height; 

  XRectangle rect; 

  char *printServerName = ":1"; 

  char *mylaser = "varos"; 

   

  /* 

   * connect to the X print server  

   */ 

  pdpy = XOpenDisplay( printServerName ); 

   

  /* 

   * see if the printer "mylaser" is available 

   */ 

  plist = XpGetPrinterList (pdpy, mylaser, &plistCnt ); 

  /* 

   * Initialize a print context representing "mylaser" 

   */ 

  pcontext = XpCreateContext( pdpy, plist[0].name ); 

  XpFreePrinterList( plist ); 

  /* 

   * Possibly modify attributes in the print context 

   */ 

  for(i=0;i < NPOOLTYPES;i++) { 

  if(attrPool = XpGetAttributes( pdpy, pcontext, poolType[i] )) { 

    /* twiddle attributes */ 

    /* 

     XpSetAttributes( pdpy, pcontext, poolType[i], 

              attrPool, XPAttrMerge ); 

    */ 

    XFree(attrPool); 

  } 

  } 

   

  /* 

   * Set a print server, then start a print job against it 

   */ 

 
  



200 UNIX Custom Application Migration Guide: Volume 3 

  XpSetContext( pdpy, pcontext ); 

  XpStartJob( pdpy, XPSpool ); 

  /* 

   * Generate the first page 

   */ 

  pscreen = XpGetScreenOfContext( pdpy, pcontext ); 

  XpGetPageDimensions( pdpy, pcontext, &width, &height, 

       &rect); 

  pwin = XCreateSimpleWindow( pdpy, RootWindowOfScreen( pscreen ), 

        rect.x, rect.y, rect.width, rect.height, 2, 

        BlackPixelOfScreen( pscreen), 

        WhitePixelOfScreen( pscreen)); 

  XpStartPage( pdpy, pwin ); 

  /* usual rendering stuff..... */ 

  XpEndPage( pdpy );  

  XpStartPage( pdpy, pwin ); 

  /* some more rendering.....  */ 

  XpEndPage( pdpy ); 

  /* 

   * End the print job - the final results are sent by the X print 

   * server to the spooler sub system. 

   */ 

  XpEndJob( pdpy ); 

  XpDestroyContext( pdpy, pcontext ); 

  XCloseDisplay( pdpy ); 

} 

 

Microsoft Windows implements device-independent display. In MFC, the CView class provides 
the basic functionality for user-defined view classes. The OnDraw member function of your view 
class can be used to perform screen display, printing, and print preview. For print preview, the 
target device is a simulated printer output to the display. 
Following are the responsibilities of the view class: 
• Inform the framework of the number of pages in the document. 
• When asked to print a specified page, draw that portion of the document. 
• Allocate and de-allocate any fonts or other GDI resources needed for printing. 
• If necessary, send any escape codes needed to change the printer mode before printing a 

given page, for example, to change the printing orientation on a per-page basis. 
Following are the responsibilities of the framework: 
• Display the Print dialog box. 
• Create a CDC object for the printer. 
• Call the StartDoc and EndDoc member functions of the CDC object. 
• Repeatedly call the StartPage member function of the CDC object, inform the view class 

which page should be printed, and call the EndPage member function of the CDC object.  
• Call overridable functions in the view at the appropriate times. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     201 

In Windows programming, printing options are available with the following: 
• Windows API 
• MFC and ATL 

Printing Using the Windows API 
A Windows program can access a printer by calling the PrintDlg function. The PrintDlg function 
displays a Print dialog box. The Print dialog box enables the user to specify the properties of a 
particular print job. The general syntax of a PrintDlg function is as follows: 
BOOL PrintDlg(PRINTDLG lppd); 

The argument lppd is a pointer to a PRINTDLG structure that contains information used to 
initialize the dialog box. When PrintDlg returns, this structure contains information about the 
selections of the user. 
The following sample code displays a Print dialog box so that the user can select options for 
printing a document. The sample code first initializes a PRINTDLG structure and then calls the 
PrintDlg function to display the dialog box. It sets the PD_RETURNDC flag in the Flags member 
of the PRINTDLG structure. This causes PrintDlg function to return a device context handle for 
the selected printer in the hDC member. You can use the handle to render output on the printer.  
On input, the sample code sets the hDevMode and hDevNames members to NULL. If the 
function returns TRUE, these members return handles to DEVMODE and DEVNAMES structures 
containing the inputs from the user and information about the printer. You can use this 
information to prepare the output to be sent to the selected printer. 
Windows example: Displaying a print dialog box 
PRINTDLG pd; 

HWND hwnd; 

 

// Initialize PRINTDLG 

ZeroMemory(&pd, sizeof(PRINTDLG)); 

pd.lStructSize = sizeof(PRINTDLG); 

pd.hwndOwner  = hwnd; 

pd.hDevMode  = NULL;   // Don't forget to free or store hDevMode 

pd.hDevNames  = NULL;   // Don't forget to free or store hDevNames 

pd.Flags    = PD_USEDEVMODECOPIESANDCOLLATE | PD_RETURNDC;  

pd.nCopies   = 1; 

pd.nFromPage  = 0xFFFF;  

pd.nToPage   = 0xFFFF;  

pd.nMinPage  = 1;  

pd.nMaxPage  = 0xFFFF;  

 

if (PrintDlg(&pd)==TRUE)  

{ 

  // GDI calls to render output.  

 

  // Delete DC when done. 

  DeleteDC(pd.hDC); 

} 

 
  



202 UNIX Custom Application Migration Guide: Volume 3 

Printing Using MFC and ATL 
There are various options for invoking a Print dialog box with MFC programming. The most 
straightforward way is to create an object for the CPrintDialog class available in MFC and show 
a Print dialog box.  
To use a CPrintDialog object 
1. Create the object using the CPrintDialog constructor. 
2. After the dialog box has been constructed, you can set or modify any value in the m_pd 

structure to initialize the values of the controls in the dialog box. The m_pd structure is of type 
PRINTDLG (which is same as that explained earlier). 

3. After initializing the dialog box controls, call the DoModal member function to display the 
dialog box and allow the user to select print options. DoModal returns whether the user 
selected the OK (IDOK) or Cancel (IDCANCEL) button. 

The following is the constructor of CPrintDialog: 
CPrintDialog( 

  BOOL bPrintSetupOnly, 

  DWORD dwFlags = PD_ALLPAGES | PD_USEDEVMODECOPIES | PD_NOPAGENUMS | 
PD_HIDEPRINTTOFILE | PD_NOSELECTION, 

  CWnd* pParentWnd = NULL  

); 

Where,  
bPrintSetupOnly  

is set to TRUE to display the standard Windows Print Setup dialog box. And it is set to FALSE 
to display the Windows Print dialog box. 
dwFlags  

Provides one or more flags that can be used to customize the settings of the dialog box, 
combined using the bitwise OR operator. 
pParentWnd  

Provides a pointer to the parent or owner window of the dialog box. 
The following sample displays a print dialog box and creates a printer device context from the 
DEVMODE and DEVNAMES structures: 
// Display the Windows Print dialog box with "All" radio button  

// initially selected. All other radio buttons are disabled. 

CPrintDialog dlg(FALSE); 

if (dlg.DoModal() == IDOK) 

{ 

  // Create a printer device context (DC) based on the information 

  // selected from the Print dialog. 

  HDC hdc = dlg.CreatePrinterDC(); 

  ASSERT(hdc); 

} 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     203 

Table 6.4. Members of the CPrintDialog Class 

Member Function Description 

HDC CreatePrinterDC() Creates a printer device context without displaying the Print 
dialog box. 

virtual INT_PTRDoModal() Displays the dialog box and allows the user to make a selection. 

int GetCopies() const Retrieves the number of copies requested. 

BOOL GetDefaults() Retrieves device defaults without displaying a dialog box. 

CString GetDeviceName() 
const 

Retrieves the name of the currently selected printer device. 

LPDEVMODE 
GetDevMode() const 

Retrieves the DEVMODE structure. 

CString GetDriverName() 
const 

Retrieves the name of the currently selected printer driver. 

int GetFromPage() const Retrieves the starting page of the print range. 

CString GetPortName() 
const 

Retrieves the name of the currently selected printer port. 

HDC GetPrinterDC() const Retrieves a handle to the printer device context. 

int GetToPage() const Retrieves the ending page of the print range. 

BOOL PrintAll() const Determines whether to print all pages of the document. 

BOOL PrintCollate() const Determines whether collated copies are requested. 

BOOL PrintRange() const Determines whether to print only a specified range of pages. 

BOOL PrintSelection() 
const 

Determines whether to print only the currently selected items. 

The header afxdlgs.h is to be included in case the user wants to use the CPrintDialog class in 
the program.  
A simple mapping can be done between the methods available for printing in X Windows and 
those available in Windows, as listed in Table 6.5. 
Table 6.5. Comparing X Windows and Windows Printing Options 

X Windows Windows Description 

XOpenDisplay CString GetDeviceName() const Retrieves the name of the currently 
selected printer device. 

XPCreateContext HDC CreatePrinterDC() Creates a printer device context. 

XPStartJob int StartDoc LPDOCINFO 
lpDocInfo) 

int StartDoc( LPCTSTR 
lpszDocName) 

Informs the device driver that a 
new print job is starting. 

XPEndJob int EndDoc() Ends a print job started by the 
previous member function. 

XCreateSimpleWindow virtual INT_PTR DoModal() Displays the Print dialog box. 

XPStartPage int StartPage() Informs the device driver that a 
new page is starting. 

 
  



204 UNIX Custom Application Migration Guide: Volume 3 

X Windows Windows Description 

XPEndPage int EndPage() Informs the device driver that a 
page is ending. 

Plotting Documents 
The following topics discuss the various ways of plotting documents in UNIX and Windows 
environments. 

Using the Plotters in UNIX 
Using the UNIX command lpr, you can send a PostScript file to a plotter by using vcplt, vcpltg, or 
vcpltcf with the -P option. 
For example, to send the file mygraphic.ps to vcplt, the command would be: 
  lpr -Pvcplt mygraphic.ps 

By default, output is in color with normal or standard print quality. You can choose grayscale or 
specify print quality and paper size by using the -X option in the lpr command. The following are 
the available -X options: 
• grayscale (or greyscale) 
• pq=fast (or pq=draft) 
• pq=normal 
• pq=best 
• paper=<width>x<height> (for example, paper=20x30 means 20 inches wide by 30 inches 

high) 
For example, to choose grayscale and “best” print quality on vcplt, the UNIX command would be: 
  lpr -Pvcplt -Xgrayscale,pq=best filename.ps 

Note that the paper option is rarely required because the application normally sets the paper size. 
If the application does not set the size, you can use the paper option to set it or accept the default 
paper size of 36" × 17." 

Using the Plotters in Windows 
The PrinterSettings class specifies information about how a document is printed, including the 
printer details that prints it. The following property of the PrinterSettings class returns a Boolean 
value, true or false, corresponding to whether the peripheral is a plotter or a raster printer: 
public: __property bool get_IsPlotter(); 

This function can be used to identify a plotter. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     205 

Imaging 
Imaging refers to how images are handled, loaded, saved, and stored in memory. This section 
discusses how imaging is done in UNIX and Windows.  

Image Handling in UNIX 
Xlib provides an image object that describes the data in memory and provides for basic 
operations on that data. You should reference the data through the image object instead of 
referencing the data directly. Supported operations include getting a pixel, storing a pixel, 
extracting a sub-image of an image, adding a constant to an image, and destroying the image. 
typedef struct _XImage { 

 int width, height; /* size of image */ 

 int xoffset; /* number of pixels offset in X direction */ 

 int format;  /* XYBitmap, XYPixmap, ZPixmap */ 

 char *data;  /* pointer to image data */ 

 int byte_order;  /* data byte order, LSBFirst, MSBFirst */ 

 int bitmap_unit; /* quant. of scanline 8, 16, 32 */ 

 int bitmap_bit_order; /* LSBFirst, MSBFirst */ 

 int bitmap_pad;  /* 8, 16, 32 either XY or ZPixmap */ 

 int depth;  /* depth of image */ 

 int bytes_per_line; /* accelerator to next scanline */ 

 int bits_per_pixel; /* bits per pixel (ZPixmap) */ 

 unsigned long red_mask; /* bits in z arrangement */ 

 unsigned long green_mask; 

 unsigned long blue_mask; 

 XPointer obdata;/* hook for the object routines to hang on */ 

 struct funcs {   /* image manipulation routines */ 

  struct _XImage *(*create_image)(); 

  int (*destroy_image)(); 

  unsigned long (*get_pixel)(); 

  int (*put_pixel)(); 

  struct _XImage *(*sub_image)(); 

  int (*add_pixel)(); 

 } f; 

} XImage; 

The functions XInitImage, XPutImage, XGetImage, and XGetSubImage are available in UNIX 
to initialize, put, get, or copy the image. 

 
  



206 UNIX Custom Application Migration Guide: Volume 3 

Image Handling in Windows 
The CImage class, defined in the atlimage.h file that comes with MFC 7.0, provides enhanced 
bitmap support, including the capability to load and save images in Joint Photographic Experts 
Group (JPEG), Graphics Interchange Format (GIF), Bitmap (BMP), and Portable Network 
Graphics (PNG) formats. 
After instantiating the object of the CImage class, call Create, Load, LoadFromResource, or 
Attach to attach a bitmap to the object. Operator HBITMAP of the CImage class returns the 
Windows handle attached to the CImage object. 
In addition, the operations listed in Table 6.6 are also possible with the CImage class. 
Table 6.6. Member Functions of CImage Class 

Member Function Description 

AlphaBlend Displays bitmaps that have transparent or semitransparent pixels.  
Attach Attaches an HBITMAP to a CImage object. Can be used with 

either non-DIB section bitmaps or DIB section bitmaps. 
BitBlt Copies a bitmap from the source device context to this current 

device context.  
Create Creates a DIB section bitmap and attaches it to the previously 

constructed CImage object.  
CreateEx Creates a DIB section bitmap (with additional parameters) and 

attaches it to the previously constructed CImage object. 
Destroy Detaches the bitmap from the CImage object and destroys the 

bitmap. 
Detach Detaches the bitmap from a CImage object. 
Draw Copies a bitmap from a source rectangle into a destination 

rectangle. Draw stretches or compresses the bitmap to fit the 
dimensions of the destination rectangle, if necessary, and handles 
alpha blending and transparent colors. 

GetBits Retrieves a pointer to the actual pixel values of the bitmap. 
GetBPP Retrieves the bits per pixel. 
GetColorTable Retrieves red, green, blue (RGB) color values from a range of 

entries in the color table. 
GetDC Retrieves the device context into which the current bitmap is 

selected. 
GetExporterFilterString Finds the available image formats and their descriptions.  
GetHeight Retrieves the height of the current image in pixels. 
GetMaxColorTableEntries Retrieves the maximum number of entries in the color table. 
GetPitch Retrieves the pitch of the current image in bytes. 
GetPixelAddress Retrieves the address of a given pixel. 
GetPixel Retrieves the color of the pixel specified by the x and y axes. 
GetTransparentColor Retrieves the position of the transparent color in the color table. 
GetWidth Retrieves the width of the current image in pixels. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     207 

Member Function Description 

IsDibSection Determines if the attached bitmap is a DIB section. 
IsIndexed Indicates that the colors of a bitmap are mapped to an indexed 

palette. 
IsNull Indicates if a source bitmap is currently loaded. 
IsTransparencySupported Indicates whether the application supports transparent bitmaps and 

was compiled for Windows 2000 or later. 
LoadFromResource Loads an image from the specified resource. 
Load Loads an image from the specified file. 
MaskBlt Combines the color data for the source and destination bitmaps 

using the specified mask and raster operation.  
PlgBlt Performs a bit-block transfer from a rectangle in a source device 

context into a parallelogram in a destination device context.  
ReleaseDC Releases the device context that was retrieved with 

CImage::GetDC. 

ReleaseGDIPlus Releases resources used by GDI+. Must be called to free 
resources created by a global CImage object. 

Save Saves an image as the specified type. Save cannot specify image 
options. 

SetColorTable Sets red, green, blue (RGB) color values in a range of entries in 
the color table of the DIB section. 

SetPixelIndexed Sets the pixel at the specified coordinates to the color at the 
specified index of the palette. 

SetPixelRGB Sets the pixel at the specified coordinates to the specified red, 
green, blue (RGB) value. 

SetPixel Sets the pixel at the specified coordinates to the specified color.  
SetTransparentColor Sets the index of the color to be treated as transparent. Only one 

color in a palette can be transparent. 
StretchBlt Copies a bitmap from a source rectangle into a destination 

rectangle, stretching or compressing the bitmap to fit the 
dimensions of the destination rectangle, if necessary. 

TransparentBlt Copies a bitmap with transparent color from the source device 
context to this current device context.  

Additional information on using the CImage class is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcsample/html/vcsamSimpleImageSample.asp. 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample/html/vcsamSimpleImageSample.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample/html/vcsamSimpleImageSample.asp


208 UNIX Custom Application Migration Guide: Volume 3 

Table 6.7 lists the mapping that helps in the analogous study of the image-processing concepts in 
X Windows and Windows programs. 
Table 6.7. Mapping Between X Windows and Windows Imaging Options 

X Windows Windows Description 

XReadBitmapFile Attach Reads in a file containing a bitmap into the object. 

XGetImage BitBlt Copies a bitmap from the source device context to this 
current device context. 

XCreateImage Create Creates a bitmap and attaches it to the previously 
constructed image object. 

XDestroyImage Destroy Detaches the bitmap from the image object and destroys 
the bitmap. 

XPutImage Draw Copies a bitmap from a source rectangle into a 
destination rectangle. 

XFindContext GetDC Retrieves the device context into which the current 
bitmap is selected. 

XGetPixel GetPixel Retrieves the color of the pixel specified by the x and y 
axes. 

XDeleteContext ReleaseDC Releases the device context for the given resource ID. 

XPutPixel SetPixel Sets the pixel at the specified coordinates to the 
specified color. 

Mapping X Windows Terminology to 
Microsoft Windows 
The graphical models of UNIX and Microsoft Windows are very different. There are conceptual 
similarities but little side-by-side mapping is possible. This section describes as many 
connections as possible. In the headings of this section, the X Windows term is followed by the 
corresponding Windows GDI term in the following format: 
X Windows term vs. Windows term 
This section enables you to map various X Windows terminologies used in your application to the 
corresponding Windows terminologies. 

Callback vs. WindowProc 
Windows uses the WindowProc function in the same capacity as Callback in X Windows. An X 
widget can have a list of callbacks associated with it, but in Windows, a window has a single entry 
point for handling messages sent to it. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     209 

Client vs. Client Window 
X Windows comprises a protocol that describes how a client interacts with a server that could be 
running on a remote computer. How objects are drawn is the responsibility of the server. This 
provides device-independence for the client application because it is not responsible for knowing 
anything about the physical hardware. In the Microsoft Windows environment, the graphics 
device interface (GDI) API provides this layer of device-independence. Windows-based 
applications, such as X clients, are not required to access graphics hardware directly. GDI 
interacts with the hardware by using device drivers on behalf of the application.  
A single Windows-based application can contain any number of separate windows. Each of these 
can have a window frame, caption bar, system menu, minimize and maximize buttons, and its 
own main display area, which is referred to as the client window. 
In Windows, multiple document interface (MDI) applications have three kinds of windows. These 
are a frame window, an MDI client window, and a number of child windows. The term client 
window takes on a special meaning in this case. For more information about MDI, see the MDI 
documentation on the MSDN Web site or the Platform SDK. 

Console Mode vs. Command Window 
If X Windows or some other graphical user interface is not running on a UNIX system, a user 
must work in text only or in console mode. Microsoft Windows is exactly the opposite. If a console 
is not running, the user must work in GUI mode. Windows text-based mode is provided by 
running the Cmd.exe tool. This environment is also referred to as a command window or the MS-
DOS prompt. To run the Cmd.exe tool, click Start, click Run, in the Run dialog box type cmd, 
and then click OK. Developers can also use the Console API to build native Windows API-based 
console applications. For more information, search for “Console Functions” on the MSDN Web 
site. 

DPI vs. Screen Resolution 
When starting an X Windows session, using the -dpi (dots per inch) option can improve 
appearance on displays with larger resolutions, such as 1600 × 1200. The -dpi option also helps 
to work around possible font issues. A Windows-based application is usually built with no 
assumptions about the capabilities of the system it will be running on. System APIs are used to 
calculate proper scaling and other characteristics. GetDeviceCaps is used to obtain the DPI of 
the system. GetSystemMetrics and SystemParametersInfo provide information about 
practically every graphical element needed to calculate sizes for fonts and other graphical 
elements. For more information, search for “dots per inch” on the MSDN Web site. 

