

UNIX Custom Application Migration
Guide
Version 2.0

Volume 2: Migrate Using Windows
Services for UNIX 3.5

Published: May 2006

ii UNIX Custom Application Migration Guide: Volume 2

© 2006 Microsoft Corporation. This work is licensed under the Creative Commons Attribution-NonCommercial License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative Commons,
543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

 ii

 iii iii

Contents
About This Volume ..1

Introduction to Volume 2 ... 1
Intended Audience... 2
Knowledge Prerequisites... 2

Layout of the Guide: Volume 2.. 3
Organization of Content ... 4
Resources.. 5

Acronyms... 5
Document Conventions... 5
Code Samples... 5

Chapter 1: Introduction to Windows Services for UNIX 3.5.............................7
Overview of Windows Services for UNIX 3.5.. 7
Architectural Differences Between UNIX and Interix ... 9
Features in Interix .. 10

Process Management ... 10
Multitasking .. 11
Multiple Users.. 11
Multithreading ... 11
Process Hierarchy .. 11
Signals ... 12

Thread Management .. 13
Memory Management... 13
File Management ... 14

File Names and Path Names .. 14
Infrastructure Services... 15

Security.. 15
Daemons and Services.. 16

Development and Debugging Tools .. 16
Chapter 2: Developing Phase: Process Milestones and Technology
Considerations ..19

Goals for the Developing Phase... 19
Starting the Development Cycle .. 21
Building a Proof of Concept... 21

Interim Milestone: Proof of Concept Complete ... 22
Developing the Solution Components ... 22

Development Environment.. 22
Using Interix ... 23

Developing the Testing Tools and Tests .. 30
Unit Testing.. 31

Building the Solution ... 31
Interim Milestone: Internal Release.. 31

Chapter 3: Developing Phase: Process and Thread Management...................33
Process Management... 33

Creating a New Process .. 33

iv UNIX Custom Application Migration Guide: Volume 2

Replacing a Process Image.. 34
Maintaining Process Hierarchy ... 34
Waiting for a Child Process.. 35
Managing Process Resource Limits ... 36
Supporting Process Groups ... 37
Managing and Scheduling the Processes ... 38
Terminating the Processes .. 39

Thread Management.. 39
Creating New Threads .. 40
Detaching a Thread ... 41
Terminating a Thread... 41
Synchronizing Threads ... 41

Synchronization Using Mutexes .. 42
Synchronization Using Condition Variables ... 42
Synchronization Using Semaphores .. 42

Associating Thread Attributes .. 43
Scheduling and Prioritizing Threads .. 43

Chapter 4: Developing Phase: Memory and File Management........................45
Memory Management .. 45

Heap Management... 45
Memory-Mapped Files .. 46
Shared Memory Management .. 46
Synchronizing Access to Shared Resources.. 46

File Management .. 47
Differences Between Interix and UNIX File I/O ... 47
The Interix ioctl() Function Implementation... 47

Terminal Control and ioctl() ... 47
File Control and ioctl() .. 48
Socket Control and ioctl().. 48

File Security ... 48
Files Created in the Interix Environment.. 48
Files Created in the Win32 Subsystem... 49

Directory Operations .. 50
File System Operations in Interix ... 51

File System Mount Entry Management... 53
Gdbm Library .. 54

Chapter 5: Developing Phase: Infrastructure Services57
Security... 57

File System Security .. 57
User-Level Security.. 58
Process Level Security.. 58

Error Handlers .. 59
Signals .. 60

UNIX bsd_signal Code Replacement ... 62
Interprocess Communication .. 63

Pipes (Unnamed/Named, Half/Full Duplex) .. 63

 iv

 v

Anonymous Pipes... 63
Named Pipes (FIFOs).. 63
Shared Memory ... 64

System V Message Queues ... 67
Networking .. 67

TCP/IP Protocols and Tools.. 68
Remote Procedure Call.. 68
Sockets .. 69

Daemons and Services .. 73
Daemons.. 73
Cron Service... 73
Remote Shell Service ... 74
The Interix Remote Shell Daemon.. 75

regpwd... 75
rcp... 75
rlogin and rlogind... 75

Porting a Daemon to Interix .. 76
Porting a Daemon to Interix Service... 76
Converting Daemon Code into Interix Service Code 77

Chapter 6: Developing Phase: Migrating the User Interface79
X Windows Support on Windows Services for UNIX 3.5................................... 79

X Windows Programs Supported by Interix.. 80
Building X Windows Applications .. 81

Migrating Character-based User Interfaces ... 81
POSIX Terminal I/O ... 82
Porting Curses and Terminal Routines to Interix....................................... 83

Porting OpenGL, Motif, and Xview Applications .. 83
Chapter 7: Developing Phase: Functions to Change for Interix......................85

Math Routines .. 85
Regular Expressions .. 86
System/C Library and Miscellaneous APIs ... 87

Command-Line and Shell APIs... 87
String-Manipulation Functions ... 88
BSD String and Bit Functions... 88
Time-Handling APIs ... 89
Other System/C Library Functions.. 89

Chapter 8: Developing Phase: Deployment Considerations and Testing
Activities ...91

Deployment Considerations .. 91
Process Environment.. 91

Environment Variables .. 91
Temporary Files ... 92
Computer Information .. 92
Logging System Messages... 92

Migration of Scripts.. 93
Porting UNIX Shell Scripts to Interix ... 93

ii UNIX Custom Application Migration Guide: Volume 2

ii UNIX Custom Application Migration Guide: Volume 2 ii UNIX Custom Application Migration Guide: Volume 2

 viii

vi UNIX Custom Application Migration Guide: Volume 2

Database Connectivity.. 94
Open Database Connectivity .. 94
Accessing Databases from Windows Services for UNIX 3.5 95

Deploying the Application ... 97
Tools for Deploying Interix Applications ... 97
Deploying Interix Applications.. 98
Code Modification..100
Packaging and Archiving Tools ..101
Using Libraries..103
Configuring the System..103
Installation...105
Administration ..105

Interoperability with Windows Services for UNIX 3.5................................106
Running Win32-based Programs..106
Encapsulating an Interix Application from a Win32 COM Object............109
Interacting with a Win32 Application Using Memory-Mapped Files110

Monitoring and Supporting the Applications ..117
Deploying Interix Applications Using the Berkeley "r" Commands117
Using the Remote Deployment Script ...120

Testing Activities..121
Integration Testing ...123
Database Testing..123
Security Testing ...124
Management Testing...125

Interim Milestone: Internal Release n ...126
Closing the Developing Phase ..126

Key Milestone: Scope Complete ..126
Chapter 9: Stabilizing Phase..127

Goals for the Stabilizing Phase ...127
Major Tasks and Deliverables ...128

Testing the Solution ...129
User Acceptance Testing (UAT)...130
Regression Testing ...130

Resolving the Solution Defects ...130
Bug Convergence ...130

Interim Milestone: Bug Convergence..131
Zero Bug Bounce..131

Interim Milestone: Zero Bug Bounce ..131
Release Candidates...131

Interim Milestone: Release Candidate ..131
Interim Milestone: Preproduction Test Complete131

Conducting the Solution Pilot ...132
Interim Milestone: Pilot Complete..132

Closing the Stabilizing Phase— Release Readiness Approved133
Tuning ...133

Performance Tuning..133

 vi

Scaling Up and Scaling Out ..134
Multiprocessor Considerations ..135
Network Utilizations ..135

Testing and Optimization Tools ..136
Monitoring Tools...136
Testing and Debugging Tools..136
Other Commonly Used Tools ..137

Monitoring Tools ...137
Testing Tools..137
Source Test Tools..138

Further Reading...138
Index...139

 viiiii

About This Volume

Introduction to Volume 2
Volume 1 of the UNIX Custom Application Migration Guide discussed how to apply the
Envisioning and Planning Phases of the Microsoft® Solutions Framework (MSF) Process Model
when conducting a UNIX to Microsoft Windows® migration project. This volume, Volume 2:
Migrate Using Windows Services for UNIX 3.5, applies the next phases in the Process Model, the
Developing Phase and the Stabilizing Phase, and directs it specifically for using Windows
Services for UNIX 3.5. This volume describes the architectural differences between UNIX and
Microsoft Interix environments and the features of Interix. Because there are certain differences
between UNIX and Microsoft Interix, the UNIX code must be modified for it to work in the
Microsoft Windows environment using Windows Services for UNIX 3.5. This volume addresses
these potential coding differences by looking at the solution from various categories.
These categories are:
• Process management.
• Thread management.
• Memory management.
• File management.
• Infrastructure services.
• User interface migration.
• Development considerations for deployment.
• Functions to change for Interix.
• Deployment considerations and testing activities.
• Stabilizing Phase activities.
For each of these categories, this volume:
• Describes the coding differences between UNIX and Interix.
• Outlines options for converting the code.
• Illustrates the options with source code examples.
This information helps you choose the solution that is appropriate to your application; you can use
these examples as the basis for constructing your Windows code. This volume provides sufficient
information so that you can choose the best method of converting the code. After choosing a
method, refer to the standard documentation for details of the Interix functions and application
programming interfaces (APIs). References are provided throughout this volume for information
on the recommended coding changes.
For more information on activities in the Developing Phase as they relate to a migration project,
refer to Chapter 2, “Developing Phase: Process Milestones and Technology Considerations” of
this volume.

2 UNIX Custom Application Migration Guide: Volume 2

Intended Audience
This volume is for UNIX developers and testers who are responsible for migrating UNIX code to
Windows Services for UNIX 3.5. These developers are UNIX programmers involved in developing
the solution on Windows using Windows Services for UNIX 3.5. Various advantages that the
developers and testers would gain from this volume are:
• Developers. Developers can learn about the various alternative methods for migrating from

UNIX to Windows and how to choose the best strategy to fit their environment and the
application types.

• Testers. Testers can gain more insight on the testing methodology that is best suited for their
migration scenario. Using this guide, they can test the application for various aspects, such
as functionality, management, performance, and stability.

Knowledge Prerequisites
The readers of this volume should possess the following knowledge prerequisites:
• Basic knowledge of UNIX and Windows internals.
• Hands-on experience on Windows environments.
• Familiarity with UNIX administration skills.
• Understanding the configurations with Windows Services for UNIX 3.5.
It is also suggested that you read “About This Guide” (the master preface) as well as the rest of
Volume 1, Plan before reading this volume.

 2

About This Volume 3

Layout of the Guide: Volume 2
The following diagram depicts the layout of the guide and how the volumes of the guide correlate
with the components of the MSF Process Model. The white-shaded portion indicates the position
of the current volume in the layout of the entire guide.

Figure 0.1. UCAMG organization

4 UNIX Custom Application Migration Guide: Volume 2

Organization of Content
The content of this volume is organized into the following chapters:
• About This Volume. This chapter provides information about the organization of the guide

and about its intended audience. It also lists the knowledge prerequisites required for this
volume and provides resources, such as document conventions, used in this guide.

• Chapter 1: Introduction to Windows Services for UNIX 3.5. This chapter provides an
overview of Windows Services for UNIX 3.5, including its installation and configuration. It also
discusses the architectural differences that exist between UNIX and Interix, the core
subsystem of Windows Services for UNIX 3.5, to support the UNIX environment on Windows.

• Chapter 2: Developing Phase: Process Milestones and Technology Considerations.
This chapter describes Developing Phase activities and the tools used in the development
environment of the Planning Phase for Interix migration. This chapter provides the
instructions for developing the solution components in the Interix environment. It also details
the application build instruction and debugging techniques, as well as providing a comparison
of the source code header files shipped with Interix and other environments.

• Chapter 3: Developing Phase: Process and Thread Management. This chapter discusses
process and thread management in Interix. It also discusses the differences in the process
and thread management models of UNIX and Interix environments, providing the suggested
workarounds for them.

• Chapter 4: Developing Phase: Memory and File Management. This chapter discusses
memory and file management in Interix and the functions that are used to implement them. It
also provides information on file security in the Interix and Windows environments.

• Chapter 5: Developing Phase: Infrastructure Services. This chapter provides information
on the different infrastructure services for Interix, such as signals, IPC components,
networking protocols, and sockets.

• Chapter 6: Developing Phase: Migrating the User Interface. This chapter describes the
process of migrating from a UNIX user interface (UI) to a Windows UI. It also guides readers
through the steps required to migrate X Windows, Motif, and POSIX applications to the
Windows UI.

• Chapter 7: Developing Phase: Functions to Change for Interix. This chapter describes
the functions that need to be changed or removed so that the code compiles under Interix. It
also describes the list of C library functions and other APIs along with their recommended
replacements in the Interix environment.

• Chapter 8: Developing Phase: Deployment Considerations and Testing Activities. This
chapter discusses the activities to be performed before closing the Developing Phase. It also
discusses the Interix development considerations for deployment and the various testing
activities in the Developing Phase. It also discusses the key activities that a developer needs
to perform in order to prepare the Interix migrated application for a smooth deployment.

• Chapter 9: Stabilizing Phase. This chapter discusses the different levels of testing and
tuning that must be administered to the applications that are migrated to Windows using
Windows Services for UNIX 3.5.

 4

About This Volume 5

Resources
This section describes the various resources that are included in the UNIX Custom Application
Migration Guide and information that will assist in using the guide.

Acronyms
See the acronyms list accompanying this guide for a list of the acronyms and their meanings
used in this volume.

Document Conventions
The document conventions used in this volume are primarily designed to help you quickly identify
the operating system and the interface (command line or graphical) being discussed—Windows
or UNIX. In general, Windows operating-system commands are executed by clicking user
interface (UI) elements, and these elements are visually distinguishable by the use of bold text. In
contrast, the UNIX operating system typically uses a command-line interface, and these
instructions are visually distinguished by the use of Monospace font.
These interface and execution differences are not absolute; and in case visual cues do not
unambiguously delineate between operating systems, the text will clearly make this distinction.
Table 0.1 lists the document conventions used in this guide.
Table 0.1. Document Conventions

Text Element Meaning

Bold text Used in the context of paragraphs for commands; literal arguments to
commands (including paths when they form part of the command);
switches; and programming elements, such as methods, functions, data
types, and data structures.
Also used to identify UI elements.

Italic text Used in the context of paragraphs for variables to be replaced by the
user.
Also used to emphasize important information.

Monospace font Used for excerpts from configuration files, code examples, and terminal
sessions.

Monospace bold font Used to represent commands or other text that the user types.
Monospace italic font Used to represent variables the reader supplies in command-line

examples and terminal sessions.

Shell prompts The Ksh prompt is used in Windows.

Note Represents a note.
Code Represents code.

Code Samples
The build volumes, Volume 2: Migrate Using Windows Service for UNIX 3.5, Volume 3: Migrate
Using Win32/64, and Volume 4: Migrate Using .NET, of this guide contain several code samples
to illustrate certain programming concepts. These code samples are available as source files in a
Tools and Templates folder in the download version of this guide, available at
http://go.microsoft.com/fwlink/?LinkId=30864.

http://go.microsoft.com/fwlink/?LinkId=30864

Chapter 1: Introduction to Windows
Services for UNIX 3.5

Overview of Windows Services for UNIX 3.5
Windows Services for UNIX 3.5 components provide interoperability between Microsoft®
Windows® and UNIX platforms. Accordingly, you can use Windows Services for UNIX to manage
and conduct activities and tasks on both platforms and to share information between the two. This
includes sharing files, centralizing and managing passwords and groups, and conducting
character-based terminal sessions.
Windows Services for UNIX includes Interix, a complete, high-performance UNIX environment
that provides two command shells (C and Korn) and more than 350 shell scripts, commands, and
tools (such as the vi editor and Perl). Windows Services for UNIX also includes a complete set of
development tools and libraries that you can use to port your UNIX-based applications to the
Interix subsystem.

8 UNIX Custom Application Migration Guide: Volume 2

Figure 1.1 illustrates Windows, Windows Services for UNIX 3.5, and Interix.

Figure 1.1. Windows Services for UNIX 3.5 and the Interix subsystem
This section and the subsequent sections explain the features of Windows Services for UNIX 3.5
and discuss the architectural differences between Windows Services for UNIX 3.5 and UNIX. You
can use this information to understand the architectural differences between the two and analyze
your application components accordingly.
Interix is a multiuser UNIX environment that operates on Windows. The Interix subsystem and its
accompanying tools provide an environment that resembles any other UNIX system. It also
includes case-sensitive file names, job control, and compilation tools. The Interix subsystem
offers true UNIX functionality without any emulation because it is layered on top of the Windows
kernel.

Chapter 1: Introduction to Windows Services for UNIX 3.5 9

A computer running Windows Services for UNIX provides two different command-line
environments—the UNIX environment and the Windows environment. The applications run on
specific subsystems and in specific environments. When you run applications on the Interix
subsystem, you get a UNIX environment; when you run applications on the Windows subsystem,
you get a Windows environment.
The Interix subsystem provides both the tools and the API libraries for porting applications to run
on Windows-based computers.
When installing Windows Services for UNIX 3.5, select the Custom installation choice. As a
general user (not as a developer), install Active State Perl with the Custom installation. As a
developer, choose Active State Perl plus both the Interix Software Development Kit (SDK) and
the GNU SDK during installation. In addition, select Case Sensitive Pathnames and setuid
Binaries to get the best UNIX behavior. With the SDK, which provides a front end for Microsoft
Visual C++®, you can have a UNIX environment for development, but still have the benefits of
the native compiler for Windows.

Architectural Differences Between UNIX
and Interix
This section compares UNIX and Interix architectures, emphasizing the areas that directly affect
software development. It explains architectural differences between the UNIX and Interix
environments at a high level. You can use this information to become familiar with the high-level
architecture of the Interix and Windows subsystems. UNIX architecture can be divided into the
following three levels of functionality (as shown in Figure 1.2):
1. Kernel. Schedules tasks, manages resources, and controls security.
2. Shell. Acts as the user interface, interpreting user commands and starting applications.
3. Utilities. Supplement the basic capabilities of the operating system by providing useful utility

functions.

Figure 1.2. The source platform: UNIX
Interix is a full application execution subsystem running beside the Microsoft Win32® subsystem
that allows you to compile and run UNIX programs and scripts on Windows operating systems.

10 UNIX Custom Application Migration Guide: Volume 2

The structure of Windows can be divided into the following four parts:
1. Environment subsystems. A set of programming environments that provide services to

applications through an API, such as Win32 and Interix.
2. Functional subsystems. A set of protected subsystems that provides key operating system

services to the environment subsystems, such as security, memory management, and
input/output (I/O).

3. Windows NT® kernel. This contains the Windows NT Executive. This exports generic
services that protected subsystems call to obtain basic operating system services.

4. Hardware abstraction layer (HAL). This allows kernel and device drivers to interact with
hardware devices at a general level.

Figure 1.3 shows the Windows architecture and how Interix is placed in it.

Figure 1.3. The target platform: Windows

Features in Interix
This section discusses the implementation mechanism of several features in the Interix
subsystem. Because of the implementation differences between major features in UNIX and
Interix, UNIX code must be modified for it to work in the Windows environment using Windows
Services for UNIX 3.5. The implementation differences between the two are described in the
following sections of this chapter:
• Process Management
• Thread Management
• Memory Management
• File Management
• Infrastructure Services
• Development and Debugging Tools

Process Management
This section describes the implementation of the process management-related mechanisms in
the Interix subsystem. Multitasking operating systems such as Windows and UNIX must manage
and control many processes simultaneously. Each process has its own code, data, system
resources, and state. These resources include virtual address space, files, and synchronization
objects. The following sections provide more information on the manner in which UNIX and
Windows manage these processes. This section will help you understand the implementation of
these mechanisms in the Interix environment.

Chapter 1: Introduction to Windows Services for UNIX 3.5 11

Multitasking
Using Windows Services for UNIX 3.5, jobs can be run in the foreground or background, or they
can be suspended and resumed. From within an Interix shell, it is even possible to control
Windows jobs. The priority value of the process can be adjusted using the nice command.
However, Interix maps nice values to Windows process scheduling priorities according to a set of
rules, which are discussed in Chapter 2, “Developing Phase: Process Milestones and Technology
Considerations” of this volume.

Multiple Users
The Interix system uses the UNIX multiuser model for hosting multiple users on a server running
Windows. As a result, Windows can host a similar number of users running UNIX applications as
expected on a stand-alone system running UNIX.

Multithreading
With the release of Windows Services for UNIX 3.5, the Interix subsystem has extended its
POSIX support to include much of the Pthread model and Pthread interfaces necessary for
conformance to the IEEE Std1003.1 2001 standard. Interix supports many pthread functions
associated with Portable Operating System Interface (POSIX) options, but the corresponding
symbolic constants are not defined in the unistd.h file because Interix does not implement the
complete set of functions associated with that option.
Although POSIX_THREAD_PRIORITY_SCHEDULING is defined, Interix only supports the
SCHED_OTHER scheduling policy and does not support the SCHED_RR or SCHED_FIFO
policy. PTHREAD_SCOPE_SYSTEM is the only scheduling contention scope that Interix
provides. This means that all threads on the system are scheduled with respect to each other,
regardless of the process that owns the thread.
Note More information on Pthread APIs implementation in Interix is available in the “Appendix A–Pthread
APIs Implemented in Interix” section at
http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx.

Process Hierarchy
Interix maintains a process hierarchy, and even tracks the parent-child relationship of Win32
processes on the same system. The Interix command ps -efi displays processes and their
relationship to each other. The -i option is specific to Interix and its output is indented to display
the process hierarchy. The indentation represents the process tree. Each process is followed by
its child processes recursively.
In some versions of UNIX, an application can provide for automatic cleanup of child processes by
calling the signal() function as follows:
Signal (SIGCHLD, SIG_IGN)
However, in the POSIX standard, the result of setting SIG_IGN as the signal handler for
SIGCHLD is undefined. Therefore, you cannot use this method to automatically clean up child
processes in portable applications in Interix.

http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx#EBAA#EBAA
http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx#EBAA#EBAA
http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx

12 UNIX Custom Application Migration Guide: Volume 2

Signals
The Interix subsystem supports only one set of signal semantics—the POSIX.1 set. However, it
supports several different sets of signal-handling APIs. Table 1.1 lists these signal sets.
Table 1.1. Signal Sets Supported by Interix

ANSI POSIX.1 BSD 4.3 System V

Signals are supported
with the function
signal(). Built on
POSIX.1 sigaction().
It might not behave in
the same way.

Signals are supported
with the functions:
sigaction()
sigpending()
sigprocmask()
sigsuspend()
sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

Signals are supported
with the functions:
killpg()
sigsetmask()
sigblock()
sigvec().
The signal mask for
these functions is an
int, not a sigset_t.
Although sigpause()
is provided, it is a
System V call, which
does not behave in
the same way as the
Berkeley Software
Distribution (BSD)
call.

Signals are supported
with the functions:
sighold()
sigignore()
sigpause()
sigrelse()
sigset()

The following important information applies when you are using signals with Interix:
• Signals on a POSIX.1 system are neither BSD nor System V Interface Definition (SVID).

POSIX defined a new signal mechanism based on the sigaction() API. However, modern
BSD and SV systems support the POSIX.1 signal model. Therefore, source will become
more portable using the POSIX.1 model.

• The set of signals available is the set described in POSIX.1 and the single UNIX
specification. The code of the user should use symbolic names instead of the actual values
because some numbers might differ from traditional implementations.

Because an Interix process has a signal mask, it can block certain signals from arriving, except
for SIGKILL or SIGSTOP. A process starts with a signal mask inherited from its parent. If any
signals are generated and then blocked by the signal mask, they go into the set of pending
signals.
If you are using the signal() API, the signal is still masked and remains masked until the mask is
cleared. This can be a significant problem if your code does a longjmp() from the handler. Using
the sigaction() API directly and the siglongjmp() API will correct some of those unexpected
behaviors.
Note More information on process management in Interix is available in “Process Management” in
Chapter 3, “Process and Thread Management” of this volume.