Graphics Context vs. Device Context 
The X Windows graphics context contains required information about how drawing functions are 
to be executed. The Windows API device context provides similar information. The functions used 
in each are listed in Table 6.8. 
Table 6.8. X Windows Graphics Context and Windows API Device Context Comparable 
Functions 

Xlib Windows 

XtGetGC GetDC 

XtReleaseGC ReleaseDC 

XCreateGC CreateDC 

XFreeGC DeleteDC 

 
  



210 UNIX Custom Application Migration Guide: Volume 3 

For more information about using graphics context and device context, see “Graphics Device 
Interface” earlier in this chapter. 

Resources vs. Properties 
In X Windows terminology, a widget is defined by its resources. Width, height, color, and font are 
examples of resources. Resources can be managed by using the XtVaCreateManagedWidget 
method or by using resource files or XtVaGetValues and XtVaSetValues functions. 
In Windows terminology, a control is defined by its properties. For example, a text control has the 
Center Vertically, No Wrap, Transparent, Right Aligned Text, and Visible properties. 

Resource Files vs. Registry 
X Windows systems use configuration files referred to as resource files to store information about 
system settings or preferences for a particular X Windows client. In a Windows-based system, 
this type of information is stored in the registry. The registry stores data in a hierarchically 
structured tree. The Windows API has more than 40 functions to help access the registry. For 
more information, search for "registry" or "registry functions" on the MSDN Web site. 
Resource file can take on another meaning in Windows-based application development. 

Root Window vs. Desktop Window 
All X Windows windows are descendents of the root window. In the Windows environment, the 
desktop window is a system-defined window that is the basis for all windows displayed by all 
applications. 

/bin vs. /System32 
In Windows, the /System32 directory is roughly equivalent to the /bin directory on a UNIX system. 
This is where the system executable files are located. The /System32 directory is located in the 
system root directory. To find system root, at the command prompt type set and press ENTER. 
This displays a listing of the current environment. In the list, locate SYSTEMROOT. Under 
SYSTEMROOT, there is an entry similar to SYSTEMROOT=C:\WINNT. This is the system 
directory, and under this directory is the /System32 directory. 

/usr/bin vs. Program Files 
The Program Files directory on a Windows-based system is similar to the /usr/bin directory on a 
UNIX system. This is a default location for user applications. In Windows, a user can create more 
than one such directory. Each drive, for example, has a Program Files directory. The system 
environment variable ProgramFiles contains the path of one default location, for example, 
ProgramFiles=C:\ProgramFiles. 
/usr/lib vs. LIB Environment Variable 
In Windows, the path to user libraries can be to anywhere. To manage this relationship, retrieve 
or set the system environment variable LIB. 
/usr/include vs. INCLUDE Environment Variable 
In Windows, the path to user include files may be to anywhere. To manage this relationship, 
retrieve or set the system environment variable INCLUDE. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     211 

Pixmap (or Bitmap) vs. Bitmap 
In X Windows, bitmap and pixmap have the same usage as Windows bitmaps. For example, they 
can be used as pictures, fill patterns, icons, and cursors. They are, however, very different in 
form. 
X Windows example: A 16 × 16 “X” figure 
The following X Windows example represents a simple 16 × 16 “X” figure. 
#define simple_width 16 

#define simple_height 16 

static unsigned char simple_bits[] = { 

0x01, 0x80, 0x02, 0x04, 0x20, 0x08, 0x10, 0x10, 0x08, 0x20, 0x04, 

0x40, 0x02, 0x80, 0x01, 0x80, 0x01, 0x02, 0x20, 0x04, 0x10, 0x08, 

0x08, 0x10, 0x04, 0x20, 0x02, 0x40, 0x01, 0x80 

}; 

Windows example: A 16 × 16 “X” figure 
The following Windows example also represents a simple 16 × 16  “X” figure. 
000000 42 4D 7E 00 00 00 00 00 00 00 3E 00 00 00 28 00 

000010 00 00 10 00 00 00 10 00 00 00 01 00 01 00 00 00 

000020 00 00 40 00 00 00 CA 0E 00 00 C4 0E 00 00 00 00 

000030 00 00 00 00 00 00 00 00 00 00 FF FF FF 00 7F FE 

000040 00 00 BF FD 00 00 DF FB 00 00 EF F7 00 00 F7 EF 

000050 00 00 FB DF 00 00 FD BF 00 00 FE 7F 00 00 FE 7F 

000060 00 00 FD BF 00 00 FB DF 00 00 F7 EF 00 00 EF F7 

000070 00 00 DF FB 00 00 BF FD 00 00 7F FE 00 00 

Window Manager vs. Windows Server 2003 and 
Windows XP 
A special kind of X Windows client, called the Window Manager, provides a consistent working 
environment in the root window. 
In a Microsoft Windows environment, the operating system itself is the window manager and it 
provides the desktop window. When a user logs on, the system creates three desktops within the 
WinSta0 windows station. For more information, search for “WinSta0” on the MSDN Web site. 
Widgets are usually represented as controls in Windows API-based applications. Like the X 
Windows environment, the Windows API offers many widgets to choose from, and a great 
number of third-party versions are also available. Sometimes deciding exactly what to call which 
is difficult. For example, X Windows dialog boxes are widgets. In the Windows API, however, 
dialog boxes are not considered to be controls, although objects such as dialog boxes, buttons, 
and scroll bars are all windows. 

X Library [Xlib] [X11] vs. Gdi32.lib 
The X Windows library [Xlib][X11] is the lowest level library. Like Gdi32.lib, it provides all the 
basic drawing functions. 

 
  



212 UNIX Custom Application Migration Guide: Volume 3 

X Toolkit [Intrinsics] [Xt] vs. User32.lib 
The X Toolkit (Xt) is a library that accesses the lower-level graphics functionality of Xlib 
(X Windows) and provides such user interface elements as menus, buttons, and scroll bars. It is 
similar to User32.lib except that in the Windows environment, the look and feel of widgets or 
controls is provided in User32.lib instead of by higher-level libraries. 

Porting OpenGL Applications 
OpenGL was originally developed by Silicon Graphics as a platform-independent set of graphics 
APIs. This has made OpenGL an attractive option for developers who want to target multiple 
platforms. Very little, if any, platform-specific code is required to move a graphics application from 
one platform to another. OpenGL extensions enable the segregation and handling of platform-
specific code. 
OpenGL is not, however, a set of windowing libraries. An OpenGL application with Windows uses 
either the windowing system of the target platform (X Windows or Windows), or a cross-platform 
library such as the OpenGL Graphics Library Utility Kit (GLUT). Because of licensing concerns, 
however, most commercial applications incorporate the target platform windowing system. 
Therefore, when moving a UNIX application that uses OpenGL to Windows, migration 
considerations similar to those for a non-OpenGL application are likely to apply. This section 
covers additional GUI considerations for the migration of OpenGL applications.  
In addition to the windowing system itself, OpenGL applications require a context to the host 
windowing system. A special set of OpenGL extensions for window context have been 
developed. UNIX applications typically use the GLX OpenGL extensions for X Windows. 
Microsoft Windows-based applications typically use the WGL (wiggle) OpenGL extensions. In 
either case, three main functions are required: 
• Create context 

• X Windows: glXCreateContext 
• Windows: wglCreateContext 

• Make context current 
• X Windows: glXMakeCurrent 
• Windows: wglMakeCurrent 

• Delete context 
• X Windows: glXDeleteContext 
• Windows: wglDeleteContext 

OpenGL contains no equivalents for the IRIS GL text-handling calls and Font Manager calls. To 
obtain facilities for handling full text and font, GLX OpenGL extensions for X Windows API 
glXUseXFont is used. This API generates a series of display lists, one for each character in the 
font. 
The equivalent API in WGL OpenGL extension are wglUseFontBitmaps/¶wglUseFontOutlines. 
The wglUseFontBitmaps API creates a set of bitmap display lists for use in the current OpenGL 
rendering context. The set of bitmap display lists is based on the glyphs in the currently selected 
font in the device context. Use the bitmaps to draw characters in an OpenGL image. 
The wglUseFontOutlines API creates a set of display lists, one for each glyph of the currently 
selected outline font of a device context, for use with the current rendering context. The display 
lists are used to draw 3-D characters of TrueType fonts. Each display list describes a glyph 
outline in floating-point coordinates. 
The standard GDI font and text drawing functions draw text in a single-buffered OpenGL window. 
These functions cannot be used to draw text in a double-buffered OpenGL window. To draw text 
in a double-buffered OpenGL window, an OpenGL display list for bitmap images of characters 
must be built and then be executed. 

 



Chapter 6: Developing Phase: Migrating the User Interface                                                                                     213 

To draw text in a double-buffered OpenGl window  
1. Select a font for a device context, setting the properties of the font as required.  
2. Create a set of bitmap display lists based on the glyphs in the font used by the device 

content, one display list for each glyph that the application will draw.  
3. Draw each glyph in a string, using those bitmap display lists. 
The wglUseFontBitmaps and the wglUseFontOutlines API is used for creating the display lists. 
For more information about fonts in OpenGL, refer to the operating system Help documentation 
or search the MSDN Web site. 
After the migration, if the application still needs support for UNIX, use the C/C++ precompiler 
directives (#ifdef) to target the appropriate platform. 
The OpenGL API is a C library on both UNIX and Windows. Fortran applications can also use 
OpenGL. To make it easier for Fortran applications to use OpenGL, a Fortran 90 Module often 
exists to handle the translation between Fortran and C-calling conventions. Most Fortran 
compilers on Windows provide an optional Fortran module for OpenGL. 
For more information about OpenGL and platform-specific examples, refer to the following Web 
sites: 
• The SGI OpenGL Web site, available at http://www.sgi.com/software/opengl/. 
• The OpenGL Web site, available at http://www.opengl.org/. 

 

 
  

http://www.sgi.com/software/opengl/
http://www.opengl.org/




  

Chapter 7: Developing Phase: Migrating 
Fortran Code 

This chapter examines the process of migrating a Fortran code to the Microsoft® Windows® 
operating system from the UNIX environment. This migration may be to either the Windows 
subsystem or the Interix subsystem. 
Fortran is relatively easy to port between platforms, largely because of the high degree of 
standardization between Fortran compilers and the types of applications for which Fortran is 
typically used. 
The main difficulties with migrating Fortran code are often associated with either the integration of 
an application with other languages or its use of third-party libraries. 
This chapter covers how you should: 
• Gather and analyze data regarding your Fortran application. 
• Select development tools and other resources for developing the Fortran code in the 

Windows environment. 
• Design and validate your Fortran migration. 
• Plan the migration of your Fortran application—specifically how to port the UNIX Fortran 

application to Windows using the Windows API. 
• Use Microsoft Visual Studio® .NET to debug the Fortran application. 

Data Gathering and Analysis 
This section discusses the range of data you need to gather when you migrate Fortran code so 
that you can determine the best migration approach. The data that you must collect includes the 
following: 
• The Fortran level used (77, 90, or 95). 
• The graphical user interface (GUI) requirements. 
• Any required third-party libraries. 
• Whether the application provides any cross-language support. 
• The best development and build environment to use for the migration. 
In addition, you must know how your Fortran code is being used, for example: 
• Is it a stand-alone application? 
• Does it expose interfaces for other languages? 
• Does it call interfaces in other languages? 
Fortran is commonly used in computationally intensive applications. Often, this means that 
Fortran is used in loosely coupled, high-performance grid computing environments. Typically, 
distributed grid computing requires integration with dynamic scheduling and high-performance 
message passing. In most cases, Fortran modules are not a part of the core infrastructure 
services; they must therefore integrate with libraries that perform these functions. 

 



216 UNIX Custom Application Migration Guide: Volume 3 

It is also important to understand the target development environment for the Fortran migration. 
Possible target environments include: 
• Migration of the development environment from UNIX to Windows and the Windows 

application programming interface (API). 
• Continued development on UNIX with Windows as a cross-platform port. 
• Migration of the development environment from UNIX to a UNIX style development 

environment on Windows, such as Microsoft Interix. 
These considerations must be addressed along with the actual source code migration. 

Using Third-Party Libraries (Mixed Languages) 
In addition to running as stand-alone modules, Fortran modules can call subprograms or be 
called by programs from other languages. This is true even for those Fortran modules that are 
contained within a dynamic-link library (DLL) or a static library. 
This section describes mixed language compatibility with Fortran for both managed code and 
unmanaged code. Managed code is architecture-independent code that runs under the control of 
the Microsoft .NET common language runtime (CLR) environment. Unmanaged code is native, 
architecture-specific code. 
Mixed-language applications can supply main programs and subprograms in the following 
formats: 
• Compiled objects (.obj) and static libraries (.lib) 
• .dll 
• .NET managed code assembly 
When using mixed languages with Fortran, you must resolve the issues that are caused by 
differences in the following: 
• Calling conventions, which specify how arguments are moved and stored. 
• Naming conventions, which specify how symbol names are altered when placed in an .obj 

file. 
The need to address differences in calling and naming conventions between Fortran and C or 
C++ is not unique to a migration from UNIX to Windows. The Windows platform offers a wide 
range of third-party libraries to perform functions that can eliminate the need of some of the 
UNIX-based custom code. The use of these types of third-party C or C++ libraries in Windows 
eases the overall migration task and is an advantage in migrating to Windows. 
This section focuses on integrating Fortran with C and C++ libraries in the Windows subsystem. It 
begins by examining the default calling and naming conventions for Fortran and how these 
conventions work with typical Windows C and C++ libraries and with Windows APIs.  
Table 7.1 lists the default calling and naming conventions for Fortran, C and C++, and Windows 
APIs. 

 



Chapter 7: Developing Phase: Migrating Fortran Code                                                                                             217 

Table 7.1. Fortran, C or C++, and Windows API Calling and Naming Conventions 

Source Type Arguments Procedure 
Case 

Stack Cleanup Argument 
Suffix 

Fortran By reference Procedure name 
in all uppercase 

The procedure being 
called is responsible for 
removing arguments 
from the stack before 
returning to the caller. 

Yes 

C/C++ By value Procedure name 
in all lowercase 

The procedure doing 
the call is responsible 
for removing arguments 
from the stack after the 
call is finished. 

No 

Windows API 
(STDCALL) 

By value Procedure name 
in all lowercase 

The procedure being 
called is responsible for 
removing arguments 
from the stack before 
returning to the caller. 

Yes 

The next two sections discuss in detail the issues related to calling and naming conventions. 

Calling Conventions 
During a migration, a developer usually encounters both the C or C++ calling convention and the 
STDCALL convention. Some of the common development libraries can take care of some of the 
differences in calling conventions. Other libraries require explicit declarations. 
Differences in calling conventions can be handled in a number of ways, including the use of: 
• The Fortran Interface statement. 
• C function declarations. 
• Compatibility layers. 
• Modular code that uses Fortran libraries. 
These are explained in the next sections. 

The Fortran Interface Statement 
You can use the Fortran Interface statement to transform Fortran calling conventions into C style 
conventions. The following example takes a call to the C function, CLibFunction, which calls a C 
function that passes an integer value. An alias attribute is used to take care of the difference in 
case and the extra underscore. 
INTERFACE 

 SUBROUTINE CLIBFUNCTION(I) 

   !MS$ATTRIBUTES C, ALIAS:'_CLibFunction' :: CLIBFUNCTION  

   INTEGER I 

 END SUBROUTINE CLIBFUNCTION 

END INTERFACE 

Attributes can be defined with the Interface statement to adjust the Fortran calling conventions so 
that they match the existing C libraries. 

 
  



218 UNIX Custom Application Migration Guide: Volume 3 

C Function Declarations 
You can also use a combination of the C function declarations, function naming, and argument 
definitions to resolve calling convention differences. You can do this using the STDCALL or C 
options. 
In C and C++ modules, you can specify the STDCALL calling convention by using the __stdcall 
keyword in a function prototype or definition. Windows procedures and API functions also use the 
__stdcall convention. The following example shows how a STDCALL function declaration 
handles stack calling conventions and suffixes in a manner similar to default Fortran conventions: 
extern “C” void __stdcall FLIBUNCTION (int n); 

This type of translation is especially useful when dealing with C++ name mangling (where the 
compiler adds characters to function names). Implementing the STDCALL convention tells the 
compiler that this function is not subject to C++ name mangling. 
Alternatively, instead of changing the calling convention of the C code, using the Intel Fortran 
compiler, you can adjust the Fortran source code by using the C option. This is set with the 
ATTRIBUTES directive. For example, the following declaration assumes the subroutine is called 
with the C calling convention: 
SUBROUTINE CALLED_FROM_C (A) 

  !DEC$ ATTRIBUTES C :: CALLED_FROM_C 

  INTEGER A 

Compatibility Layers 
Another means of resolving calling convention differences is to use a compatibility layer to 
translate between Fortran and C or C++. Using this approach, C and C++ libraries can expose 
STDCALL type interfaces while actually calling the C or C++ routines using C calling 
conventions. 
The strategy you use for third-party library integration also depends on whether the Fortran or C 
or C++ code can be modified. For example, introducing Fortran Interface statements is only a 
viable option if the developer can modify the Fortran source code. The same is true regarding 
changing of function declarations in C or C++ source code. 
This makes the concept of a compatibility layer the most flexible solution. However, this solution 
requires you to develop and maintain additional source code. 

Fortran Modules 
As with most languages, modularity allows for easier cross-platform development. Because 
Fortran is most often used for high-performance computations, platform-specific routines may 
already exist in external, non-Fortran routines. 
Even though Fortran is often isolated to computationally specific routines, platform-specific APIs, 
such as threading, synchronization, and GUI functions, can also be used in Fortran. The 
Windows APIs for threading, synchronization, and GUI functions are typically made available 
using Fortran modules. 
For example, Fortran modules can exist for Windows GUI functions, threading, and OpenGL 
graphics. The Fortran modules encapsulate the C and STDCALL style functions to the Windows 
kernel and Windows API libraries. To enhance portability, platform-specific code should either be 
encapsulated in Fortran modules or through a call layer to C and C++ functions. 
The Fortran module feature requires a Fortran 90 or later compiler. 
Fortran GUI applications often use OpenGL for high-performance graphics. OpenGL provides a 
cross-platform API for GUI development with minimal platform-specific code requirements. In 
Windows, OpenGL is a C library and can be used either from a Fortran module or through a 
custom OpenGL GUI extraction layer. 
Your migration choice will largely depend on whether the existing UNIX Fortran application 
extracts the GUI calls or uses a Fortran module. Either strategy can be migrated to Windows. 

 



Chapter 7: Developing Phase: Migrating Fortran Code                                                                                             219 

Naming Conventions 
Names are an issue for external data symbols shared among parts of the same program as well 
as among external routines. Symbol names, such as the name of a subroutine, identify a memory 
location that must be consistent among all calling routines. 
Parameter names (names given in a procedure definition to variables that are passed to it) are 
never affected. 
Reasons for altering names include: 
• Case sensitivity (for example, in C and Macro Assembler (MASM)) or lack of case sensitivity 

(for example, in Fortran). 
• Name decoration (for example, in C++). 
If naming conventions are not reconciled, the program cannot successfully link and you will 
receive an "unresolved external" error. 
The following list summarizes how to reconcile names between languages: 
• All-uppercase names. If you call a Fortran routine that uses Fortran defaults and cannot 

recompile the Fortran code, then in C, you must use an all-uppercase name to make the call. 
Use of just the __stdcall convention in C code is not enough because __stdcall and 
STDCALL always preserve case in these languages. Fortran generates all-uppercase names 
by default and the C code must match it. 
For example, these prototypes establish the Fortran function FFARCTAN(angle), where the 
argument angle has the ATTRIBUTES VALUE property:  
In C: 

extern float __stdcall FFARCTAN( float angle );  
• All-lowercase names. If the name of the routine appears as all lowercase in C, naming 

conventions are automatically correct when the C or STDCALL option is used in the Fortran 
declaration. This is because any case, including mixed case, may be used in the Fortran 
source code, and the C and STDCALL options change the name to all lowercase. 

• Mixed-case names. If the name of a routine appears as mixed-case in C or MASM and if 
you cannot change the name, then you can resolve this naming conflict by using the Fortran 
ATTRIBUTES ALIAS option. ALIAS is required in this situation because Fortran will otherwise 
not preserve the mixed-case name. 

To use the ALIAS option, place the name in single quotation marks exactly as it is to appear in 
the .obj file. 
The following is an example for referring to the C function My_Proc on IA-32 systems: 
!DEC$ ATTRIBUTES ALIAS:'_My_Proc' :: My_Proc 

 
On Itanium-based systems, the same example would be coded without the leading underscore 
as: 
!DEC$ ATTRIBUTES ALIAS:'My_Proc' :: My_Proc  

 
To make this example work on both IA-32–based and Itanium-based systems, use the following: 
!DEC$ ATTRIBUTES DECORATE,ALIAS:'My_Proc' :: My_Proc 

 
  



220 UNIX Custom Application Migration Guide: Volume 3 

Using Intel Fortran for Calling Non-Fortran Subprograms 
A Fortran main program or subprogram can call a non-Fortran subprogram by using the Intel 
Fortran Compiler, supplied as one of the following: 
• Compiled object or static library. Name .obj or .lib in 

Project->Properties->Linker->Input->Additional Dependencies or on command line that links 
the application. 
If creating a mixed-language solution in the Microsoft Visual C++® IDE, make the other 
project a Win32® static library and make it a dependent project of the Intel Fortran project. 
The library will get linked in automatically. 