Chapter 1: Introduction to Windows Services for UNIX 3.5 13

Thread Management
Interix supports POSIX-compliant threads, a mechanism for providing concurrent code execution
through multiple flows of control in a single program. In addition to its own thread ID, each thread
has its own scheduling priority and policy, as well as a thread-specific value for error number. You
can use this information to identify the thread-specific implementations in the Interix subsystem.
Writing code that executes properly in multithreaded applications requires special care. For
example, some functions use global or static data, and therefore calling these functions from
separate threads might cause a function call in one thread to corrupt the data relied upon by a
call to the same function in another thread. The individual reference entries in the Interix
subsystem interface reference and the SDK man pages indicate whether each routine is
multithread-safe (MT-safe). If you want to call functions that are not MT-safe in a multithreaded
application, you should ensure that the functions cannot be called concurrently in more than one
thread.
In a multithreaded application, problems can occur when routines are called between a call to the
fork() function and a call to a member of the exit() or exec() function families. A prototype of the
functions fork, exit, and exec family is defined as follows.
pid_t fork (void)

void exit (int status)

int execl (const char *path, const char *arg ...)

int execle (const char *path, const char *arg ... char *const envp[])

int execlp (const char *file, const char *arg ...)

int execv (const char *path, char *const argv[])

int execve (const char *path, char *const argv[], char *const envp[])

int execvp (const char *file, char *const argv[])

If a routine is async-signal safe, that is, can be safely called in this situation, the reference topic in
the Interix subsystem interface reference and man page for that function states that it is async-
signal safe. Do not call routines that are not explicitly stated to be async-signal safe between calls
to the fork() and exit() or exec() function.
Note More information on thread support in Windows Services for UNIX 3.5 is available at

http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx.

More details on thread management in the Interix subsystem is also available in “Thread Management” in
Chapter 3, “Process and Thread Management” of this volume.

Memory Management
The Interix subsystem supports the following memory management-related features:
• Most memory functions available in UNIX.
• Memory-mapped files by using the mmap function.
• All of the System V IPC mechanisms, including the shared memory routines shmat, shmctl,

shmdt, and shmget.
• POSIX V IPC.
The command-line interfaces ipcs and ipcrm are also provided for the management of shared
memory segments. The ipcs interface reports the status of interprocess communication objects.
The ipcrm interface removes an interprocess communication identifier, such as a shared memory
segment.
Interix supports all of the System V semaphores, including the shared memory routines semctl,
semget, and semop.
Note More details on memory management in the Interix subsystem is available in “Memory
Management” in Chapter 4, “Memory and File Management” of this volume.

http://www.microsoft.com/technet/interopmigration/unix/sfu/pthreads0.mspx

14 UNIX Custom Application Migration Guide: Volume 2

File Management
Interix supports the UNIX file management system. Interix has a single-rooted, case-sensitive file
system that supports both hard and symbolic links. The single-rooted system is mapped to a
multidrive Windows file system.
The Interix root directory (/) is mapped to the Windows Services for UNIX installation directory,
which is typically C:\SFU. Under the root directory are typical UNIX directories, such as /usr, /bin,
/dev, and /etc. In addition, there are also other, less familiar Interix-specific directories, such as
/net, as well as directories that are a part of the Windows Services for UNIX installation, such as
/admin.
You can access the drive letters mounted on your Windows system through the special /dev/fs/A
through /dev/fs/Z directories. For example, to change the current directory to the root of the C
drive, type cd /dev/fs/C. Case-sensitivity of the directory and file names is an optional choice and
can be selected by the user during the installation of Windows Services for UNIX 3.5. You can
access the folder only as /dev/fs/C if case-sensitivity is enabled. If case sensitivity is enabled, two
files can be created on Interix that have the same name, but differ only in case. In such a case,
only one file will be visible on Windows, and it is not possible to predict which one will be visible.

File Names and Path Names
Although Windows and UNIX file systems do not allow certain characters in file names, the
characters that are prohibited by each operating system are not the same. For example, a valid
Windows file name cannot contain a colon (:), but a valid UNIX file name can. If a UNIX user
attempts to create a file in a network file system (NFS) share on Server for NFS and if that file
contains an illegal character in its name, the attempt will fail. To prevent this problem, Interix
allows file-name character mapping to replace characters that are not allowed in a file system.
The following points compare the UNIX and Interix file systems and also discuss how Interix
helps overcome these differences:
• UNIX systems have a file system with a single, top-level directory called the root directory.

The root directory, which is referred to with a forward slash (/), contains both files and
subdirectories. All files in the file system are located below the root directory (/).

• Interix has a single-rooted file system that supports both hard and symbolic links. The single-
rooted system is mapped to a multidrive Windows file system. The Interix root directory (/) is
mapped to the Windows Services for UNIX installation directory, which is typically C:\SFU.
While viewing the contents of the root directory, Interix also displays certain virtual file
systems such as /dev, /net, and /proc apart from the usual /etc and /usr that are displayed in
UNIX.

• The Interix shell interprets the back slash (\) as an escape character; this causes Windows
path names to work incorrectly in this environment. You can use the winpath2unix and
unixpath2win tools to convert the format of a specified path name between the Interix format
(such as /dev/fs/C/Cat/dog) and the Windows format (such as C:\Cat\dog).

• Path names in the Interix subsystem are case-sensitive. If Windows Services for UNIX is
installed on a computer running Windows XP, the path names are case-sensitive only if you
click the option of changing the default behavior of the computer to support case-sensitive file
names during installation. There are instances of open source applications where multiple
files differ only by case, hence turning this option on is recommended as a practice to avoid
such conflicts and possible errors.

• A path name that begins with more than one forward slash (/) is treated as though it begins
with just one.

• Interix does not support the Universal Naming Convention (UNC) syntax. However, Windows
Services for Unix 3.5 provides a new virtual directory, /net, to access remote file systems by
using names that are similar to UNC names. The standard UNC syntax of
\\hostname\sharename must be changed to the Interix syntax–/net/hostname/sharename.

Chapter 1: Introduction to Windows Services for UNIX 3.5 15

• The mount command-line tool mounts the file system identified by sharename exported by
the network file system (NFS) server identified by ComputerName and associates it with the
drive letter specified by DeviceName. When mapping a drive to a NFS share, you can choose
to perform either a hard or soft mount. In both hard mount and soft mount options, the
application makes a remote procedure call (RPC) to access a file on the mapped drive. In
case of a hard mount, if the call times out, the client for NFS will retry the call indefinitely until
it succeeds. But in case of a soft mount option (the default), if the call times out, the client for
NFS will retry the call a fixed number of times. Then, if the NFS server still does not return
successfully from the call, it returns an error to the calling application.

• Interix defines a line as ending with the \n character. But Windows defines a line as ending
with the \r\n sequence. Some applications on Windows and Interix are sensitive to the precise
line termination sequence. Windows-based programs may expect any text files to be in the
Windows format (end-of-line marked by CR-LF) instead of the POSIX format (end-of-line
marked by LF). You can use the flip tool, which is a file interchange program that converts
text-file formats between POSIX and other formats (such as MS-DOS® and Apple
Macintosh).

Note More details on file management in the Interix subsystem are also available in “File Management”
in Chapter 4, “Memory and File Management” of this volume.

Infrastructure Services
This section discusses the major features related to infrastructure services available in the Interix
subsystem, such as security and daemons/services, and provides detailed information about their
implementations in the Interix subsystem.

Security
The security model for Interix on Windows differs from that of UNIX in the following ways:
• In Windows, either a user or a group can own an object; whereas in UNIX, only a user owns

an object.
• In classical UNIX systems, a user with UID = 0 is termed as a superuser to whom all

privileges are granted. Typically only the user called “root” is given this uid.
• Because the Interix subsystem is built on the POSIX specification, it does not recognize a

root user. Instead of a root user, the POSIX standard defines appropriate privileges for some
operations. All supported privileges on a given system are granted to all users who are
members of the Administrators group on that system. Not all privileges defined in POSIX or
UNIX are available under Interix, which means that there are certain privileges that are
granted to no user at all and certain privileges are granted only to the super user.

• Interix does not recognize a single super user. In Interix, the Administrator account is closest
in power and privileges to the root user in UNIX. Because the Security Accounts Manager
database stores user and group accounts in the same database, group and user names must
be unique. No group can have a name that is same as that of a user and vice versa. This is
different from the single UNIX specification, in which users and groups are separate. Users
can belong to many groups.

• Windows Services for UNIX 3.5 enables a Windows-based server to function as a Network
Information Service (NIS) server, integrating NIS domains with Microsoft Active Directory®
directory service and giving Windows Active Directory administrators the capability to
manage Windows and NIS domains together.

• The client for NFS uses user name mapping to associate Windows users with user identifiers
(UIDs) and group identifiers (GIDs). Mapping allows the actual user and group names to
appear as the file owner and file group when a long directory listing is requested. This
mapping is done solely for the purpose of communicating with NFS servers.

16 UNIX Custom Application Migration Guide: Volume 2

Daemons and Services
On traditional UNIX systems, a daemon is a process that runs for an extended period of time but
does not have a controlling terminal. A Windows service is a background process that is similar to
a daemon process. A daemon can run directly on the Interix subsystem, or it can be ported to run
as a Windows service.
Unlike a daemon, a Windows service logs on to the computer with a user account. This allows the
administrator to have greater control over the privileges granted to the service. When the service
logs on with a domain account, Windows even allows the service to access network resources.
Interix lets you take advantage of both of these mechanisms to provide services such as inetd,
which is a "super-server" for Internet services.
The Interix programs designed to run as daemons can be controlled using the usual UNIX
mechanisms, such as by sending signals using the kill tool.
To support running Interix programs as Windows services, Interix has a program called service
that administers Interix services. The service program registers, installs, starts, and stops an
Interix program that is running as a service. This tool can also be used for some administration
activities of Win32 services such as listing the Win32 services.
Services use the program psxrun.exe, which is installed by the Windows Services for UNIX 3.5
setup into the Windows system32 directory. Two daemons that can also run as services, inetd
and syslogd, are also provided. These two tools have specific command-line options that should
be specified while invoking them. The details of the command-line options can be found in the
manual pages of the tools. The manual pages can be opened from a Windows Services for UNIX
3.5 shell session. The same information is also available in the Help manual of Windows Services
for UNIX 3.5.
Windows includes the Service Control Manager, which starts with Windows and runs in the
background, handling services on behalf of the operating system. Services are either automatic
(which means they are started on system startup) or manual (which means the user starts them).
Services are controlled through the Windows Services for UNIX administration tool. You can use
this tool to add, remove, view, start, and stop services.
To run a service, your account must be assigned the service logon right. This privilege is
automatically given to your account the first time you start or install a service using the Interix
service tool. However, it is possible for the administrator to remove this right from your account to
prevent it from running services.
A service has no console display. You can stop it in Windows by opening Services or by using
the service tool in Interix.
A service runs in a minimal environment, which consists of the TZ environment variable and the
environment assigned to the default user of the system. Its standard input, output, and error are
all redirected to /dev/null.
Note More details on infrastructure services in the Interix subsystem are available in Chapter 5,
“Infrastructure Services” of this volume.

Development and Debugging Tools
The Interix SDK provides a front end for Microsoft Visual Studio® to compile C programs. This
provides a native UNIX environment for development based on a native Windows compiler. If
Interix GNU SDK is also installed in the development environment, then the standard UNIX
development tools, such as the GNU gcc, g++, g77 compilers and the gdb debugger, are also
available. The Interix SDK supports using Visual C++ in the compilation of C programs, but not
C++ programs. The make tool is based on the OpenBSD version of make. The lex and yacc
tools are based on the flex and BSD yacc.

Chapter 1: Introduction to Windows Services for UNIX 3.5 17

The Interix SDK supports shared libraries. Dynamic linking is supported through standard calls—
dlopen(), dlsym(), dlclose(), and dlerror(). Dynamically linked applications and shared libraries
can only be created using gcc and the other GNU compiler tools. However, cc and c89 will still
produce statically linked binaries. The Interix GNU SDK should be installed in order to use the
gcc compiler to create the shared libraries.
Developers can use the Interix GNU SDK to create real, UNIX-style .so libraries. Although similar
to Windows dynamic-link libraries (DLLs), they are not the same in implementation or semantics.
For efficient debugging, the Interix GNU SDK provides the GNU debugger, gdb. The base
installation also contains debugging tools such as pstat and truss.

Chapter 2: Developing Phase: Process
Milestones and Technology
Considerations

This chapter introduces and discusses activities in the Microsoft® Solutions Framework (MSF)
Developing Phase as they are performed in a migration project. The chapter addresses every
code component of the solution and provides instructions on how to apply code changes for
migrating to the Interix environment. This chapter looks at adapting and extending the
components to meet the project requirements in the Interix environment with minimal changes.

Goals for the Developing Phase
For a migration project, the Developing Phase is the time when you build the solution
components, code, and infrastructure, as well as prepare the documentation. Typically, to achieve
this primary goal, you must modify existing code in a way that enables it to work within the new
environment—in this case, Microsoft Windows® Services for UNIX 3.5. Generally, when new
code is written, some aspect of the original component remains unchanged—for example,
exposed application programming interfaces (APIs) or specific component behavior. In this
context, both modifying the existing code and developing new code are considered to be
migration activities. For this reason, when MSF is applied to a migration project, the MSF
Developing Phase is equivalent to the actual act of migrating.
During this phase, all roles are active in building and testing the deliverables. The team continues
to identify all risks throughout the phase and to address new risks as they emerge.
The phase formally ends with the Scope Complete Milestone. At this major milestone, the team
gains formal approval from the sponsor and key stakeholders that all solution elements are built
and that the solution features and functionality are complete according to the functional
specifications agreed upon during the Planning Phase.
Figure 2.1 shows the Developing Phase, its associated interim milestones, and its major
milestone—Scope Complete.

Figure 2.1. The Developing Phase in the MSF Process Model

20 UNIX Custom Application Migration Guide: Volume 2

Table 2.1 describes the major tasks and deliverables associated with the Developing Phase and
lists which roles are responsible for them.
Table 2.1. Major Tasks and Deliverables

Major Tasks and Deliverables Owners

Starting the development cycle
The team begins the development cycle by verifying that all
tasks identified during the Envisioning and Planning Phases
have been completed. Their main focus during this phase is to
identify and analyze any risks that might occur during the
Developing Phase.

Development

Building a proof of concept
Before development, the team finally verifies the concepts from
the designs within an environment that mirrors production as
closely as possible.

Development team

Developing the solution components
The team develops the solution using the core components and
extends them to the specific needs of the solution. The team
also develops and conducts unit functional tests to ensure that
individual features perform according to the specifications.

Development, User
Experience, Test

Developing the testing tools and tests
The team develops the testing infrastructure and populates it
with test cases. This ensures that the entire solution performs
according to specification. This solution test suite typically
incorporates, as a subset, the individual feature tests used by
developers to build the solution components.

Test

Building the solution
A series of daily or frequent builds culminate with major internal
builds and identification of points at which the development
team will deliver key features of the solution. These builds are
subjected to all or part of the entire project test suite as a way of
tracking the overall progress of the solution and the solution test
suite.

Development, Test

Closing the Developing Phase
The team completes all features, delivers the code and
documentation, and considers the solution complete, thus
entering the approval process for the Scope Complete
Milestone.

Project

Note Refer to the UNIX Migration Project Guide (UMPG) for an overview of MSF, general information on
the processes that belong to each phase, and additional information about the team roles responsible for
the processes. The UMPG is meant to be used in conjunction with the technical and solution-specific
information in this guide.

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 21

Starting the Development Cycle
This section focuses on identifying and addressing the risks in the Developing Phase. The
Developing Phase can be the most volatile and trying, yet the most stimulating and challenging,
part of any UNIX migration project. Major issues and risks become evident soon after this phase
begins. For example, team members might later realize that Microsoft Windows Services for
UNIX 3.5 does not support a particular function that their code is using. This can be categorized
as a risk because replacement code might need to be written at that stage. Resolution of such
issues is the distinguishing factor that determines if schedules will change, whether funding is
sufficient, and if the project will be successful.
Design and technology choices involving various techniques and tools were discussed briefly as
part of the Envisioning Phase and the Planning Phase in Volume 1: Plan of this guide. These
same choices are discussed in detail in the chapters of this volume. If any item on the related
task lists from the Envisioning Phase and the Planning Phase is not completely satisfied, it could
present itself as a risk during the Developing Phase.
The following actions can help mitigate the risks:
• Prepare a requirements specification document, which details the scope of the migration

project and the design and architecture to be followed.
• Perform an impact analysis of the changes and get customer sign-off on the project-

execution approach for the requested changes.
• Establish the existence of and procure licenses for source code to any necessary third-party

libraries.
Implementing the preceding actions is easier if the risks are identified and mitigation plans are
formulated and evaluated well ahead of time. Risk mitigation, as part of the risk management
process, can be used to keep a project on track in adverse situations.
Note Information on Microsoft Office Solution Accelerator for Six Sigma is available at
http://www.microsoft.com/office/solutions/accelerators/sixsigma/default.mspx.

Building a Proof of Concept
Typically, the proof of concept is a continuation of some initial pre-development work (the
preliminary proof of concept) that occurred during the Planning Phase. Creating a proof of
concept helps you to implement risk management. It also helps assess the worthiness and ease
of the migration process through testing key elements of the solution in a nonproduction
simulation of the proposed operational environment. Your development team tries to compile the
source code and obtains a good idea of how hard the port will be after a few rounds of quick fixes
and recompiles. The team guides operations staff and users through the solution to validate their
requirements. Also, during such a review process, developers might discover design flaws and
bugs in the original application being ported that need to be addressed.
There may be some solution code or documentation that carries through to the eventual solution-
development deliverables. However, the proof of concept is not meant to be production-ready.
The proof of concept is considered as throwaway development that gives the team a final chance
to verify functional specification content and address any other issues before fully moving into
development. The proof of concept also helps in obtaining metrics for projecting the developer
effort required to port the overall application environment.

http://www.microsoft.com/office/solutions/accelerators/sixsigma/default.mspx

22 UNIX Custom Application Migration Guide: Volume 2

Interim Milestone: Proof of Concept Complete
Reaching this interim milestone marks the point where the team is fully moving from conceptual
validation to building the solution architecture and components. The proof of concept should
result in at least one prototype interoperation scenario being built before production development
begins. There can be a number of strategies to accommodate interoperability:
• Create a Windows-only environment. If the project is low risk, you may be able to run the

Windows and UNIX environments in parallel just for the time it takes for users to make the
transition to the migrated application.

• Create a separate Windows environment alongside the UNIX environment. This
approach is suitable for short-term parallel running or when the application has both UNIX
and Windows modules.

• Create an integrated cross-platform environment. This approach is ideal when the two
environments have to coexist for a long time.

Developing the Solution Components
Developing the solution components identifies the suitable development environment for
migrating applications. You can use the development environment for building and debugging the
applications. Using the development environment, you can make changes to the UNIX code to
run in the Interix environment. Because there are certain differences between UNIX and Interix,
you must modify the UNIX code for it to work in the Interix environment. This volume addresses
these potential coding differences by looking at the solution from various categories, which are
described in detail in subsequent chapters of this volume. For each of these categories, this
volume:
• Describes the coding differences between UNIX and Interix.
• Outlines options for converting the code.
• Illustrates the options with source code examples.
These categories are:
• Process management.
• Thread management.
• Memory management.
• File management.
• Infrastructure services.
• Migrating user interface.
• Functions to change for Interix.
The following subsection describes the purpose of the development environment and how to use
the development environment for building and debugging applications.

Development Environment
The development environment is the environment in which the user develops and builds the
solution. The development environment provides the necessary compiler, linker, libraries, and
reference objects. In some cases, the integrated development environment (IDE) is also
provided. Setting up the development environment is explained in “Setting Up the Development
Environment” in Chapter 4, “Planning: Setting up the Development and Test Environments” of
Volume 1. This section explains how to use the development environment after setting it up in the
Planning Phase.
This section also discusses the important components of the development environment for Interix
applications and using Interix for building and debugging an application’s environment.

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 23

Using Interix
You can use the Interix subsystem in conjunction with the Windows Platform SDK or Microsoft
Visual Studio®. The Windows Platform SDK, which provides a front end for Microsoft Visual
C++®, offers the benefits of the native compiler for Windows, while retaining a UNIX development
environment. But the Interix environment also offers the benefits of the GNU gcc and g++
compilers.

Header Files Included in Interix
Table 2.2 lists the header files that are included with Interix in the /usr/include directory and also
lists the header files found in the Linux and Solaris variants. Differences are indicated with an X.
By identifying the differences between Interix and other environments, you can replace the
unsupported features with third-party, or user-defined, libraries when migrating the applications to
the Interix environment.
Table 2.2. Interix Header Files in /usr/include, with Linux and Solaris Variants

Header Interix Linux Solaris

alloca.h 3 3 3

ar.h 3 3 3

assert.h 3 3 3

blf.h 3 3 3

cast.h 3 3 3

cpio.h 3 3 3

ctype.h 3 3 3

curses.h 3 3 3

db.h 3 3 X

dirent.h 3 3 3

dlfcn.h X 3 3

err.h 3 3 sys/err.h

errno.h 3 3 3

eti.h 3 3 3

excpt.h 3 X X

fcntl.h 3 3 3

features.h 3 3 X

float.h 3 X 3

fnmatch.h 3 3 3

form.h 3 3 3

fts.h 3 3 X

ftw.h 3 3 3

glob.h 3 3 3

grp.h 3 3 3

histedit.h 3 3 3

24 UNIX Custom Application Migration Guide: Volume 2

Header Interix Linux Solaris

iconv.h 3 3 3

langinfo.h 3 3 3

libgen.h 3 3 3

limits.h 3 3 3

locale.h 3 3 3

malloc.h 3 3 3

math.h 3 3 3

md4.h 3 3 3

md5.h 3 3 3

memory.h 3 3 3

menu.h 3 3 3

monetary.h 3 3 3

mpool.h 3 X X

ndbm.h 3 X 3

netdb.h 3 3 3

new.h X X X

nl_types.h 3 3 3

nl_types_private.h 3 X X

ohash.h 3 3 X

panel.h 3 3 3

paths.h 3 3 X

poll.h 3 3 3

pthread.h 3 3 3

pty.h 3 3 X

pwcache.h 3 X X

pwd.h 3 3 3

regex.h 3 3 3

rmd160.h 3 3 3

sched.h 3 3 3

search.h 3 3 3

semaphore.h 3 3 3

setjmp.h 3 3 3

sha1.h 3 3 3

signal.h 3 3 3

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 25

Header Interix Linux Solaris

skipjack.h 3 X 3

stdarg.h 3 X 3

stddef.h 3 X 3

stdio.h 3 3 3

stdlib.h 3 3 3

string.h 3 3 3

strings.h 3 3 3

stropts.h 3 3 3

syslog.h 3 3 3

tar.h 3 3 3

term.h 3 3 3

termios.h 3 3 3

time.h 3 3 3

tzfile.h 3 X 3

ucontext.h 3 3 3

ulimit.h 3 3 3

unctrl.h 3 3 3

unistd.h 3 3 3

utime.h 3 3 3

utmpx.h 3 3 3

va_list.h 3 X X

varargs.h 3 X 3

vis.h 3 X X

wait.h 3 3 3

wchar.h 3 3 3

wctype.h 3 3 3

xti.h 3 X 3

26 UNIX Custom Application Migration Guide: Volume 2

Table 2.3 lists the header files that are included with Interix in the /usr/include/sys directory and
the header files found in the Linux and Solaris variants.
Table 2.3. Interix Header Files in /usr/include/sys, with Linux and Solaris Variants

Header Interix Linux Solaris

cdefs.h 3 3 X

dir.h 3 3 X

endian.h 3 X X

errno.h 3 3 3

fault.h 3 X 3

fcntl.h 3 3 3

file.h 3 3 3

fsid.h 3 X 3

ioctl.h 3 3 3

ipc.h 3 3 3

mkdev.h 3 X 3

mman.h 3 3 3

msg.h 3 3 3

param.h 3 3 3

procfs.h 3 3 3

queue.h 3 3 X

reg.h 3 3 3

regset.h 3 X 3

resource.h 3 3 3

select.h 3 3 3

sem.h 3 3 3

shm.h 3 3 3

siginfo.h 3 X 3

signal.h 3 3 3

socket.h 3 3 3

stat.h 3 3 3

statvfs.h 3 3 3

stropts.h 3 3 3

syscall.h 3 3 3

syslog.h 3 3 3

termios.h 3 3 3

time.h 3 3 3

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 27

Header Interix Linux Solaris

time_impl.h 3 3 3

timeb.h 3 3 3

times.h 3 3 3

types.h 3 3 3

ucontext.h 3 3 3

uio.h 3 3 3

un.h 3 3 3

unistd.h 3 3 3

user.h 3 3 3

utsname.h 3 3 3

wait.h 3 3 3

Table 2.4 lists the header files that are included with Interix in the /usr/include/arpa directory and
also lists the header files found in the Linux and Solaris variants.
Table 2.4. Interix Header Files in /usr/include/arpa, with Linux and Solaris Variants

Header Interix Linux Solaris

ftp.h 3 3 3

inet.h 3 3 3

nameser.h X 3 3

telnet.h 3 3 3

tftp.h 3 3 3

Table 2.5 lists the header files that are included with Interix in the /usr/include/netinet directory
and also lists the header files found in the Linux and Solaris variants.
Table 2.5. Interix Header Files in /usr/include/netinet, with Linux and Solaris Variants

Header Interix Linux Solaris

if_ether.h X 3 3
if_ieee.h X X X

igmp.h X 3 X

igmp_var.h X 3 3
ip.h 3 3 3
ip_info.h X 3 3
mib_kern.h X 3 3
udp.h 3 3 3
in.h 3 3 3
ip_icmp.h 3 3 3
ip_mroute.h X 3 3

ftp://ftp.h/

28 UNIX Custom Application Migration Guide: Volume 2

tcp.h 3 3 X

if_ieee.h X 3 3
udp_var.h X 3 3
igmp.h X 3 3
in_systm.h 3 3 3
ip_igmp.h X 3 3
ip_var.h 3 3 3
tcpip.h X 3 3

Table 2.6 lists the header files that are included with Interix in the /usr/include/interix directory.
These Interix-specific headers are useful for developers when they are looking for a particular
functionality.
Note There are no man pages for the application programming interface (API) prototypes in the header
files included in /usr/include/interix.

Table 2.6. Interix Header Files in /usr/include/interix

Header File Description

registry.h This contains the registry paths for Interix.

security.h This has flags for the setuser API.

env.h This has various environment variables values set.

interix.h This contains routines to get information from the registry and to
convert path names, specifically winpath2unix and unixpath2win.

ldsostartup.h This contains details for ld.so library.

path_convert.h This contains routines to convert path names.

Note The preceding tables do not list any header files that may exist on other platforms but not on
Interix. However, header files present on systems other than Interix are often superseded by another
header file or a set of header files. Moving to the header files present on Interix provides better portability
across all UNIX platforms. Use the manual pages and the grep tool to find where the header file content is
located.

Building the Application
Applications are built in the Interix environment in the same way they are built in the UNIX
environment. Consider the following when building applications in the Interix environment:
• The Interix SDK supports Visual C++ for compiling C programs. It does not support Visual

C++ for compiling C++ programs. For C++ programs, the GNU g++ compiler is provided.
• Compiler options and C language definitions may need a GNU gcc compiler or the cc/c89

tools. The cc/c89 compiler interface tools in turn invoke the Microsoft Visual C++ compiler
cl.exe for compiling and Link.exe for linking. The gcc compiler of GNU should be used in
these instances or the source code should be changed. (For example, "long long" should
change to quad_t or some compiler options that are valid for gcc but not c89/cc, such as –x
option for gcc.)

• The version of make provided with the Interix SDK is based on the Berkeley Software
Distribution (BSD) 4.4 make and supports all BSD features. It also conforms to Portable
Operating System Interface (POSIX).2. The GNU make (gmake) tool can help when porting
the makefiles of the application. The gmake tool is not included in the Interix SDK, but it can
be downloaded at http://www.interopsystems.com/tools/warehouse.htm.

http://www.interopsystems.com/tools/warehouse.htm

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 29

• To convert existing makefiles to run under the Interix subsystem, change macro definitions.
Edit the value of $(CFLAGS) to use only flags supported by cc or c89.

• The Interix SDK supports shared libraries or dynamically linked objects. Dynamic linking is
supported by using standard calls, such as dlopen(). Dynamically linked applications and
shared libraries can be created only by using gcc and other GNU compiler tools. The Interix
GNU SDK should be installed to use the gcc compiler to create the shared libraries.

• A typical problem when porting a UNIX application to Interix is that (on builds) gcc defaults to
shared libraries in the Interix SDK. To force the compiler to link to the static libraries, use the
compiler option –static. However, cc/c89/MSVC can only build static binaries.

• Shared libraries should be linked to the libc.so library visible to them. It is usually incorrect to
link shared libraries to libc.a.

• The Interix SDK includes the liblock command, which locks a library to prevent the linker
from using it. If any process attempts to use a locked library to link, the ld command reports a
fatal error. There is no tool provided to unlock a library that has been locked by using liblock.
However, locking is vulnerable and is not a high-security option. The syntax is as follows:
 % liblock lib.so

Although the gcc command is capable of handling these rules of linking, use extreme caution if
you are invoking ld directly.
Note It is recommended that you make copies of the original libraries before using liblock.

Debugging the Application
The gdb debugger can be used to debug applications that are compiled using the gcc -g in the
Interix environment. It cannot debug binaries that are created with the cc or c89. It provides a
help command for the various operations. To see a list of help issues, type help at the gdb
prompt. You can also refer to the man page for more details.
In addition to gdb, the Interix SDK includes pstat and truss tools to help in debugging programs.
These tools are part of the base installation.
The pstat tool displays detailed information about a specified process.
Note If you have Administrator privileges (that is, if you have signed on as Administrator and are a
member of the local Administrators group), you can view any process identifier (PID). If you do not have
Administrator privileges, you can only view PIDs owned by your shell (that is, launched from your shell).

For example, this is the output for PID 10187 (a C shell process):
% pstat 10187

pid=10187 ppid=1 pgid=10187 sid=10187 state=3 Active

flags=40000022 execed pgrp asleep

signal trampoline = 0x77EA1F66,0x77EA1F8F nullapi =
0x77EA7A07,0x77EA7A4F

current syscall=sigsuspend()

IP=77f8224d SP=0088da1c BP=0088daf8 FL=00000246 AX=00000000 BX=00000001

CX=00000000 DX=00000000 DI=0088eddc SI=0088da78

CS=0000001b DS=00000023 ES=00000023 FS=00000038 GS=00000000 SS=00000023

Although it does not have the same functionality, the truss tool was inspired by the System V tool
of the same name. The truss tool outputs information about system calls and signals.
For example, this output represents the system calls made on behalf of the cat tool:
% truss cat config.log

tracing pid 12491

null() null returned 0

open("config.log", 0x1) open returned 3

fstat(1, 0x1210650, 0x1200650) fstat ret: 0 dev: 0x0 ino: 0x00000000

30 UNIX Custom Application Migration Guide: Volume 2

read(3, 0x8228E0, 512) read returned 127 0x7F

write(1, 0x8228E0, 127) This file contains any messages produced by
compilers

while running configure, to aid debugging if configure makes a mistake.

write returned 127 0x7F

read(3, 0x8228E0, 512) read returned 0

close(3) close returned 0

close(1) close returned 0

exit(0) process exited with status 0

Developing the Testing Tools and Tests
After developing the solution components, you need to test the code changes made as part of the
development. The testing process helps identify and address potential issues prior to deployment.
Testing spans the Developing and the Stabilizing Phases. It starts when you begin developing the
solution and ends in the Stabilizing Phase, when the test team certifies that the solution
components address the schedule and quality goals in the project plan. This also involves using
the automated test tools and test scripts.
Figure 2.2 illustrates the positioning of testing activities within the phases of the MSF Process
Model.

Figure 2.2. MSF Process Model: Testing throughout the Developing and Stabilizing Phases
This section discusses the unit testing activity that needs to be performed during the Developing
Phase. The other necessary testing activities are discussed in Chapter 8, “Deployment
Considerations and Testing Activities” and Chapter 9, “Stabilizing Phase” of this volume.
Testing in the Developing Phase is an integral part of the build cycle. It is not a stand-alone
activity and is performed parallel with development. For instance, when building software, the
development team designs, documents, and writes the code. Meanwhile, the test team designs
and documents test specifications and test cases, writes automated scripts, and runs acceptance
tests on components submitted for a formal round of testing.

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 31

The test team assesses the solution, makes a report on its overall quality and feature
completeness, and certifies that the solution features, functions, and components address the
project goals.
Testing in migration projects involving infrastructure services is focused on finding discrepancies
between the behavior of the original application, as seen by its clients, and that of the newly
migrated application. All discrepancies must be investigated and fixed. It is better to add any new
functionality to a migrated application—or new capabilities to a migrated service—in a separate
project, initiated after migration is complete.
In the Developing Phase, testing entails a code review of the application, followed by unit testing.

Unit Testing
Unit testing is the process of verifying if a specific unit (which can be a class, a program, or a
specific functionality) of the code is working according to its functional specifications. Unit testing
also helps determine whether the specific unit will be capable of interacting with the other units as
defined in the functional specifications.
Unit testing in a migration project is the process of finding discrepancies between the functionality
and output of individual units in the Windows application and the original UNIX application.
However, this might not always be the case; in some cases the design in Windows may differ
from the UNIX design, thereby identifying units that are different from the UNIX units. Basic
smoke testing, boundary conditions testing, and error testing are done based on the functional
specification of the unit.
The test cases for unit testing include constraints on the inputs and outputs (pre-conditions and
post-conditions), the state of the object (in case of a class), the interactions between methods,
attributes of the object, and other units.

Building the Solution
By this stage, the individual components of the solution have been developed and sufficiently
tested in the Interix environment to satisfy the project requirements. This stage helps you build
the solution with the developed and tested components, and then make the migrated application
ready for internal release.
As a good practice, MSF recommends that teams working on development projects perform daily
builds of their solution. In migration projects, on the other hand, you typically have to examine
large bodies of existing code to understand what they are intended for and to make changes to
this code. However, code changes can happen only after addressing porting issues, hence daily
builds may not be required. The process of creating interim builds allows a team to find issues
early in the development process, which shortens the development cycle and lowers the cost of
the project. Note that these interim builds are not deployed in the live production environment.
Only when the builds are thoroughly tested and stable are they ready for a limited pilot release to
a subset of the production environment. Rigorous configuration management is essential to
keeping builds in synch.

Interim Milestone: Internal Release
Interim milestones help the team measure their progress in the actual building of the solution
during the Developing Phase. Each internal release signifies a major step toward completion of
the solution feature sets and achievement of the associated quality level. Depending on the
complexity of the solution, any number of internal releases may be required. Each internal
release represents a fully functional addition to the solution’s core feature set that is potentially
ready to move on to the Stabilizing Phase. As each new release of the application is built, fewer
bugs must be reported and triaged.

32 UNIX Custom Application Migration Guide: Volume 2

The subsequent chapters of this volume describe the necessary code changes required for the
migration of the UNIX code to the Interix environment. You can use these instructions to develop
the solution components in the Developing Phase.

Chapter 3: Developing Phase: Process and
Thread Management

This chapter discusses process and thread management in Microsoft® Interix and compares the
implementation of these mechanisms in the UNIX and the Interix environment models. The
chapter also provides workarounds for areas that are significantly different for both models.
These areas include:
• Process management:

• Creating a new process
• Replacing a process image
• Maintaining process hierarchy
• Waiting for a child process
• Managing process resource limits
• Supporting process groups
• Managing and scheduling the processes

• Thread management:
• Creating new threads
• Detaching a thread
• Terminating a thread
• Synchronizing threads
• Associating thread attributes
• Scheduling and prioritizing threads

After comparing these environments, you will be able to identify the core changes required in
these areas during the migration of UNIX applications to the Interix environment. You will also
learn about the equivalent Interix system calls for the UNIX system APIs.

Process Management
The process models for the UNIX and Microsoft Windows® operating systems are very different.
However, because these differences are hidden by the Interix subsystem, it is possible to migrate
UNIX code to Interix with a few modifications in the process code.
The following sections discuss the similarities between UNIX and Interix process functions and
highlight the modifications that must be made to the code for migration.

Creating a New Process
In a UNIX environment, you create a new process using the fork function. The fork function
creates a child process that is almost an exact copy of the parent process, thereby ensuring that
the process environment for the child is the same as that for the parent.
Interix supports the UNIX application programming interfaces (APIs) for process creation—fork(),
and vfork(). A code that uses these calls does not require any modifications to compile under
Interix.

34 UNIX Custom Application Migration Guide: Volume 2

Replacing a Process Image
A UNIX application replaces the executing image with that of another application using one of the
exec functions.
Because Interix supports all six exec calls that are collectively known as exec(), execl(),
execle(), execlp(), execv(), execve(), and execvp(), code that uses these calls does not need to
be modified.
Interix supports the family of setuid and setgid APIs. The Interix setuser() API call is a faster
and more secure replacement for setuid/setgid API calls. The exec*_asuser() APIs are
deprecated and are currently wrappers to setuser().

Maintaining Process Hierarchy
In UNIX, processes have a parent-child relationship. This hierarchical arrangement is used to
manage processes within applications. Interix maintains this process hierarchy and even tracks
the parent-child relationship of Microsoft Win32® processes on the same system. The Interix ps
–efi command displays processes and their relationship to each other. (The -i option is specific to
Interix and shows the process hierarchy.) The init is the first process that runs when the Interix
subsystem starts. It is similar to /etc/init on traditional UNIX systems, except that the Interix
version does not use /etc/inittab because Interix runs only at level 2. The init process runs as
process identifier 1 and always remains in the background when the system is running.
The following sample output of the ps –efi command shows Interix processes followed by Win32
processes:
UID PID PPID STIME TTY TIME CMD

...

joeuser 2049 1 Jun 4 n00 0:00.59 /bin/csh –l

joeuser 9545 2049 06:31:58 n00 0:00.01 ps –ef

...

+SYSTEM 8 0 Jun 4 S00 1:14.33 SystemProcess

+SYSTEM 152 8 Jun 4 S00 0:00.86 \SystemRoot\System32\smss.exe

+SYSTEM 176 152 Jun 4 S00 3:53.04 C:\WINNT\system32\csrss.exe C:

+SYSTEM 1040 152 Jun 4 S00 0:23.39 C:\WINNT\system32\psxss.exe C:

+SYSTEM 196 152 Jun 4 S00 0:24.47 C:\WINNT\system32\winlogon.exe

+SYSTEM 236 196 Jun 4 S00 0:48.41 C:\WINNT\system32\lsass.exe

+SYSTEM 224 196 Jun 4 S00 0:47.00 C:\WINNT\system32\services.ex

In some versions of UNIX, applications provide for automatic cleanup of child processes by
calling signal as follows:
signal(SIGCHLD, SIG_IGN);

However, in the Portable Operating System Interface (POSIX) standard, the result of setting
SIG_IGN as the signal handler for SIGCHLD is undefined. Therefore, you cannot use this method
to provide for automatic cleanup of child processes in portable applications.
To clean up child processes in an Interix application, you need to define a signal handler for
SIGCHLD and call waitpid() within that signal handler. The prototype of the waitpid function is
describes as follows:
pid_t waitpid (pid_t wpid, int *status, int options)

Chapter 3: Developing Phase: Process and Thread Management 35

The waitpid function suspends execution of its calling process until status information is available
for any terminated child process. This function takes the following parameters:
• Status. Status of the child process.
• Pid. Specifies which child process to wait for.
• Options. A bitwise OR of flags to control the behavior of waitpid. The possible values of

flags are WNOHANG and WUNTRACED.
A detailed explanation for the preceding is available in the Help manual of Windows Services for
UNIX 3.5.
To avoid blocking within the signal handler, call waitpid with the first and third arguments set
to -1 and WNOHANG, respectively. Because stopped child processes are not important in this
case, add SA_NOCLDSTOP to sa_flags for the SIGCHLD signal.

Waiting for a Child Process
Interix supports most of the wait-for-process-termination calls, including wait() and waitpid().
However, Interix does not support calls in the style of Berkley Software Distribution (BSD). When
BSD-style wait calls are used, modify the code to use the suggested equivalents in Interix, which
are listed in Table 3.1.
Table 3.1. BSD-Style Wait Calls and Interix Equivalents

Function Description

Suggested Interix
Replacement

pid_t wait3(int *status, int
options, struct rusage *rusage)

Waits for process termination. pid_t waitpid (pid_t wpid, int
*status, int options)

pid_t wait3(int *status, int
options, struct rusage *rusage)

Waits for process termination. pid_t cpid = waitpid (-1,
*nstatus, options)
getrusage (cpid, *r_usage)
waitpid (pid, *status, options)

pid_t wait4(int *status, int
*statusp,int options, struct
rusage *rusage)

Waits for process termination. pid_t waitpid (pid_t wpid, int
*status, int options)

pid_t wait4(int *status, int
*statusp, int options, struct
rusage *rusage)

Waits for process termination. int getrusage (int pid, struct
rusage *r_usage)

Functions supported by Interix are defined by the POSIX and the UNIX standards and are more
portable than the forms that they replace.
Without requiring some additional steps in the ported application, combining waitpid() with
getrusage() does not produce the same results as wait3() or wait4(). The idea is to capture
getrusage(RUSAGE_CHILDREN, …) information before and after the child process is
terminated and to compute the difference between the data contained in the two structures. To
achieve accuracy, a child process can use getrusage() and communicate the same to the parent
process. This method is more appropriate when there are multiple child processes.
When a program forks and the child finishes before the parent, the kernel still keeps the child
process information; then the child process is said to be in a zombie state. It remains in a zombie
state until it is cleaned up by its parent. In this state, the only resource it holds is a proc structure,
which retains its exit status and resource usage information. The parent retrieves this information
by calling wait, which also frees the proc structure.

36 UNIX Custom Application Migration Guide: Volume 2

Managing Process Resource Limits
Interix supports the following three functions in UNIX:
• getrlimit. Returns the process resource limits.
• getrusage. Returns current usage.
• setrlimit. Sets new limits.
In addition, Interix supports the common limit names in UNIX listed in Table 3.2.
Table 3.2. Process Resource Limit Names

Limit Description

RLIMIT_CORE

Maximum size (in bytes) of a core file created by this process. If the
core file is larger than RLIMIT_CORE, the write is terminated at this
value. If the limit is set to 0, no core files are created.

RLIMIT_CPU

Maximum CPU time (in seconds) that a process can use. If the
process exceeds this time, the system generates SIGXCPU for the
process.

RLIMIT_DATA

Maximum size (in bytes) of a process data segment. If the data
segment grows larger than this value, the functions brk, malloc,
and sbrk fail.

RLIMIT_FSIZE

Maximum size (in bytes) of a file created by a process. If the limit is
0, the process cannot create a file. If a write or truncate call
exceeds the limit, further attempts fail.

RLIMIT_NOFILE

Maximum value for a file descriptor, plus one. This limits the
number of file descriptors a process can allocate. If more than
RLIMIT_NOFILE files are allocated, functions allocating new file
descriptors can fail and generate the error EMFILE.

RLIMIT_STACK

Maximum size (in bytes) of a process stack. The stack does not
automatically grow past this limit. If a process tries to exceed the
limit, the system generates the SIGSEGV error for the process.

RLIMIT_AS

Maximum size (in bytes) of total available memory for a process. If
this limit is exceeded, the memory functions brk, malloc, mmap,
and sbrk fail with errno set to ENOMEM, and automatic stack
growth fails as described for RLIMIT_STACK.

The other resource limit names listed in Table 3.3 are sometimes used in UNIX code and are
unavailable in Interix. For these names, you need to modify the code to use the replacements that
are also suggested in Table 3.3.
Table 3.3. Process Resource Limit Names Not Available in Interix

Limit Description Suggested Interix
Replacement

RLIMIT_MEMLOCK. Maximum locked-in-memory
address space (in bytes).

Interix has no mechanism to
determine or enforce limits on
this resource.

RLIMIT_NPROC Maximum number of processes. sysconf(_SC_CHILD_MAX) is
the only Interix equivalent that
provides programmatic
information on process limits,
but this is not an exact
equivalent.

Chapter 3: Developing Phase: Process and Thread Management 37

Limit Description Suggested Interix
Replacement

RLIMIT_RSS Maximum resident set size (in bytes)
of address space in a process's
address space (in bytes).

Interix has no mechanism to
determine or enforce limits on
this resource.

RLIMIT_VMEM Maximum size (in bytes) of mapped
address space in a process’s
mapped address space (in bytes). If
this limit is exceeded, the brk and
mmap functions fail with errno set
to ENOMEM. In addition, the
automatic stack growth fails as
described for RLIMIT_STACK.

Interix has no mechanism to
determine or enforce limits on
this resource.

Supporting Process Groups
Functions in this category provide support for the management of processes as a group. Because
the functions in this group are not supported by Interix, code must be modified to use the
recommended replacement functions listed in Table 3.4.
Table 3.4. Process Group Functions Not Supported by Interix

Function Name Description Suggested Interix
Replacement

pid_t getpgid(0) Gets process group ID of the
calling process.

pid_t getpgrp (void)

pid_t getpgid(pid_t pid) Gets process group ID for
process PID.

No support or equivalent in
Interix. It can be replaced with
user-defined function getpgid.
(See the description
paragraph that follows the
table.)

Setpgrp() Sets process group ID of the
calling process.

setpgid(0,0)

tcgetsid Gets process group ID for
session leader for the terminal
indicated by the file descriptor.

struct utmpx *getutxid
 (const struct utmpx *id)

As mentioned in the preceding table, Interix does not support the getpgid(pid) function, which
returns the process group ID for a given process. You can obtain this information using /proc
mechanism, which allows a program to retrieve a variety of information about any running
process. An implementation of such a function is as follows:
#include <stdio.h>

#include <unistd.h>

#include <errno.h>

extern int errno;

pid_t getpgid(pid_t pid)

{

char procfile[25];

char stat_rec[40];

char inbuf[110];

38 UNIX Custom Application Migration Guide: Volume 2

char field1[10], field2[100];

FILE *in;

sprintf(procfile, "/proc/%d/stat", pid);

in = fopen(procfile, "r");

if (in == NULL)

{

errno = ESRCH; /* No such process */

return(-1);

 }

//Scan file for "pgid" entry

while(fgets(inbuf, sizeof(inbuf), in))

{

sscanf(inbuf, "%s\t%s\n", field1, field2);

if (strcmp(field1,"pgid") == 0)

 return((pid_t) atoi(field2));

}

errno = ENOSYS; /* Function not implemented */

return(-1);

}

Managing and Scheduling the Processes
The getpriority(), setpriority(), and nice() functions provide support for the scheduling and
priority management of processes. These functions operate on a nice value, which is an integer
in the range -20 to +19 where a nice of -20 means that the process has the highest priority.
Interix maps nice values to Windows process scheduling priorities according to the following
rules:
• A nice value of 0 in Interix corresponds to the default Windows scheduling priority of 10.
• Positive nice values in Interix are applied as a reduction in Windows scheduling priority. For

example, assigning a nice value of +4 to a process in Interix would result in the process being
given a Windows scheduling priority of 6.

• Negative nice values in Interix are applied as an increase in Windows scheduling priority; a
process nice value of -4 in Interix would cause the process to have a Windows scheduling
priority of 14.

Regardless of the nice value, the lowest Windows priority applied by Interix to a process is 1,
whereas the highest is 30. Microsoft recommends that no process be assigned a priority higher
than 15—that is, a nice value of -5. The Interix subsystem itself runs at a Windows priority of 15.
Setting a higher priority on any application yields unpredictable results. The preceding mapping of
nice values with the Windows scheduling priority is again illustrated in Table 3.5.
Table 3.5. Nice Values and Windows Scheduling Priority Mapping

Nice Value Windows Scheduling Priority

-20 <= n <= -1 10 – n or 10 + abs(n)

0 10

1 <= n <= 9 10 – n

10 <= n <= 20 1

Chapter 3: Developing Phase: Process and Thread Management 39

Any Interix process can lower the Windows priority of any process owned by the same user
(increase its nice value). The effective user of a process must have the
SE_INC_BASE_PRIORITY_NAME Windows privilege to increase the Windows scheduling
priority of any process owned by the same user (decrease its nice value). In addition, the effective
user of a process must have the SE_TCB_NAME Windows privilege to affect any process owned
by any other user.

Terminating the Processes
Interix supports most of the process-termination calls, including exit(), _exit(), and kill().
The exit() function terminates the process. Before terminating the process, it calls the functions
registered with the atexit() function, flushes the stream buffers, closes streams, and unlinks the
temporary files.
The _exit() function also terminates the process, but it only performs the kernel cleanup of the
process. The difference between them is that exit() also performs the cleanup of the user-mode
constructs, whereas _exit() performs only kernel level cleanup.
The kill() function is used to send a termination signal to the process. This can be used to
terminate a process or a group of processes. In addition to these functions, Interix also supports
the kill command.

Thread Management
The Interix subsystem supports much of the Pthread model and Pthread interfaces necessary for
conformity to the IEEE Std1003.1-2001 standard as well as many of the Pthread, semaphore,
mutex, and scheduling-specific APIs. The Interix environment also comes with updated libraries
that support the thread-safe and new reentrant functions that this standard requires.
Although the Windows kernel provides much of the thread functionality and semantics required by
Interix Pthreads, the function calls and syntax between the two threading models are very
different.
Interix threads are implemented using the same mechanisms and functionality as Windows
threads. This implies that Interix threads will share the same characteristics as Windows threads.
These characteristics are listed as follows:
• Scheduling Priorities. Each thread can be assigned a scheduling priority in the range 1 to

31. The range 1 to 15 is known as the dynamic range and the range 16 to 31 is known as the
real-time range.

• Scheduling Policies and Algorithms. The thread with the highest priority value is executed
first.