• DLL. Supply import library, if available, as done in compiled object for static library. 
If there is no import library, use Windows API routines LoadLibrary and GetProcAddress 
and call the procedure through an integer pointer. 

• .NET managed code assembly. Use the Intel Fortran Module Wizard to generate the 
interfaces for routines in the assembly. 

A Fortran subprogram can be called by a non-Fortran main program or subprogram as a 
compiled object, static library, or dynamic-link library, depending on the capability of the calling 
language. When calling Fortran code from a .NET managed code assembly, the Fortran code 
must be in a DLL. 
Note   Additional information on the Intel Fortran compiler is available at 

http://www.intel.com/software/products/compilers/fwin/whatsnew.htm. 

Integrating Fortran with POSIX Applications 
The Fortran application that you are migrating may be required to integrate with other POSIX-
style applications. In this situation, the target Windows environment can be either the Windows 
POSIX subsystem (Interix), or a UNIX emulator running on the Windows subsystem. Microsoft 
Interix is the full-featured POSIX subsystem on Windows. MKS NuTCRACKER and Cygwin are 
examples of UNIX emulators. 
The Fortran considerations for using either the Interix POSIX subsystem or a UNIX emulator are 
the same as for C or C++ migrations.  
Note   As of the time of publication, the GNU Fortran 77 compiler, f77, is the only Fortran compiler 
available for Interix. 

Development Tools and Resources 
This section provides you with information on the various development tools and resources such 
as compilers and IDEs for developing the Fortran code in the Windows environment. Microsoft 
supplies the GNU Fortran 77 compiler with the Interix subsystem. Microsoft does not supply or 
sell a Fortran compiler for Windows. For migrations that require Fortran 90 or Fortran 95 features, 
a third-party Fortran compiler, such as the Intel Visual Fortran compiler or the Lahey/Fujitsu 
Fortran compiler, is required to target Windows. 
When you migrate Fortran applications, you must ensure that you implement the necessary 
development tools, including a source-code control system and build analysis and management 
tools. You should also consider your cross-platform build and debug environments. The Fortran 
version that you use for development must be compatible with the other development tools that 
you use during the migration. 
For example, if your migration targets the Microsoft Visual Studio® .NET 2003 development 
system, your Fortran compiler should integrate with Visual Studio .NET 2003. The Intel Fortran 
Compiler 8.1 can plug into the Visual Studio .NET 2003 development environment. 

 

http://www.intel.com/software/products/compilers/fwin/whatsnew.htm


Chapter 7: Developing Phase: Migrating Fortran Code                                                                                             221 

Design and Validation  
When you migrate a Fortran application from UNIX to Windows, the design and capabilities of the 
Fortran code must be an integral part of the design of your migrated application. This section will 
help you to estimate the effort required for migration and to identify potential risks in the Fortran 
migration. Considerations such as performance, library interoperability, and feature set can 
determine the overall success of the project. 

Sizing the Fortran Migration 
The effort required to conduct a Fortran migration depends largely on the answers to the following 
questions: 
• Is the code modular? 
• Will platform-specific code need migration within Fortran? 
• What third-party libraries will Fortran code need and are these compatible with Windows? 
• Is the Fortran module calling any non-Fortran language function/module? 
• What is the version of the Fortran compiler? 
• Is GUI or graphics support required? 
• Do feature or function abstraction layers already exist in UNIX? 
Because it is likely that the features and functions needed for a Windows migration already exist 
on UNIX, answers to these questions might already be available. If the code is already modular 
with feature or function abstraction layers, the code itself will move easily across as a port to 
Windows. In this case, the bulk of your effort will be spent in choosing any required third-party 
libraries, the cross-language calling conventions, and the integrated development environment 
(IDE) tools. 

Assessing and Mitigating Risk 
Fortran adds complexity and, consequently, risk to a migration because of the following reasons: 
• You might require a third-party Fortran compiler. 
• You might need call-level integration between the Fortran and C or C++ code. 
• You will need a cross-language build and debug strategy for Windows. 
You can mitigate Fortran migration risks by: 
• Defining the Windows development environment, including the Fortran compiler and your 

integration strategy for C or C++ code and third-party libraries.  
• Implementing modularity of the Fortran code and putting platform-specific features into a C or 

C++ compatibility layer. This will enhance the capability of the code to migrate from UNIX to 
Windows and is essential if the application needs to target both the UNIX and Windows 
platforms. 

• Identifying the tools for building and debugging Fortran code and other interfacing languages 
like C or C++ in the Windows environment. 

 
  



222 UNIX Custom Application Migration Guide: Volume 3 

Migration Planning  
This section describes how you should plan a Fortran migration and discusses several migration 
strategies. In particular, this section provides information about how to scope a Fortran migration 
to Windows using the Windows API.  

Scoping the Fortran Migration 
At first glance, an ANSI Fortran application migration can have most (if not all) of the same 
migration combinations as a C or C++ migration. A Fortran application can: 
• Be multiuser. 
• Have a GUI for user interaction. 
• Use platform-specific features. 
However, most Fortran applications perform specialized functions where the Fortran language is 
particularly suitable. For example, Fortran is particularly suited as a language for computationally 
intensive mathematical operations. Other languages, such as C and C++, provide more widely 
used features and libraries for such things as process and thread support and GUI features. For 
this reason, Fortran source code often performs only the computationally intensive functions in an 
application, leaving the process management and user interaction to C and C++. 
Using Fortran in this manner removes most of the platform-specific issues from an ANSI Fortran 
migration. This means that in most cases, you can port the Fortran code of an application from 
UNIX to the Windows API with minimal changes. The C or C++ code usually requires the majority 
of the migration effort. 

Porting Fortran to Interix 
Before rewriting a Fortran application for Windows, you should consider other migration 
strategies. Porting to Interix represents just one possible strategy. 
For porting UNIX style source to Interix, the GNU Fortran 77 compiler is provided. As the level is 
Fortran 77, applications that require Fortran 90 support, such as module support, cannot be 
ported to Interix. In addition, because POSIX subsystem libraries cannot be mixed with Windows 
subsystem libraries, Windows API versions of C and C++ that require Fortran libraries cannot use 
them from Interix. This leaves stand-alone Fortran 77 applications that interoperate with stdin 
and stdout as the best candidates for a UNIX style port to Interix. 

Porting UNIX Fortran Source to Windows Using 
the Windows API 
This section describes how to port Fortran code to Windows. Most Fortran migrations are a port, 
not a rewrite, to Windows. However, Fortran migrations involve migrating and integrating other 
language modules in the application. Techniques and strategies for using C and C++ tools and 
source from Fortran are required to complete the application migration. 
For this purpose, most of the discussion in this section focuses on how to integrate Fortran code 
with C and C++ modules or libraries on the Windows platform. 

 



Chapter 7: Developing Phase: Migrating Fortran Code                                                                                             223 

Using C or C++ Libraries or Fortran Modules 
Fortran applications can access cross-platform libraries either by using C and C++ libraries or 
through Fortran modules (available with Fortran 90 and later versions). If the cross-platform 
libraries are written in C or C++, there is little (if any) difference between this type of strategy and 
a port-to-Windows strategy. Currently, there are few third-party Fortran module suppliers. This is 
because of the limited market for Fortran and the fact that Fortran compilers are provided by third 
parties. Microsoft does not provide a Fortran compiler. Fortran modules are typically supplied by 
the compiler vendor or are created in-house. 

Porting Fortran to Windows 
It is possible to rewrite an application written entirely in Fortran to target Windows. The key task 
here is to identify how platform-specific features are implemented in Fortran. This is typically done 
with Fortran modules. If this is the case, you must identify or develop a corresponding Fortran 
module for each feature on Windows that exists on the source platform. For example, if an 
OpenGL module and threading module are used on UNIX, you must identify or develop a 
corresponding OpenGL and threading module to use on Windows. 

Debugging Fortran Using Visual Studio 
.NET 2003 
Although your Fortran application must be developed in an environment outside Visual Studio 
.NET 2003, you may need to include your Fortran code as a library or object module in a C or 
C++ project in Visual Studio .NET 2003. In most cases, this requires the Visual Studio .NET 2003 
debugger to step through the Fortran code, as well as the C and C++ codes. This section 
explains how you can integrate Fortran libraries and object modules in Visual Studio .NET 2003 
projects and debug the Fortran code when you debug other portions of your project. 
Before debugging, you may need to include Fortran modules or libraries in projects that contain C 
and C++ source files. Although Microsoft does not provide a Fortran compiler with Visual Studio 
.NET 2003, you can include Fortran modules in Visual Studio .NET 2003 projects. To do this, 
compile the Fortran library or Fortran module with an option that produces a program debug 
database. Visual Fortran provides this option with the -Zi compiler option. This is similar to the 
process you use to create a program debug database for C and C++ programs. This creates a file 
with the .pdb extension that contains the debug symbols. 
After you have created a debug version of your Fortran module or library, you can include it in a C 
or C++ project. The easiest way to do this is to add the debug version of the Fortran project as 
input for the Visual Studio linker. 
To add the Fortran project 
1. On the Project menu, click Properties. 
2. In the Configuration list, click Debug. 
3. In the Platform list, click Win32. 
4. Click the Linker tab. 
5. In the Input box, type the name of the Fortran object module or library you want to include.  
Alternatively, you can use the Intel Visual Fortran compiler within Visual Studio .NET 2003 to 
develop Fortran applications, including static library (.lib), dynamic-link library (.dll), and main 
executable (.exe) applications. You can build your source code into several types of programs 
and libraries, either using Visual Studio .NET 2003 or working from the command line. 
Note   Use the IDE to build applications for IA-32 Windows-based systems only. 

 
  



224 UNIX Custom Application Migration Guide: Volume 3 

For building a Fortran project using Visual Studio .NET 2003, you need some additional settings. 
The following procedures describe the settings required in Visual Studio .NET 2003. 
You must enter a search path so that the linker can find the module or library you added. The 
path must include the current working directory and the directories specified in the Options dialog 
box. 
You can set the path and library and include directories for your Intel Fortran project environment 
on Visual Studio .NET 2003. 
To add a new folder to the search path 
1. On the Tools menu, click Options. 
2. Click Intel Fortran in the list on the left of the dialog box. 
3. In the General category, specify the directories in which the Visual Studio project system 

should look for files, as follows: 
• Executables. Specify the directories to be searched for executable files. (Works like the 

PATH environment variable.) 
• Libraries. Specify the directories to be searched for libraries. (Works like the LIB 

environment variable.) 
• Includes. Specify the directories to be searched for include files. (Works like the 

INCLUDE environment variable.) 
Visual Studio .NET 2003 does not provide an option to specify the path for the .pdb file for your 
Fortran module. Therefore, you must place the .pdb file in the same directory as the library or 
object module you want to include. 
You can also add a Fortran module or library directly to the project. 
To add a Fortran object module or library directly 
1. On the Project menu, click Add New Item. The Add New Item dialog box appears. 
2. In the Templates tab, select .obj or .lib, depending on whether you need to insert an object 

module (.obj) or library (.lib). 
3. Enter the file and the path for the Fortran object module or the library you want to add from 

the Location box or the browser. 
Now you are ready to start debugging. You can start the debugger and step through code in 
either the C or C++ source or the Fortran source. 
You can also debug the binaries created with the Zi compiler option using  other Microsoft debug 
tools, such as WinDbg. 
You may need to include a Fortran object module or library in a Visual Studio .NET 2003 project 
where a debug version of the object module or library is not available, or you may not need to 
include the Fortran routines in your debug session. If you do not need to debug the Fortran 
modules in a Visual Studio .NET 2003 project, you can include the release versions of either the 
object module or library as part of the link. You can continue to debug the C or C++ code. 
However, the debugger will not step into the Fortran source when a Fortran routine is entered. To 
accomplish this, include the release version of the Fortran object module or library in the All 
Configurations section of the Project Settings dialog box. 
If you must include Fortran code as part of your debugging, remember to include the release 
versions of the Fortran object module or library in the Win32 Release section of the Project 
Setting dialog box. 

 



Chapter 7: Developing Phase: Migrating Fortran Code                                                                                             225 

Summary of Fortran Code Migration 
The primary tasks in a Fortran code migration are focused on integration with libraries and the 
development environment. The actual Fortran code can usually be migrated or ported with little or 
no changes, provided that the level of Fortran compiler on the source platform is the same as the 
target platform. For example, if your application was developed on the source platform using 
Fortran 90, the target platform also needs a Fortran 90 compiler or Fortran 90 compatibility mode. 
Issues related to source files and source control migration from UNIX to Windows are similar for 
Fortran because they are for C and C++. These issues are covered in Chapter 4, “Planning 
Phase: Setting Up the Development and Test Environments” of Volume 1: Plan of this guide. 

 

 
  





  

Chapter 8: Developing Phase: 
Deployment Considerations and 
Testing Activities 
This chapter discusses the key aspects of deploying and testing a migrated application on 
Microsoft® Windows® operating systems. 
You can use the information provided in this chapter to identify the implementation requirements, 
such as environment variables, database connectivity, and migration of scripts, for creating the 
migrated environment. You will also be able to identify the deployment requirements, such as 
packaging and deploying of tools and administering the deployed Microsoft Win32® applications. 
This chapter also discusses various testing activities that you need to carry out in the Developing 
Phase. 

Deployment Considerations 
To ensure smooth deployment in the Deploying Phase, you need to address the following topics 
in the Developing Phase: 
• Process environment 
• Migration of scripts 
• Database connectivity 
• Building the application 
• Deployment 
• Configuration 
• Packaging tools and installation 
• Deploying applications 
• Managing applications 
The process for deploying the migrated application is discussed in detail in Volume 5, Deploy-
Operate of this guide. 

Process Environment 
The process environment includes several key elements, which are explained in this section. The 
notable differences between these elements in Windows are also described briefly. This section 
discusses the Portable Operating System Interface (POSIX) environment in general because the 
deployment environment varies with respect to vendor and version of UNIX. This section provides 
you with the necessary information to set up or retrieve various environment-specific details in the 
UNIX and Windows environments. 

 



228 UNIX Custom Application Migration Guide: Volume 3 

Environment Variables 
Every process has an environment block associated with it. An environment block is a block of 
memory allocated within the address space of the process. Each block contains a set of name 
value pairs. Both UNIX and Windows support process environment blocks. The particular 
differences may vary depending on which supplier and version of UNIX you are dealing with. 
Note   For information on conducting this comparison, refer to the MSDN article, "Changing Environment 
Variables," at  

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/changing_environment_variables.asp. 

A summary of the notable differences between environment variables in Windows and POSIX is also 
provided at this URL. 

Differences Between UNIX and Windows Environment Variables 
Windows supports an ANSI version of the environment functions as well as a Unicode variant. 
The Unicode variant is preceded with a _w prefix. Using the _w prefix in your application helps 
ensure that the application is linked with the correct variant when compiled with _UNICODE or 
_MBCS preprocessor strings. In addition to the ANSI functions putenv and getenv, the Windows 
application programming interface (API) also supports the GetEnvironmentVariable, 
GetEnvironmentStrings, ExpandEnvironmentStrings, and SetEnvironmentVariable 
functions. 
The following is a simple example of accessing the environment block. This example works 
equally well in both the UNIX and Windows APIs. This example shows only the ANSI functions. 
Using the ANSI functions provides you with the simplest method of converting your code from 
UNIX to the Windows API. 
UNIX/Windows example: Accessing the environment block 
#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

 

int main(int argc, char *argv[]) 

{ 

  char *var, *value; 

 

  if(argc == 1 || argc > 3) { 

    fprintf(stderr,"usage: environ var [value]\n"); 

    exit(1); 

  } 

  var = argv[1]; 

  value = getenv(var); 

  if(value) 

    printf("Variable %s has value %s\n", var, value); 

  else 

    printf("Variable %s has no value\n", var); 

 

  if(argc == 3) { 

    char *string; 

    value = argv[2]; 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/changing_environment_variables.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/changing_environment_variables.asp


Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       229 

    string = (char *)malloc(strlen(var)+strlen(value)+2); 

    if(!string) { 

      fprintf(stderr,"out of memory\n"); 

      exit(1); 

    } 

    strcpy(string,var); 

    strcat(string,"="); 

    strcat(string,value); 

    printf("Calling putenv with: %s\n",string); 

    if(putenv(string) != 0) { 

      fprintf(stderr,"putenv failed\n"); 

      free(string); 

      exit(1); 

    } 

 

    value = getenv(var); 

    if(value) 

      printf("New value of %s is %s\n", var, value); 

    else 

      printf("New value of %s is null??\n", var); 

  } 

  exit(0); 

 } 

(Source File: W_GetEnvVar-UAMV3C8.01.c) 

Temporary Files 
Both UNIX and Windows APIs support functions that create temporary files. 
The tmpnam() function returns a pointer to a temporary file name. The _tempname() function 
does this as well, but you can also use it to specify the directory and file name prefix. 

Computer Information 
At times, it is necessary to obtain information about a computer. This is particularly important 
when an application is designed to support multiple users or different types of hardware and 
operating systems. Some of the pieces of information that applications require are as follows: 
• Host name 
• Operating system name 
• Network name of the computer 
• Release level of the operating system 
• Version number of the operating system 
• Hardware platform name 
In UNIX, you use a combination of gethostname and uname functions to obtain this information. 
When using Windows, you have the option of using gethostname. However, uname is not 
available as standard in the Windows API. It is possible to add uname using a POSIX layer, 
which is possible by installing Windows Services for UNIX 3.5. Applications that use this function 
need to be rewritten to use a different set of services. 

 
  



230 UNIX Custom Application Migration Guide: Volume 3 

The Platform SDK has the functionality to obtain a set of information that is similar to that 
provided by the uname function. The Platform SDK mappings are covered in this text, but it is 
recommended that you consider using the Windows Management Instrumentation (WMI) API. 
The WMI interface is a superset to the Windows API for obtaining information about the 
computer. It is highly extensible and supports not only static information about a platform, but also 
dynamic information such as configuration and performance data. Another source to consider is 
the Active Directory Service Interfaces (ADSI), a COM interface that facilitates access to 
information stored in the Microsoft Active Directory® directory service database for the enterprise. 
Both these interfaces represent the preferred mechanism for gathering information about 
Windows Server™ 2003. 
Note   For a complete list of the system information functions provided by the Platform SDK, you can 
refer to "System Information Functions" in the online platform SDK documentation on the MSDN Web site 
at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sysinfo/base/system_information_functions.asp. 

The two functions GetVersionEx and VerifyVersionInfo are used to get extended information 
about the operating system and to compare the operating system versions on Windows.  
UNIX example: Using system information 
#include <unistd.h> 

#include <stdio.h> 

#include <sys/utsname.h> 

 

int main() 

{ 

  char computer[256]; 

  struct utsname uts; 

 

  if(gethostname(computer, 255) != 0 || uname(&uts) < 0) { 

    fprintf(stderr, "Could not get host information\n"); 

    exit(1); 

  } 

 

  printf("Computer host name is %s\n", computer); 

  printf("System is %s on %s hardware\n", uts.sysname, uts.machine); 

  printf("Nodename is %s\n", uts.nodename); 

  printf("Version is %s, %s\n", uts.release, uts.version); 

  exit(0); 

} 

(Source File: U_SysInfo-UAMV3C8.01.c) 
 

Win32 example: Using system information 
#define _WIN32_WINNT 0X0500 

#include <windows.h> 

#include <stdlib.h> 

#include <stdio.h> 

 

void errabt(char *msg) 

{ 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/system_information_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/system_information_functions.asp


Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       231 

  fprintf(stderr, msg); // use GetLastError for more detailed info. 

  exit(1); 

} 

 

void main() 

{ 

  DWORD nSize= 255; 

  char computer[256]; 

  char nodename[256]; 

  SYSTEM_INFO siSysInfo;  // Struct for hardware info 

  OSVERSIONINFO siVerInfo;  // Struct for version info 

   

  GetSystemInfo(&siSysInfo); // Get hardware OEM 

 

  // Get major and minor number 

  ZeroMemory(&siVerInfo, sizeof(OSVERSIONINFO)); 

  siVerInfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); 

  if (!GetVersionEx((OSVERSIONINFO *) &siVerInfo)) 

    errabt("Could not get OS Version info\n"); 

 

  nSize = 255; 

  if (GetComputerNameEx(ComputerNameNetBIOS, computer, &nSize) == 
FALSE) 

    errabt("Could not get NETBIOS name of computer\n"); 

    

  nSize = 255; 

  if (GetComputerNameEx(ComputerNameDnsFullyQualified, nodename, 
&nSize) == FALSE) 

    errabt("Could not get FQDNS Name of computer\n"); 

     

  printf("Computer host name is %s\n", computer); 

  printf("System is %u on %u hardware\n",  

         siVerInfo.dwMajorVersion,siSysInfo.dwProcessorType);  
printf("Nodename is %s\n", nodename); 

  printf("Version is %d.%d %s (Build %d)\n", 

    siVerInfo.dwMajorVersion, 

    siVerInfo.dwMinorVersion, 

    siVerInfo.szCSDVersion, 

    siVerInfo.dwBuildNumber & 0xFFFF); 

  exit(0); 

} 

(Source File: W_SysInfo-UAMV3C8.01.c) 

 
  



232 UNIX Custom Application Migration Guide: Volume 3 

Logging System Messages 
Logging diagnostic messages in UNIX is carried out by writing formatted output to the system 
logger. The message is written to system log files, such as USERS, or forwarded to the 
appropriate computer. If a log daemon process is not running, the log information may be written 
to a standard log file such as /var/adm/log/logger. 
The daemon syslogd in UNIX contains numerous levels of logged information, as listed in Table 
8.1. 
Table 8.1. UNIX Logging System Messages 

Priority Description 

LOG_EMERG A panic condition. 