• System-Level Scoping. All threads in the system are scheduled relative to each other.
Compiling Pthread programs on Interix is similar to any other UNIX platform. You must use the
–D_REENTRANT option to ensure that all the Pthread definitions are visible at the preprocessing
stage. You can use -lpthread as well, but that is unnecessary because all the Pthread support is
incorporated into the default libraries (libc.a and libpsxdll.a).
Note The Interix version of Perl distributed with Windows Services for UNIX 3.5 was inadvertently built
with an inappropriate implementation of Pthread support. For appropriate Pthread support, download a
newer version of Perl from http://www.interopsystems.com/tools/warehouse.htm.

http://www.interopsystems.com/tools/warehouse.htm

40 UNIX Custom Application Migration Guide: Volume 2

Creating New Threads
Interix supports the pthread_create function of UNIX to create a new thread. This function has
the following three arguments:
• A pointer to a data structure that describes the thread.
• An argument specifying the attributes of the thread (usually set to NULL indicating the default

settings).
• The function that the thread will run.
The thread finishes execution with a pthread_exit, where it returns a string. The process can wait
for the thread to complete using the pthread_join function. The simple UNIX example that
follows creates a thread and waits for it to finish execution.
Code that uses these calls can be directly ported to Interix without any modification.
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

char message[] = "Hello World";

void *thread_function(void *arg)

{

printf("thread_function started. Arg was %s\n", (char *)arg);

sleep(3);

strcpy(message, "Bye!");

pthread_exit("See Ya");

}

int main()

{

int res;

pthread_t a_thread;

void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function,

 (void *)message);

if (res != 0)

{

perror("Thread creation failed");

exit(EXIT_FAILURE);

}

printf("Waiting for thread to finish...\n");

res = pthread_join(a_thread, &thread_result);

if (res != 0)

{

perror("Thread join failed");

exit(EXIT_FAILURE);

}

printf("Thread joined, it returned %s\n", (char *)thread_result);

Chapter 3: Developing Phase: Process and Thread Management 41

printf("Message is now %s\n", message);

exit(EXIT_SUCCESS);

}

Detaching a Thread
Interix supports the pthread_detach function of UNIX. A code that uses these calls does not
require any modifications to compile under Interix.

Terminating a Thread
Threads can terminate themselves by either returning from their thread start function or by
explicitly calling the pthread_exit() routine. Usually, when a thread terminates, all other threads
in the process continue to run. However, there is a special case— when the initial thread returns
from the main() routine, the entire process terminates. To avoid this behavior, the initial thread
can either avoid returning from the main() routine or call pthread_exit().
A thread can also be cancelled by any other thread (including itself) with the pthread_cancel()
routine, as long as the caller knows the identity of the thread that is going to be cancelled. Each
thread controls its “cancelability” state and type. The thread must cooperate and allow itself to be
cancelled.
Interix supports the pthread_exit() and pthread_cancel() routines of UNIX. Code that uses
these calls does not require any modifications to compile under Interix.

Synchronizing Threads
Programs that use threads usually need to share data between the threads and need to perform
various actions in a particular and coherent order across multiple threads. These operations
require a mechanism to synchronize the activity of the threads. This synchronization is used to
avoid race conditions and to wait for or signal when resources are available.
The Pthread model uses objects called mutexes, condition variables, and semaphores as the
interthread synchronization mechanism.
The Interix Pthread implementation is built on the thread functionality already provided by the
Windows kernel. Table 3.6 lists the Windows resources that are used in Interix.
Table 3.6. Windows Resources Used in Interix

Pthread Object Windows Kernel Object

Thread Kernel thread object

Mutex Kernel mutex object

Condition variable Kernel event object

Semaphore Kernel semaphore object

Read-write lock (rwlock) Kernel rtl_resource object

42 UNIX Custom Application Migration Guide: Volume 2

Synchronization Using Mutexes
A Pthread mutex is an object that can be created, initialized, locked, unlocked, or destroyed.
Interix supports the following UNIX routines for mutexes:
• pthread_mutex_init(). Use this function to initialize the mutex object.
• pthread_mutex_lock(). Use this function to lock the mutex object.
• pthread_mutex_trylock(). This function is identical to pthread_mutex_lock() except that if

the mutex is already locked by the calling thread or any other thread, then this function
returns immediately.

• pthread_mutex_unlock(). Use this function to unlock the mutex object.
• pthread_mutex_destroy(). Use this function to destroy the mutex object.
Code that uses these calls does not require any modifications to compile under Interix.

Synchronization Using Condition Variables
A condition variable is used to communicate information about the state of shared data. It
provides a mechanism to signal and wait for specific events related to data in a critical section
being protected by a mutex.
Interix supports the following UNIX functions for condition variables:
• pthread_cond_signal. This function unblocks one or more threads that are blocked on the

condition variable specified by condition, if any.
• pthread_cond_broadcast. This function unblocks all threads that are blocked on the

condition variable specified by the condition argument.
• pthread_cond_wait. This function unlocks the mutex referenced by the mutex and blocks

the calling thread on the condition variable.
• pthread_cond_timedwait. This function unlocks the mutex and blocks the calling thread on

condition or until the system clock reaches or passes the absolute time.
• pthread_cond_destroy. This function destroys (uninitializes) the condition variable.
Code that uses these calls does not require any modifications to compile under Interix.

Synchronization Using Semaphores
Interix supports the following UNIX functions for semaphores:
• sem_init. This function initializes the unnamed semaphore.
• sem_destroy. This function destroys the unnamed semaphore.
• sem_post. This function unlocks the semaphore.
• sem_timedwait. This function locks a semaphore with expiration time.
• sem_trywait. This function locks the semaphore only if the semaphore is not currently

locked.
• sem_wait. This function locks the semaphore object.
Code that uses these calls does not require any modifications to compile under Interix.

Chapter 3: Developing Phase: Process and Thread Management 43

Associating Thread Attributes
A number of attributes are associated with threads in UNIX. Table 3.7 lists these threads along
with their default values supported by Interix.
Table 3.7. Thread Attributes and Default Values

fThread Attribute Default Value Supported by Interix

detachstate PTHREAD_CREATE_JOINABLE, PTHREAD_CREATE_DETACHED.

inheritsched PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED.

schedparam No default value.

schedpolicy Although POSIX_THREAD_PRIORITY_SCHEDULING is defined,
Interix only supports the SCHED_OTHER scheduling policy. It does
not support the SCHED_RR or SCHED_FIFO policies.

Scope PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS
The only scheduling contention scope that Interix provides is the
PTHREAD_SCOPE_SYSTEM. This means that all threads on the
system are scheduled with respect to each other, regardless of the
process that owns the thread.

Stackaddr No default value.

Stacksize No default value.

Scheduling and Prioritizing Threads
Interix threads are implemented using the same mechanisms and functionality as Windows
threads. By relying on the Windows thread and process implementation, the Interix Pthread
implementation has the following characteristics:
• Scheduling contention scope is system wide (PTHREAD_SCOPE_SYSTEM) because

scheduling is per thread and not per process.
• The existing functions nice(), getpriority(), and setpriority() continue to handle nice values.

These nice values have a range -20 to 19 and map directly to the Windows scheduling
priorities in the range 30 to 1 as described in Table 3.5: Nice Values and Windows
Scheduling Priority Mapping. Therefore, higher positive nice values result in less favorable
scheduling priorities. The Windows scheduling priority represented by the UNIX process nice
value is used as the value in the Windows process absolute priority.

• To access the Windows thread base-priority value, Interix uses the sched_priority member
in the newly defined sched_param structure found in the file sched.h. The current Interix
implementation maps the Pthread definition of priority to the Windows thread base-priority.
Therefore, this member is only allowed the values in the range -2 to +2 when used with the
following Pthread-specific functions:
• pthread_getschedparam()
• pthread_setschedparam()
• pthread_attr_setschedparam()
• pthread_attr_getschedparam()

44 UNIX Custom Application Migration Guide: Volume 2

• There are other Pthread-specific functions that deal with thread priority values. Functions
such as pthread_setschedprio(), sched_get_priority_max(), and
sched_get_priority_min() accept a priority argument. This argument is limited to the range
of values between PRIO_MIN and PRIO_MAX. You can use the following statements at the
beginning of the code to define the values of PRIO_MIN and PRIO_MAX:
#define PRIO_MIN -2

#define PRIO_MAX 2
• The combination of the Interix priority value of the thread with the Interix process nice value is

used as the Windows thread current scheduling priority, which determines the actual
scheduling priority.

• Changing the nice value of the process will also change the current scheduling priority in all
the threads associated with that process.

Note The Interix implementation in Windows Services for UNIX 3.5 introduces an inconsistency because
Pthread scheduling priority values are supposed to be used consistently for both threads and processes.
The Windows scheduling algorithm uses more than five priority values. Programmers migrating Pthread
applications must be wary of this in case the application makes assumptions between processes and
thread priorities that may not be true in Interix.

Chapter 4: Developing Phase: Memory and
File Management

This chapter compares the implementation of memory and file management mechanisms in UNIX
and Microsoft® Windows® Services for UNIX 3.5. In addition, this chapter discusses the
functions available for memory and file management in UNIX and the corresponding application
programming interfaces (APIs) available in Windows Services for UNIX 3.5.
Knowing the differences between the memory management and file management routines in the
two environments will enable you to identify the memory-specific and file management-specific
porting changes required for UNIX applications. You will also learn about the equivalent routines
in the Interix environment for the UNIX system APIs in memory and file management.

Memory Management
Microsoft Interix supports the majority of UNIX memory management calls; therefore, porting
code by using memory management is generally straightforward. However, there are a few
specific differences. This section discusses how to address these differences in your code.

Heap Management
Interix supports the alloca() function, which allocates size bytes of space in the stack frame of the
caller. However, the alloca() function is neither thread-safe nor async signal–safe; there might be
performance issues because alloca() allocates memory on the stack frame instead of the heap.
Therefore, it is usually recommended that you use malloc(size_t size) and call free() because
space is not automatically freed on return.
Interix does not support the platform-specific, memory-management functions listed in Table 4.1
and therefore alternative functions need to be used in the code.
Table 4.1. Platform-Specific, Memory-Management Functions Not Supported by Interix

Function Name Description Suggested Interix Replacement

void cfree(void *) Deallocates memory allocator. free(void *ptr)

Int
getpagesize(void)

Gets system page size. Always returns 65536 (64 KB),
regardless of the actual Windows page
size.
The getconf(_SC_PAGE_SIZE) and
sysconf(_SC_PAGE_SIZE) functions
also return 65536 (64 KB) always.

void mallocctl(int
cmd, long value)

MT hot memory allocator. No support or equivalent in Interix.
There may be open-source versions of
other allocators that can be used.

int mallopt(int
cmd, int value)

Provides for controls over the
allocation algorithm.

No support or equivalent in Interix. The
supported malloc() has no controllable
options //mallopt.

46 UNIX Custom Application Migration Guide: Volume 2

Function Name Description Suggested Interix Replacement

void
*memalign(size_t
alignment, size_t
size)

Allocates size of bytes on the
specified alignment boundary.

No support or equivalent in Interix.

void *
valloc(size_t size)

Equivalent to
memalign(sysconf(_SC_
PAGESIZE),size).

void *malloc(size_t size)

watchmalloc Debugs memory allocator. No support or equivalent in Interix.

Memory-Mapped Files
Interix supports memory-mapped files by using the mmap function. The length of the mapped
space (in bytes) is rounded up to the nearest multiple of sysconf(_SC_PAGE_SIZE). This means
that the value returned by sysconf(_SC_PAGE_SIZE) or sysconf(_SC_PAGESIZE) is not the
virtual-memory page size used by the system, but the value that is used by the mmap call. Code
should work without modification unless it assumes the page sizes to be smaller than 64 kilobytes
(KB). Most applications are written without any assumption regarding the page size.

Shared Memory Management
Shared memory permits two or more processes to share a region of memory. Data present within
the memory region is not copied as part of the communication process. Instead, the same
physical area of the memory is accessed by both the client and the server. For this reason,
shared memory performance is considered the best of all interprocess communication (IPC)
methods.
Interix supports all of the System V IPC mechanisms, including the shmat, shmctl, shmdt, and
shmget shared memory routines.
The ipcs and ipcrm command-line interfaces are also provided for the management of shared
memory segments. The ipcs interface reports the status of IPC objects. The ipcrm interface
removes an interprocess communication identifier, such as a shared memory segment.

Synchronizing Access to Shared Resources
Code that uses shared memory must ensure that the processes accessing the shared memory
are not attempting to access the shared memory resource simultaneously. This is particularly
troublesome if one or both of the processes are writing to the same shared memory area. To
address this problem, UNIX provides the semaphore object. There are two sets of functions for
semaphores: The POSIX real-time extensions are used for thread synchronization, and the
System V semaphores are commonly used for process synchronization.
Interix supports both POSIX real-time extensions and System V semaphores (all of them),
including the shared memory routines semctl, semget, and semop.
The ipcs and ipcrm command-line interfaces are also provided for the management of
semaphore objects. These interfaces perform the same actions as they do for the shared memory
management described previously.

Chapter 4: Developing Phase: Memory and File Management 47

File Management
The Interix file management system uses inodes to store administrative information about files
and directories like UNIX. The inode is a structure that contains information about such things as
the file size, its location, last access time, last modification time, and access permissions.
Directories are also represented as files and have an associated inode. In addition to the file
information, the inode also contains pointers to the data blocks of the file. An inode has 13 block
addresses, of which the first 10 are direct block addresses for the first 10 data blocks of the file.
The next addresses point to multiple-level address blocks to accommodate large files.
Interix file and data access (including security settings) differs somewhat from UNIX because of
the underlying Windows input/output (I/O) system. Consequently, certain UNIX features are
different or do not work in Interix.

Differences Between Interix and UNIX File I/O
Interix does not support file I/O with memory caching turned off (O_DIRECT), but it supports the
file I/O APIs (and their associated options) listed in Table 4.2.
Table 4.2. File I/O APIs Supported by Interix

Function Name Description

ssize_t pread(int fd, void *buf, size_t nbytes,
off_t offset)

Reads from a file descriptor at a given offset.

ssize_t pwrite(int fd, void *buf, size_t nbytes,
off_t offset)

Writes to a file descriptor at a given offset.

The Interix ioctl() Function Implementation
The ioctl() interface has many uses. The ioctl() function does not have a single standard. Its
arguments, returns, and semantics vary according to the device driver. The call is used for
operations that do not cleanly fit the UNIX stream I/O model.
The ioctl() interface in UNIX has historically been used to handle the following:
• File control (See the “File Control and ioctl()” section later in this chapter.)
• Socket control (See the “Socket Control and ioctl()” section later in this chapter.)
• Disk labels
• Magnetic tape control
• Terminal control (See the “Terminal Control and ioctl()” section later in this chapter.)
The disk label and magnetic tape I/O requests are not supported in the Interix environment.
The Windows Services for UNIX 3.5 API set contains many ioctl() operations, including terminal,
file, and socket ioctl() support. The following sections explain these operations in more detail.

Terminal Control and ioctl()
Interix supports almost all ioctl() requests for terminal control except a few, and some of these
can be replaced with other system calls. The following are the only ioctl() requests that are not
supported:
• TIOCNOTTY
• TIOCGETP
• TIOCSETP
• TIOCSETN
• TIOCSETC

48 UNIX Custom Application Migration Guide: Volume 2

• TIOCGETC
• TIOCLBIS
• TIOCLBIC
• TIOCLSET
• TIOCLGET
• TIOCSLTC
• TIOCGLTC
• TIOCGSID
• TIOCSSID
TIOCGETP and TIOCSETP can be replaced with POSIX Terminal I/O calls supported by Interix
cfgetispeed and cfsetispeed. For more information on POSIX Terminal I/O calls, refer to
“POSIX Terminal I/O” in Chapter 6, “Migrating the User Interface” of this volume.
The following three bits are not turned on in Interix, although they are held reserved with values.
• TIOCM_LE
• TIOCM_ST
• TIOCM_SR
Note More information on ioctl requests is available at usr/include/sys/ioctl.h.

File Control and ioctl()
The following are the only ioctl() requests that are defined for file control in Interix:
• FIONREAD. To get the number of bytes available to read.
• FIONBIO. To set and unset nonblocking I/O.
The FIOCLEX and FIONCLEX requests (usually found in Filio.h) are not provided. You can
replace them with the fcntl() FD_CLOEXEC request, as shown in the following example:
#ifndef __INTERIX

(void) ioctl(fd, FIOCLEX, NULL)

#else

(void) fcntl(fd, F_SETFL, fcntl(fd, F_GETFD) | FD_CLOEXEC));

#endif

Socket Control and ioctl()
The only ioctl() request defined for sockets in Interix is SIOCATMARK. Other socket control
requests are handled by using fcntl() or by using functions such as setsockopt().
Note Additional ioctls for sockets (for example SIOCGIFCONF and SIOCGIFFLAGS) are available using
Interop Systems Porting Library.

More information on socket control and ioctl() is available at
http://www.interix.com/tools/warehouse.htm.

File Security
This section covers how files created in the two environments—namely Interix and Microsoft
Win32® subsystem—differ in their security settings.

Files Created in the Interix Environment
When you create a file in Interix and view it with ls -l, the following permissions and attributes
apply:
• The file is owned by the user who created it.
• The file inherits its group from the group of the directory.

http://www.interix.com/tools/warehouse.htm

Chapter 4: Developing Phase: Memory and File Management 49

• Group names can contain spaces. For example, “domain users” is a valid group name.
Although it is possible to create group names with spaces, if you do so, shell and awk scripts
might not work properly because these types of scripts parse a group name as a single
token.

• File permissions are dictated by the user mask.
Interix files are given three access control entries (ACEs) in Windows: one for the owner, one for
the group, and one for the Everyone group, which represents everyone else. Interix permissions
work as follows:
• The Interix read permission is represented by the Windows Read (R) permission.
• The Interix write permission is represented by the Windows Write (W) permission. If the read-

only attribute of the file is set, Interix does not assign the write permission, regardless of the
content of the ACEs. If you use the chmod command to assign write permission to a file that
has the read-only attribute set, the read-only attribute is removed.

• The Interix execute permission is represented by the Windows Execute (X) permission.
• You can deny access when the Windows permission is too broad. For example, the owner

should not be able to read a file with a mode of 077 (---rwxrwx). However, the Windows
Everyone group gives the owner access to the file. In this case, Interix adds a deny
permission to the Windows ACE for the owner to accurately represent the permissions.

• The owner of a file can change permissions on a file.
• The owner of a file can grant or deny the permission to others to take ownership of a file.
• Some special permissions, such as the setuid bit, are not represented through ACEs and are

not visible through standard Win32 tools.
• Interix and Windows handle uppercase and lowercase letters of file names differently. Two

files created under Interix that differ only in the use of case will be visible to Windows
Explorer. However, access will only be given to the contents of one of the files when you try
to open either from Windows Explorer. This can cause surprising behavior when
interoperating between Interix and Win32.

• The chmod command can be used in the Interix environment to change file modes and set
specific access levels for the owner, group, and everyone for a particular file. There is no
equivalent of the chattr command in Interix.

Note Case-sensitivity in the Interix environment is the user choice selected during the installation of
Windows Services for UNIX 3.5.

Files Created in the Win32 Subsystem
A file created in the Win32 subsystem can have a number of ACEs associated with it. In addition,
those ACEs might not fit neatly into the categories of user, group, and everyone else. The Interix
tools “assemble” permission from the available UNIX ACEs in the following ways:
• For all Windows operating systems except Windows XP Professional, the user is the owner

of the file unless the user is a member of the Administrators group. In this case, the
Administrators group owns the file. For Windows XP Professional, the user who created the
file is the default owner. To change the default owner to the Administrators group, use the
Group Policy snap-in.

• The group for the file will be Windows Domain Users on a server or None on a workstation.
• If an owner has no specific ACE associated with it, the owner-permission bits are empty.
• If the owner is a group, group permissions are transferred to owner permissions and the

group permissions are made empty.
• If the ACE used to determine the permissions of the owner does not have Change

Permissions (P) or Take Ownership (O) permission, the chown, chgrp, and chmod
commands might not work as expected.

50 UNIX Custom Application Migration Guide: Volume 2

Note When a file created in Win32 is viewed from an Interix application, the additional ACE information
available is indicated by a flag being set. This flag appears as a plus sign (+) suffix, with the permissions
visible by using ls -l.

In addition, the structure st_mode (the structure returned from stat) has a bit set indicating the
additional ACE information: bit S_ADDACE in the file sys/stat.h. The prototype of stat function is as
follows.

int stat (const char *path, struct stat *sb)

File Explorer should not be used to adjust the permissions on an Interix file or directory. File Explorer
rearranges the order of the ACEs in the ACL, which can cause problems when viewing the permissions
later from Interix.

Directory Operations
Interix supports a subset of the routines used to access directory entries. Code that uses the calls
listed in Table 4.3 does not require any modifications to compile under Interix.
Table 4.3. Routines for Accessing Directory Entries Supported by Interix

Routine Name Description

int alphasort(const void
*d1, const void *d2)

Routine that can be used for the compar argument of the scandir
routine to sort the array alphabetically.

int scandir(const char
*dirname, struct dirent
***namelist, int
(*select)(struct dirent *),
 int (*compar)(const void
*, const void *))

Scans a directory for matching entries.

Interix does not support the calls and options listed in Table 4.4. Use the suggested Interix
replacements instead.
Table 4.4. Directory Operations Routines Not Supported by Interix

Function Name

Description Suggested Interix
Replacement

int getdents(int fd, struct
dirent
*dirp, int nbytes)

Gets directory entries and puts
them in a file system-
independent format.

struct dirent * readdir(DIR
*dirp)

int getdirentries(int fd, char
*buf, int nbytes, long
*basep)

Gets directory entries in a file
system-independent format.

struct dirent * readdir (DIR
*dirp)

Working Directory
Interix does not support the routines used to obtain the current working directory. Instead, use the
suggested Interix replacements listed in Table 4.5.
Table 4.5. Working Directory Routines Not Supported by Interix

Function Name Description Suggested Interix
Replacement

char * get_current_dir_name
(void)

Gets absolute path of current
working directory
(define:__USE_GNU).

char *getcwd(char *buf, size_t
size)

char *getwd(char*
path_name)

Gets absolute path of current
working directory

char *getcwd(char *buf, size_t
size)

Chapter 4: Developing Phase: Memory and File Management 51

Function Name Description Suggested Interix
Replacement

(define:__USE_BSD).

The getwd API as defined on Berkeley Software Distribution (BSD) systems is particularly
dangerous because it is vulnerable to buffer overrun attacks. Replace it with getcwd and a buffer
of known size.

File System Operations in Interix
File system operations in Interix differ in a number of ways from file system operations in UNIX.
Some functions are not supported, such as sync, sysfs, and ustat. Others have different
parameters or use a different set of options for UNIX. Table 4.6 lists the file system information
functions that need to be replaced.
Table 4.6. File System Information Functions Not Supported by Interix

Function Description Suggested Interix
Replacement

int statfs(const char *path,
struct statfs *buf),
int fstatfs(int fd, struct statfs
*buf)

Gets file system statistics. int statvfs(const char *path,
struct statvfs *buf)
int fstatvfs(int fildes, struct
statvfs *buf)

void sync(void)
int fsync(int fd)

Writes all information in
memory that should be on
disk, including modified super
blocks, modified inodes, and
delayed block I/O. fsync
synchronizes changes to a file.

int fsync(int fd)

int sysfs(int opcode, const
char *filename)

Gets file system type
information.

int statvfs(const char *path,
struct statvfs *buf)

int ustat(dev_t dev,struct ustat
*buf)

Gets file system statistics. int statvfs(const char *path,
struct statvfs *buf)

The Windows NTFS file system is structured and implemented in such a way as to prevent the
need for the sync function. NTFS uses a log-based mechanism to ensure that the file system
metadata (the equivalent of super blocks and inodes) is updated in sync with changes to file data.
In the event of a system failure, automated NTFS recovery guarantees that either the metadata
corresponds to data appearing in files or the changes to the files never occur. Chkdsk is the tool
on the Windows environment similar to the UNIX fsck command. This command starts and
executes on the Windows environment to synchronize the file system in case of a power
disruption. Windows NTFS is a journaled file system (JFS) that contains its own backup and
recovery capability. It maintains a log, or a journal, of what activity has taken place in the main
data areas of the disk. Interix does not have its own file system and uses the Windows NTFS file
system for its operations.
When using the statvfs function in Interix, be aware that the statfs structure has some members
that are different from those usually found in UNIX. Table 4.7 summarizes these differences. In
general, references to the statfs structure can by replaced with references to the statvfs
structure.