LOG_ALERT A condition that should be corrected immediately. 

LOG_CRIT Critical conditions such as hard device errors. 

LOG_ERR Errors. 

LOG_WARNING Warnings. 

LOG_NOTICE Non-error–related conditions. 

LOG_INFO Informational messages. 

LOG_DEBUG Messages intended for debug purposes. 

In contrast, the Windows event log supports logging levels, as listed in Table 8.2. 
Table 8.2. Windows Event Logging Messages 

Priority Description 

EVENTLOG_SUCCESS Information events indicate infrequent but significant 
successful operations. For example, when Microsoft 
SQL Server™ successfully loads, it may be appropriate 
to log an information event stating that "SQL Server 
has started." Note that while this is appropriate 
behavior for major server services, it is generally 
inappropriate for a desktop application (for example, 
Microsoft Excel®) to log an event each time it starts. 

EVENTLOG_ERROR_TYPE Error events indicate significant problems that the user 
should know about. Error events usually indicate loss of 
functionality or data. For example, if a service cannot 
be loaded as the system starts, it can log an error 
event. 

EVENTLOG_WARNING_TYPE Warning events indicate problems that are not 
immediately significant, but may indicate conditions that 
can cause problems in the future. Resource 
consumption is a good candidate for a warning event. 
For example, an application can log a warning event if 
the disk space is low. If an application can recover from 
an event without loss of functionality or data, it will 
generally classify the event as a warning event. 

EVENTLOG_INFORMATION_TYPE Information events indicate infrequent but significant 
successful operations. For example, when SQL Server 
successfully loads, it may be appropriate to log an 
information event stating that "SQL Server has started." 
Note that while this is appropriate behavior for major 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       233 

Priority Description 
server services, it is generally inappropriate for a 
desktop application (for example, Excel) to log an event 
each time it starts. 

EVENTLOG_AUDIT_SUCCESS Success audit events are security events that occur 
when an audited access attempt is successful. For 
example, a successful logon attempt is a successful 
audit event. 

EVENTLOG_AUDIT_FAILURE Failure audit events are security events that occur 
when an audited access attempt fails. For example, a 
failed attempt to open a file is a failure audit event. 

As you can see, the Windows event logging mechanism supports a smaller selection of event 
priorities than UNIX. You can augment the priority status of event messages by including 
category information and binary data in the event log. This additional event information is part of 
the Windows example (following the UNIX example). 
UNIX example: System logging 
#include <syslog.h> 

#include <syslog.h> 

#include <stdio.h> 

 

int main() 

{ 

  FILE *fp; 

 

  fp = fopen("Bad_File_Name","r"); 

  if(!fp) 

    syslog(LOG_INFO|LOG_USER,"error - %m\n"); 

  exit(0); 

} 

(Source File: U_SysLog-UAMV3C8.01.c) 
 

On a typically configured Linux system, this message would be logged to /var/log/messages, and 
on a Solaris system, the message would be logged to /var/adm/messages. For more specific 
information, consult the /etc/syslog.conf file. Specifically, a *.info entry will specify the file where 
the message is going to be logged. 
Windows example: System logging 
#include <windows.h> 

#include <stdlib.h> 

 

void main() 

{ 

  HANDLE h; 

  LPSTR mstr = "This is an error from my sample app."; 

  

  

 
  



234 UNIX Custom Application Migration Guide: Volume 3 

  h = RegisterEventSource(NULL, // uses local computer  

       TEXT("BILLSamplApp"));   // source name  

  if (h == NULL)  

    exit(1);  

  

  ReportEvent(h,        // event log handle  

      EVENTLOG_ERROR_TYPE, // event type  

      0,          // category zero  

      0,          // event identifier  

      NULL,         // no user security identifier  

      1,          // one substitution string  

      0,          // no data  

  (LPCSTR*)&mstr,    // pointer to string array  

      NULL);        // pointer to data  

  

  DeregisterEventSource(h);  

 exit(0); 

} 

(Source File: W_SysLog-UAMV3C8.01.c) 
 

In the preceding example, the source name to the RegisterEventSource call is not available in 
the system registry. As a result, you will not see valid mapping or lookup data when you view the 
event log with the Event Viewer. After running this code, Eventvwr.exe would display a window as 
shown in Figure 8.1. 

 
Figure 8.1. Windows Event Viewer 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       235 

Double-clicking the error line opens a detailed view of the event (depicted in Figure 8.2). 

 
Figure 8.2. Details of an event in Windows Event Viewer 
The preceding example is a very simple example of generating log information and posting it to 
the Windows event log. A complete application would use more of the Platform SDK facilities to 
create an application entry in the registry or perhaps create an entirely separate event log file. 
Note   For a complete discussion of the details and complexities of event logging in Windows, refer to “Set 
event logging options” on the TechNet Web site at  

http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-
ebe8a76648a91033.mspx. 

Migrating Scripts 
This section describes the process of porting UNIX shell scripts to the Windows environment. 
Following are the steps involved in the porting process: 
1. Evaluating the script migration tasks. 
2. Planning for fundamental platform differences. 
3. Considering the target environments. 
The steps in the process are described in more detail later in this section. This section helps you 
choose the appropriate porting approach and the target scripting language in the Windows 
environment. 
Scripts fall into the following two basic categories: 
• Shell scripts, such as Korn and C shell. 
• Scripting language scripts, such as Perl, Tcl, and Python. 

 
  

http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx


236 UNIX Custom Application Migration Guide: Volume 3 

Shell and scripting language scripts tend to be more portable than compiled languages, such as 
C and C++. A scripting language such as Perl is compatible with most platform features. 
However, the original developer might have used easier or faster platform-specific features, or 
just might not have taken cross-platform compatibility into consideration. 
The choice of porting approach depends on the source script type and whether the target 
environment is Windows only, Windows plus Interix, or uses CGI scripts. 
In the Windows-only environment, a solution is to write all common scripts in Perl because there 
are several versions of Perl available. If software is to be maintained on UNIX and Windows-
based systems, writing all-new scripts in Perl, and even converting some existing shell scripts to 
Perl, is a good strategy. 

Evaluating the Script Migration Tasks 
Before script migration begins, all required tasks need to be considered. To identify script 
migration tasks, consider the following questions: 
• What are the scripting languages being used? 
• Does the script rely on the syntax of the shell? 
• Does the script use substantial external programs? 
• Does the script use any platform-specific services? 
• Does the script use extensions that rely on third-party libraries? 
• Does the script use or rely on nonportable concepts for essential functionality? 
• Can a quick port be done now, with a rewrite later? 
• Does the developer understand enough of the original code to quickly locate the issues and 

then make the changes necessary to port to a new platform? 
By answering these questions, script migration tasks can be evaluated and defined. Redesigning 
and rewriting portions of the application might be easier than porting because it is more efficient 
to take advantage of native features. 

Planning for Fundamental Platform Differences 
While porting scripts, the code must address some inevitable fundamental differences between 
the platforms. The following areas, which are described in more detail in later sections, are often 
sources of script migration issues: 
• File system interaction  
• Environment variables 
• Shell and console handling 
• Process and thread execution  
• Device and network programming 
• User interfaces (UIs) 

File System Interaction 
UNIX and Windows-based systems interact differently with the file system. The UNIX path 
separator is a forward slash (/), whereas Windows uses the backslash (\). The root of UNIX files 
is represented by the forward slash (/), but Windows uses locally mounted drives ([A-Z]:\) and 
network-accessible drives using the Universal Naming Convention 
(\\ServerName\SharePoint\Dir\).  
The first things you should correct in any code to be migrated are hard-coded file paths. These 
paths are commonly used to find initialization or configuration files (that is, to set up environment 
variables or application paths). One common mistake during the initial porting work is to refer to a 
Windows-based file in the native form. The problem is that the backslash (\) is also the common 
escape character. As a result, the path C:\dir\text.txt is translated as C:dir ext.txt. (The space is a 
single tab character.) 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       237 

In most cases, Windows can handle the forward slash (/) as a path separator. However, when 
building cross-platform paths, scripting language compilers can misinterpret even correctly used 
file path separators or methods. 
Unlike UNIX file systems, Win32 file systems are not case-sensitive. They may preserve the case 
of file names, but the same directory cannot contain two different files where only the case of the 
file name letters differs (for example, file.txt and FILE.txt). Windows also does not allow users to 
create a file with the same name as the directory in which it is created. 
Note   When hard coding paths in a script, certain Windows directories naming changes depend on the 
native language. For example, the directory named C:\Program Files\ in the English version of Windows is 
named C:\Programme\ in the German version. 

The exact names for paths and other information that may be critical in porting your code are 
often found in the Windows registry. For example, the correct path for the Program Files directory 
can be found in 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ProgramFilesDir. 
Windows registry is a central database of information about your Windows system. Windows 
registry contains information such as what hardware is present on the system, how the hardware 
and system are configured, and what applications are installed on the system. The registry 
provides fine-grained security. Each registry key can be protected with an access control list 
(ACL) in exactly the same way that files can be protected. 
You can refer to the registry when other platform-independent methods are not available. Use the 
regedit command to peruse the Windows registry. Some of the information stored in the registry 
is also available by using language APIs, which are safer to use. 

Environment Variables 
Both Windows and UNIX use environment variables. Although Windows maintains an 
environment array, its contents are not similar to UNIX. The Windows environment array is not 
case-sensitive, so the environment variables PATH, path, and PaTh all refer to the same item. 
The PATH variable is similar in purpose across platforms (for example, shells search the 
directories specified in the PATH environment variable for executables and scripts), but Windows 
uses a semicolon (;) as a separator, whereas UNIX uses a colon (:). Fortunately, compiled 
languages usually have features that handle the differences in usage of the PATH variable. 
Commonly used UNIX environment variables are HOME, PATH, USER, and TEMP. Windows 
also has the PATH and TEMP variables. To determine which environment variables are used in a 
Windows installation, use the abstractions in a compiled language or look in the Windows 
registry. As an alternative, you can use the following technique. 
To see the full contents of the environment 
1. Right-click My Computer, and then click Properties. 
2. In the System Properties dialog box, click the Advanced tab. 
3. Under Environment Variables, click Environment Variables. 
4. In the Environment Variables dialog box, view and modify the environment. 
Note that Windows has separate user and system environments. Administrator rights are required 
to modify the system environment. 
Scripts commonly require a temporary data file, which is usually hard-coded to reside in /tmp on 
UNIX. On Windows and UNIX, use the TEMP environment variable instead to refer to an 
acceptable temporary file directory. Some scripts also rely on environment variables beginning 
with LC_, which indicates the locale information for that system. 
Files are not always the same at the binary level. For example, Windows uses CRLF (carriage 
return/linefeed or characters \015\012) at the end of a line, whereas UNIX uses only LF. Script 
environments provide methods for handling this transparently. Another discrepancy is that ^Z 
(character \032) represents the end-of-file character. A UNIX script with this character embedded 
in code might ignore it, and Windows might stop reading the file at that point. 

 
  



238 UNIX Custom Application Migration Guide: Volume 3 

Shell and Console Handling 
The shell is found on all UNIX desktops. Windows provides a command shell. 
Windows Server 2003 stores the path to the shell in the COMSPEC variable of the environment 
array. Developers interact with the command shell during testing, but it can interfere or act in 
unexpected ways during the ordinary operation of a script. Some languages can run without any 
attachment or specific connection to a terminal. For guidance on how to make the console 
behave as required, refer to the language specifics. 
Some scripts call the shell to reuse existing commands, such as cat, ls, sendmail, date, and 
grep. Relying on the shell is not recommended because it not only reduces processing power by 
creating external process execution overhead, it is also highly nonportable. To avoid portability 
issues, it is better to rely on the methods that the language provides. 
For example, the following example might not be portable: 
set date [exec date “+%D %H:%M”] 

 

The following example is portable: 
set date [clock format [clock sec’s] -format “%m/%d/%y %H:%M”] 

 

Note that invoking commands from the shell automatically use wildcard expansion (usually 
referred to as globbing). When the script relies on globbing, you should use the language 
methods for file globbing to expand file names. Where it is unavoidable to call the shell, it is 
important to note that the Windows command shell has different native commands and quoting 
rules. 

Process and Thread Execution 
The script might need to deal with process manipulation, especially if external system calls are 
unavoidable. In a language that supports process manipulation, the features are usually portable 
to Windows Server 2003. However, it is still necessary to evaluate all uses of process 
manipulation to ensure that the application code is manipulating the correct Windows processes. 
It is common in UNIX to manage processes by passing signals, especially for daemon processes 
and system administration tasks. Signal handling, when handled by the language, is similar to 
process manipulation. Some uses of signal handling are portable from UNIX to 
Windows Server 2003, but not all signals are relevant. Windows uses an event passing model. A 
UNIX daemon process ported to Windows needs to respond to these events. When porting a 
UNIX daemon on Windows, it is necessary to create a Windows service that provides essentially 
the same functionality. 
It is important to note that a fork command can have a different behavior in UNIX, depending on 
the language. If the fork command is used in UNIX, it is highly recommended that you look at 
alternative techniques for achieving the same result on Windows. The best solution is to switch to 
using threads. 

Device and Network Programming 
Many applications built today use a client/server model or must follow network or interprocess 
communication (IPC) protocols, such as HTTP, TCP/IP, and UDP. Scripting languages provide 
varying levels of abstraction over the standard system mechanism for communicating with files 
and sockets. Because some are more portable than others, it is important to examine socket 
handling when porting code. Methods for IPC outside socket programming or communicating 
through a pipe should be avoided because they are normally nonportable. A well-known remote 
procedure call (RPC) mechanism that works well across platforms and fits well into Web server 
applications is simple object access protocol (SOAP), which most scripting languages already 
support. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       239 

An application that communicates with the serial port or other system device can use the same 
protocol for interacting with the device, but must often address the device differently. For 
example, a serial device on UNIX can be addressed as the special file /dev/ttya. On Windows, it 
is addressed as COM1. 

User Interfaces (UIs) 
Many scripting languages have access to one or more graphical user interface (GUI) toolkits. If 
the language used in script has a GUI toolkit, it is important to determine the portability of that 
toolkit across platforms. 
Tk is a GUI toolkit common to Tcl, Perl, and Python. It is fully cross-platform compatible between 
UNIX and Windows. Some of the finer points of cursor and font handling can vary between these 
systems because of the underlying operating system differences. 

Scripting Environment 
The Common Gateway Interface (CGI) protocol is the standard interface used by Web servers to 
run programs and scripts that handle dynamic content. Usually, CGI portability is not an issue 
because CGI is a standardized interface available under all major Web servers. CGI is falling out 
of favor and is being replaced by other techniques that cost the operating system less and scale 
better. Any language can be used as a CGI language if it supports reading and writing STDOUT 
and STDIN console handles, and chances are that many existing scripts are CGI-based. In recent 
years, many Web server plug-ins have been written for scripting languages to work around 
performance limitations in CGI, although using these plug-ins sometimes requires minor changes 
to the CGI script itself. Apache has direct language plug-ins for Perl (mod_perl), PHP (mod_php), 
and Tcl (mod_tcl). Through the Internet Server API (ISAPI), Internet Information Server (IIS) has 
a direct language plug-in for Perl called PerlEx. 

Database Connectivity 
This section describes various database connectivity mechanisms compatible with UNIX and 
Windows applications and provides an overview of each of these mechanisms. 
Microsoft offers many data access technologies for various database management systems 
(DBMSs). Microsoft Data Access Components (MDAC) includes ActiveX® Data Objects (ADO), 
OLE DB, and Open Database Connectivity (ODBC). Data-driven applications can use these 
components to easily integrate information from a variety of sources—both relational (SQL) and 
nonrelational. 
Note   Detailed information on MDAC is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mdacsdk/htm/dasdk_overview.asp. 

As stated, MDAC includes: 
• ADO. ADO provides consistent, high-performance access to data and supports a variety of 

development needs, including the creation of front-end database clients and middle-tier 
business objects that use applications, tools, languages, or Internet browsers.  
ADO provides an easy-to-use interface to the OLE DB, which provides the underlying access 
to data. It uses the COM automation interface available from all leading rapid application 
development (RAD) tools, database tools, and languages. 
Note   Additional information is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/ado270/htm/dasdkadooverview.asp. 

• OLE DB. Microsoft OLE DB is a set of COM-based interfaces that expose data from a variety 
of relational and nonrelational data providers. OLE DB interfaces provide applications with 
uniform access to data stored in diverse information sources. 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mdacsdk/htm/dasdk_overview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/dasdkadooverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/dasdkadooverview.asp


240 UNIX Custom Application Migration Guide: Volume 3 

OLE DB comprises a programmatic model consisting of: 
• Data providers. These contain and expose data. 
• Data consumers. These use data. 
• Service components. These process and transport data (such as query processors and 

cursor engines). 
In addition, OLE DB includes a bridge to ODBC to enable continued support for the broad 
range of ODBC relational database drivers. 
The following OLE DB providers are available: 
• OLE DB provider for ODBC 
• OLE DB provider for Oracle 
• OLE DB provider for SQL Server 
Note   Additional information on these OLEDB providers is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/oledb/htm/oledbprovmicrosoft_ole_db_providers_overview.asp. 

The Microsoft OLEDB core services and the Microsoft SQL Server OLEDB provider support 
64-bit Windows. 
Note   For more information on this, refer to MSDN Web site at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/oledb/htm/mdacsdk_oledb_64bit.asp. 

• ODBC. ODBC is a C programming language interface that makes it possible for applications 
to access data from a variety of DBMSs. Using ODBC, an application can access data in 
diverse DBMSs through a single interface. The application is independent of any DBMS from 
which it accesses data. Users of the application can add software components called drivers, 
which create an interface between an application and a specific DBMS. 
ODBC drivers provide access to the following types of data sources: 
• Microsoft Access  
• Microsoft Excel  
• Paradox  
• DBASE  
• Text 
• Oracle 
• Visual FoxPro® 
Note   Additional information on ODBC drivers is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/odbc/htm/odbcodbc_drivers_overview.asp. 

The ODBC headers and libraries shipped with MDAC 2.7 SDK allow programmers to write 
code for the new 64-bit platforms. An application with code that uses the ODBC defined types 
in the ODBC libraries of MDAC 2.7 can use the same source code both for 64-bit and 32-bit 
platforms. 
Note   Additional information on this is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/odbc/htm/dasdkodbcoverview_64bit.asp. 

  

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/oledbprovmicrosoft_ole_db_providers_overview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/oledbprovmicrosoft_ole_db_providers_overview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/mdacsdk_oledb_64bit.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/mdacsdk_oledb_64bit.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcodbc_drivers_overview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcodbc_drivers_overview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview_64bit.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview_64bit.asp


Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       241 

Building the Application 
This section describes the Visual Studio® .NET 2003 integrated development environment (IDE) 
that can be used to build and debug Windows applications. IDEs typically provide all development 
tools needed for programming, including compilers, linkers, and project/configuration files that 
generate complete applications, create new classes, and integrate those classes into the current 
project. IDEs also include file management for sources, headers, documentation, and other 
material to be included in the project. IDEs can also include the creation of UI elements, 
resources like icons, bitmaps and cursors, and marinating the language resources like string 
tables. Other typical capabilities include the debugging of the application and the inclusion of any 
other program needed for development by adding it to a Tools menu. 
Visual Studio .NET 2003 includes a complete set of development tools for building reusable 
Win32/Win64 applications. With Visual Studio .NET 2003, you can: 
• Do programming through wizards, perform drag-and-drop editing, and reuse program 

components from any of the Visual Studio .NET languages. Because of the use of 
programming wizards, you need to write less code. 

• Write code more quickly by minimizing errors with syntax and programming assistance within 
the editor. 

• Integrate dynamic HTML, script, and components into Web solutions. 
• Manage Web sites from testing to production by means of integrated site management tools. 
• Create and debug Active Server Pages (ASP). 
• Use design-time controls to visually assemble data-driven Web applications. 
Visual Studio .NET 2003 also includes the Windows 2000 Developer’s Readiness Kit, which 
contains developer training and technical resources. 
Note   Additional information on using Visual Studio .NET is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vxconATourOfVisualStudio.asp. 