52 UNIX Custom Application Migration Guide: Volume 2

Table 4.7. Differences Between UNIX statfs and Interix statvfs

UNIX statfs Structure Interix statvfs
Structure

Description

long f_type unsigned long f_type Type of file system.

long f_bsize unsigned long f_bsize Transfer block size.

long f_blocks unsigned long f_blocks Total data blocks in file system.

long f_bfree unsigned long f_bfree Free blocks in file system.

long f_bavail unsigned long f_bavail Free blocks available to all users except
superusers.

long f_files

unsigned long f_files Total file nodes in file system.
(Currently returns 0.)

long f_ffree unsigned long f_ffree Free file nodes in file system.
(Currently returns 0.)

fsid_t f_fsid unsigned long f_fsid File system ID.

long f_namelen unsigned long f_namemax Maximum length of file names.

long f_spare[6] unsigned long f_flag Bit mask of values describing the file
system.

 unsigned long f_frsize Fundamental block size.
 unsigned long f_favail Total number of file serial numbers

available to a process without the
required privileges.
(Currently returns 0.)

 unsigned long f_iosize Optimal transfer block size.
 char f_mntonname

[MNAMELEN+1]
Mountpoint for the file system.

 char f_mntfromname
[MNAMELEN+1]

Mounted file system.

When using statvfs, the file system types supported by Interix differ from those supported by
most implementations of UNIX. The following two lists illustrate this by comparing a common
subset of UNIX-supported file systems with those supported in Interix. It is rare for these
differences to have an impact on the migration of an application.

Commonly Supported File Systems in UNIX
• AFFS_SUPER_MAGIC 0xADFF
• EXT_SUPER_MAGIC 0x137D
• EXT2_OLD_SUPER_MAGIC 0xEF51
• EXT2_SUPER_MAGIC 0xEF53
• HPFS_SUPER_MAGIC 0xF995E849
• ISOFS_SUPER_MAGIC 0x9660
• MINIX_SUPER_MAGIC 0x137F /* original minix fs */
• MINIX_SUPER_MAGIC2 0x138F /* 30 char minix */
• MINIX2_SUPER_MAGIC 0x2468 /* minix V2 */
• MINIX2_SUPER_MAGIC2 0x2478 /* minix V2, 30 char names */

Chapter 4: Developing Phase: Memory and File Management 53

• MSDOS_SUPER_MAGIC 0x4d44
• NCP_SUPER_MAGIC 0x564c
• NFS_SUPER_MAGIC 0x6969
• PROC_SUPER_MAGIC 0x9fa0
• SMB_SUPER_MAGIC 0x517B
• XENIX_SUPER_MAGIC 0x012FF7B4
• SYSV4_SUPER_MAGIC 0x012FF7B5
• SYSV2_SUPER_MAGIC 0x012FF7B6
• COH_SUPER_MAGIC 0x012FF7B7
• UFS_MAGIC 0x00011954
• XFS_SUPER_MAGIC 0x58465342
• _XIAFS_SUPER_MAGIC 0x012FD16D

Supported File System Types in Interix
• ST_FSTYPE_UNKNOWN 0 /* unknown */
• ST_FSTYPE_NTFS 1 /* NTFS */
• ST_FSTYPE_OFS 2 /* OFS-NT object FS */
• ST_FSTYPE_CDFS 3
• ST_FSTYPE_CDROM ST_FSTYPE_CDFS
• ST_FSTYPE_ISO9660 ST_FSTYPE_CDFS
• ST_FSTYPE_HPFS 5 /* OS2 HPFS */
• ST_FSTYPE_SAMBA 6 /* Samba FS */
• ST_FSTYPE_NFS 8 /* NFS */

File System Mount Entry Management
Interix supports dynamically mounted file systems, but it provides no mechanisms to mount or
dismount them. These operations must be performed through Win32 tools or APIs.
Mount tables are stored in different files on different implementations of UNIX. They are usually
stored under the /etc directory and have names such as mtab and fstab or mnttab and vfstab.
This is unlikely to affect the migration of an application. However, if the application uses
dynamically mounted file systems, the code can be altered using the following options:
• Use the /net file system to refer to the resource.
• Use the system() API to invoke a Windows command-line tool that can mount a file system

or network share.
• Change the application and its environment so that the file system required is always

mounted.
On UNIX systems, additional disk space is made available at some particular point in the file
hierarchy by mounting a new disk volume onto a directory or by replacing the directory with a
symbolic link to some already mounted volume. The first operation can be performed in Windows
through the use of the Windows Disk Management tool. This solution makes the additional space
visible to Interix and Win32 applications. If your application environment does not require Win32
applications to see this additional space, you can instead replace the directory with a symbolic
link to any directory on any other volume on the system.

54 UNIX Custom Application Migration Guide: Volume 2

Gdbm Library
GNU dbm (gdbm) is a library of routines that manages data files that contain key/data pairs.
Applications still use the gdbm database (that is, an indexed file storage system), which is good
at storing relatively static indexed data.
The following APIs are used by an application that uses the gdbm database:
• gdbm_close()
• gdbm_delete()
• gdbm_exists()
• gdbm_fdesc()
• gdbm_fetch()
• gdbm_firstkey()
• gdbm_nextkey()
• gdbm_open()
• gdbm_reorganize()
• gdbm_setopt()
• gdbm_store()
• gdbm_strerror()
• gdbm_sync()
The following example of application code describes the usage of some these functions.
#include <stdio.h>

#include <string.h>

#include <gdbm.h>

GDBM_FILE dbf;

datum key, nextkey, content;

int ret;

/* opening the database See gdbm(2) manual page for details. */

dbf = gdbm_open ("test.db", BLOCK_SIZE, GDBM_WRCREAT, 0755, NULL);

if (dbf == NULL)

{

 /* if the open fails, print a standard error and exit */

 perror ("error in creating db file: test.db\n");

 return 0;

}

/* create a record */

key.dptr = "SWEngineer";

key.dsize = strlen(key.dptr);

content.dptr = "Title: Software Engineer Salary: $3000";

content.dsize = strlen(content.dptr);

/* write the record to the database */

ret = gdbm_store(dbf, key, content, GDBM_INSERT);

Chapter 4: Developing Phase: Memory and File Management 55

if (ret != 0)

{

 perror ("error in writing to database: test.db");

 return 0;

}

/* make another record */

key.dptr = "Programmer";

key.dsize = strlen(key.dptr);

content.dptr = "Title: Programmer Salary: $2700";

content.dsize = strlen(content.dptr);

/* write it to the database */

ret = gdbm_store(dbf, key, content, GDBM_INSERT);

if (ret != 0)

{

 perror ("error in writing to database: test.db");

 return 0;

}

memset(&key,0,sizeof(datum));

/* iterate through the set of records */

key = gdbm_firstkey (dbf);

key.dptr[key.dsize] ='\0';

while (key.dptr)

{

if (gdbm_exists(dbf, key))

 {

 memset(&content,0,sizeof(datum));

 content = gdbm_fetch(dbf, key);

 content.dptr[content.dsize] ='\0';

 if (!strcmp(key.dptr,"Programmer"))

 {

 gdbm_delete (dbf, key);

 }

 }

 nextkey = gdbm_nextkey (dbf, key);

 key = nextkey;

 key.dptr[key.dsize] ='\0';

}

/* closing the database */

gdbm_close(dbf);

56 UNIX Custom Application Migration Guide: Volume 2

The gdbm library is available at
http://www.interopsystems.com/tools/warehouse.htm.
The GNUs gdbm has been ported to Windows Services for UNIX 3.5, and the routines work like
the UNIX dbm routine.

http://www.interopsystems.com/tools/warehouse.htm

Chapter 5: Developing Phase:
Infrastructure Services

This chapter discusses the infrastructure services, which consist of the following features:
• Security
• Error handlers
• Signals
• Interprocess communication
• Networking
• Daemons and services
This chapter describes the implementation of the preceding services in Interix and provides a
detailed comparison with the corresponding implementation in UNIX. Using the information
provided in this chapter, you can identify the incompatibilities for your applications in these areas
and also learn about the suggested replacement mechanisms in the Interix environment.

Security
The UNIX and Microsoft® Windows® security models are quite different. Some of these
differences are covered in the ”Architectural Differences Between UNIX and Interix” section in
Chapter 1, “Introduction to Windows Services for UNIX 3.5” of this volume. The following
subsections cover the differences between the various security models and describe how to
modify your code to operate in Windows.

File System Security
Windows and UNIX both control the access to the files and directories.
In UNIX, the directory entry for each file or directory includes a bitmap of 12 bits, known as file-
mode bits. Of these, three bits control access by the file's owner, three bits control access by the
owner's primary group, and three control access by everyone else.
In Windows, files and directories on NTFS partitions are protected by a discretionary access
control list (DACL) consisting of one or more access control entries (ACEs). Each entry assigns
or denies permissions to a user or group, unlike with UNIX. However, the number of permissions
that can be granted or denied is quite extensive and provides for a much finer degree of control
over the access allowed to the user or group. In addition, ACEs can be added to the DACL for
any number of users or groups, allowing the file's owner complete control over who can and
cannot access the file.
Windows Services for UNIX 3.5 gives Windows users the ability to access files on UNIX-based
servers using the network file system (NFS) protocol and, likewise, gives users of UNIX-based
computers the ability to access files on Windows-based servers running Server for NFS. In
addition, Interix provides a UNIX-like environment for Windows users, giving Interix users the
ability to access and manage files on the Windows-based computer using UNIX tools. Because
the same file, whether it is located on a Windows-based computer or a UNIX-based computer,
can be accessed by both Windows and UNIX users, it is important to understand how UNIX file
security and Windows file security interact through Windows Services for UNIX.

58 UNIX Custom Application Migration Guide: Volume 2

User-Level Security
Server for NFS security is a combination of Windows security and the security protocols that
protect NFS shares. Both Windows security and NFS security control access to files by individual
users, based on the account the user uses to log on. In addition, NFS security controls access to
shared directories by specific client computers. Server for NFS enforces both types of access
control. With Server for NFS, you can control access by users and groups to NFS resources.
Controlled access is automatically enabled if Server for NFS is running on a Microsoft Windows
Server™ 2003-based computer and the functional level of your domain or forest is Windows
Server 2003. Otherwise, you must install Server for NFS Authentication on the primary and
backup domain controllers of all domains containing users who might require access. (If you do
not use Server for NFS Authentication and the functional level of your domain is not the Windows
Server 2003 family, all users will access NFS resources as anonymous users.) You must also
install User Name Mapping on one computer in your network to associate Windows user
accounts with UNIX user accounts.

Process Level Security
Each Interix process has two process identifiers (PIDs). The reasons for the difference between
the Interix PIDs and the Windows PIDs are as follows:
• When an Interix process calls the exec() function, the new executable program must appear

to all Interix processes as if it were the same process. For example, the PID for the new
program must be the same as the PID for the old program that called the exec() function.
However, Windows requires that the new process have a different PID than the previous one.
When Windows starts the new program, it treats the new program as a new process. There is
a very brief interval where both the old and the new processes exist at the same time. The
old Windows PID is still in use when the new program is created. Therefore, the old Windows
PID cannot be assigned to the new program.

• While a Portable Operating System Interface (POSIX) process group exists, the Interix PID
that corresponds to the POSIX group identifier (GID) cannot be reused.
However, if a process with a particular Windows PID exits and then a new process is created,
Windows can reuse that particular PID and assign it to the new process.

For situations in which programs need to use resources to which the current user does not have
access, UNIX systems run the program as a specific user or group instead of as the current user
or group. UNIX programs can use special permissions, called the setuid and setgid bits, on the
executable file of the program.
According to the POSIX standard, the permissions for a file include bits to set a UID (setuid) and
a GID (setgid). If either or both bits are set on a file and a process executes that file, the process
runs with an identity based on the UID or GID of the file respectively.
When an Interix process executes a file that has the setuid or setgid bit set, Interix constructs
local security tokens for the process with the privileges assigned to the owner (if setuid is set) or
group (if setgid is set) of the file. Other computers on the network do not recognize these tokens
because the tokens are local. Even if the file is owned by a member of the Domain Admins group,
the process still does not have trusted access to other computers in the domain.
For example, if a process executes a program file that has its setuid bit set and the file is owned
by a member of the Domain Admins group, and if that program attempts to change the password
of a domain user, the attempt fails because the security tokens of the process are local and the
program is not recognized by other systems in the domain. On the other hand, if the program
attempts to change the password of a local user, the attempt succeeds because the owner of the
file is a member of the Domain Admins group, which typically belongs to the Administrators group
of the local computer.
On UNIX systems, the user and group owner of a program is often set to root, thereby allowing a
nonroot user to run that program with root privileges. On Interix, the owner should be a Local
Administrator or a member of the Domain Admins group.

Chapter 5: Developing Phase: Infrastructure Services 59

To summarize, UNIX and Interix systems maintain at least two user and group IDs—the effective
user ID and effective group ID, and the real user ID and real group ID. Most UNIX and Interix
systems also support a saved set user ID and a saved set group ID.
Note As a security measure, Windows Services for UNIX 3.5 can be installed with the setuid capabilities
disabled. Also, with Interix shell scripts, the setuid or setgid bits will be ignored. Any change in the file
ownership will clear these bits so that the program cannot “accidentally” be run as the new owner.

To enable the execution of files with setuid or setgid mode bits set
1. Insert the Windows Services for UNIX CD into the CD-ROM drive.
2. At the command prompt, type:
 regini cd_drive:\setup\enablesetuid.ini

 where cd_drive is the drive letter assigned to the CD-ROM drive.
 For the changes to take effect, you must restart your computer.

To restore default Interix behavior
1. Insert the Windows Services for UNIX CD into the CD-ROM drive
2. At the command prompt, type:
 regini cd_drive:\setup\disablesetuid.ini

Error Handlers
The Interix subsystem does not necessarily use the same error numbers that are used in
traditional systems, hence you must always use the symbolic names defined in the errno.h file.
Almost all the system calls can return an error number in the external variable errno, which is
defined in the errno.h file. When a system call detects an error, it returns an integer value
indicating failure (usually -1) and sets the variable errno accordingly. Successful calls never set
errno. After the errno is set, it remains the same until another error occurs. It should only be
examined after an error.
When a system call returns -1, the calling function can interpret the failure and take action
accordingly. Numerous system calls overload the meanings of these error numbers, so these
meanings must be interpreted according to the type and circumstances of the call.
Interix uses POSIX UNIX error reporting from system calls by returning a non-zero integer,
usually -1, and err, and assigning an integer value to variable errno. Refer to the Help manual of
Windows Services for UNIX 3.5 for further information about err, verr, errx, verrx, warn, vwarn,
warnx, vwarnx, errno, and strerror. The prototype of these functions is defined as follows.
void err (int eval, const char *fmt, ...)

void verr (int eval, const char *fmt, va_list args)

void errx (int eval, const char *fmt, ...)

void verrx (int eval, const char *fmt, va_list args)

void warn (const char *fmt, ...)

void vwarn (const char *fmt, va_list args)

void warnx (const char *fmt, ...)

void vwarnx (const char *fmt, va_list args)

char * strerror (int errnum)

It is up to the individual program (that makes a system call) to handle the error conditions from
that call. For example, ksh assigns the built-in variable $? with the exit condition, and the value of
errno is assigned to $ERRNO. The shell has some built-in error handling and is reported through
stderr, but most of the error handling must be taken up by the programmer. You can get a string
interpretation of the value of errno through strerror. Usage for other shells, commands, and
programs will vary.

60 UNIX Custom Application Migration Guide: Volume 2

Signals
Signals are software interrupts that catch or indicate different types of events. This section
describes the various signals and signal-handling routines. It also lists platform-specific signal
functions that are not supported in Interix.
Table 5.1. POSIX-Supported Signals

Signal Name Description Default Action/Effect Number

SIGABRT Abnormal termination Terminate process 6

SIGALRM Time-out alarm Terminate process 14

SIGBUS Bus error Terminate process 10

SIGCHLD Change in status of child Ignore 18

SIGCONT Continues stopped process Ignore 25

SIGFPE Floating-point exception Terminate process 8

SIGHUP Hang up Terminate process 1

SIGILL Illegal hardware instruction Terminate process 4

SIGINT Terminal interrupt character Terminate process 2

SIGIO I/O completion outstanding Ignore 19

SIGKILL Termination Terminate process (cannot
be caught or ignored)

9

SIGPIPE Write to pipe with no readers Terminate process 13

SIGPOLL Pollable event (Sys V)–synonym of
SIGIO

Ignore 22

SIGPROF Profiling timer alarm Terminate process 29

SIGQUIT Terminal quit character Terminate process 3

SIGSEGV Invalid memory reference Terminate process 11

SIGSTOP Stop process Stop process (cannot be
caught or ignored)

23

SIGSYS Invalid system call Terminate process 12

SIGTERM Software termination Terminate process 15

SIGTRAP Trace trap Terminate process 5

SIGTSTP Terminal stop character Stop process 24

SIGTTIN Background read from control TTY Stop process 26

SIGTTOU Background write to control TTY Stop process 27

SIGURG Urgent condition on socket Ignore 21

SIGUSR1 User-defined signal Terminate process 16

SIGUSR2 User-defined signal Terminate process 17

SIGVTALRM Virtual time alarm Terminate process 28

SIGXCPU CPU time limit exceeded Terminate process 30

Chapter 5: Developing Phase: Infrastructure Services 61

Signal Name Description Default Action/Effect Number

SIGXFSZ File size limit exceeded Terminate process 31

Interix supports most of the signal-handling functions. However, it does not support some
nonstandard, platform-specific implementations, such as sigfpe and signal handling for specific
SIGFPE codes.
Table 5.2 lists the platform-specific functions that are not supported by Interix along with the
Interix substitutes to be used (if they exist).
Table 5.2. Platform-Specific Signal Functions Not Supported by Interix

Function name Description Suggested Interix replacement

bsd_signal

Simplified signal facilities. Refer to sample code in "UNIX bsd_signal
Code Replacement" immediately following
this table.

getcontext Gets current user context. No support or equivalent in Interix.

gsignal Software signals. No support or equivalent in Interix.

makecontext Manipulates user contexts. No support or equivalent in Interix.

psiginfo Software signals. No support or equivalent in Interix.

sig2str Translates the signal number
signum to the signal name. char *strsignal(int signal)

sigaltstack Sets or gets signal alternative
stack context. No support or equivalent in Interix.

sigfpe Handles signals for specific
SIGFPE codes.

unsigned int _controlfp(unsigned int new,
unsigned int mask)

siggetmask Gets the current set of masked
signals.

Use int sigprocmask(int how, const
sigset_t *set, sigset_t *oset)

siginterrupt Allows signals to interrupt
functions.

Controlled by the SA_RESTART flag
passed to sigaction().

sigsend Sends a signal to a process or
a group of processes. No support or equivalent in Interix.

sigsendset Sends a signal to a process or
a group of processes. No support or equivalent in Interix.

sigstack Sets and/or gets alternative
signal stack context. No support or equivalent in Interix.

ssignal Software signals. No support or equivalent in Interix.

str2sig Translates the signal name str
to a signal number.

Write a simple table lookup routine. (See
Table.)

Swapcontext Manipulates user contexts. No support or equivalent in Interix.

Psignal System signal messages. Maps closely to strsignal.

setcontext Sets current user context. Maps closely to setuser. The prototype of
the function is as follows:
int setuser(char *username, char
*password, int flags).

62 UNIX Custom Application Migration Guide: Volume 2

Function name Description Suggested Interix replacement

sys_siglist System signal messages. Change the code to use strsignal() instead.

sys_signame System signal messages. Change the code to use strsignal() instead.

UNIX bsd_signal Code Replacement
Code that uses the bsd_signal() function should be implemented using other signal functions in
Interix.
The bsd_signal(sig, func) function call can be implemented as follows:
#include <signal.h>

void (*bsd_signal(int sig, void (*func)(int)))(int)

{

 struct sigaction act, oact;

 act.sa_handler = func;

 act.sa_flags = SA_RESTART;

 sigemptyset(&act.sa_mask);

 sigaddset(&act.sa_mask, sig);

 if (sigaction(sig, &act, &oact) == -1)

 return(SIG_ERR);

 return(oact.sa_handler);

}

This code can support calls to the bsd_signal function in a migrated application. You can also
use the code to replace signal() in Berkeley Software Distribution (BSD)-derived applications as
long as the signal handler expects a single parameter of the int type. If the handler expects any
other parameters, signal() must be modified to use sigaction().
Additional Signal Functions
Interix provides the following POSIX functions for manipulating the signal set:
int sigemptyset(sigset_t * set);

int sigfillset(sigset_t * set);

int sigaddset(sigset_t * set, int signo);

int sigdelset(sigset_t * set, int signo);

int sigismember(const sigset_t * set, int signo);

The following example depicts the manipulation of the signal mask using sigpprocmask():
int sigprocmask(int how, sigset_t * set, sigset_t *oset);

You can determine whether a signal is pending by using the sigpending() function, as shown in
the following example:
int sigpending(sigset_t * set);

Chapter 5: Developing Phase: Infrastructure Services 63

Interprocess Communication
An operating system designed for multitasking or multiprocessing must provide mechanisms for
communicating and sharing data between applications or interprocess communication (IPC).
Some forms of IPC are designed for communication among processes running on the same
computer, whereas other forms are designed for communicating across the network between
different computers.

Pipes (Unnamed/Named, Half/Full Duplex)
Interix supports all the various forms of IPC. The following forms are most familiar to UNIX
developers:
• Anonymous pipes
• Named pipes (FIFOs)
• Shared memory
• System V message queues

Anonymous Pipes
The primary use of pipes, which can be named or unnamed, is to communicate between related
processes. They also have separate read and write file descriptors, which are created through a
single function call. Process pipes are supported under Interix using the standard C run-time
library. Interix supports all the pipe function calls, including popen, pclose, and pipe. There is no
need to change any references to these calls in your code. Pipes are frequently used between
UNIX processes to connect the standard output file descriptor of one process to the standard
input file descriptor of a second process, causing the results of the first program to be treated as
the input data for the second. This sequence of commands is called a pipeline.
You can use this mechanism to connect an Interix process to a Microsoft Win32® process that it
creates. In nearly all cases, everything works without any change. Problems using pipes to
communicate between Interix and Win32 processes generally fall into the following two
categories:
• Line termination character. Interix defines a line as ending with the \n character; Win32

defines a line as ending with the \r\n sequence. Some applications are sensitive to the
precise line termination sequence. The flip command can be used in the pipe to change line
termination as necessary.

• End Of File (EOF) handling when attempting serial use of a pipe. After a Win32 process
has closed a pipe to which it was writing, it is not possible for an Interix application to use that
pipe serially. For example, this command will display only the contents of file1:
 (cmd.exe /c type file1; cat file2) | cat

This problem can be solved by introducing a second pipeline using the cat32 tool:
 (cmd.exe /c type file1; cat file2 | cat32) | cat

With unnamed pipes, a parent process creates a pipe to communicate with its child process; the
child process inherits and uses this pipe.

Named Pipes (FIFOs)
A named pipe, also referred to as first-in-first-out (FIFO), is a special type of pipe that is created
in the file system but behaves like a process pipe. These are generally half-duplex pipes because
they support only one-way communication. Full-duplex pipes are named pipes that allow two-way
communication.
Interix supports the two function calls for creating a named pipe—mknod and mkfifo. If possible,
it is better to use mkfifo to make FIFO special files because it is more portable. You do not need
to modify code that uses these functions for compiling under Interix.

64 UNIX Custom Application Migration Guide: Volume 2

These named pipes are distinct from, and not interoperable with, the identically named Win32
interprocess communication mechanism, called Win32 named pipes. The only way to use Win32
named pipes to communicate between Interix and Win32 processes is through anonymous pipes,
as desribed in the previous section.
There is a difference in the behavior of pipes in UNIX and Windows. UNIX uses the buffer
concept to deal with programs that use pipes, whereas Windows uses the file system object. If
the program has a tendency to acquire "back pressure," this difference becomes a major issue to
contend with when migrating to Windows using Interix. This issue arises in sequences of
programs connected by pipes when there is a finite capacity for the pipe in UNIX versus a
Windows file system object that will almost never be exhausted (based on page-file size).
However, Interix exhibits the same behavior as UNIX because it adds a UNIX style buffer to the
front end of the Windows pipe, which is a file system object. So change to the application is
necessary, even if it relies on the presence of back pressure.

Shared Memory
Shared memory permits two or more processes to share a region of memory. Shared memory
performance is considered the best of all interprocess communication (IPC) methods because
data is not copied as part of the communication process. Instead, the same physical area of
memory is accessed by both the client and the server.
Interix supports all of the System V IPC mechanisms. The shmat, shmctl, shmdt, and shmget
mmap() routines can also be used to share memory between Interix and Win32 processes.
The command-line interfaces— ipcs and ipcrm—are also provided to manage shared memory
segments. The ipcs interface reports the status of IPC objects. The ipcrm interface removes an
IPC identifier, such as a shared memory segment.
Windows does not support the standard System V IPC mechanisms for shared memory (the
shm*() APIs). It does, however, support memory-mapped files and memory-mapped page files,
which you can use as an alternative to the shm*() APIs.
/* Consumer */

/* This program is a consumer. The shared memory segment is

created with a call to shmget, with the IPC_CREAT bit specified. */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include "shm_com.h"

int main()

{

 void *shared_memory_loc = (void *)0;

 struct shared_struct *shared_stuff;

 int shmid;

 shmid = shmget((key_t)1111, sizeof(struct shared_struct), 0666 |
IPC_CREAT);

 if (shmid == -1)

Chapter 5: Developing Phase: Infrastructure Services 65

 {

 fprintf(stderr, "shmget function failed\n");

 exit(EXIT_FAILURE);

 }

 /* Make the shared memory accessible to the program. */

 shared_memory_loc = shmat(shmid, (void *)0, 0);

 if (shared_memory_loc == (void *)-1)

 {

 fprintf(stderr, "shmat function failed\n");

 exit(EXIT_FAILURE);

 }

 printf("Memory attached at %X\n", (int)shared_memory_loc);

 /* Assign the shared_memory_loc segment to shared_stuff.

 Echo any text in "some_text".

 Continues until end is found in "some_input" (1 in stored by
 Producer).

 */

 shared_stuff = (struct shared_struct *)shared_memory_loc;

 shared_stuff->some_input = 0;

 while(1)

 {

 if (shared_stuff->some_input)

 {

 printf("You wrote: %s", shared_stuff->some_text);

 sleep(1); /* the Producer is waiting for this process
*/

 shared_stuff->some_input = 0;

 if (strncmp(shared_stuff->some_text, "done", 4) == 0)

 {

 break;

 }

 }

 }

 /* Detach and Delete shared memory */

 if (shmdt(shared_memory_loc) == -1)

 {

 fprintf(stderr, "shmdt function failed\n");

 exit(EXIT_FAILURE);

 }

 if (shmctl(shmid, IPC_RMID, 0) == -1)

 {

 fprintf(stderr, "shmctl(IPC_RMID) function failed\n");

 exit(EXIT_FAILURE);

66 UNIX Custom Application Migration Guide: Volume 2

 }

 exit(EXIT_SUCCESS);

}

/* Producer */

/* This program is a producer of input text for the consumer. */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include "shm_com.h"

int main()

{

 void *shared_memory_loc = (void *)0;

 struct shared_struct *shared_stuff;

 char buffer[BUFSIZ];

 int shmid;

 shmid = shmget((key_t)1111, sizeof(struct shared_struct),

 0666 | IPC_CREAT);

 if (shmid == -1)

 {

 fprintf(stderr, "shmget function failed\n");

 exit(EXIT_FAILURE);

 }

 shared_memory_loc = shmat(shmid, (void *)0, 0);

 if (shared_memory_loc == (void *)-1)

 {

 fprintf(stderr, "shmat function failed\n");

 exit(EXIT_FAILURE);

 }

 printf("Memory attached at %X\n", (int)shared_memory_loc);

 shared_stuff = (struct shared_struct *)shared_memory_loc;

 while(1)

 {

 while(shared_stuff->some_input == 1)

 {

 printf("waiting for Consumer...\n");

 sleep(1);

 }

 printf("Enter some text: ");

Chapter 5: Developing Phase: Infrastructure Services 67

 fgets(buffer, BUFSIZ, stdin);

 strncpy(shared_stuff->some_text, buffer, TEXT_SZ);

 shared_stuff->some_input = 1;

 if (strncmp(buffer, "done", 4) == 0)

 {

 break;

 }

 }

 if (shmdt(shared_memory_loc) == -1)

 {

 fprintf(stderr, "shmdt function failed\n");

 exit(EXIT_FAILURE);

 }

 exit(EXIT_SUCCESS);

}

/* A common header file to describe the memory being shared. */

#define TEXT_SZ 256

struct shared_struct

{

 int some_input;

 char some_text[TEXT_SZ];

};

System V Message Queues
Message queues are very similar to named pipes, but there is no need to open or close message
queues. Interix supports all the message queue routines—msgctl, msgget, msgsnd, and
msgrcv. Code that uses these functions does not need to be modified.
Note Interix does not support Microsoft Message Queuing; however, similar functionality can be
implemented using System V message queues.

Networking
The Interix SDK implementation uses the Windows network stack, through the use of Windows
Sockets 2 (Winsock) to access the network. This means that TCP/IP sockets and all of the
installed Winsock protocols are supported.
Note Additional information about Winsock is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winsock/winsock/windows_sockets_start_page_2.asp.

This section covers the TCP/IP protocols and tools, and how remote procedure call (RPC) and
sockets use TCP/IP.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/windows_sockets_start_page_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/windows_sockets_start_page_2.asp

68 UNIX Custom Application Migration Guide: Volume 2

TCP/IP Protocols and Tools
TCP/IP is an industry-standard suite of protocols designed for large Internet works spanning wide
area network (WAN) links.
Windows Services for UNIX 3.5 provides two remote shell servers: the Windows-based Remote
Shell service and the Interix rshd(1). If the Windows Remote Shell service is installed, it is
enabled by default and the Interix rshd daemon is disabled by default in /etc/inetd.conf. The
Windows and Interix versions of these servers should not be run at the same time because they
will both try to access the same TCP/IP port, causing unpredictable results. To avoid problems,
you should ensure that only the Windows or the Interix version of these servers is enabled at a
time.

Remote Procedure Call
Open Network Computing (ONC) remote procedure call (RPC) is an IPC technique that allows
client and server software to communicate with each other. These routines allow C programs to
make procedure calls on other computers across the network. First, the client calls a procedure to
send a data packet to the server. On receipt of the packet, the server calls a dispatch routine to
perform the requested service and then sends back a reply. Finally, the procedure call returns to
the client.
Interix provides rpc()–library routines for RPCs. The following must be present in the list of
includes:
#include <rpc/rpc.h>

ONC RPC is different and is not compatible with Windows because this protocol uses Distributed
Computing Environment (DCE) RPC for a number of system services. However, there are third-
party software packages that implement ONC RPC on the Windows side. Tools such as Interix
and NuTCRACKER provide support for ONC RPC. Additionally, shareware tools are available to
support ONC RPC on Windows 2000.

Displaying Current TCP/IP Connections
Interix provides netstat, which shows protocol statistics and current TCP/IP network connections.
It displays active TCP connections, ports on which the computer is receiving, Ethernet statistics,
the Internet Protocol (IP) routing table, and IP statistics for the IP, Internet Control Message
Protocol (ICMP), TCP, and User Datagram Protocol (UDP) protocols. Used without parameters,
netstat displays active TCP connections.

Host Name to Address Translation
Interix does not support the generic transport name-to-address translation routines. It supports all
the gethostby routines except the reentrant versions (routines with the _r suffix). While Interix
does not ship with the *_r for the gethostby* family of APIs, you can freely install the BIND 9
library from the Interop /Tools site to gain the *_r functionality.

Chapter 5: Developing Phase: Infrastructure Services 69

Table 5.3 lists other host name translation get or set routines that are not supported by Interix.
Table 5.3. Host-Name Translation Routines Not Supported by Interix

Function Name Description Suggested Interix Replacement

getdomainname Gets the NIS domain
name.

No equivalent in Interix. The principal
Windows domain for the system can be
obtained through getpdomain(). The
prototype of the method is as follows:
int getpdomain (char * buf, int bufsize).

gethostid Gets the unique identifier
of the current host.

No equivalent in Interix, but should be a
very rare occurrence in any application
except a network administration application.

setdomainname Sets the NIS domain
name.

No equivalent in Interix.

sethostid Sets the unique identifier of
the current host.

No equivalent in Interix, but should never
need to be set. It is restricted to the root
user account.

sethostname Sets the name of the host
computer. (This call is
restricted to the superuser
and is normally used only
when the system is
booted.)

No equivalent in Interix.

Sockets
Interix implements BSD-style socket interfaces, including bind(), accept(), and connect(). This
implementation uses the Windows network stack through the use of Winsock to access the
network. This means that TCP/IP sockets and all of the installed Winsock protocols are
supported.
The exceptions to socket support in Interix are discussed in the following sections:
• Network Groups
• Network Socket Calls
• Transport Level Interface (XTI) Calls
• Select Functionality

Network Groups
Interix does not support network group APIs. However, it supports network group designations in
hosts.equiv and .rhosts files.

Network Socket Calls
These functions constitute the BSD sockets library. Interix provides all the network functions in
the main C library, libc. For compatibility, Interix includes an empty libsocket.a library.

70 UNIX Custom Application Migration Guide: Volume 2

Table 5.4 lists the socket calls that are not supported by Interix.
Table 5.4. Socket Calls Not Supported by Interix

Function Name Description Suggested Interix Replacement

cmsg macros Access ancillary data. No equivalent in Interix.

freehostent Removes IP node entry from
linked list.

Currently no API support for IPv6.

getipnodebyaddr Gets IP node entry. Currently no API support for IPv6.

getipnodebyname Gets IP node entry. Currently no API support for IPv6.

inet_ntop Processes network address
structures.

Currently no API support for IPv6.

inet_pton Creates a network address
structure.

Currently no API support for IPv6.

rcmd_af Returns a stream to a remote
command and includes
support for Ipv6.

Currently no API support for IPv6.

recvmsg Receives a message from the
socket.

No equivalent in Interix.

rexec_af Returns a stream to a remote
command and includes
support for Ipv6.

Currently no API support for IPv6.

rresvport_af Returns a descriptor to a
socket with an address in
the privileged port space.

Currently no API support for IPv6.

sendmsg Sends a message to a
socket.

No equivalent in Interix.

The recvmsg and sendmsg socket functions are used in many network applications but are not
supported by Interix version 3.5 and earlier. These functions are the only way to pass an open file
descriptor from one running process to another running process. These are mostly used for data
exchange. On Windows Services for UNIX 3.5, recvfrom() and sendto() APIs can be used to
exchange the data between the processes.
Each reentrant interface performs the same operation as its non–re-entrant counterpart does.
The only difference is the _r suffix. The reentrant interfaces use buffers supplied by the caller to
store returned results, and they are safe for use in both single-threaded and multithreaded
applications. If the application is not multithreaded, then the _r routines can be safely replaced by
removing the _r suffix and the additional parameters.
Note BIND 9 for *_r routines are available at http://www.interopsystems.com/tools.

http://www.interopsystems.com/tools

Chapter 5: Developing Phase: Infrastructure Services 71

Table 5.5 lists the reentrant routines and their Interix replacements.
Table 5.5. Interix Replacements for Reentrant Routines

Function Name Description Suggested Interix Replacement

getnetbyaddr_r Searches for a network entry
with the network address.

struct netent * getnetbyaddr (long
net, int type)

getnetbyname_r Searches for a network entry
with specified name.

struct netent * getnetbyname (char
*name)

getnetent_r Enumerates network entries
from the database.

struct netent * getnetent (void)

getprotobyname_r Sequentially searches from
the beginning of the file until
a matching protocol name is
found, or EOF is
encountered.

struct protoent *
getprotobyname(const char *name)

getprotobynumber_r Sequentially searches from
the beginning of the file until
a matching protocol number
is found, or EOF is
encountered.

struct protoent * getprotobynumber
(int proto)

getprotoent_r Gets a matching protocol
name.

struct protoent * getprotoent (void)

getservbyname_r Returns a pointer to an
object containing the
information from a network
services database.

struct servent *getservbyname (char
*name, const char *proto)

getservbyport_r Returns a pointer to an
object containing the
information from a network
services database.

struct servent *getservbyport (int
port, const char *proto)

getservent_r Returns a pointer to an
object containing the
information from a network
services database.

struct servent *getservent(void)

Transport Level Interface (XTI) Calls
The X/Open Transport Interface (XTI) APIs, defined by the X/Open Transport Interface
specification of Open Group, define protocol-independent networking functions similar to those
provided by the old SVR4 TLI (Transport Layer Interface) APIs. Earlier, XTI and TLI were
primarily used as interfaces to the ISO OSI protocol family or to the STREAMS networking stack.
In general, XTI should be replaced by the more standard BSD sockets interface.
Interix support for XTI is limited to the functions and features required to access the UDP Internet
protocol. Interix does not support some extended calls, which are mainly used with “expedited
data” and the management or configuration of variables and parameters.

72 UNIX Custom Application Migration Guide: Volume 2

Table 5.6 lists the TLI calls that are not supported by Interix.
Table 5.6. Transport-Level Interface Calls Not Supported by Interix

Function Name Description Suggested Interix Replacement

nlsgetcall Gets client data passed
through the listener.

No equivalent in Interix.

nlsprovider Gets the name of the transport
provider.

No equivalent in Interix.

nlsrequest Formats and sends a listener
service request message.

No equivalent in Interix.

t_rcvv Receives data or expedited
data sent over a connection
and puts the data into one or
more noncontiguous buffers
greater than or equal to.

No equivalent in Interix.

t_rcvvudata Receives a data unit in one or
more noncontiguous buffers.

No equivalent in Interix.

t_sndv Sends data or expedited data
from one or more
noncontiguous buffers on a
connection.

No equivalent in Interix.

t_sndvudata Sends a data unit from one or
more noncontiguous buffers.

No equivalent in Interix.

t_sysconf Gets configurable XTI
variables.

No equivalent in Interix.

Select Functionality
On UNIX select is limited to 512 FDs and 64 FDs on Windows by default.
You can fix this by defining FD_SETSIZE in winsock2.h or in the user-defined header file after
including the winsock2.h header file:
#define FD_SETSIZE 512
On UNIX, select doesn't block on empty lists of fds. If you don't pass any socket fds, it blocks for
the specified timeout. On the Interix environment, it returns immediately with an error.

Chapter 5: Developing Phase: Infrastructure Services 73

Daemons and Services
A daemon in UNIX is a process that runs in the background to provide service to other
applications and does not require a user interface. A service on Windows is the equivalent of a
UNIX daemon. Normally, a daemon is started when the system is booted and runs without
supervision until the system is shut down. Similarly, Windows services enable you to create long-
running executable applications that run in their own Windows sessions. These services can be
automatically started when the computer boots to continue across the logon sessions, can be
paused and restarted, and do not show any user interface. Services are ideal for use on a server
or for long-running functionality that does not interfere with other users who are working on the
same computer. It is possible to run services in the security context of a specific user account that
is different from the logged-on user or the default computer account.
This section provides an overview of the UNIX daemons and Windows services, explains their
similarities and differences, and how to use them in the Interix environment.

Daemons
A UNIX daemon is a process that provides a specific service. The following are some examples:
• The inetd daemon listens for connections on certain Internet sockets to start other daemons.
• The nfsd daemon implements the user-level part of the NFS (directory/file sharing) services.
• The syslogd daemon provides system tools with support for system and kernel logging.
On traditional UNIX systems, a daemon is a process that runs for an extended period of time, but
it does not have a controlling terminal. A Windows service is a background process that is similar
to a daemon process. You can run daemons directly on the Interix subsystem, or you can port
daemons to run as Windows services.
Many daemons use setuid() or seteuid() to run as a particular user. However, this does not work
on Windows because of the way in which Windows security is structured. A daemon invoked by
inetd does not have these restrictions. It inherits the environment of the inetd process. In this
context, the term daemon refers to a daemon process invoked by an Interix process that runs in
the context of the Interix subsystem. An Interix service is an Interix process that is tied to the
Win32 execution environment by the psxrun.exe program.
The chief advantage of running a daemon as a service is that the service runs as if it is logged on
as a Windows user. This allows you to control the privileges and permissions granted to the
service. When a daemon is logged on with a domain account, it enables the service to access the
Windows network resources. However, unlike traditional UNIX daemons, Windows services
cannot use mechanisms such as fork and exit to create a background process. This might make
it difficult to port a daemon to run as a service.

Cron Service
Windows Services for UNIX provides the cron daemon that runs under the Interix subsystem.
The cron daemon is used to execute scheduled commands. The cron daemon searches its
spool directory (/var/spool/cron/tabs/) for crontab files that are named after fully qualified user
names in the form domain+user and loads the crontab files it finds into memory. The cron
daemon also searches for /etc/crontab that is in a different format. The cron daemon then wakes
up every minute, examining all loaded crontab files and checking each command to see if it
should be run in the current minute. The cron daemon requires the user to register a valid
password before editing or running any crontab entry. The cron daemon uses this password to
impersonate this user to execute any crontab entries submitted by this user. For cron to
successfully execute another user's cron jobs, the user must have registered his or her password
using crontab –p command. Without this password, cron cannot impersonate that user and will
not execute the user's crontab commands.

74 UNIX Custom Application Migration Guide: Volume 2

A crontab file contains instructions to the cron daemon of the general form: run this command at
this time on this date. Each user who has been assigned cron privileges has his or her own
crontab file.
The Windows-based Cron service allows users to run commands at scheduled times, much like
the UNIX cron daemon. Users run the crontab Windows command to schedule jobs.
To start and stop the Windows-based Cron service
1. Go to Control Panel.
2. Click Administrative Tools, and then Services.
3. In the list of services, right-click Windows Cron Service.
4. Click Properties. If the Startup type is disabled, select either Manual or Automatic.
5. Click Apply.
6. Click either Start or Stop.

Remote Shell Service
The Windows-based Remote Shell Service allows you to use a remote computer to execute
commands on the computer running the Remote Shell Service, much like the UNIX rsh daemon.
The Windows Remote Shell Service (rshsvc.exe) is automatically installed on Windows Server-
level products when you perform a standard installation of Windows Services for UNIX 3.5 and is
automatically selected for a custom installation on these products.
rshsvc.exe resides in the %SFUDIR%\common directory.
To use the Windows Remote Shell Service
1. Install the service from the Windows Services for UNIX 3.5 installation medium onto the

target computer.
2. Enable the service to start automatically or manually, as appropriate on your computer.
3. Create a .rhosts file in the %windir%\system32\drivers\etc directory of the target system. The

file must contain a list of computers and users who will be allowed to connect to the target
system. Each line in this file should have the format as “hostname username”, same as UNIX
host files. The members of the local users group must be able to read this file. However, this
file is not writable. The typical inherited permissions in the default directory should be
appropriate.

4. Log on to the target system as the user who will connect to the system.
5. Run rshpswd to store the password of the user.
6. Connect from the originating system by using a simple command such as set to test the

connectivity. For example, to connect to a system called example-srv, the command might
read:
rsh example-srv set

Note Additional information on common configuration problems of the Remote Shell Service and their
solutions is available at

http://www.microsoft.com/technet/interopmigration/unix/sfu/sfu35rsh.mspx.

The remote shell capability is inherently an insecure protocol. Use the Secure Shell (ssh) instead
for a similar capability with greater security; this is available for both Windows and for the Interix
subsystem.
Note You can download OpenSSH for Interix at

http://www.interopsystems.com/tools/warehouse.htm.

http://www.microsoft.com/technet/interopmigration/unix/sfu/sfu35rsh.mspx
http://www.interopsystems.com/tools/warehouse.htm

Chapter 5: Developing Phase: Infrastructure Services 75

The Interix Remote Shell Daemon
The Interix Remote Shell Daemon, rshd, runs as a daemon initiated by the inetd process and
behaves in a more traditional UNIX manner. By default, rshd is disabled.
The Interix rshd uses a more traditional authentication mechanism, with both hosts.equiv and
.rhosts supported. The format of each line in the hosts.equiv file used by Interix rshd should be
as “hostname username”. Interix rshd supports a user-specific .rhosts file that is present in the
home directory of the user. This file is checked only if a hosts.equiv match is not found. This file
follows the same format as the hosts.equiv file.
As in traditional UNIX systems, the .rhosts file must reside in the home directory of the user. It
must be a regular file owned by the user, and it must be writable only by the user. In addition, you
should use only the Interix vi tool or other UNIX editor to create and edit the file. Windows editors
can insert Windows text format line endings or other stray characters that will cause a failure.
However, you can use the flip tool that converts text-file formats between POSIX and other
formats like Microsoft MS-DOS®.
The following tools are supported:
• regpwd
• rcp
• rlogin and rlogind

regpwd
The regpwd tool stores a copy of the password in a protected area accessible only by privileged
processes. This password can then be used by privileged programs that impersonate the user,
such as rshd, as well as the Windows Remote Shell Service (rshsvc).

rcp
The UNIX remote copy, rcp, is supported by the Interix rshd. This tool copies files between
computers.

rlogin and rlogind
Interix also supports remote logins using the rlogin client and rlogind daemon. Remote logins do
not require that a password be stored on the target computer. However, passwords are then
passed in clear text over the network. On a traditional UNIX system, if all the necessary
conditions are met, remote logins through rlogin do not require a password if .rhosts or
hosts.equiv allows the remote user. Under Interix, if the default permissions and ownerships have
not been changed and the SYSTEM account runs the Interix subsystem, then the behavior is as
expected, except that regpwd must be used to store the password just as with rshd. In both
traditional UNIX and Interix systems, if the remote logon cannot occur automatically, the remote
user is prompted for the password of the target user. If the password is correctly provided, the
user is logged on.

76 UNIX Custom Application Migration Guide: Volume 2

Keep the following in mind for the Interix rshd daemon:
• The Interix rshd daemon does not provide a log of all failures and successes, as does

Windows Remote Shell Service (rshsvc). However, when started with the –L option, it will
write verbose success messages to the syslog. The syslogd is not enabled by default in
Windows Services for UNIX 3.5, so you will need to enable it.

• You must stop the Windows Remote Shell Service before you enable rshd.
• DNS failures between the client and server systems may cause the computer names in

.rhosts or hosts.equiv to not be resolved correctly. Hence, as a good practice, use IP
addresses during initial testing and setup. After everything is working, revert to using DNS
resolvable names to avoid later configuration issues if IP addresses change.

Note To enable the Interix Remote Shell Daemon, edit the file /etc/inetd.conf by using the Interix vi or
other Interix or UNIX editor.

Additional information on common configuration problems of the Interix Remote Shell Daemon and their
resolutions is available at

http://www.microsoft.com/technet/interopmigration/unix/sfu/sfu35rsh.mspx.

Porting a Daemon to Interix
This section discusses porting a UNIX daemon to Interix and calling that daemon from either
inetd or another master daemon. Daemons ported in this way cannot be run as a Windows
service. If a daemon needs to run as a Windows service, use the instructions in the “ Porting a
Daemon to Interix Service” section.
When you port a daemon from UNIX to Interix, the daemon must have the following features:
• The daemon call is an interface to allow a program to become a system daemon. This

function causes the calling program to fork. The parent exits, and the child performs a
setsid. This disassociates the process from its current process group, session, and
controlling terminal. On successful completion of this call, the process is the session leader of
a group in which it is the only member, and the session has no controlling terminal.

• The signal-handling routine (terminate in this case) is a common characteristic of a daemon
process.The daemon can perform cleanup operations when it receives the SIGTERM signal
(for example, when the system shuts down) by using the signal handling routine. To use the
terminate handling routine, the daemon must call the sigaction() system call, which installs
its signal handler for the SIGTERM signal. Another signal, SIGHUP, is often used to signal to
the daemon that it should reinitialize or restart.

Porting this daemon is a simple process. All you need to do is recompile, relink, and execute the
daemon from the command line.

Porting a Daemon to Interix Service
The previous section discussed porting a UNIX daemon to Interix. However, an Interix daemon
has some limitations. First, it can start other daemons, but individual daemons can be started
through the init scripts that are part of startup of Interix only. Secondly, it is not integrated into the
Windows service mechanisms. When a daemon is converted into a service, it can be managed in
Windows from Control Panel (by clicking Administrative Tools, and then Services), as well as
from the Interix command line.
Before going into more details on how to convert a daemon into a service, it is important to
mention the following two commands that can help tie Interix processes to the Win32 execution
environment:
• The posix.exe program starts an Interix process with a controlling terminal.
• The psxrun.exe program starts an Interix process without a controlling terminal.

http://www.microsoft.com/technet/interopmigration/unix/sfu/sfu35rsh.mspx

Chapter 5: Developing Phase: Infrastructure Services 77

In the case of a Windows service, the process must run without a controlling terminal. Run the
psxrun program for such a case.
Note More details on posix and psxrun can be obtained from the Help manual of Windows Services for
UNIX 3.5.