Deployment 
The following sections discuss how you can configure, package and install, and deploy your 
application, as well as manage it. It specifically talks about using the Microsoft Windows Installer 
service and other tools for packaging your application. You can use the information provided in 
this section to identify critical parameters necessary for deployment, such as the best packaging 
tool and the most suitable mechanism for deploying your Win32/Win64 application. 

Configuration 
Occasionally, it is desirable to store information on a user’s computer. The reason for doing so 
may be to store information about program settings, which should persist from one invocation of 
the program to the next, or about registration details, or the connection string for the database. 
The registry is a system-defined database in which applications and system components store 
and retrieve configuration data. The data stored in the registry varies according to the version of 
Windows. Applications use the registry API to retrieve, modify, or delete registry data. 
Note   Additional information on the registry API is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/registry_reference.asp. 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/registry_reference.asp


242 UNIX Custom Application Migration Guide: Volume 3 

Packaging Tools and Installation 
This section explains how to package your migrated Win32/Win64 application and install it into a 
Windows environment. The standard method of packaging applications in a Win32/Win64 
environment is to use the Windows Installer service. This section covers the Windows Installer 
and some of the tools that you can use to package your application. 

Windows Installer Service 
The Windows Installer service uses the Windows Installer package, which is now the standard 
way that application developers deliver software for the Windows platform. Using the format and 
a common set of actions standardized by Microsoft, tool vendors can add value in creating, 
editing, and distributing customized Windows Installer packages supporting such features as self-
repair, rollback of the installation, and installation of the selective features of the application. 
The Windows Installer package packages the libraries that are implicitly linked in the application. 
But if the application uses explicit linking of libraries, these libraries should be packaged by 
adding them explicitly to the packaged application. 
The .msi file format contains all of the instructions that a program needs to install itself, which 
includes locations of files, movements or deletions of existing files, creation of shortcut icons, a 
Start menu entry, registry settings, ACL changes, Windows service installation or changes, and 
COM component registration. The program files may be contained in the .msi or in one or more 
.cab (compressed) files. The .msi uses database tables to describe the features and components 
of the product, the relations between the two, and all of the actions required to install, upgrade, or 
uninstall the application. 
The installer will copy the files of the application to their correct locations from an embedded file 
or from the accompanying .cab file or files. Usually, the Windows Installer is invoked when a 
computer starts and logs on to the domain (by using an Active Directory computer account) or 
when a user logs on to the computer. The Group Policy feature of Active Directory is used to 
attach .msi installation packages to these events, although you can also invoke the installer 
locally by using other means such as scripting or the scheduler service. 
The installation process leaves a copy of the .msi instructions on the local computer. Each time 
an application is launched, it checks the feature and component listings in the local .msi to see if 
everything is still intact. Missing or corrupt components can trigger an automatic repair known as 
self-healing. Self-healing can also be triggered during the operation of an application when a 
component is dynamically loaded. This feature is useful when .msi files are well architected by 
the software developer, but it is often turned off by administrators when the .msi has been 
repackaged. This is because many large applications are, by necessity, built as single feature 
packages, and self-healing would force the administrator to reinstall the entire application. 

Installation on Demand 
Install-on-Demand is one of the most useful features of the Windows Installer service. Install-on-
Demand is the feature that prompts for the location of the installation media after selecting an 
item that you have not used before when using a product such as Microsoft Office. By using 
Install-on-Demand, you can leave components that you do not access frequently (grouped into 
feature sets) uninstalled and on the server until a user invokes them. You can apply this to all 
applications in the case of Group Policy software advertisements, where only a desktop shortcut 
is deployed initially, or you can apply it to application features such as spelling checkers, graphic 
libraries, or charting. To use this feature properly, you must understand how to divide the 
application into independent chunks (or components), and you must then choose which 
components to share across an entire installation and which components to hold back until they 
are needed. The local .msi database maintains a list of installation points where it can find the 
necessary files at the time of installation. You can edit this list by using subsequent update (.msp) 
files to update network locations, such as Distributed File System (DFS) shares. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       243 

Installation Rollback 
As the installation occurs, the service backs up overwritten files and keeps track of any changes 
that are made to the system, such as registry entries or ACL changes. If the setup is not run to 
completion, an automatic rollback restores the original state of the system. You can run Windows 
Installer with verbose logging options to record these events. However, there are no built-in alert 
mechanisms in Group Policy. Most large enterprises using Active Directory as their only means of 
distributing software have developed scripts to query the .msi log files or interrogate the .msi local 
database by using Windows Management Instrumentation (WMI). 

Installation Auditing  
The following Visual Basic Scripting Edition (VBScript) code interrogates the local .msi database 
and lists installed packages. You can use this, in conjunction with remote scripting, as the basis 
of a simple installation audit. 
Windows example: Installation auditing 
Dim installer, product 

Dim version 

Dim productList, productString 

 

productList = "" 

 

Set installer = Wscript.CreateObject("WindowsInstaller.Installer") 

 

For Each product In installer.Products 

version = CLng(installer.productInfo(product, "Version")) 

version = (version\65536\256) & "." & _ 

(version\65535 Mod 256) & "." & _ 

(version Mod 65536) 

 

productString =installer.productInfo(product, "ProductName")_ 

& vbCrLf & " ID: " & product _ 

& " Version: " & version & vbCrLf 

 

productList = productList & productString & vbCrLf 

Next 

 

If productList <> "" Then 

productList = "Found " & installer.products.Count & _ 

" applications" & vbCrLf & vbCrLf & productList 

Else 

productList = "No .msi applications listed." 

End If 

 

WScript.Echo productList 

 

 
  



244 UNIX Custom Application Migration Guide: Volume 3 

The following is an example of output from this script: 
E:\>cscript ListMSIDB.vbs 

Microsoft (R) Windows Script Host Version 5.1 for Windows 

Copyright (C) Microsoft Corporation 1996-1999. All rights reserved. 

 

Found 7 applications 

 

Windows Server 2003 Administration Tools 

 ID: {B7298620-EAC6-11D1-8F87-0060082EA63E} Version: 5.0.0 

Microsoft Windows Services for UNIX 

 ID: {E8A81EF0-40DB-4B5B-ABE8-558D69CE2F09} Version: 7.0.1620 

Hummingbird Exceed 

 ID: {CFBD3858-2164-42B0-84A2-576C18C85082} Version: 7.1.0 

Microsoft Office XP Professional with FrontPage 

 ID: {90280409-6000-11D3-8CFE-0050048383C9} Version: 10.0.2627 

WebFldrs 

 ID: {6F716D8C-398F-11D3-85E1-005004838609} Version: 9.0.3501 

Windows Server 2003 Support Tools 

 ID: {242365CD-80F2-11D2-989A-00C04F7978A9} Version: 5.0.2072 

Microsoft Windows Server 2003 Resource Kit 

 ID: {4E1F3FCF-B205-427F-B52B-D13BDFB6526C} Version: 5.0.2092 

 

Security Rights and the Windows Installer Service 
The Windows Installer service, when invoked by Active Directory Group Policy, runs a managed 
installation. This process runs under the Local System account, which has administrative rights. 
This allows applications to be installed on systems that are locked down (that is, systems on 
which the end users have limited rights and abilities). 

Update Files 
Another aspect of the Windows Installer service is the .msp, or update file. This is a specially 
formatted .msi that can identify and update existing installations of itself by unique product and 
version numbering. Many organizations will create build images by using the .msi format so that 
future updatees and upgrades can be deployed by using Group Policy in Active Directory. 

Window Installer Service Transforms 
If you have worked with Microsoft Office 2003 or Microsoft Office XP and are familiar with the 
Resource Kit Custom Installation Wizard, you have seen the transform technology of the 
Windows Installer. Transforms allow you to amend the installation instructions in the .msi file on 
the fly. These are usually authored using one of the commercial editing tools such as WinInstall 
or InstallShield. 
A limited variety of UI widgets are available to the Windows Installer to gather user input during 
the installation and to look up information in outside files. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       245 

Creating New Windows Installer Service Packages 
There are many tools available for packaging, distributing, installing, and managing applications 
in the Windows Installer format (that is, .msi files). Microsoft Visual Studio .NET 2003 can create 
installation packages in the .msi format. In addition, there are third-party tools that help you create 
and manage Windows Installer packages. These products typically provide the following features: 
• An IDE for developing installation packages. 
• Installation script editors. 
• Installation debuggers. 
• Options for Internet-based installations. 
• Support for password and digital signature security options on installation packages. 
• Support for the Windows Installer update files (.msp files). 
• Support for the Windows Installer transforms file (.mst files). 
• Source control integration. 
The following are three third-party products that you can also use: 
• InstallShield Developer 

Note   Information is available at 

http://www.installshield.com. 

• Wise for Windows Installer 
Note   Information is available at 

http://www.wisesolutions.com. 

• Veritas WinINSTALL 
Note   Information is available at 

http://www.veritas.com. 

Repackaging Applications 
If a software installation process that has already been created does not support the Windows 
Installer (.msi) standard, you can use a repackaging application. At a minimum, a repackaging 
application will allow you to: 
• Create fully featured Windows Installer setups by capturing installations that are not based on 

Windows Installer. 
• Allow installations to be customized. 
• Check and resolve any installation conflicts. 
The following are two repackaging applications that you can use: 
• InstallShield AdminStudio. 

Note   Information is available at 

http://www.installshield.com. 

• Wise Package Studio 
Note   Information is available at 

http://www.wisesolutions.com. 

 
  

http://www.installshield.com/
http://www.wise.com/index.asp?bhcp=1
http://www.veritas.com/
http://www.installshield.com/
http://www.wise.com/index.asp?bhcp=1


246 UNIX Custom Application Migration Guide: Volume 3 

Deploying Applications 
The following subsections describe major activities during the deployment and the various 
policies used during the deployment process. 

Deploying Applications with Group Policy Objects 
Active Directory supports a technology known as Group Policy. You can assign Group Policy 
objects (GPOs) to users or computers, and you can associate them with any of the hierarchical 
containers that make up the directory structure. This means, for instance, that you can apply a 
policy to all the computers in an engineering department at a particular site or even across the 
organization, while the computers in an accounting department have their own policies. GPOs are 
filtered by the user groups in Active Directory so that you can keep precise control over 
applications of the users. 
GPOs can set and enforce hundreds of settings on desktop computers, including all of the 
security settings, but the setting applicable here is the software distribution policy setting. You use 
the software distribution policy to deploy Windows Installer files (.msi files). The Windows Installer 
service, msiexec.exe, can be set by Group Policy to run with elevated (administrator-level) 
privileges. Thus an installation program that needs access to resources that a typical user would 
not have access to (for example, directories and registry entries) can still operate without the user 
having power user or administrator privileges. 

Deploying Applications with Systems Management Server 
Applications can be deployed using the Group Policy software distribution feature of Active 
Directory. However, there are several limitations of using GPOs for software deployment. These 
are addressed by Microsoft Systems Management Server (SMS). Here is a summary of the main 
reasons for using SMS instead of GPOs for application deployment: 
• Active Directory Group Policy requires the applications to be in the Windows Installer (.msi) 

format, whereas SMS can deploy any executable package, including setup programs, 
scripting, and batch files. Many large applications include legacy setup architectures that are 
difficult or impossible to replicate in a repackaged .msi installation. 

• Group Policy requires a user to log on or a computer to be restarted to initiate a software 
deployment policy. 

• SMS has extensive Microsoft SQL Server-based reporting capabilities. 
• SMS includes an extensive hardware and software inventory. 
• SMS allows you to query the client computer before installation to ensure adequate disk 

space, memory, operating system version, and other software dependencies. 
• SMS does not require Active Directory, although SMS can use Active Directory if it is 

available. 
• Software installations can be advertised to users through desktop shortcuts, the SMS client 

icon, and Control Panel. Software installations can also be pushed to a client without user 
intervention. 

• SMS allows you to define computer groups separately from Active Directory users and 
groups, based on inventory information. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       247 

Deploying Win32/Win64 Applications 
This section describes different methods of deploying Win32/Win64 applications and how you can 
use them. 

Deploying Win32/Win64 Applications by Pushing Them to the Desktop 
Active Directory Group Policy software deployment or other systems that rely on a user logging 
on or a computer being restarted might need to have a second method of delivery that can be 
deployed without user intervention to client desktops. 
SMS and other enterprise-level systems can achieve this as part of their typical client-server 
interaction. Other methods of achieving this include remote scripting or maintaining a service 
(daemon) on each desktop that checks for updates periodically. 

Two-Phase Deployment of Win32/Win64 Desktop Applications 
When deploying locally installed applications, you might want to avoid the distribution of large 
installation images over the network over a short period of time. To do so, you can use a two-
stage approach, sometimes referred to as a knife-edge installation. In this scenario, the two 
stages are as follows: 
1. Deploy the installation image. Deploy an .msi or SMS package that is designed to do 

nothing more than copy a potentially large installation image to the local disk of each user, 
possibly in a partition reserved for this purpose.  

2. Schedule the installation job. A second package or job is then scheduled with the actual 
installation instructions that operate against this local image. This can be an incremental 
deployment over several days or weeks. 

In this way, large numbers of users can simultaneously install a new version of an application 
without affecting the network and without raising data compatibility issues. 
Another benefit of this technique is that multiple versions of the installation image of the 
application could be stored on the local drive for rapid rollback or piloting new versions. To 
maintain this rolling cache of images, you need well-tested install and uninstall jobs, packages, 
and processes. 
If a deployment system such as SMS is in place with some additional Wake-On-LAN support, you 
can deliver the image deployment and installation packages outside ordinary working hours. 
Large package deployments can also use compression technologies such as WinZip to deploy 
the package without dependence on the .msi format. 

Side-by-Side Deployment of Win32/Win64 Applications 
Although the Windows platform has been a successful development platform in part because of 
its built-in component-sharing mechanisms, these same shared components have also caused 
administrative headaches. Components from Microsoft (which are provided as part of the base 
operating systems, option packs, service packs, and various add-ins) and numerous third-party 
sources save developers countless hours. However, true backward compatibility means that 
shared components must function exactly as they did in previous versions while providing new 
functionality. In the real world, this is difficult to achieve because all configurations in which the 
component may be used need to be tested. 
The practical functionality of a component is also not easily defined. Applications may become 
dependent on unintended side effects that are not considered part of the core function of the 
component. For example, an application may become dependent on an anomaly in the 
component, which when fixed causes the application to fail. The fact that dynamic-link libraries 
(DLLs) have been upgraded to newer internal versions while keeping the same names has also 
caused confusion. 

 
  



248 UNIX Custom Application Migration Guide: Volume 3 

This lack of backward compatibility can result in the inability to deploy a new application without 
breaking applications that are already deployed or compromising the functionality of the new 
application. To provide for successful sharing while enhancing application stability, Microsoft 
introduced side-by-side sharing starting in Windows 98 Second Edition and in 
Windows Server 2003, creating a way to share components through isolation. 
With side-by-side components, multiple versions of the same component can be installed, and 
applications can use the one version that is most suitable. 
Two different processes can load different versions of a Win32/Win64 or COM component at the 
same time and, independently, unload those components as required. 
As outlined in the Windows Server 2003 logo certification guidelines, the best practice is to 
develop new applications and components with side-by-side use in mind, but there is also a way 
to selectively isolate the majority of the existing components by using a Windows redirection 
mechanism. Although redirection does not require changing any code, it does need to be 
thoroughly tested to ensure that the applications on the system continue to operate normally. 
Because these components may now be distributed into the directories of many applications, 
there is also an increase in the complexity of administering the components. 
Creating new components for side-by-side use is the best way to guarantee that applications can 
load them independently. In this case, the component must be developed with careful attention to 
where global data and state information are stored. Any other factors that can affect having 
multiple versions of components in memory simultaneously must also be addressed. For 
instance, instead of storing a particular setting using a registry key such as: 
HKEY_CURRENT_USER\Software\Vendor\ComponentName\RegKeyName = SomeValue 

 

the component would be better isolated using a version-specific key such as: 
HKEY_CURRENT_USER\Software\Vendor\ComponentName\VersionNumber\RegKeyNam
e = SomeValue 

 

or even a version- and application-specific key: 
HKEY_CURRENT_USER\Software\Vendor\ComponentName\VersionNumber\ 
ApplicationSpecificName\RegKeyName = SomeValue 

 

Shared memory structures such as memory-mapped files and named pipes also need to be taken 
into account and renamed or relocated on a per version basis. Better still, a component should be 
designed to be as stateless as possible and to let the client application handle state and user-
specific data as much as possible. Where the component really does need to store its own state 
information, it should use a method or property of the client software instead of modifying memory 
structures or registry settings directly. 
Windows Server 2003 allows administrators to take advantage of side-by-side loading with 
existing components as well as using a feature called DLL redirection. The operating system 
changes its default method of locating components if it finds a special file in the directory with the 
application that is loading the component. The file itself is empty but is specifically named to 
match the application executable name and has a .local suffix. For instance, myapp.exe would 
have an empty file next to it named myapp.exe.local. When Windows Server 2003 encounters 
this file, it looks for a requested component in the directory where the calling application is located 
or in the subdirectories below it. It will use the version of the component it finds there, no matter 
what path the system has registered for that component. If it cannot find a version in the directory 
structure of the application, the system will revert to using the path that is registered. Applications 
without a .local file continue to use the system registered path. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       249 

This method works for most components, but it needs to be tested to ensure that applications that 
use different versions can actually coexist. Components that store global state in registry keys 
that are not tied to a particular application or application version or shared memory structures 
may not operate correctly side by side. Sometimes this can be overcome just by not running 
simultaneously applications that load different versions, but each administrator must decide if that 
is acceptable to his or her user base. Other components may use relative paths to access system 
resources or other components, assuming that they are located in a particular directory. Some 
things can be safely moved or copied to satisfy this, but Windows system components, especially 
those protected by Windows file protection, should never be moved. 

Managing Applications 
Windows includes the Windows Management Instrumentation (WMI) component to manage or 
monitor applications. WMI is a component of the Windows operating system and is the Microsoft 
implementation of Web-based Enterprise Management (WBEM), which is an industry initiative to 
develop a standard technology for accessing management information in an enterprise 
environment. WMI uses the Common Information Model (CIM) industry standard to represent 
systems, applications, networks, devices, and other managed components. You can use WMI to 
automate administrative tasks in an enterprise environment. 
Notes 

• Additional information is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wmisdk/wmi/wmi_reference.asp. 

• Additional information on WBEM implementations on UNIX is available at http://www.openwbem.org/. 

Testing Activities 
This section discusses the testing activities designed to identify and address potential solution 
issues before deployment. Testing starts when you begin developing the solution and ends when 
the testing team certifies that the solution components meet the schedule and quality goals 
established in the project plan. 
Testing in migration projects involving infrastructure services is focused on finding discrepancies 
between the behavior of the original application, as seen by its clients, and the behavior of the 
newly migrated application. All discrepancies must be investigated and fixed. 
In the Developing Phase, the testing team executes the test plans for acceptance tests on the 
application submitted for a formal round of testing on the test environment. The testing team 
assesses the solution, makes a report on its overall quality and feature completeness, and 
certifies that the solution features, functions, and components address the project goals. 
The inputs required for the Developing Phase include: 
• Functional specifications document. 
• A feature-complete application, which has been unit tested. 
The documents that are used during the Developing Phase include: 
• Test plan. The test plan is prepared during the Planning Phase. It should describe in detail 

everything that the test team, the program management team, and the development team 
must know about the testing to be done. 

• Test specification. The test specification conveys the entire scope of testing required for a 
set of functionality and defines individual test cases sufficiently for the testers. It also 
specifies the deliverables and the readiness criteria. 

• Test environment. The test environment is an exact replica of the production environment; it 
is used to test the application under realistic environments. It also describes the software, 
hardware, and tools required for testing purposes. 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://www.openwbem.org/


250 UNIX Custom Application Migration Guide: Volume 3 

• Test data. The test data is a set of data for testing the application. Test data is usually a 
diverse set of data that helps test the application under different conditions. 

• Test report. The test report is an error report of the tests done. It includes a description of 
the errors that occurred, steps to reproduce the errors, severity of the errors, and names of 
the developers who are responsible for fixing them. 
The test report is updated during the Stabilizing Phase and is also one of the outputs of this 
phase, along with the tested and stabilized application. 

The key deliverables of the Developing Phase include: 
• Application ready to be deployed in the production environment. 
• Application source code. 
• Project documentation and user manual. 
• Test plan, test specification, and test reports. 
• Release notes. 
• Other project-related documents. 
Testing begins with a code review of the application and unit testing. In the Developing Phase, 
the application is subjected to various tests. The test plan organizes the testing process into the 
following elements: 
• Code component testing 
• Integration testing 
• Database testing 
• Security testing 
• Management testing 
You can test the migrated application in all the scenarios using a defined testing strategy. 
Although each test has a different purpose, together they verify that all system elements are 
properly integrated and perform their allocated functions. 