Interix services can be administered using Services in Control Panel or with the service tool
provided with Interix.
The service tool is used to install the service as a particular user and to stop the service. The user
name and password must be provided when the service is installed. If no user name is provided,
the user name defaults to LocalSystem; this logs on the user as an administrator without access
to the network. When a request to stop a particular service comes either from Services in Control
Panel or from the service tool, psxrun sends the signal SIGTERM to the service.

Converting Daemon Code into Interix Service
Code
To convert daemon code into Interix service code, the daemon code needs the following
modifications:
• Ensure that the service exits when it receives the SIGTERM signal. It must catch the

SIGTERM signal, clean up, and shut down. Ideally, the service should not spend more than a
few seconds in cleaning up; otherwise, the service can loose communications with the
Services Control Manager.

• Change the code so that it does not fork, and the parent exits.
If the parent process exits, psxrun treats the program as having exited, and the Windows
Service Control Manager reports that the service was never successfully started.

• Do not call setsid() to create a new session. This does not work because of Windows
Security. Use #ifdef to skip this code.

• Do not access network drives through drive letters from the daemon. Network drives are
typically mounted on drive letters when a user logs on and get unmounted when that user
logs out. A service program cannot depend on a given network drive mounted on a given
drive letter. If a service uses net.exe to mount a network drive, the drive letter it uses
becomes unavailable to interactive users, which may cause Winlogon.exe to display error
messages. If a service must access a network drive, reserve specific drive letters for
exclusive use by the system. It is suggested that you use the /net file system.

Chapter 6: Developing Phase: Migrating
the User Interface

This chapter describes how to migrate from a UNIX user interface (UI) to a Microsoft® Windows®
user interface. As a majority of UNIX graphical interfaces are built on X Windows and Motif, once
you know about the support available on Windows for X Windows and the differences between
the UNIX user interface and the corresponding Windows UI, you can follow the steps required to
migrate the user interface of X Windows, Motif, and POSIX applications to the Windows UI.

X Windows Support on Windows Services
for UNIX 3.5
The X Windows system is a portable, network-transparent Windows system that runs on many
different computers. Any X Windows system consists of two distinct parts: the X server and one or
more X clients. The server controls the display directly and is responsible for all input and output
(I/O) through the keyboard, mouse, or display. The clients do not access the screen directly.
Instead, they communicate with the server, which handles all I/O requests. It is the clients that do
the "real" computing, such as running applications. Each client communicates with the server,
causing the server to open one or more windows to handle the I/O requests for that client.
Windows Services for UNIX 3.5 includes many X Windows-based client programs that you can
start from within Microsoft Interix. These programs, which include xterm, xlsfonts, and xrdb, are
compiled using X11R5 and X11R6 libraries to run with the corresponding servers. Some of these
programs are provided for only one version of the X Windows system, but most programs
compiled for use on X11R5 servers are capable of running with X11R6 servers as well.
However, Windows Services for UNIX 3.5 does not include an X Windows-based server. You
must first install and start an X Windows server program before using any X Windows-based
client applications. In addition, you must have an X11 server running either locally or on a remote
system before you can run any of the Interix X Windows-based clients on your computer. You
must also set the DISPLAY variable in Interix as the name of the computer on which you want the
X client output to be displayed. This would be either localhost:0.0 if you have a local X11 server
running, or the remote-system name, where an X server is running. When a shell is started with
Interix, the environment variable DISPLAY is set to localhost:0.0 by default.
Windows Services for UNIX 3.5 also supports the xhost tool, which is used to add and delete
host names to the list allowed to make connections to the X server. The usage syntax of xhost is
xhost [[+-]name…], where name is the host name to be added to the list allowed to make
connection to the X server. The xhost + command grants access to everyone, while the xhost –
command restricts access to only those on the list. More details on the xhost program can be
found in the Help manual of Windows Services for UNIX 3.5.

80 UNIX Custom Application Migration Guide: Volume 2

The display of X client applications depends upon how you have configured your X11 server and
which window manager you are running. Most X11 servers running under Windows have the
following two display modes:
• Single-window mode. One application window, the X root window, is open. All X clients

exist in this window. You must use a window manager, such as twm(1X11R6). The twm
window manager is one of the X Windows clients included with Interix. It can be run from the
command line.

• Multiple-window mode. Each X client application is opened in its own window. Individual
windows are controlled by the Microsoft Windows window manager or an X Windows window
manager.

Most X servers that run with Windows have a default X Windows window manager in the multiple-
window mode. Hence, you do not need to necessarily start an X Windows manager to run a client
except when you need to use the manager with settings that are different from the default.
By default, Interix also sets up your PATH to include the directory /usr/X11R6/bin, which is the
location of the X11R6 client binaries. The XAPPLRESDIR environment variable, which is used by
X clients to locate their resources, is set up for you as well.

X Windows Programs Supported by Interix
Table 6.1 lists the X Windows programs that are supported by Interix.
Table 6.1. X Windows Programs in Interix

X Windows
Program

Description

Xman* This tool is a manual page browser.

Xedit* This tool opens a simple text editor for X Windows.

Xbiff* This program displays a little image of a mailbox. When there is no mail, the flag
on the mailbox is down. When mail arrives, the flag goes up and the mailbox
makes a sound.

Xcalc* This tool is a scientific calculator desktop accessory that can emulate a TI-30 or
an HP-10C.

Xeyes*

This tool is a follow-the-mouse X Windows demo that watches what you do and
reports to the Boss.

xterm This tool is a terminal emulator for X Windows.

xclock This program displays the time in analog or digital form. The time is
continuously updated at a frequency that may be specified by the user.

oclock This program displays the current time on an analog display.

twm This is a window manager for X Windows. It provides title bars, shaped
windows, several forms of icon management, user-defined macro functions,
click-to-type and pointer-driven keyboard focus, and user-specified key and
pointer button bindings.

Note All X Windows programs marked with * are supported by X Windows System 11 Release 5
(X11R5). Therefore, to run such clients as xman, you need to add /usr/X11R5/bin to your PATH or give
/usr/X11R5/bin/xman as the command.

Additional X Windows programs, such as rxvt, are available for downloading at
http://www.interopsystems.com/tools/warehouse.htm.

http://www.interopsystems.com/tools/warehouse.htm

Chapter 6: Developing Phase: Migrating the User Interface 81

Building X Windows Applications
The Interix Software Development Kit (SDK) contains X11R5 and X11R6 libraries, header files,
and various other tools specifically designed for building X Windows applications.
Many of the tools provided as part of the Interix SDK (cpp, imake(1X11R5), xmkmf(1X11R5),
mkdirhier(1X11R5), and makedepend(1X11R5)) are necessary to build X11 software packages
provided by third parties.
When you are building an application, you must include the appropriate X11 header directory as
part of the object compilation as follows:
CFLAGS = -O -I/usr/X11R5/include

or
CFLAGS = -O -I/usr/X11R6/include

You must also include the libraries and place them after the object files as follows:
XLIBS = -lXaw -lXmu -lXt -lXext -lX11

For the X11 versions of functions to be linked, include general purpose libraries after the X11
libraries:
XLIBS = -lXaw -lXmu -lXt -lXext -lX11

You must include the -L directive (library location) before the object file:
XLIBDIR = -L/usr/X11R5/lib

or
XLIBDIR = -L/usr/X11R6/lib

Some applications use the xrdb(1X11R6) tool to create the application default files. When you
build these applications, you must set your display and start the X11 server before you start the
build process.
Many X Windows applications come with Imakefiles. You can create a makefile from an Imakefile
using either xmkmf(1X11R5) or imake.
If you use xmkmf to build an application from an Imakefile, you will see the following output:
mv Makefile Makefile.bak

imake -DUseInstalled -I/usr/X11R6/lib/X11/config

You can use imake directly, but you might need to pass appropriate -D and -I options. You can
type the previous command as an imake command:
imake -DUseInstalled -I/usr/X11R5/lib/X11/config

or
imake -DUseInstalled -I/usr/X11R6/lib/X11/config

After building the makefile, you can build the application with make.
Note To install the shared X11 libraries, during installation, install the GNU SDK component.

Migrating Character-based User Interfaces
Not all UNIX interfaces are graphical. Character-based interfaces were the original mainstay of
UNIX computing long before the graphical workstation was developed. The following two options
are available for character-based interfaces:
• Migration to the Interix environment can take place with minimal change.
• Replacement of the character-based interface with the graphical interface (Windows-based or

HTML).
A preliminary port to Portable Operating System Interface (POSIX) using POSIX terminal I/O
ensures a smooth migration to Interix.

82 UNIX Custom Application Migration Guide: Volume 2

POSIX Terminal I/O
The POSIX termios structure and a new set of access calls replace the two traditional terminal
hardware interfaces, namely termio structures in System V and stty structures in Berkley
Software Development (BSD).
The POSIX input/output (I/O) model is very similar to the System V model. The following two
modes exist in the POSIX I/O:
• Canonical mode. Canonical input is line-based, like BSD cooked mode.
• Noncanonical mode. Noncanonical input is character-based, like BSD raw or cbreak mode.
The Interix subsystem includes a true, noncanonical mode, with support for cc_c[VMIN] and
cc_c[VTIME]. The termios structure is defined in Termios.h, as shown in the following listing:
struct termios {

tcflag_t c_iflag; /* input mode */

tcflag_t c_oflag; /* output mode */

tcflag_t c_cflag; /* control mode */

tcflag_t c_lflag; /* local mode */

speed_t c_ispeed; /* input speed */

speed_t c_ospeed; /* output speed */

cc_t c_cc[NCCS]; /* control characters */

};

The Interix SDK extends the POSIX.1 set of flags for c_iflag to include IMAXBEL and VBELTIME.
For c_cc, VMIN and VTIME do not have the same values as VEOF and VEOL. However, for a
portable application, a developer should take into consideration that VMIN and VTIME can be
identical to VEOF and VEOL on a POSIX.1 system.
Table 6.2 lists the 12 new functions that replace the terminal I/O ioctl() calls, which include
ioctl(fd, TIOCSETP, buf) and ioctl(fd, TIOCGETP, buf) or stty() and gtty(). They were changed
because the data type of the final argument, for terminal I/O ioctl() calls, depends on an action
that makes type checking impossible.
Table 6.2. Functions That Replace the Terminal I/O ioctl() Calls

Function Description

int tcgetattr (int fd, struct
termios *t)

Fetches attributes (termios structure).

int tcsetattr (int fd, int action,
const struct termios *t)

Sets attributes (termios structure).

speed_t cfgetispeed (const
struct termios *t)

Gets input speed.

speed_t cfgetospeed (const
struct termios *t)

Gets output speed.

int cfsetispeed (struct termios
*t, speed_t speed)

Sets input speed.

int cfsetospeed (struct
termios *t, speed_t speed)

Sets output speed.

int tcdrain (int fd) Waits for all output to be transmitted.

int tcflow (int fd, int action) Suspends transmit or receive.

int tcflush (int fd, int
queue_selector)

Flushes pending I/O.

Chapter 6: Developing Phase: Migrating the User Interface 83

Function Description

int tcsendbreak (int fd, int
len)

Sends BREAK character.

pid_t tcgetpgrp (int fd) Gets foreground process group identifier (ID).

int tcsetpgrp (int fd, pid_t
pgrp_id)

Sets foreground process group ID.

For the window size, use the TIOCGWINSZ command for ioctl() with the winsize structure, which
are both supported.

Porting Curses and Terminal Routines to Interix
The Interix SDK libraries include libcurses, a port of the ncurses package, and libtermcap, the
termcap routines. The Interix SDK also supports pseudoterminals. Porting such applications to
Interix should be straightforward, but note the following:
• The curses routines make use of the terminfo database, stored in /usr/share/terminfo. This

location is different from the location used in traditional systems. To link with the terminfo
routines, link with the curses library.

• Interix supports both the BSD /dev/ptynn and the System V /dev/ptmx methods for opening
the master side of a pseudoterminal. The System V method is slightly faster because the
search for an available master device is handled by the subsystem. Currently, the Interix
subsystem supports 265 ptys named /dev/ pty[p–zA–E][0–9a–f] on the master side. The
corresponding subordinate side names are /dev/tty[p–zA–E][0–9a–f].

• When using /dev/ptmx, the subordinate (slave) tty name can be obtained with ptsname().
BSD-based ioctl() calls can be used with the pty master side.

• Provided that it is a session leader, a process without a controlling tty acquires a controlling
terminal on the first open() call to a tty, unless NOCTTY is specified in the open() call.

Older, character-based terminal applications placed the cursor on the physical display screen
based on the capabilities of the terminal. These capabilities were typically stored in the
/etc/termcap file.
Note The mouse-interfacing features found in the ncurses source are not enabled for Interix. Interix
does not support System V STREAMS.

Porting OpenGL, Motif, and Xview
Applications
The Interop Systems Web site provides a product with Motif 2.2.2 development environment for
the Interix technology in Windows Services for UNIX 3.5, with static libraries (and
documentation). The OpenGL Development Kit version 1.3 with libraries and APIs for Windows
Services for UNIX 3.5 is also included in the Interop Systems Web site.
Note Additional information is available at

 http://www.interopsystems.com/Motif-OpenGL.htm.

The Xview toolkit is a toolkit for developing X11 programs and includes an X11 window manager
for OpenLook behavior.
Note Additional information on downloading the Xview toolkit is available at

http://www.interopsystems.com/tools/warehouse.htm.

http://www.interopsystems.com/Motif-OpenGL.htm
http://www.interopsystems.com/tools/warehouse.htm

Chapter 7: Developing Phase: Functions to
Change for Interix

This chapter describes the important functions not supported in Microsoft® Interix that need to be
changed or removed before the code compiles under Interix. This chapter also describes the
availability of these functions in the Interix environment and their suitable replacement
mechanisms. The functions discussed in the chapter include:
• Math routines.
• Regular expressions.
• System and C library and other platform-specific application programming interfaces (APIs).
The following APIs are not supported by Interix and should not be used:
• Wide character-type APIs
• Multibyte character-type APIs (ISO/ANSI C and UNIX 98)
• Long-long character type (64-bit integer) APIs
• Message-handling APIs
Using the information in this chapter, you will be able to identify which modifications are required
in your application code to ensure compatibility in the Interix environment. You will also be able to
use suitable replacement mechanisms in such areas of your application as command line and
shell APIs, string-related functions, and system and C library APIs.
Note Extended UNIX Code (EUC) characters are not supported by Interix and should not be used.

Math Routines
There are two sets of mathematical routines that are not supported by Interix. The first is the
IEEE floating-point environment control routines, listed as follows:
• fpclass
• fpgetmask
• fpgetround
• fpgetsticky
• fpsetmask
• fpsetround
• fpsetsticky
The second set of mathematical routines is the conversion routines, listed as follows:
• decimal_to_double
• decimal_to_extended
• decimal_to_floating
• decimal_to_quadruple
• decimal_to_single
• double_to_decimal
• econvert
• extended_to_decimal
• fconvert

86 UNIX Custom Application Migration Guide: Volume 2

• file_to_decimal
• floating_to_decimal
• func_to_decimal
• gconvert
• qeconvert
• qfconvert
• qgconvert
• seconvert
• quadruple_to_decimal
• sfconvert
• sgconvert
• single_to_decimal
• string_to_decimal
GMP is a portable library written in C for arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. You can use this library as the replacement mechanism for
the previously described math routines. It aims to provide the fastest possible arithmetic for all
applications that need higher precision than is directly supported by the basic C types.
Note You can download the GMP Library at http://interopsystems.com/InteropToolworks.htm.

Regular Expressions
Interix does not support some of the regular expression function calls. However, Table 7.1 lists
functions that can be used to replace them.
Table 7.1. Regular Expression Function Calls Not Supported by Interix

Function Name Description Suggested Interix
Replacement

re_comp Compiles and executes a
regular expression and returns
a character pointer to NULL on
success.

int regcomp (regex_t *preg,
const char *pattern, int cflags);
int regexec (const regex_t
*preg, const char *string,
size_t nmatch, regmatch_t
pmatch[], int eflags);

re_exec Compiles and executes a
regular expression and returns
an integer of 0 or 1 on
success.

int regcomp (regex_t *preg,
const char *pattern, int cflags);
int regexec (const regex_t
*preg, const char *string,
size_t nmatch, regmatch_t
pmatch[], int eflags);

Regcmp Compiles a regular expression
and returns a pointer to a
compiled form.

int regcomp (regex_t *preg,
const char *pattern, int cflags);

regex Executes a regular
expression.

int regexec (const regex_t
*preg, const char *string,
size_t nmatch, regmatch_t
pmatch[], int eflags);

http://interopsystems.com/InteropToolworks.htm

Chapter 7: Developing Phase: Functions to Change for Interix 87

System/C Library and Miscellaneous APIs
There are many specialized and platform-specific APIs under this category. They are as follows:
• Command-line and shell APIs
• String-manipulation functions
• BSD string and bit functions
• Time-handling APIs
• Other system/C library functions
• Kernel calls
The kernel calls are not supported by Interix and should not be used.

Command-Line and Shell APIs
Interix does not support calls to obtain information about legal user shells from the /etc/shells file,
nor does it support the implementation of the popt command-line parser.
To replace the UNIX functions with the Interix functions
1. Add to the /etc/shells file any additional legal shells that have been ported, such as /bin/bash.

The /etc/shells file contains the legal Interix shells /bin/csh, /bin/ksh, /bin/sh, /bin/tcsh.
2. Write functions named endusershell, getusershell, and setusershell, as listed in Table 7.2.
Table 7.2. Functions to Implement the Command-Line and Shell APIs in Interix

Function name Description Suggested Interix
Replacement

endusershell Closes the file of legal user
shells (/etc/shells).

Create endusershell routine
to wrap the standard close()
file routine. The prototype of
the routine is as follows:
int close (int d)

getusershell Gets legal user shells from
/etc/shells.

Create getusershell routine to
wrap the standard read() file
routine.
The prototype of the routine is
as follows:
ssize_t read (int d, void *buf,
size_t nbytes)

popt Parses command-line options. Use getopt function.
The prototype of the routine is
as follows:
int getopt (int argc, char *
const *argv, const char
*optstring)

setusershell Rewinds the file of legal user
shells (/etc/shells).

Create setusershell routine to
wrap the standard lseek() file
routine to set /etc/shells file
back to beginning. The
prototype of the routine is as
follows:
off_t lseek (int fd, off_t offset,
int whence)

88 UNIX Custom Application Migration Guide: Volume 2

String-Manipulation Functions
Interix supports most of the standard string-handling functions. Interix does not support the atoq,
memmem, stpcpy, stpncpy, strfmon, strfry, strnlen, and strtows functions. Use the
replacements listed in Table 7.3 for these functions.
Table 7.3. String-Handling Functions Not Supported by Interix

Function name Description Suggested Interix
Replacement

atoq Converts string to a long long. strtoq()

memmem Finds the start of the first
occurrence of a substring in
the memory area.

char * strstr (const char *big,
const char *little)

stpcpy Copies the source string,
including the terminating \0
character, to the destination.

char * strcpy (char *dst, const
char *src)

stpncpy Copies at most num
characters from the source
string, including the
terminating \0 character, to the
destination.

char * strncpy (char *dst,
const char *src, size_t len)

strfmon Formats specified amount
according to the format
specification and places the
result in a character array of
size max.

int sprintf (char *str, const
char *format ...)

strfry Randomizes the contents of
the string by using rand() to
randomly swap characters in
the string.

No equivalent in Interix.
Customized function can be
written using rand().

strnlen Returns the number of
characters in the string, not
including the terminating \0
character, but at most maxien.

size_t strlen (const char *s)

BSD String and Bit Functions
String interfaces specified by ANSI/ISO C and found only in the Single UNIX Specification are in
string.h. The contents of the strings.h file are listed in Table 7.4.
Table 7.4. String Interfaces in the strings.h File

Function name Description

bcmp Compares two strings.

bcopy Copies at most n characters from src string to dest.

bzero Places len value of 0 bytes in the string.

ffs Finds the first bit set (beginning with the least significant bit) and returns
the index of that bit.

Chapter 7: Developing Phase: Functions to Change for Interix 89

All the functions mentioned in the preceding table are supported in the Interix environment.
The Interix SDK (software development kit) also supports the BSD 4.4 strsep() and strcasestr()
routines.

Time-Handling APIs
The time functions that are not supported by Interix and that cannot be implemented by some
other Interix API or set of API calls are adjtime, adjtimex, ntp_adjtime, and tzsetwall.
Note You can download the rdate tool at

http://www.interopsystems.com/tools/warehouse.htm.

The rdate function sets the date of the system from a remote Network Time Protocol (NTP)
server or host.

Other System/C Library Functions
Interix does not support some of the system/C library functions. Table 7.5 lists these functions
and their suggested replacements.
Table 7.5. System/C Library Functions Not Supported by Interix

Function Name Description Suggested Interix
Replacement

on_exit Registers a function to be
called at usual program
termination.

int atexit(void
(*function)(void))

quotactl

Manipulates disk quotas. No support or equivalent in
Interix.

stime Sets system time and date. int settimeofday (struct
timeval *tp, void *tzp)

http://www.interopsystems.com/tools/warehouse.htm

Chapter 8: Developing Phase: Deployment
Considerations and Testing Activities

This chapter discusses the key deployment considerations that need to be made in deploying the
Microsoft® Windows® Services for UNIX 3.5 migrated application before closing the Developing
Phase. This chapter also discusses various testing activities that you need to carry out in the
Developing Phase. This chapter will help you identify the activities and milestones required to
complete the Developing Phase.

Deployment Considerations
The following are the key deployment considerations that need to be made during the Developing
Phase to ensure smooth deployment in the Deploying Phase:
• Process environment
• Migration of scripts
• Database connectivity
• Deploying the application
• Interoperability with Windows Services for UNIX 3.5
• Monitoring and supporting the applications
The process for deploying the migrated application is discussed in detail in Volume 5, Deploy-
Operate of this guide.

Process Environment
Some of the key elements in the process environment that are different for UNIX and Interix are:
• Environment variables.
• Temporary files.
• Computer information.
• Logging system messages.
This section discusses each of these key elements and explains how to implement them in
Interix.

Environment Variables
An environment block is a block of memory allocated within the process address space. Each
block contains a set of name-value pairs. All UNIX variants support process environment blocks.
The particular differences between Interix and other UNIX variants depend on the UNIX variant
being ported to Interix. For example, some UNIX variants do not support either the setenv or the
unsetenv function calls, whereas Interix does.

92 UNIX Custom Application Migration Guide: Volume 2

There are usually no issues in porting calls to environment variable functions in Interix. However,
when porting System V Interface Definition (SVID) code, instead of the process environment
being defined as a third argument to main(), it is defined as extern char **environ. To modify the
environment for the current process, use the getenv() and putenv() functions. To modify the
environment so that it passes to a child process, use the getenv(), setenv(), and putenv()
functions, or build a new environment and pass it to the child using the envp argument of the
exec() function.
Note The putenv and setenv functions are only available if _ALL_SOURCE is defined and set to 1.

Temporary Files
Interix supports all standard and common functions that create temporary files. You do not need
to modify the code to migrate these functions to Interix.

Computer Information
Interix supports functions that obtain information about the computer on which the application is
executed. Typically, the ported code does not require any modifications.
The computer information includes:
• Host name
• Operating system name
• Network name of the computer
• Release level of the operating system
• Version number of the operating system
• Hardware platform name
This information can be obtained by using the uname -a Interix shell command. Note that the
uname command and application programming interface (API) return information about the
installed version of Interix, and not the version of the host Windows operating system. You can
get information about the Windows operating system version by adding the Interix-specific -H
option to the uname -a command.
For example:
$ uname -a

Interix JOE-GX 3.0 SP-7.0.1701.1 x86
Intel_x86_Family15_Model1_Stepping2

$ uname -aH

Windows JOE-GX 5.1 SP0 x86 Intel_x86_Family15_Model1_Stepping2

Logging System Messages
Interix provides the standard UNIX syslogd daemon to store and redirect log messages from
applications and system services. The configuration file for syslog is located in /etc/syslog.conf.
The Interix syslogd daemon handles only those Interix processes that are designed to use the
syslog API. It does not handle log messages from the Win32® subsystem. If syslogd is not
running, all the messages intended for syslogd are appended to the file /var/adm/log/logger.
The syslog, vsyslog, openlog, closelog, and setlogmask function calls are supported by
Interix with the same set of severity levels, including:
• LOG_ALERT
• LOG_CRIT
• LOG_DEBUG
• LOG_EMERG
• LOG_ERR
• LOG_INFO

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 93

• LOG_NOTICE
• LOG_WARNING
The following superset of facility indicators is also supported:
• LOG_AUTH
• LOG_CRON
• LOG_DAEMON
• LOG_KERN
• LOG_LOCAL(0-7)
• LOG_LPR
• LOG_MAIL
• LOG_NEWS
• LOG_USER
• LOG_UUCP
It is not necessary to modify a code that uses syslog calls on Interix.
Note The syslog daemon is not started with the default installation. You can refer to the startup
instructions on the syslogd manual page.