Code Component Testing 
A component may be a class or a group of related classes performing a similar task. Component 
testing is the next step after unit testing. Component testing is the process of verifying a software 
component with respect to its design and functional specifications. 
Component testing in a migration project is the process of finding the discrepancies between the 
functionality and output of components in the Windows application and the original UNIX 
application. Basic smoke testing, boundary conditions, and error test cases are written based on 
the functional specification of the component. 
The code component testing round tests the components for the following: 
• Functionality 
• Input and output, interactions within and with other components 
• Stress testing 
• Performance 
The test cases for component testing cover, either directly or indirectly, constraints on their inputs 
and outputs (pre-conditions and post-conditions), the state of the object, interactions between 
methods, attributes of the object, and other components. The code component testing requires 
the following inputs: 
• Test plan and specification. It provides the test cases. 
• System requirements. These are used to determine the required behaviors for individual 

domain-level classes. The use case model is also used to determine which parts of a 
component must be tested for vulnerabilities. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       251 

• Specifications of the component. The specifications are used to build the functional test 
cases. Information on the component inputs, outputs, and interactions with other components 
can be derived from here. 

• Design document. The actual implementation of the design provides the information 
necessary to construct the structural and interaction test cases. 

Components must also be stress tested. Stress testing is the process of loading the component 
to the defined and undefined limits. Each component must be stressed under a load to ensure 
that it performs well within a reasonable performance limit. 
System CPU and memory usage per component can also be measured and monitored to 
determine the performance of individual components. For this, you can use such tools as the 
Windows Performance Monitor. For more information, refer to the "Testing and Optimization 
Tools" section of Chapter 9, “Stabilizing Phase” of this volume. 

Integration Testing 
Integration testing involves testing the application as a whole, with all the components of the 
application put together. Component testing is done during the testing performed in the 
Developing Phase. Integration testing is the process of verifying the application with respect to 
the behavior of components in the integrated application, interaction with other components, and 
the functional specifications of the application as a whole. Integration testing in a migration project 
is the process of finding discrepancies in the interaction between components and the behavior of 
components in the Windows application and the original UNIX application. 
Integration testing tests the components for: 
• Functionality: behavior of the application as a whole and the individual components after 

integration. 
• Input and output: interactions within and with other components. 
• Response to various types of stresses. 
• Performance. 
Test cases for integration testing directly or indirectly include functionality of the components, 
constraints on their inputs and outputs (pre-conditions and post-conditions), the state of the 
object, interactions between components, attributes of the object, and other components. Inputs 
required for integration testing include: 
• Test plan. It provides the details of testing the application. 
• Test specification. It is used to determine the required behaviors for individual domain-level 

classes. The use case model is also used to determine which parts of the application must be 
tested for vulnerabilities. 

The application must also be stress tested. Stress testing is the process of loading the application 
to the defined and undefined limits to ensure that it performs well within a reasonable 
performance limit.  
System testing is also performed after completion of integration testing. System testing is the 
process of ensuring that the integrated application is compatible with all platforms and to test 
against its requirements. The system CPU and memory usage for the application can also be 
measured and monitored to determine their performance. For this, you can use such tools as the 
Windows Performance Monitor.  
Note   For more information, refer to the "Testing and Optimization Tools" section of Chapter 9, 
"Stabilizing Phase." 

 
  



252 UNIX Custom Application Migration Guide: Volume 3 

Database Testing 
The database component is a critical piece of any data-enabled application. In a migration 
project, the database may be the same or may have been replaced by another database. In both 
cases, data must be migrated to the respective database on Windows. Testing of a migrated 
database includes testing of: 
• Migrated procedural code. 
• Data integration with heterogeneous data sources (if applicable). 
• Customized data transformations and extraction. 
Database testing also involves testing at the data access layer, which is the point at which your 
application communicates with the database. Database testing in a migration project involves: 
• Testing the data and the structure and design of the migrated database objects. 
• Testing the procedures and functions related to database access. 
• Security testing, which tests the database to guarantee proper authentication and 

authorization so that only users with the appropriate authority access the database. The 
database administrator must establish different security settings for each user in the test 
environment. 

• Testing of data access layer. 
• Performance testing of data access layer. 
• Manageability testing of the database. 
An application maintains the following three databases, which are replicas of each other: 
• Development database. This is where most of the testing is carried out. 
• Deployment database (or integration database). This is where the tests are run prior to 

deployment to ensure that the local database changes are applied. 
• Live database. This has the live data; it cannot be used for testing. 
Database testing is done on the development database during development, and the integrated 
application is tested using the deployment database.

Security Testing 
Security is about controlling access to a variety of resources, such as application components, 
data, and hardware. Security testing is performed on the application to ensure that only users 
with the appropriate authority are able to use the applicable features of the application. Security 
testing also involves testing the application from the point of view of providing the same security 
features and measures that were provide by the original application. 
To ensure that the application is secure, most security measures use the following four concepts: 
• Authentication. This is the process of confirming the identity of the users, which is one layer 

of security control. Before an application can authorize access to a resource, it must confirm 
the identity of the requestor. 

• Authorization. This is the process of verifying that an authenticated party has the permission 
to access a particular resource, which is the layer of security control following the 
authentication. 

• Data protection. This is the process of providing data confidentiality, integrity, and 
nonrepudiability. Encrypting the data provides data confidentiality. Data integrity is achieved 
through the use of hash algorithms, digital signatures, and message authentication codes. 
Message authentication codes (MAC) are used by technologies such as SSL/TLS to verify 
that data has not been altered while in transit. 

 



Chapter 8: Developing Phase: Deployment Considerations and Testing Activities                                                       253 

• Auditing. This is the process of logging and monitoring events that occur in a system and are 
of interest to security.  
Note   For more information, refer to "Set event logging options" on the TechNet Web site at 

http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-
ebe8a76648a91033.mspx. 

The systems engineer establishes different security settings for each user in the test 
environment. Network security testing is performed to guarantee that the network is secure from 
unauthorized users. To minimize the risks associated with unchecked errors on the system, you 
should know the user context in which system processes run, keeping to a minimum the 
privileges that these accounts have, and log their access to these accounts. Active monitoring 
can be accomplished using the Windows Performance Monitor for real-time feedback. 
All security settings and security features of the application must be documented properly. 
Notes 

More information about security testing is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxcontestingforsecurability.asp. 

More information on how to make your code secure is available at 

http://msdn.microsoft.com/security/securecode/. 

More information on "Secure Coding Guidelines for the .NET Framework" is available at 

http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-
us/dnnetsec/html/seccodeguide.asp.

Management Testing 
Testing for manageability involves testing the deployment, maintenance, and monitoring 
technologies that you have incorporated into your migrated application. 
Following are some important testing recommendations to verify that you have developed a 
manageable application: 
• Test Windows Management Instrumentation (WMI). WMI can provide important 

information about your application and the resources it uses. During the design of your 
application, you made certain decisions about the types of WMI information that must be 
provided. These might include server and network configurations, event log error messages, 
CPU consumption, available disk space, network traffic, application settings, and many other 
application messages. You must test every source of information and be certain you can 
monitor each one. 

• Test Network Load Balancing (NLB) and cluster configuration. You can use Application 
Center 2000 clustering to add a front-end or back-end server while the application is still 
running. After installing new server hardware on the network, use your monitoring console to 
replicate the application image and start the server. The new server should automatically 
begin sharing some of the workload. You can set up the Application Center 2000 
Performance Monitor (PerfMon) to track multiple front-end Web servers. After setting up 
PerfMon, make some requests to generate traffic. PerfMon will show you that there is an 
increase in traffic in the back-end servers and that the workload is evenly spread across the 
front-end computers. 
Note   Additional information about Application Center 2000 is available at 

http://www.microsoft.com/applicationcenter/. 

• Test change control procedures. An important part of application management is the 
handling of both scheduled and emergency maintenance changes. Test and validate all of 
the change control procedures including the automated and manual processes. It is 
especially important to test all people-based procedures to ensure that the necessary 
communication, authority, and skills are available to support an error-free change control 
process. 
Note   Additional information on testing for manageability is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxcontestingformanageability.asp. 

 
  

http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingforsecurability.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingforsecurability.asp
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-us/dnnetsec/html/seccodeguide.asp
http://www.microsoft.com/applicationcenter/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingformanageability.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingformanageability.asp
http://msdn.microsoft.com/security/securecode


254 UNIX Custom Application Migration Guide: Volume 3 

Interim Milestone: Internal Release n 
The project needs interim milestones that can help the team measure their progress in the actual 
building of the solution during the Developing Phase. Each internal release signifies a major step 
toward the completion of the solution feature sets and achievement of the associated quality 
level. Depending on the complexity of the solution, any number of internal releases may be 
required. Each internal release represents a fully functional addition to the solution’s core feature 
set, indicating that it is potentially ready to move on to the Stabilizing Phase. 

Closing the Developing Phase 
Closing the Developing Phase requires completing a milestone approval process. The team 
documents the results of different tasks that it has performed in this phase and obtains a sign-off 
on the completion of development from the stakeholders (including the customer). 

Key Milestone: Scope Complete 
The Developing Phase culminates in the Scope Complete Milestone. At this milestone, all 
features are complete and the solution is ready for external testing and stabilization. This 
milestone is the opportunity for customers and users, operations and support personnel, and key 
project stakeholders to evaluate the solution and identify any remaining issues that must be 
addressed before beginning the transition to stabilization and, ultimately, to release. 
Key stakeholders, typically representatives of each team role and any important customer 
representatives who are not on the project team, signal their approval of the milestone by signing 
or initialing a document stating that the milestone is complete. The sign-off document becomes a 
project deliverable and is archived for future reference. 
Now the team must shift its focus to verify that the quality of the solution meets the acceptance 
criteria for release readiness. The next phase, the Stabilizing Phase, describes the activities—for 
example, user acceptance testing (UAT), regression testing, and conducting the pilot—required to 
achieve these objectives. 

 



  

Chapter 9: Stabilizing Phase 
This chapter covers the strategy suggested for stabilizing an application that has been migrated 
from UNIX to the Microsoft® Windows® operating system. The Stabilizing Phase involves testing 
the application for the expected functionality and improving the quality of the application to meet 
the acceptance criteria set for the project.  
This chapter describes the objectives of testing in the Stabilizing Phase. It introduces testing 
processes, as well as methodology and tools that you can employ to test applications with 
different architectures. It includes a set of job aids that can be used to develop test checklists to 
define the actions that you must take to ensure that the solution has been adequately tested and 
approved before its release. These job aids are specific to different architectures and also provide 
information on tuning the applications. 

Goals for the Stabilizing Phase 
The primary goal of the Stabilizing Phase is to improve the quality of the solution so that it meets 
the acceptance criteria and can be released to the production environment. During this phase, the 
team tests the feature-complete migrated application by subjecting it to various tests such as user 
acceptance testing (UAT), regression testing, and bug tracking based on the application’s 
requirements. The resulting build must demonstrate that it meets the defined quality and 
performance level and be ready for full production deployment. 
Testing during the Stabilizing Phase is an extension of the testing that is conducted during the 
development of the application in the Developing Phase. Testing in the Stabilizing Phase tests 
usage and operation of the application under realistic environment conditions. Test plans include 
a comparison of the migrated application’s functionality with that provided by the original 
application. Test plans must also include test cases for testing the new features added to the 
application.
After the build is stabilized, the solution is deployed. The Stabilizing Phase ends with the Release 
Readiness Approved Milestone, indicating that the team and customers agree that all outstanding 
issues have been addressed. 

Major Tasks and Deliverables 
Table 9.1 describes the tasks that must be completed during the Stabilizing Phase and lists the 
roles responsible for achieving them.  
Table 9.1. Major Stabilizing Phase Tasks and Owners 

Major Tasks Owners 

Testing the solution 
The team executes the test plans that were created during 
the Planning Phase and enhanced and executed during the 
Developing Phase. Testing includes comparing the test 
results of the parent application with the migrated application, 
as well as testing the application from different perspectives. 

Test  

Resolving solution defects 
The team triages the identified defects and resolves them. 
New tests are developed to reproduce issues reported from 

Development and Test  

 



256 UNIX Custom Application Migration Guide: Volume 3 

Major Tasks Owners 
other sources. The new test cases are integrated into the test 
suite. 

Conducting the solution pilot 
This task involves setting up the deployment environment and 
the migrated application on the staging area to test the 
application before it is deployed. The team moves a solution 
pilot from the development area to a staging area in order to 
test the solution with actual users and real scenarios. The 
solution pilot is conducted before starting the Deploying 
Phase. 

Release Management  

Closing the Stabilizing Phase 
The team documents the results of the tasks performed in 
this phase and solicits management approval at the Release 
Readiness Approved Milestone meeting. 

Project  

Table 9.2 lists the tasks described in Table 9.1, but focuses on the tasks from the perspective of 
the team roles. The primary team roles driving the Stabilizing Phase are Test and Release 
Management. 
Table 9.2. Role Cluster Focuses and Responsibilities in the Stabilizing Phase 

Role Cluster Focus and Responsibility 

Product Management Execute communications plan. 
Launch test phase. 

Program Management Track project. 
Triage bugs. 

Release Management Prepare for the deployment of the application. 
Set up the production environment. 

Development team Triage bugs and resolve them. 
Optimize code. 
Reconfigure hardware or service. 

User Experience Stabilize user documentation and training materials. 

Test  Define test goals and generate a master test plan (MTP). 
Generate build and triage plan. 
Generate detailed test plan (DTP). 
Review DTP and detailed test cases (DTC). 
Track test schedule. 
Review bugs entered in the bug-tracking tool and monitor their status 
during triage meeting. 
Generate weekly status reports. 
Escalate issues that are blocking progress, review impact analysis, and 
generate change management document. 
Ensure that appropriate level of testing is achieved for a particular 
release. 
Lead the actual build acceptance test (BAT) execution. 
Execute test cases and generate test report. 

 



Chapter 9: Stabilizing Phase                                                                                                                                 257 

Testing the Solution 
This section describes the testing activities that are performed in the Stabilizing Phase. In the 
Stabilizing Phase, because all features and functions of the solution are now complete and all 
solution elements have been built, testing is performed on the solution as a whole, not just on 
individual components. The testing that began during the Developing Phase according to the test 
plan created during the Planning Phase continues with further testing, tracking, documentation, 
and reporting activities during the Stabilizing Phase. This mainly involves user acceptance testing 
(UAT) and regression testing as explained in the next subsections in detail. 

User Acceptance Testing 
The emphasis on user acceptance testing (UAT) during the Stabilizing Phase is to ensure that the 
migrated solution meets the business needs. UAT is performed on a collection of business 
functions in a production environment after the completion of functional testing. This is the final 
stage in the testing process before the system is accepted for operational use. It involves testing 
the system with data supplied by the actual user or customer instead of the simulated data 
developed as part of the testing process. The UAT helps to validate the solution for the overall 
user requirements and also determines the release readiness status of the system. Running a 
pilot for a select set of users helps to identify areas where users have trouble understanding, 
learning, and using the solution.  
For migration projects, UAT involves testing the migrated application and identifying its defects. 
These defects are addressed and regression test is conducted for each fixed defect to ensure 
that the fix doesn’t break any other functionality of the migrated application. The UAT Summary 
confirms that the solution meets the customer’s acceptance criteria, thereby furthering customer 
acceptance of the solution.  

Regression Testing 
Regression testing refers to retesting previously tested components and functionality of the 
system to ensure that they function properly even after a change has been made to parts of the 
system. For migration projects, this is the most important class of tests. As defects are discovered 
in a component, modifications should be made to correct them. This may require retesting of 
other components or the entire solution. 
Regression testing helps in the following areas: 
• To ensure that no new problems are introduced and that the operational performance has not 

been degraded because of modifications. 
• To ensure that the effects of the changes are transparent to other areas of the application 

and other components that interact with the application. 
• To modify the original test data and test cases from other testing activities. 

Resolving Solution Defects 
In order to resolve defects, you must reproduce and test them in the test environment. Each 
reproduced defect in the test environment should be tracked for its status and severity. An 
important aspect of such tests involves test tracking and reporting. Test tracking and reporting 
occurs at frequent intervals during the Developing and Stabilizing Phases. During the Stabilizing 
Phase, this reporting is driven by the bug count. Regular communication of the test status to the 
team and other key stakeholders ensures that the project runs smoothly. After fixing the defects, 
test cases and test data should be updated and integrated with the test suite. 

 
  



258 UNIX Custom Application Migration Guide: Volume 3 

Bug Convergence 
Bug convergence is the point at which the team makes visible progress against the active bug 
count. At bug convergence, the rate of bugs resolved exceeds the rate of bugs found, thus the 
actual number of active bugs decreases. After bug convergence, the number of bugs should 
continue to decrease until the zero bug bounce task, as explained in the next sections. 

Interim Milestone: Bug Convergence 
Bug convergence tells the team that most of the bugs have been addressed and that the rate of 
bugs resolved is higher than the rate of new bugs found. This can be considered as the interim 
milestone and the migrated application can be considered for zero bug bounce verification. 

Zero Bug Bounce 
Zero bug bounce is the point in the project when development finally catches up to testing and 
there are no active bugs for the moment. After zero bug bounce, the number of bugs should 
continue to decrease until the product is sufficiently stable for the team to build the first release 
candidate. 

Interim Milestone: Zero Bug Bounce 
Achieving zero bug bounce is a clear sign that the solution is near to being considered a stable 
release candidate. 

Release Candidates 
After the first achievement of zero bug bounce, a series of release candidates are prepared for 
release to the pilot group. Each release is marked as an interim milestone. 
Guidelines for declaring a build as a release candidate include the following: 
• Each release candidate has all the required elements to qualify for release to production. 
• The test period that follows determines whether a release candidate is ready to release to 

production or if the team must generate a new release candidate with appropriate fixes. 
• Testing the release candidates, carried out internally by the team, requires highly focused, 

intensive efforts and concentrates heavily on discovering critical bugs. 

Interim Milestone: Release Candidate 
As each new release candidate is built, there should be fewer bugs reported, classified, and 
resolved. Each release candidate marks significant progress in the team’s approach toward 
deployment. With each new candidate, the team must focus on maintaining tight control over 
quality. 

Interim Milestone: Preproduction Test Complete 
Eventually, a release candidate is prepared that contains no defects. After this has occurred, no 
defects should be found within the isolated staging environment. At this stage, all testing that can 
be done before putting the migrated component into production has been completed. 

 



Chapter 9: Stabilizing Phase                                                                                                                                 259 

Conducting the Solution Pilot 
This section describes the best practices to adopt for conducting a pilot of the migrated 
application. This section provides you with information regarding various points to be considered 
when conducting a pilot and deciding the next steps after the pilot. 
A pilot release is a deployment into a subset of the live production environment or user group. 
During the pilot, the team tests as much of the entire solution as possible in a true production 
environment. Depending on the context of the project, the pilot can take various forms: 
• In an enterprise, a pilot can be a group of users or a set of servers in a data center. 
• For migration projects, the pilot might involve testing the most demanding application or 

database that is being migrated with a sophisticated group of users who can provide helpful 
feedback. 

The common element in all piloting scenarios is testing under live conditions. The pilot is not 
complete until the team ensures that the solution is viable in the production environment and that 
the solution is ready for deployment. 
Some of the best practices that should be followed when conducting a pilot are: 
• Before beginning a pilot, the team and the pilot participants must clearly identify and agree 

upon the success criteria for the pilot. These should map back to the success criteria for the 
development effort. 

• Any issues identified during a pilot must be resolved either by further development, by 
documenting resolutions and workarounds for the installation team and production support 
staff, or by incorporating them as supplemental material in training or Help documentation. 

• Before the pilot is started, a support structure and an issue-resolution process must be in 
place. This may require that the support staff receive training in the application area that is 
being piloted. 

• In order to determine any issues and confirm that the deployment process will work, it is 
necessary to implement a trial run or a rehearsal of all the elements of the deployment prior 
to the actual deployment. 

After you collect and evaluate the pilot data, a corresponding strategy should be selected based 
on the findings from the analysis of pilot data. The next strategy could be one of the following: 
• Stagger forward. Deploy a new release to the pilot group. 
• Roll back. Execute the rollback plan and revert the pilot group to the stable state they had 

before the pilot started. 
• Suspend. Suspend the entire pilot. 
• Fix and continue. If you find an issue during the pilot, fix the issue and continue with the 

next steps. 
• Proceed. Advance to the Deploying Phase. 
After the pilot has been completed, the pilot team must prepare a report detailing each lesson 
learned and how new information was incorporated and issues were resolved. 

Interim Milestone: Pilot Complete 
This milestone signifies that the pilot has been successfully completed and that the team is ready 
to proceed to the Deploying Phase. 

 
  



260 UNIX Custom Application Migration Guide: Volume 3 

Closing the Stabilizing Phase—Release 
Readiness Approved 
The Stabilizing Phase culminates with the Release Readiness Approved Milestone. The team 
builds a release candidate with all major defects fixed as per the quality policy of the organization. 
All rounds of testing must be done before moving the migrated component into the production 
environment. When all test plans are executed and test cases are satisfied, the migrated 
application is ready to be moved to the production environment after the release is approved with 
a formal sign-off. 
Key stakeholders, typically representatives of each team role and any important customer 
representatives who are not on the project team, signal their approval of the milestone by signing 
or initialing a document stating that the solution is complete and approved for release. The sign-
off document becomes a project deliverable and is archived for future reference. 
The performance of the application following deployment in the production environment is a key 
criterion in indicating a successful application migration. The following sections will help you to 
optimize the performance of the application and the tools following deployment. 

Tuning 
This section discusses tuning of the solution in detail, including how to performance-tune the 
migrated application, and scaling up and scaling out of the application. In addition, the section 
discusses multiprocessor considerations for applications and network utilizations. You can use 
this information to identify the parameters that affect application performances and steps to 
consider in the scalability of applications. 

Performance Tuning 
Performance management starts with the gathering of a data baseline that indicates what system 
performance should look like. After establishing a baseline, it is used to evaluate the performance 
of the application. Performance problems typically do not become apparent until the application is 
placed under an increased load. 
Measuring the performance of an application when placed under ever increasing loads 
determines the scalability of that application. When the performance begins to fall below the 
stated minimum performance requirements, you have reached the limit of scalability of the 
application. For more information about scaling, refer to the "Scaling Up and Scaling Out" section 
later in this chapter. 
Performance tuning can be done in the following ways: 
• Tuning the computer hardware by adding more memory, updating CPUs, adding disk 

controllers, or upgrading network controllers. This is the most efficient way and helps 
performance-tune the application as well. 

• Application rearchitecture to remove bottlenecks such as poor threading and looping and 
checking for other loops that use too much CPU time. This step also helps considerably in 
performance tuning. 

 



Chapter 9: Stabilizing Phase                                                                                                                                 261 

• Operating system parameter tuning, which involves adjusting the amount of page store and 
tweaking network stack parameters. 

• Tuning the configurations on a database server, application server, or Web server. 
In UNIX, performance is monitored using a type of kernel-level instrumentation, along with 
rudimentary tools for monitoring the CPU, disk, and memory usage. Windows Server 2003 is 
designed such that it exposes a great deal of performance data. Tools like Windows Performance 
Monitor (PerfMon) can be used to export detailed information about the processor, memory, disk, 
and network usage. Performance Monitor support is integrated throughout Windows. 
Administrators can gather a variety of performance data from many computers simultaneously. 
UNIX kernels tend to have many configurable parameters that can be fine-tuned for specific 
applications. By contrast, the Windows kernel is largely self-tuned. The virtual memory, thread 
scheduling, and I/O subsystems all dynamically adjust their resource usage and priority to 
maximize throughput. The difference between these two approaches is that the UNIX approach is 
to tweak kernel parameters for maximum advantage in the benchmark, even if those tweaks 
affect the real-world performance, while the Windows approach is to let the kernel tune itself for 
whatever load is placed on it. 
Notes  

More information on improving performance is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp. 

More information on writing high-performance managed applications is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/highperfmanagedapps.asp. 

Scaling Up and Scaling Out 
Scalability is a measure of how easy it is to modify the application infrastructure and architecture 
to meet variances in utilization. As with other application capabilities, the decisions you make 
during the design and early coding phases largely dictate the scalability of your application. 
Application scalability requires a balanced partnership between two distinct domains: software 
and hardware. Because scalability is not a design concern of stand-alone applications, the 
applications discussed here are distributed applications. 
Scaling up involves achieving scalability with the use of better, faster, and more expensive 
hardware to move the processing capacity limit from one part of the computer to another. Scaling 
up includes adding more memory, adding more or faster processors, or just migrating the 
application to a more powerful, single computer. Typically, this method allows for an increase in 
capacity without requiring changes to source code. However, adding CPUs does not add 
performance in a linear fashion. Instead, the performance gain curve slowly tapers off as each 
additional processor is added. 
Scaling out distributes the processing load across more than one server by dedicating several 
computers to a common task. In this, the fault tolerance of the application is increased. Scaling 
out also presents a greater management challenge because of the increased number of 
computers. 
Developers and administrators use a variety of load-balancing techniques to scale out with the 
Windows platform. Load balancing allows an application site to scale out across a cluster of 
servers, making it easy to add capacity by adding replicated servers. It provides redundancy, 
giving the site failover capabilities so that it remains available to users even if one or more 
servers fail or are taken down. 
Scaling out provides a method of scalability that is not hampered by hardware limitations. Each 
additional server provides a near linear increase in scalability. 
The key to successfully scaling out an application is location transparency. If any of the 
application code depends on knowing which server is running the code, location transparency 
has not been achieved and scaling out will be difficult. This situation requires code changes to 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp


262 UNIX Custom Application Migration Guide: Volume 3 

scale out an application from one server to many, which is seldom an economical option. If you 
design the application with location transparency in mind, scaling out becomes an easier task. 
Notes 

More information on scaling is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxconmanageabilityoverview.asp. 

Microsoft Application Center 2000 reduces the complexity and the cost of scaling out. More information on 
"Application Center 2000" is available at 

http://www.microsoft.com/applicationcenter/default.mspx. 

More information on scaling network-aware applications is available at 

http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp. 

Multiprocessor Considerations 
Application performance improves by having multiple processors perform the same task. You can 
distribute the processing load across several processors. 
Computationally intensive tasks are characterized by intensive processor usage with relatively 
few I/O operations. The ongoing challenge with these applications is to improve the performance. 
You can do this with a faster computer, a more efficient algorithm, and by improving the 
implementation or using more processors. You can improve the performance with the help of 
tuning techniques as well. 
Using more processors can mean taking advantage of an SMP computer or by using distributed 
computing with multiple networked computers. However, adding CPUs does not add performance 
in a linear fashion. Instead, the performance gain curve slowly tapers off as each additional 
processor is added. For computers with SMP configurations, each additional processor incurs 
system overhead. After you have upgraded each hardware component to its maximum capacity, 
you will eventually reach the real limit of the processing capacity of the computer. At that point, 
the next step is to move to another computer. 
Multiprocessor optimization can be achieved by making use of threads. 
Note   More information on multiprocessor optimizations is available at 

http://msdn.microsoft.com/msdnmag/issues/01/08/Concur/. 

Network Utilizations 
Network resources, such as available bandwidth and latency, must be predicted and managed on 
computers and devices throughout the network. 
Optimal network utilization is achieved with cooperation among end nodes, switches, routers, and 
wide area network (WAN) links through which data must pass. Preferential treatment must be 
given for certain data as it traverses through the network in order to service certain components 
better during congestion. There are tools that help analyze network traffic, provide network 
statistics and packet information, and thereby better use the network by analyzing areas of 
congestion. 
Quality of Service (QoS), an industry-wide initiative, achieves a more efficient use of network 
resources by differentiating between data subsets. Windows 2000 implements QoS by including a 
number of components that can cooperate with one another. 
Note   More information on QOS on Windows is available at 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/qos/qos/qos_start_page.asp. 

Note   Network Monitor captures network traffic for display and analysis. More information on Network 
Monitor is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netmon/netmon/network_monitor.asp. 

Note   Network Probe is another tool for traffic-level network monitoring and for analysis and 
visualization. More information on Network Probe is available at http://www.objectplanet.com/probe/. 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconmanageabilityoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconmanageabilityoverview.asp
http://www.microsoft.com/applicationcenter/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp
http://msdn.microsoft.com/msdnmag/issues/01/08/Concur/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/qos/qos/qos_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp
http://www.objectplanet.com/probe/


Chapter 9: Stabilizing Phase                                                                                                                                 263 

Testing and Optimization Tools 
This section lists some of the useful tools that can be used for testing and monitoring your 
applications. 

Visual Studio .NET 2003 Tools 
Microsoft Visual Studio® .NET 2003 includes tools for analyzing the performance of applications. 
These include: 
• Process Viewer (Pview). The PView process viewer uses dialog boxes to view and modify 

running processes and their threads. PView can monitor: 
• Memory usage of process, threads, and individual DLLs. 
• CPU time used by processes and threads. 
• How an application or the system runs with different system priorities. 
PView features provide powerful tools with which you can monitor processes of an 
application and threads at different priorities. More information about the Process Viewer is 
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcsample98/html/vcsmppviewer.asp. 

• Spy++. Spy++ shows a graphical view of the processes of the system, threads, windows, and 
window messages. More information about Spy++ is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcug98/html/_asug_overview.3a_.spy.2b2b.asp. 

• DDESpy. DDESpy monitors dynamic data exchange (DDE) activity in the operating 
system. More information about DDESpy is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcsample98/html/vcsmppviewer.asp. 

Platform SDK Tools 
Platform SDK tools includes debugging tools, file management tools, performance tools, and 
testing tools. These tools are available with the latest Platform SDK. 

Debugging Tools 
Platform SDK includes the following debugging tools: 
• Debug Monitor (DBMon). The Debug Monitor runs in its own console window and displays 

messages sent by your application. More information about the Debug Monitor is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/debug_monitor.asp.  

• Symbolic Debugger (NTSD). NTSD is a symbolic debugger that enables you to debug user-
mode applications. You can display and execute program code, set breakpoints, and 
examine and change values in memory. More information about the Symbolic Debugger is 
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/symbolic_debuggers.asp. 

• Windows Debugger (WinDbg). The WinDbg debugger is a powerful graphical tool that 
allows you to debug applications on Microsoft Windows. You can use the integrated text 
editor to edit your source code. WinDbg can also be used to debug service applications and 
kernel-mode drivers. More information about the Windows Debugger is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/windbg_debugger.asp. 

 
  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcug98/html/_asug_overview.3a_.spy.2b2b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcug98/html/_asug_overview.3a_.spy.2b2b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/debug_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/debug_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/symbolic_debuggers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/symbolic_debuggers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windbg_debugger.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windbg_debugger.asp


264 UNIX Custom Application Migration Guide: Volume 3 

File Management Tools 
• WinDiff. WinDiff is used to compare files and display the results graphically. More 

information about WinDiff is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windiff.asp. 

Performance Tools 
Performance tools can be used to measure application performance and resolve some 
performance issues. Platform SDK includes the following performance tools: 
• Bind. Bind minimizes application load time by binding your executable with all of your DLLs, 

plus the system DLLs. More information about Bind is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/bind.asp. 

• Extensible Performance Counter List (ExCtrLst). The extensible counter list tool is used to 
obtain information about the extensible performance counter dynamic-link libraries on a 
computer. More information about ExCtrLst is available at http://www.microsoft.com/downloads
/details.aspx?FamilyID=7ff99683-b7ec-4da6-92ab-793193604ba4&DisplayLang=en

. 

• Performance Meter (PerfMtr). PerfMtr can display a variety of system performance 
information. More information about the PerfMtr is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp. 

• Performance Monitor (PerfMon). Windows Performance Monitor can simultaneously collect 
performance data from any number of network computers, then display it as a graph, format it 
as a tabular report, or log it for later analysis. Performance Monitor support is integrated 
throughout Windows. More information about PerfMon is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp. 

• PStat. PStat lists statistics for each process. More information about PStat is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pstat.asp.  

• Virtual Address Dump (VADump). Virtual Address Dump creates a listing that contains 
information about the memory usage of a specified process. More information about VADump 
is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/vadump.asp. 

Testing Tools 
• Process Fault Monitor (PfMon). The Process Fault Monitor displays the faults that occur 

while executing a process. PFMon can start the application for you or attach to a running 
process. More information about PfMon is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pfmon.asp. 

Other Commonly Used Tools 
This section lists other commonly used tools that are useful in testing and monitoring applications. 

Monitoring Tools 
• Diskmon. This tool captures all hard disk activity or acts such as a software disk activity light 

in your system tray. This tool is available for download at 
http://www.sysinternals.com/ntw2k/freeware/diskmon.shtml. 

• Filemon. This monitoring tool allows you to view all file system activity in real-time. This tool 
works on all versions of Windows NT, Windows 2000, Windows Server 2003, and 
Windows XP. It also works with the Windows XP 64-bit edition. This tool is available for 
download at http://www.sysinternals.com/ntw2k/source/filemon.shtml. 

• PMon. This is a Windows NT GUI/device driver program that monitors process and thread 
creation and deletion, as well as context swaps if it is running on a multiprocessing or 
checked kernel. This tool is available for download at 
http://www.sysinternals.com/ntw2k/freeware/pmon.shtml. 

 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windiff.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/bind.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=7ff99683-b7ec-4da6-92ab-793193604ba4&DisplayLang=en
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pstat.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/vadump.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/vadump.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pfmon.asp
http://www.sysinternals.com/ntw2k/freeware/diskmon.shtml
http://www.sysinternals.com/ntw2k/source/filemon.shtml
http://www.sysinternals.com/ntw2k/freeware/pmon.shtml
http://www.microsoft.com/downloads/details.aspx?FamilyID=7ff99683-b7ec-4da6-92ab-793193604ba4&DisplayLang=en


Chapter 9: Stabilizing Phase                                                                                                                                 265 

• Portmon. You can monitor serial and parallel port activity with this advanced monitoring tool. 
It knows about all standard serial and parallel IOCTLs and even shows you a portion of the 
data being sent and received. This tool is available for download at 
http://www.sysinternals.com/ntw2k/freeware/portmon.shtml. 

• Regmon. This monitoring tool allows you to view all registry activity in real-time. This tool is 
available for download at http://www.sysinternals.com/ntw2k/source/regmon.shtml. 

• TCPView. You can view all the open TCP and UDP endpoints. TCPView even displays the 
name of the process that owns each endpoint. This tool is available for download at 
http://www.sysinternals.com/ntw2k/source/tcpview.shtml. 

• Task Manager. Task Manager provides run-time information on processes. The Task 
Manager tool is available as part of Windows. 

Testing Tools 
• WinRunner. WinRunner helps in GUI capture and playback testing for Windows applications. 

More information on WinRunner is available at http://www.mercury.com/us/products/quality-
center/functional-testing/winrunner/. 

• Silktest. Silktest is an object-oriented software testing tool for Windows applications. More 
information on Silktest is available at http://www.segue.com/products/functional-regressional-
testing/silktest.asp. 

• LoadRunner. LoadRunner is an automated client/server system testing tool that provides 
performance testing, load testing, and system tuning for multiuser applications. More 
information on LoadRunner is available at http://www.mercury.com/us/products/performance-
center/loadrunner/. 

• Rational Robot Automated Test. Rational Robot Automated Test provides automated 
functional, regression, and smoke tests for e-applications. More information on Rational 
Robot is available at http://www-306.ibm.com/software/rational/. 

• Microsoft Application Center Test. Designed to stress test Web servers and analyze 
performance and scalability problems with Web applications, including Active Server Pages 
(ASP) and the components they use. It simulates a large group of users by opening multiple 
connections to the server and rapidly sending HTTP requests. More information on Microsoft 
Application Center Test is available at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp. 

Source Test Tools 
• Purify. Purify is a run-time error and memory leak detector. More information on Purify is 

available at http://www-306.ibm.com/software/sw-bycategory. 
Tools for win64: 
• VTune Performance Analyzer. Intel VTune Analyzers help locate and remove software 

performance bottlenecks by collecting, analyzing, and displaying performance data from the 
system-wide level down to the source level. More information on VTune Performance 
Analyzer is available at http://www.intel.com/software/products/vtune/. 

 
  

http://www.sysinternals.com/ntw2k/freeware/portmon.shtml
http://www.sysinternals.com/ntw2k/source/regmon.shtml
http://www.sysinternals.com/ntw2k/source/tcpview.shtml
http://www.mercury.com/us/products/quality-center/functional-testing/winrunner/
http://www.mercury.com/us/products/quality-center/functional-testing/winrunner/
http://www.segue.com/products/functional-regressional-testing/silktest.asp
http://www.segue.com/products/functional-regressional-testing/silktest.asp
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www-306.ibm.com/software/rational/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp
http://www-306.ibm.com/software/sw-bycategory
http://www.intel.com/software/products/vtune/


266 UNIX Custom Application Migration Guide: Volume 3 

Further Reading 
For more information, refer to: 
• “Testing Software Patterns” on the MSDN Web site at 

http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-
us/dnpag/html/tsp.asp. 

• Tools are also available in .NET for creating components, which can be used to monitor 
system resources. 
For information about using event logs, performance counters, and services, refer to "System 
Monitoring Components" on the MSDN Web site at 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vborisystemmonitoringwalkthroughs.asp. 
 

 

http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/tsp.asp
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/tsp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vborisystemmonitoringwalkthroughs.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vborisystemmonitoringwalkthroughs.asp


Index  
64-bit Programming, 8–11, 8, 37–41 

scalable data types, 38 
64-bit Windows 

overview, 7–11, 7 
Access Control Entries (ACE), 19 
Access Control Lists (ACL), 18, 123, 237, 242, 243 
access token, 19 
Active Template Library (ATL), 31 
Active X Template Library (ATL), 31, 36, 37, 150, 151, 

153, 156, 158, 160, 162, 163, 169, 173, 180, 182, 
201, 202 

address space, 228 
architectural differences,UNIX and Windows, 11–25, 11 
assessing, 221 
auditing, 253 
authentication, 252 
authorization, 252 
automount, 16 
basetsd.h., 37 
bitmap, 211 
Bourne shell (sh), 141 
building the application, 241 
C function declarations, 218 
C shell (csh), 141 
callback, 208 
capturing keyboard events, 168–72, 168 
capturing mouse events, 165–67, 165 
CGI script migration, 239 
Citrix, 24 
cluster configuration, 253 
code component testing, 250 
color management, 177–78, 177 
Command Debugger (CMD), 33 
command shell, 238 
Command window, 209 
command-line shell, 141 
Common Internet File System(CIFS), 16 
communicating with a control, 161 
compatibility layer, 218 
Component based development, 144–45, 144 
Component Object Model, 144 
computer information, 229–31, 229 

hardware platform name, 229 
host name, 229 
network name, 229 
operating system name, 229 
operating system release level, 229 

operating system version number, 229 
configuration, 241 
connectionless protocols, 139 
console mode, 209 
control, 19, 24, 108, 124, 149, 151, 157, 158, 160–64, 

160, 161, 202, 211, 212, 241 
CPrintDialog, 202, 203 
CreateDialog, 156–60, 156, 157 
CreateSolidBrush, 183, 193 
CreateThread, 52, 59–62 
CreateWindow, 49, 149, 152, 154–56, 155, 160, 161, 

164, 195 
creating a control, 160 
creating threads, 59 
critical section, 77 
C-Runtime (CRT) library, 31 
Curses, 24 
daemons, 13, 121 
data model 

UNIX/64, 8–11, 9 
Win64, 8–11, 9 

data protection, 252 
database connectivity, 239–40, 239 

ActiveX® Data Objects, 239 
Microsoft Data Access Components, 239 
OLE DB, 239 
Open Database Connectivity, 240 

database testing, 252 
debugging FORTRAN, 223 
DeleteObject, 165, 174 
DeletePen, 165 
demons, 142 
deployement 

packaging tools, 242 
deploying Win32 applications, 247 

knife-edge installation, 247 
two-phase deployment, 247 

deployment, 241 
configuration, 241 
group policy objects, 246 
installation, 242 
Installation Rollback, 243 
Install-on-Demand, 242 
packaging tools, 242 
Systems Management Server, 246 

deployment:, 241–47 
design, 221 

  



268 UNIX Custom Application Migration Guide: Volume 3 

detachstate, 84 
developing phase 

deliverables, 27 
end, 254 
goals, 27 
major tasks, 27 
milestone, 254 

development environment, 30–37 
development tools, 220, 223–24 
Device Context (DC), 172–77, 172 
dialog boxes, 31, 149, 150, 156, 164, 211, 263 
DialogBox, 156, 157 
differences 

architectural differences between UNIX and 
Windows, 11–25, 11 

file system differences between UNIX and 
Windows, 17 

POSIX and Windows environment variables, 228 
UNIX/64 vs. Win64, 8 
user interface differences, 23–24, 23 
Win32 vs. Win64 API, 10–11 

directory operations, 107, 113–16 
Discretionary Access Control List (DACL), 19, 20, 124 
display management, 177–96, 177 
drawing, 178–83 

lines, 179 
rectangles, 181 

EndDialog, 156, 157, 158 
environment block, 228 
environment variables, 228–29, 228 
error handling, 127 
event handling, 165–72, 165 
event queue, 126 
Events, 21 
exception handling, 127 
Exceptions, 21 
file, 1,107 

fcntl(), 110–13, 110 
file access, 107 
file control, 107 
file descriptor, 107 
file handling, 107 
File management, 1 
file system 

automount, 16 
Common Internet File System(CIFS), 16 
differences, 14–17, 14 
inode, 15 
network file system, 16 
Server Message Block(SMB), 16 

file system interaction, 236 
fonts, 184 
Fortran 

using mixed languages, 216–20, 216 

using third party libraries, 216–20, 216 
FORTRAN interface, 217 
FORTRAN modules, 218 
full duplex pipes, 23, 135 
GDI+, 150, 151, 172–83, 207 
GetOpenFileName, 164 
getrlimit, 53 
getrusage, 53 
GetSysColor, 193 
GID, 18, 123 
globbing, 238 
Graphics Device Interface (GDI), 172 
GrayString, 193, 194 
group policy objects, 246 
group security, 121 
half duplex pipes, 23, 135 
handles, 125–27 

socket handles, 21, 125 
heap memory, 101 
I/O Completion Ports, 98 
identifying a control, 161 
imaging, 205–8, 205 

UNIX, 205 
Windows, 206 

Impersonation, 20, 124 
include files, 164 
infrastructure services, 1 
Infrastructure services 

differences, 17 
inode, 15, 126 
installation, 242–45, 242 
Installation Rollback, 243 
Install-on-Demand, 242 
InstallShield, 244 
integrating 

FORTRAN with POSIX, 220 
integration testing, 251 
intended audience, 2 
Interix 

development environment, 43 
environment, 43 

Interlocked Exchange, 69 
Interprocess communication, 135–39 

Pipes, 22, 23, 135–38, 135 
Shared Memory, 22, 138 
Sockets, 21 

Interprocess communication (IPC), 21–23, 21 
inttypes.h, 37 
ioctl() Calls, 108–9, 108 
ioctlsocket, 108 
IsDialogMessage, 163 
job objects, 53 
keyboard focus, 171 
knife-edge installation, 247 

 



 Index                                                                                                                                                                 269 

Korn shell (ksh), 141 
libraries, 164–65, 164 
LLP64, 8 
logging system messages, 232–35 
low-level file access, 108 
LP64, 8 
management testing, 253 
managing multiple threads, 95 
managing process, 57 
memory 

heap, 101 
memory-mapped files, 105 
virtual address space, 11, 35, 101, 138 

memory management, 1, 14 
virtual memory, 14 

memory-mapped files, 105, 106, 248 
Message Queues, 139 
Microsoft Foundation Classes (MFC), 31, 36, 37, 150, 

151, 197, 200, 201, 202, 206 
Microsoft Messaging Queue (MSMQ), 22 
Microsoft Solutions Framework, 43 
Microsoft Visual Studio IDE, 33 
middleware, 143 
migrating FORTRAN 

assessing, 221 
design, 221 
development tools, 220 
migration planning, 222 
mitigating risk, 221 
resources, 220 
scoping, 222 
sizing, 221 
validation, 221 

migrating FORTRAN code, 4, 215 
migrating scripts, 235–39, 235 

device and network programming, 238 
environment variables, 237 
file system interaction, 236 
process and thread execution, 238 
signal handling, 238 
user interface, 239 
Windows registry, 237 

migration planning, 222 
mitigating risk, 221 
modal dialog box, 156 
modeless dialog box, 156 
Motif, 24 
mouse messages 

client area, 165–67, 165, 166 
MSF, 43 
multiprocessor considerations, 262 
multitasking, 11 
Mutex, 73 
named pipes, 23, 135 

native signals, 129 
network 

security testing, 253 
Network File System (NFS), 16 
network security testing, 253 
network utilization, 262 
networking, 23, 139–40, 139 

connectionless protocols, 139 
RPC, 139, 140 
sockets, 23, 139 
TCP/IP, 23, 139 
Windows Open System Architecture (WOSA), 139 
Winsock, 23, 139 

Online Transaction Processing (OLTP), 143 
OpenGL Graphics Library Utility Kit (GLUT), 212 
output buffer, 126 
packaging tools, 242–45, 242 
patch files, 244 
performance tuning, 260 
Perl, 142 
pipes, 23, 135 

back pressure, 138 
full duplex pipes, 23, 135 
half duplex pipes, 23, 135 
named pipes, 23, 135 
process pipes, 135 
unnamed pipes, 23, 135 

pixmap, 211 
Platform SDK, 31–33 

debugging tools, 263 
file management tools, 264 
performance tools, 264 
testing tools, 264 
tools, 263 
WinDBG, 33 

plotting 
plotters in UNIX, 204 
plotters in Windows, 204 

port UNIX shell scripts, 235 
porting 

Sigaction call, 134 
porting from Win32 to Win64, 11 
PrintDlg, 201 
printing, 198–204, 198 

using APIs, 198–201, 198 
using MFC and ATL, 202–4, 202 
using system commands, 198 

process, 45–58 
CreateThread, 52, 59–62 
differences,UNIX, 11–13, 11 
managing, 57 
multitasking, 11 
process hierarchy, 13 
scheduling, 57 

  



270 UNIX Custom Application Migration Guide: Volume 3 

spawn, 46 
wait, 49 
WaitForMultipleObjects, 49 
Windows Service, 13 

process accounting, 56 
process environment, 227–35, 227 

address space, 228 
computer information, 229 
environment block, 228 
environment variables, 228 
temporary files, 229 

process hierarchy, 13 
process information, 49 
process management, 1 
process pipes, 135–36, 135 
process security, 121 
programming model 

Windows, 8 
programming model UNIX, 8 
property sheet, 196 
property sheets, 196 
pthread, 59 
Queuing Systems, 144 
Remote Procedure Call (RPC), 139, 140 
repackaging, 245 
resources, 220 
REXX, 142 
scalable data types, 38 
scaling, 261 
scheduling process, 57 
scheduling thread, 58 
scheduling threads, 88 
scoping, 222 
script migration tasks, 235–39, 236 
scripting languages, 142 

Perl, 142 
REXX, 142 
Tcl/Tk, 142 
Windows Scripting Host, 142 

secure code, 253 
Secure Sockets Layer (SSL), 20 
security, 17–21, 17, 121–25 

Access Control Entries (ACE), 19 
access token, 19 
GID, 18, 123 
group security, 121 
impersonation, 20, 124 
process security, 121 
Secure Sockets Layer (SSL), 20 
security permissions, 18 
smart cards, 17 
System Access Control List (SACL), 19, 124 
UID, 18, 123 
UNIX Securtiy, 18, 121 

user authentication, 17 
user level security, 121 
Windows Securtiy, 19–21, 19 

security descriptors, 19 
security rights, 244 
security testing, 252 
SelectObject, 165, 174, 176, 177, 181, 183, 185, 187, 

188 
SelectPen, 165 
self-healing, 242 
semaphores, 79 
Server Message Block (SMB), 16 
Service Control Manager (SCM), 13, 142 
setrlimit, 53 
SetTextColor, 188, 190, 193 
shared memory, 138 
shell scripting, 141 
shells, 141 

Bourne shell (sh), 141 
C shell (csh), 141 
command-line shells, 141 
Korn shell (ksh), 141 

side by side deployment, 247 
signals, 127–34 
Signals, 21 
sizing, 221 
smart cards, 17 
socket handles, 21, 125 
sockets, 23, 139 
spawn, 46 
SpinLocks, 71 
stabilizing 

goals, 255–56, 255 
multiprocessor considerations, 262 
network utilization, 262 
scaling, 261 
testing, 249 
tuning, 260 

stabilizing phase, 255 
standard (stream) file access, 108 
standard error stream, 107 
standard input stream, 107 
standard output stream, 107 
status bars, 197 
streams 

standard error, 107 
standard input, 107 
standard output, 107 

Symmetric Multiprocessing (SMP), 12 
synchronization, 22 
synchronizing 

shared resources, 106 
thread, 65 

System Access Control List (SACL), 19, 124 

 



 Index                                                                                                                                                                 271 

Systems Management Server (SMS), 246 
Tcl/Tk, 142 
TCP/IP, 23, 139 
temporary files, 229 
Termcap, 24 
Terminal Services, 24 
TerminateThread, 62–65, 62 
Terminfo, 24 
test data, 250 
test environment, 249 
test network load balancing, 253 
test plan, 249, 255 
test report, 250 
test specification, 249 
testing,249, 255 

code component, 250 
database, 252 
integration, 251 
management, 253 
network load balancing, 253 
security, 252 
tools, 263 
unit, 250 

text, 183–96 
drawing, 187–89, 187 
formatting, 190–92, 190 
widgets and controls, 195 

thread, 58–98 
cancel, 62–65 
creating, 59–62, 59 
detachstate, 84 
managing multiple threads, 95–98, 95 
prioritizing, 88–95, 88 
pthread, 59 
scheduling, 58, 88–95, 88 
synchronization, 65 
TerminateThread, 62 

thread attributes, 83–87, 83 
Thread Local Storage (TLS), 101–4 
thread synchronization, 65–83, 65 

critical section, 77–79, 77 
Interlocked Exchange, 69–71, 69 
mutex, 73 

semaphores, 79–83, 79 
SpinLocks, 71–73, 71 

threads 
CreateThread, 52 
differences,UNIX, 11–13, 11 
multitasking, 11 

Tokens, 123–25 
tool bars, 197 
tools, 263 

monitoring, 264 
Platform SDK, 263 
source test, 265 
testing, 263, 265 
Visual Studio tools, 263 
win64, 265 

tuning, 260–62, 260 
performance, 260 

two-phase deployment, 247 
UID, 18, 123 
Uniform Data Model (UDM), 9 
unit testing, 250 
UNIX file system features, 14–17, 15 
UNIX Security, 18, 121 
UNIX/64 

data model, 8–11, 9 
unnamed pipes, 23, 135 
user interface architecture 

Windows, 148, 150–51 
XWindows, 147 

user interface differences, 23–24, 23 
user level security, 121 
validation, 221 
virtual address space, 11, 35, 101, 138 
virtual memory, 14 
Visual Studio .NET 2003, 33–37 

building, 33 
debugging, 37 

Visual Studio tools, 263 
wait, 49–51, 49 
WaitForMultipleObjects, 49 
win64 

tools, 265 
Win64 

data model, 8–11, 9 
overview, 7–11 

WinDBG, 33, 224 
window creation, 154 
windowproc, 208 
Windows API 

functional categories, 8 
overview, 7–11, 8 

Windows Event objects, 133 
Windows Installer Service, 242 

self-healing, 242 
Windows Management Instrumentation (WMI), 230 
Windows Messages, 132 
Windows Open System Architecture (WOSA), 139 
Windows registry, 237 
Windows Scripting Host, 142 
Windows Security, 19–21, 19 
Windows service, 13, 142 
WinInstall, 244 
Winsock, 23, 139 

  



272 UNIX Custom Application Migration Guide: Volume 3 

WinSocket, 127 
working directory, 113 
X Lib, 164, 211 
X library, 24 
X Server, 147, 150 
X terminals, 24 
X Toolkit Intrinsics, 24, 164 
X Windows, 24 
Xlib, 24, 164, 198, 205, 209, 211, 212 

XmCreateFileSelectionDialog, 164 
XtAppInitialize, 154 
XtOpenApplication, 154, 155 
XtVaAppInitialize, 152, 154, 160 
XtVaOpenApplication, 154 
XWindows and Win32/64 GUI 

comparison, 147–49 
XWindows and Windows 

terminology mapping, 208–12, 208–12 

 

 

 


	UNIX Custom Application Migration Guide
	Contents
	About This Volume
	Introduction to Volume 3
	Intended Audience 
	Knowledge Prerequisites 

	Layout of the Guide: Volume 3 
	Organization of Content 
	Resources 
	Acronyms 
	Document Conventions 
	Code Samples 


	Chapter 1: Introduction to Win32/Win64
	Overview of Win32/Win64 
	Overview of 64-Bit Windows 
	Overview of the Windows API 
	64-Bit Programming in UNIX and Windows 
	Comparison of Win32 and Win64 
	Porting from Win32 to Win64
	Data Types


	Architectural Differences Between UNIX and Windows 
	Process and Thread Management 
	Multitasking 
	Multiple Users 
	Multithreading 
	Process Hierarchy 
	Daemons and Services 
	Summary of Processes and Threads 

	Memory Management 
	File Management 
	File Names and Path Names 
	UNIX File System Features 
	Windows File System Features 
	Networked File Systems 
	Server Message Block and Common Internet File System 
	Windows and UNIX Network File System Interoperability 
	Summary of File System Differences 

	Infrastructure Services 
	Security 
	Handles 
	Signals, Exceptions, and Events 
	Interprocess Communication 
	Networking 
	User Interface Differences 



	Chapter 2: Developing Phase: Process Milestones and Technology Considerations
	Goals for the Developing Phase 
	Major Tasks and Deliverables  

	Starting the Development Cycle 
	Building a Proof of Concept 
	Proof of Concept Complete 

	Developing the Solution Components 
	Using the Development Environment 
	Platform SDK 
	Using the Platform SDK

	Visual Studio .NET 2003
	Using Visual Studio .NET 2003

	64-Bit Programming in UNIX and Windows
	New Explicitly Sized Data Types 
	New Scalable Data Types 

	Rules for Making Win32 Code Compatible with Win64  

	Developing the Testing Tools and Test Cases 
	Unit Testing 

	Building the Solution 
	Interim Milestone: Internal Release  


	Chapter 3: Developing Phase: Process and Thread Management
	Process Management 
	Creating a New Process 
	Replacing a Process Image (exec) 
	Process Information 
	Waiting for a Spawned Process 
	Processes vs. Threads 
	Managing Process Resource Limits 
	Windows Job Objects 

	Limiting File I/O When Using Windows 
	Process Accounting 
	Managing and Scheduling Processes 

	Thread Management 
	Creating a Thread 
	Canceling a Thread 
	Synchronization of Threads 
	Synchronization with Interlocked Exchange 
	Synchronization with Spinlocks 
	Synchronization Using Mutexes 
	Synchronization with Critical Sections 
	Synchronization Using Semaphores 

	Thread Attributes 
	Setting Thread Attributes 
	Windows Security and Thread Objects 

	Thread Scheduling and Prioritizing 
	Managing Thread Priorities in Windows 
	Example of Converting UNIX Thread Scheduling into Windows 

	Managing Multiple Threads 
	I/O Completion Ports 


	Chapter 4: Developing Phase: Memory and File Management
	Memory Management 
	Heap 
	Thread Local Storage 
	Thread Local Storage (TLS) Example 

	Memory-Mapped Files 
	Shared Memory 
	Synchronizing Access to Shared Resources 
	Further Reading on Memory Management 

	File Management 
	Low-Level File Access 
	Standard (Stream) File Access 
	ioctl Calls 
	Windows ioctlsocket

	File Control 
	Directory Operation 
	Raw Device I/O 


	Chapter 5: Developing Phase: Infrastructure Services
	Security 
	User-Level Security 
	Retrieving the User Name of the Current User 

	Process-Level Security 
	Access Tokens 
	Security Descriptors
	Impersonation


	Handles  
	Socket Handles 
	File Handles
	Output Buffer or Event Queue Handling 

	Error and Exception Handling 
	Signals vs. Events 
	Using Native Signals in Windows 
	Replacing UNIX Signals with Windows Messages 
	Replacing UNIX Signals with Windows Event Objects 
	Porting the Sigaction Call 

	Interprocess Communication (IPC) 
	Pipes (Unnamed or Named, Half or Full Duplex) 
	Process Pipes 
	Named Pipes (FIFOs) 
	Back-Pressure in Pipes 

	Shared Memory 
	Message Queues 

	Networking 
	TCP/IP and Sockets 
	Remote Procedure Calls 
	Windows Server 2003 Features


	Miscellaneous Features 
	Shells and Scripting 
	Command-Line Shells 

	Scripting Languages 
	Daemons vs. Services 
	Middleware 
	OLTP Systems
	Queuing Systems 
	Component-based Development in Windows 



	Chapter 6: Developing Phase: Migrating the User Interface
	Comparing X Windows with Win32/Win64 GUI
	User Interface Architecture 
	Elements of the UI 

	User Interface Programming in X Windows and Microsoft Windows 
	Programming for Windows 
	Microsoft Foundation Classes (MFC) 
	Active Template Library (ATL) 
	GDI+ 
	.NET Languages 

	Choosing the Programming Language 
	Programming Principles 
	Creating Windows 
	Common Dialog Boxes 
	Creating Dialogs Boxes 
	Creating Controls 


	Libraries and Include Files 
	Core Libraries 
	Motif and Windows API Common Dialog Boxes 

	Event Handling 
	Capturing Mouse Events 
	Capturing Keyboard Events 
	Keyboard Focus 
	Creating Keystrokes, Mouse Motions, and Button Click 


	Graphics Device Interface 
	Device Context 
	Getting Windows GDI Device Context 
	Creating Windows API GDI Device Context 

	Display and Color Management 
	Drawing 2-D Lines and Shapes 
	Drawing Lines 
	Drawing Rectangles 


	Windows Character Data Types 
	Text and Fonts 
	Displaying Text 
	Drawing Text 
	Formatting Text 

	More Windows API Text Functions 
	Text Widgets and Controls 

	Property Sheets 
	Toolbars 
	Update Command Handlers of Toolbar Buttons 

	Status Bars 
	Printing 
	Printing Documents 
	Printing Using System Commands 
	Printing Using APIs 

	Plotting Documents 
	Using the Plotters in UNIX 
	Using the Plotters in Windows 


	Imaging 
	Image Handling in UNIX 
	Image Handling in Windows 

	Mapping X Windows Terminology to Microsoft Windows 
	Callback vs. WindowProc 
	Client vs. Client Window 
	Console Mode vs. Command Window 
	DPI vs. Screen Resolution 
	Graphics Context vs. Device Context 
	Resources vs. Properties 
	Resource Files vs. Registry 
	Root Window vs. Desktop Window 
	/bin vs. /System32 
	/usr/bin vs. Program Files 
	Pixmap (or Bitmap) vs. Bitmap 
	Window Manager vs. Windows Server 2003 and Windows XP 
	X Library [Xlib] [X11] vs. Gdi32.lib 
	X Toolkit [Intrinsics] [Xt] vs. User32.lib 

	Porting OpenGL Applications 

	Chapter 7: Developing Phase: Migrating Fortran Code
	Data Gathering and Analysis 
	Using Third-Party Libraries (Mixed Languages) 
	Calling Conventions 
	Naming Conventions 
	Using Intel Fortran for Calling Non-Fortran Subprograms 

	Integrating Fortran with POSIX Applications 

	Development Tools and Resources 
	Design and Validation  
	Sizing the Fortran Migration 
	Assessing and Mitigating Risk 

	Migration Planning  
	Scoping the Fortran Migration 
	Porting Fortran to Interix 
	Porting UNIX Fortran Source to Windows Using the Windows API 
	Using C or C++ Libraries or Fortran Modules 
	Porting Fortran to Windows


	Debugging Fortran Using Visual Studio .NET 2003 
	Summary of Fortran Code Migration 

	Chapter 8: Developing Phase: Deployment Considerations and Testing Activities
	Deployment Considerations 
	Process Environment 
	Environment Variables 
	Temporary Files 
	Computer Information 
	Logging System Messages 

	Migrating Scripts 
	Evaluating the Script Migration Tasks 
	Planning for Fundamental Platform Differences
	Scripting Environment 

	Database Connectivity 
	Building the Application 
	Deployment 
	Configuration 
	Packaging Tools and Installation 
	Windows Installer Service 
	Installation on Demand
	Installation Rollback 
	Installation Auditing
	Security Rights and the Windows Installer Service 
	Update Files 
	Window Installer Service Transforms 
	Creating New Windows Installer Service Packages 
	Repackaging Applications 

	Deploying Applications 
	Deploying Applications with Group Policy Objects 
	Deploying Applications with Systems Management Server 
	Deploying Win32/Win64 Applications 

	Managing Applications 

	Testing Activities 
	Integration Testing 
	Database Testing 
	Security Testing 
	Management Testing 

	Interim Milestone: Internal Release n 
	Closing the Developing Phase 
	Key Milestone: Scope Complete 


	Chapter 9: Stabilizing Phase
	Goals for the Stabilizing Phase 
	Major Tasks and Deliverables 

	Testing the Solution 
	User Acceptance Testing 
	Regression Testing 

	Resolving Solution Defects 
	Bug Convergence 
	Interim Milestone: Bug Convergence 

	Zero Bug Bounce 
	Interim Milestone: Zero Bug Bounce 

	Release Candidates 
	Interim Milestone: Release Candidate 
	Interim Milestone: Preproduction Test Complete 


	Conducting the Solution Pilot 
	Interim Milestone: Pilot Complete 

	Closing the Stabilizing Phase—Release Readiness Approved 
	Tuning 
	Performance Tuning 
	Scaling Up and Scaling Out 
	Multiprocessor Considerations 
	Network Utilizations 

	Testing and Optimization Tools 
	Visual Studio .NET 2003 Tools
	Platform SDK Tools 
	Debugging Tools 
	File Management Tools 
	Performance Tools
	Testing Tools

	Other Commonly Used Tools 
	Monitoring Tools
	Testing Tools
	Source Test Tools 


	Further Reading 

	Index