Migration of Scripts
This section describes the process of porting UNIX shell scripts to the Interix environment. The
porting process follows these steps:
1. Evaluating script migration tasks.
2. Planning for management of platform differences.
3. Evaluating source and target environments.
For information about each of these steps, refer to Volume 1: Plan of the UNIX Custom
Application Migration Guide.
Scripts fall into the following two basic categories:
• Shell scripts, such as Korn and C shell.
• Scripting language scripts, such as Perl, Tcl, and Python.
Shell and scripting language scripts tend to be more portable than compiled languages such as C
and C++. A scripting language such as Perl handles most of the platform specifics. However, the
original developer may have used easier or faster platform-specific features, or may not have
taken cross-platform compatibility into consideration at all.
A large number of UNIX commands are available with an Interix installation. Many UNIX shell
scripts run under Interix without conversion because Interix provides both the Korn and Tenex C
shells.
Note More information on porting shell scripts is available at
http://www.microsoft.com/windows2000/docs/portingshellscripts.doc.

Porting UNIX Shell Scripts to Interix
There are only two significant differences in porting a shell script from an open-system
implementation of UNIX (such as System V4 or BSD) to Interix. First, by default, Interix stores
binaries in one of the following three directories:
• /bin
• /usr/contrib
• /usr/local/bin.

http://www.microsoft.com/windows2000/docs/portingshellscripts.doc

94 UNIX Custom Application Migration Guide: Volume 2

For example, Perl is installed in one of these directories. Second, although Interix has a standard
UNIX file hierarchy and a single-rooted file system with the forward slash (/) as the base of the
installation regardless of the Windows drive or directory, absolute paths can be different. Absolute
paths normally do not need to be converted because you can handle most situations by adding
symbolic links. For example, /usr/ucb can be linked to /usr/contrib/bin, and /usr/local/bin can be
linked to /usr/contrib/bin.
Additional considerations include:
• Port scripts that set up either local or environment variables.
• The Interix C shell initialization process executes the /etc/csh.cshrc and /etc/csh.login files

before the .cshrc and .login files in the home directory of the user.
• Be aware of the current limits of Interix shell parameters so that you can take the appropriate

action. These parameters and their current limits are:
• Maximum length of $path ($PATH) variable = ARG_MAX (normally not a problem).
• Maximum (shell) command length = ARG_MAX (normally not a problem).
• Maximum (shell) environment size = ARG_MAX.
• Maximum length of command arguments, that is, length of arguments for exec() in bytes,

including environ data (ARG_MAX) = 1048576.
• Maximum length of file path (PATH_MAX) = 512.
• Maximum length of file name (NAME_MAX) = 255 (normally not a problem).

• Modify any scripts that rely on information from /etc/passwd or /etc/group (for example, a
script that uses grep to find a user name) to use other techniques, such as Win32 ADSI
scripts, to obtain information about a user. Examples include:
• Calls to Interix getpwent(), setpwent(), getgrent(), and setgrent() APIs.
• Win32 ADSI scripts.
• Win32 net user commands.

Database Connectivity
This section contains information about Open Database Connectivity (ODBC) and accessing
databases from Windows Services for UNIX 3.5.

Open Database Connectivity
Applications use the ODBC interface to access data from the database. This allows applications
to access the database management systems (DBMS) using Structured Query Language (SQL)
as a standard. ODBC permits applications to access different databases and therefore permits
interoperability. Application end users can then add ODBC database drivers to link the application
to their choice of DBMS.
ODBC database drivers are dynamic-link libraries on Windows and shared objects on UNIX.
These drivers allow an application to access one or more data sources. ODBC provides a
standard interface to allow application developers and vendors of database drivers to exchange
data between applications and data sources.
The ODBC architecture has the following four components:
• Application. Processes and calls ODBC functions to submit SQL statements and retrieve

results.
• Driver manager. Loads drivers for the application.
• Driver. Processes ODBC function calls, submits SQL requests to a specific data source, and

returns the results to the application.
• Data source. Consists of the data, its associated operating system, DBMS, and the network

platform (if any) used to access the DBMS.

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 95

Accessing Databases from Windows Services for UNIX 3.5
UNIX applications are usually given database connectivity using ODBC drivers. Windows
Services for UNIX 3.5 has no built-in libraries or interfaces for accessing relational databases
stored on other platforms. However, there are several packages listed in Table 8.1 that can
reduce this problem.
Table 8.1. Packages Available for Database Connectivity

 Name Description

iODBC A popular open source ODBC driver manager.

unixODBC A popular open source ODBC driver manager.
This also serves as the ODBC-ODBC bridge client from Easysoft, allowing
access to any ODBC driver in Windows.

FreeTDS An open source implementation of the Tabular Data Stream (TDS) protocol
used to access Microsoft SQL Server™ and Sybase databases, including
dblib, ctlib, and an ODBC driver.

Perl One of the most popular scripting languages, complete with the DBI
database interface module, DBD::ODBC, for connecting through ODBC,
and DBD::Sybase for connecting to any Sybase or SQL Server using
FreeTDS.

All of these applications and libraries are built with support for threads enabled by default. Some
of these libraries have been ported to Interix and are available at
http://www.interopsystems.com/tools/warehouse.htm.

iODBC
Independent Open DataBase Connectivity (iODBC) is an Open Source platform-independent
implementation of both the ODBC and X/Open specifications. iODBC possesses the capability to
develop applications independent of a back-end database engine, operating system, and (for the
most part) programming language. Although ODBC and iODBC are both “C –based” APIs, there
are numerous cross-language hooks and bridges from such languages as C++, Java, Perl,
Python, and TCL.
Note Additional information is available at http://www.iodbc.org/.

unixODBC
The unixODBC Driver Manager is used in the binary builds of all the Windows Services for
UNIX 3.5 database tools. It is also the client for the ODBC-ODBC bridge of Easysoft. With the
ODBC-ODBC bridge, you can access any database that has a Windows ODBC driver. One
license of ODBC-ODBC bridge of Easysoft, which incorporates the unixODBC driver manager,
gives Windows Services for UNIX or Interix users a universal ODBC solution.
For example, consider a situation in which your Windows Services for UNIX or Interix application
needs access to a remote Oracle database on a UNIX-based or Linux-based computer. Oracle
does not provide OCI support for Interix. However, there are Oracle drivers available for
Windows, so any Windows-based computer can act as both the client and the gateway. The
ODBC-ODBC Bridge Server (a commercial product) of Easysoft is installed on the gateway, and
the ODBC-ODBC client (unixODBC) is installed on the computer of the end user. In fact, the
client and the gateway can be the same physical server. To access another database (for
example, Microsoft SQL Server™, Access, or Excel®), just configure the appropriate data source
on the gateway. No action is required on the UNIX system.

http://www.interopsystems.com/tools/warehouse.htm
http://www.iodbc.org/

96 UNIX Custom Application Migration Guide: Volume 2

Figure 8.1 illustrates the ODBC-ODBC bridge.

Figure 8.1. ODBC-ODBC bridge
For a detailed format of the odbc.ini file, refer to
http://www.interopsystems.com/tools/db.htm#odbc_config.
Additional information about the ODBC-ODBC bridge is available at
http://www.unixodbc.org/ and
http://www.easysoft.com.

FreeTDS
The TDS protocol is used to communicate with either Sybase or SQL Server databases.
FreeTDS is an open source implementation of this protocol and contains several APIs that use it.
The /usr/local/etc/freetds.conf configuration file must contain entries for your databases. Use
these entries as templates for each server type. FreeTDS supports a number of different ways of
setting up the configuration file; the method known as the "DBC-Combined" is strongly
recommended.
Note Additional information about the DBC-Combined method is available at

http://www.freetds.org/userguide/odbcombo.htm.

The configuration file can be overridden with the FREETDSCONF environment variable.
Note Additional information about the FREETDSCONF environment variable is available at

http://www.freetds.org.

Perl
Perl is especially complex to build correctly under Windows Services for UNIX 3.5. There are
several pitfalls that can deter an unwary or inexperienced developer.
The best approach for building Perl under Windows Services for UNIX is to use the edited version
of the config.sh and Policy.sh supplied files, and then running the following to rebuild the
makefiles.

http://www.interopsystems.com/tools/db.htm#odbc_config
http://www.unixodbc.org/
http://www.easysoft.com/
http://www.freetds.org/userguide/odbcombo.htm
http://www.freetds.org/

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 97

Run gmake to build a new binary:
$./Configure –der

Almost all the tests run by gmake test run correctly. However, there are a number of special
cases for Windows Services for UNIX (for example, when the privileged user does not have
UID 0 in Windows Services for UNIX) when the gmake test may hang after all the tests have
completed successfully.
Note You can download Perl at

http://www.interopsystems.com/tools/warehouse.htm.

Deploying the Application
This section explains the process of deploying your migrated application, including Interix
applications, into a Windows environment.
The standard method of deploying applications in a Win32 environment is to use the Microsoft
Windows Installer service. This section provides information about the Windows Installer service
and some of the tools that you can use to package your application.
When you deploy applications in the Interix environment, you can use the standard UNIX tools
available in Interix for file transfer, remote configuration, and scripting. If you used the proprietary
UNIX software management tools to manage the application before migration, it is unlikely that
these tools will be available in Interix. If you use standard UNIX tools, such as the tar or cpio
archiving commands and shell scripts for application management, migration of your deployment
tools is relatively easy.
Interix applications reside either on the desktop or on the application servers. In the latter case,
you may have to rely on the networked file systems to access the executable files of your
application. Because of the differences in how the UNIX and Windows network file systems
operate, you must take specific action on some migrated applications.

Tools for Deploying Interix Applications
When migrating applications from UNIX to Interix, one of the main benefits is the similarity of the
two platforms. This makes the process of migrating an application to Interix relatively easy. The
similarity between the two platforms also extends to the tools available. If you have created your
own deployment scripts using these tools, migrating the deployment tools to Interix is a
straightforward process.
However, if you have used deployment tools specific to your UNIX distribution, you must either
port these to Interix or write scripts using the available tools.

Berkeley Remote Shell Commands (r Commands)
Distributing your application into the Interix environment is likely to call for the transfer of files over
the network. You can use the rsh, rcp, ssh, scp, or ftp commands for the transfer of files. These
commands are available in Interix.
Note The ssh and scp commands are not included in Interix. You can download these commands at

http://www.interopsystems.com/tools/warehouse.htm.

Scripts
Interix provides a wide range of scripting languages and tools for the creation of deployment
tools. When you install Windows Services for UNIX 3.5, the UNIX Perl tool is installed as a part of
the standard installation process. This allows Perl scripts to run on the Interix subsystem.
Note You can download Perl 5.8.3 at

http://www.interopsystems.com/tools/warehouse.htm.

http://www.interopsystems.com/tools/warehouse.htm
http://www.interopsystems.com/tools/warehouse.htm
http://www.interopsystems.com/tools/warehouse.htm

98 UNIX Custom Application Migration Guide: Volume 2

You can install ActiveState ActivePerl 5.6 in a custom installation process. This allows you to run
Windows-based Perl scripts on the server.
Other languages, such as Ruby, Python, or Tcl/Tk, can also be used.
Note You can download these languages at

http://www.interopsystems.com/tools/warehouse.htm.

Interix also includes C and Korn shell scripts.
Note You can download the bash and zsh shell scripts at

http://www.interopsystems.com/tools/warehouse.htm.

Deploying Interix Applications
You can use the approach described in the next section to deploy your applications on Interix.

Deploying Interix Applications by Pushing Them to the Desktop
The push application delivery mechanism in UNIX environments is implemented with scripted ftp
or rcp commands that copy the application binaries to a computer running UNIX. The application
is then activated by pointing to a symbolic link at the new application binary. It is also common to
use rdist and rsync to deploy the application across multiple computers. The rdist tool is
supported by Windows Services for UNIX 3.5.
Note The rsync tool can be downloaded at

http://www.interopsystems.com/tools/warehouse.htm.

From a management standpoint, remotely managed computers contain a selection of
management scripts (Perl, C, or Korn shell) that can be invoked remotely to initiate an application
image deployment, enumerate performance metrics, or run an audit for security.

Using the r Commands for Remote Management in Interix
You can remotely manage Interix systems with the Berkeley r commands such as rsh and rcp.
Before you use these commands for remote administration, configure the Interix daemon rshd to
permit remote access between computers. This is because rcp uses a remote shell at the remote
computer (source or destination of the copy) to start a shell to launch the rcp process with the
appropriate arguments.
For example, when rcp is used to manage the system when Interix is the source of the directory
copy, use the following:
rcp -r <Interix hostname>:ProgDir <destination hostname>:ProgDir

Interix has the following two processes associated with the rcp command in this case:
user1 9281 1025 20:41:48 - 0:00.03 sh -c rcp -r -f ProgDir

user1 9345 9281 20:41:48 - 0:00.26 rcp -r -f ProgDir

When rcp is used to manage the system when Interix is the destination (sink) of the directory
copy, use the following:
rcp -r <source hostname>:ProgDir <Interix hostname>:ProgDir

Interix has the following two processes associated with the rcp command in this case:
user1 9729 1025 20:41:48 - 0:00.03 sh -c rcp -r -t ProgDir

user1 9793 9729 20:41:48 - 0:00.26 rcp -r -t ProgDir

Notice that a different argument is passed to rcp depending on whether it is the source (-f) or the
destination (-t) of the copy.

http://www.interopsystems.com/tools/warehouse.htm
http://www.interopsystems.com/tools/warehouse.htm
http://www.interopsystems.com/tools/warehouse.htm

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 99

To automate the configuring of the host equivalent files
1. Create the necessary configuration files and set appropriate permissions, as follows:

 /etc/hosts.equiv.
For earlier versions of Interix 3.0, you can use the following command:
$HOME/.password

From Interix 3.0 onward, the regpwd tool is provided to store the password securely into the
registry and is accessible only to the privileged processes.
$HOME/.rhosts

2. Set appropriate permissions, as follows:

#!/bin/csh

Does the hosts.equiv file exist?

If not, create an empty one.

if (! -f "/etc/hosts.equiv") then

 #

 # create /etc/hosts.equiv

 #

 touch /etc/hosts.equiv

 #

 # Set the permissions on /etc/hosts.equiv

 #

 chmod 755 /etc/hosts.equiv

 #

 # Set the owner of /etc/hosts.equiv

 #

 chown +Administrators /etc/hosts.equiv

endif

if ($?HOME) then

 #

 # See whether the users .rhosts file exists.

 # If not, then create it.

 #

 if (! -f "$HOME/.rhosts") then

 touch $HOME/.rhosts

 chmod 600 $HOME/.rhosts

 endif

100 UNIX Custom Application Migration Guide: Volume 2

endif
Note Use of the r commands may be restricted for security reasons. In this case, you need to modify the
preceding script to reflect your security policies.

SSH is available for Interix as a secure alternative and can be downloaded at

http://www.interopsystems.com/tools/warehouse.htm.

Installing MSI Packages Remotely with Interix rsh
To remotely launch Win32-based applications from an Interix shell, remember that there are no
stdin/stdout/stderr file handles on which to read and write. This is because the remote process is
connected to pseudoterminals that do not have any corresponding Win32 object. Therefore,
Win32-based applications must be wrapped so that they are provided with stdin/stdout/stderr file
handles. The following code shows the remote execution of the ipconfig.exe command:
$ rsh remotesystem "/dev/fs/C/WINNT/system32/ipconfig.exe < /dev/null
2>&1 | cat"

You can also execute the Win32 command shell (cmd.exe) commands. The following depicts the
execution of a remote dir command:
$ rsh remotesystem "/dev/fs/C/WINNT/system32/CMD.EXE /c dir < /dev/null
2>&1 |cat"

When you pass Win32 paths with Interix shells, backward slashes (\) used in the path
specification must be escaped with another backslash (\). For example, to execute the MSI
package installer from an Interix Korn shell, double backslashes (\\) must be passed in the paths
to msiexec.exe. The following example shows this for the installation of the Windows® 2000
support tools (for example, <drive>:\SUPPORT\TOOLS\2000 RKST.MSI):
$ /dev/fs/C/WINNT/system32/msiexec.exe /I <drive>:\\SUPPORT\\TOOLS\\2000RKST.MSI /Lv
C:\\Temp\\msi.log /qn.
The remote installation of this MSI package is interesting because rsh requires that Win32 path
backslashes be escaped, and the command path that is passed over the remote shell must also
have its backslashes (\) escaped. The following rsh command will install the Windows 2000
Support Tools remotely with an rsh command:
$ rsh remotesystem "/dev/fs/C/WINNT/system32/msiexec.exe /I
<drive>:\\\\SUPPORT\\\\TOOLS\\\\2000RKST.MSI /Lv C:\\\\Temp\\\\msi.log
/qn < /dev/null 2>&1 | cat"

(where <drive> is a drive letter available on the remote system.)

Code Modification
To add or isolate code that implements Interix-specific features, surround it with the following
code:
#ifdef __INTERIX, such as in the following example:

#ifdef __INTERIX

(void) fcntl(fd, F_SETFL, fcntl(fd, F_GETFD) | FD_CLOEXEC));

#else /* __INTERIX */

(void) ioctl(fd, FIOCLEX, NULL);

#endif /* __INTERIX */

http://www.interopsystems.com/tools/warehouse.htm

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 101

The __INTERIX macro is automatically defined to be true by the c89 compiler interface and by
the gcc compiler. The _POSIX_ macro is defined to be true by c89. (The _POSIX_ macro is a
reserved symbol and should not be used or modified.) The c89 interface also passes the /Za
option to the Microsoft Visual C++® compiler, which defines __STDC__, unless -N nostdc is
specified. When -N nostdc is defined, the ANSI-only mode in the Visual C++ compiler is disabled
and Microsoft extensions are allowed. The default mode is ANSI C mode.
The cc compiler interface defines the symbols __ INTERIX and UNIX to be true. (The UNIX
macro is defined because many applications intended to be compiled on multiple platforms use
this macro to call out features found on UNIX systems.) The cc interface also passes the /Ze
option, which enables language extensions.
The Interix header files are structured to align with the Single UNIX Specification. For example,
string and memory functions that occur in Portable Operating System Interface (POSIX).1 are in
string.h. String and memory functions that are in the Single UNIX Specification, but not in
POSIX.1, are in strings.h.
The include files are also structured to restrict the API namespace. If the macro
_POSIX_SOURCE value is defined as 1 before the first header file is included, the program is
restricted to the POSIX namespace. The program contains only those APIs that are specified in
the POSIX standards. This can be restrictive.
To get all of the APIs provided with the Interix Software Development Kit (SDK), define the
_ALL_SOURCE value as 1 before the first header file is included, as shown in the following
example:
#define _ALL_SOURCE 1

#include <unistd.h>

You can also define _ALL_SOURCE in makefile with –D _ALL_SOURCE in the compiler flags
section of the makefile. Then use the compiler flags in the compilation commands in the makefile.
This simplifies porting of the source code because this macro exposes all the define statements
and prototypes in the requested header files.
If the source is not defined, the default is the more restrictive _POSIX_SOURCE.

Packaging and Archiving Tools
Table 8.2 lists the archiving and packaging facilities used for UNIX applications and supported by
Interix.
Table 8.2. Archiving and Packaging Facilities

Archiving
and
Packaging
Facilities

Description Interix Support

tar The tape archive program, which uses a variety
of formats. It is one of the most popular formats.

Interix supports this tool.

cpio Copies files into or out of a cpio or tar archive. It
was intended to replace tar. The cpio archives
can also be unpacked by pax.

Interix supports this tool.

pax The POSIX.2 standard archiver. It reads, writes,
and lists the members of an archive file
(including tar-format archives). It also copies
directory hierarchies.

Interix supports this tool.

ar Creates and maintains groups of files that are
combined into an archive. It is not usually used
for source archives, but is almost always used
for object file archives (static object libraries).

Interix supports this tool.

102 UNIX Custom Application Migration Guide: Volume 2

Archiving Description Interix Support
and
Packaging
Facilities

pkg_add Standard installation tool familiar to BSD users
and very similar to the SUN and SV tool (of the
same name).

This tool is available for
downloading at
http://www.interopsystems.co
m/tools/pkg_install.htm.

rpm Powerful command-line–driven package
management system capable of installing,
uninstalling, verifying, and updating packages.

Interix has a set of tools to
perform these activities:
• pkg_add. To install a

package.
• pkg_info. To view status

of installed packages.
• pkg_delete. To delete a

package.
• pkg_update. To update or

install new packages.

Table 8.3 lists the compression formats that are used for UNIX applications.
Table 8.3. Compression Formats for UNIX Applications

Compression
Formats

Description Interix Support

compress Creates a compressed file with the adaptive
Lempel-Ziv coding to reduce the size of files
(typically 70 percent smaller than the original
file).

Interix supports this tool.

zip/gzip Algorithms combine a version of Lempel-Ziv
coding (LZ77) with another version of Huffman
coding in what is often called string
compression.

Interix supports this tool.

pack

Compresses files using Huffman coding.

Interix supports this tool.

uncompress,
zcat

Extracts compressed files. Interix supports this tool.

gunzip Decompresses files created through
compress, zip, gzip, or pack. The detection of
the input format is automatic.

Interix supports this tool.

unpack, pcat Restores files compressed by pack. Interix supports this tool.

bzip2 Compresses files using the Burrows-Wheeler
block sorting text compression algorithm and
Huffman coding.

You can download this
compression format at
http://www.interopsystems.co
m/tools/warehouse.htm.

http://www.interopsystems.com/tools/pkg_install.htm
http://www.interopsystems.com/tools/pkg_install.htm
http://www.interopsystems.com/tools/warehouse.htm
http://www.interopsystems.com/tools/warehouse.htm

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 103

Table 8.4 lists the common suffixes for archived and compressed file names.
Table 8.4. Archived/Compressed File Suffixes

Suffix Format Description

.a ar Created by and extracted with ar.

.cpio cpio Created by and extracted with cpio.

.gz gzip Created by gzip and extracted with gunzip.

.tar tar Created by and extracted with tar.

.tgz tar, gzip A tar file that has been compressed with gzip.

.Z compressed Compressed by compress.
Uncompressed with uncompress, zcat, or gunzip.

.z pack
or
gzip

Compressed by pack and extracted with pcat.
Compressed by gzip and extracted with gunzip.

.zip zip Compressed by zip and extracted with unzip or
compressed by pkzip and extracted with pkunzip.

.bz2 bzip2 Compressed by bzip2 and extracted with bunzip2 or
bzip2 –d.

.tbz tar, bzip2 A tar file compressed with bzip2.

Using Libraries
Microsoft linkers usually use the LIB environment variable to specify alternate search locations
for libraries. The Interix cc and c89 tools ignore the initial value of LIB to avoid conflicts with
Windows tools. You can add additional libraries to the search path using the -L option, which you
can specify multiple times on the command line.
You can also specify the C library, the lex, the math, and the yacc libraries with the traditional
operands -lc, -ll, -lm, and –ly, respectively.
Many compilers use the INCLUDE environment variable to specify alternate search locations for
header files. To avoid conflict with Windows tools, the c89 tool ignores the initial value of
INCLUDE. You can add additional directories to the search path with the -I option, which you can
specify multiple times on the command line.

Configuring the System
UNIX users generally configure the system by editing the configuration files with any of the
available text editors. Many UNIX users and system administrators like the fact that much of the
configuration for UNIX is stored in text files. The advantage is that you do not need to learn to use
a large set of configuration tools. Familiarity with an editor and a scripting language serves the
purpose. The disadvantage is that the information in the files comes in various formats, so you
must familiarize yourself with the formats to change the settings. To manage a network, UNIX
system administrators often employ scripts to reduce repetition and error. In addition,
administrators can use the Network Information Service (NIS) to centralize the management of
many standard configuration files. Although many versions of UNIX have GUI management tools,
such tools are usually specific to each version of UNIX.

104 UNIX Custom Application Migration Guide: Volume 2

Startup Scripts and Logon/Logoff Scripts
In UNIX, scripts are used during the startup to invoke most of the system and user processes.
Such scripts include special scripts written by the systems manager, in addition to all the system
services (such as networking and printing). The kernel starts init, a special process of UNIX that
starts all other services and processes. It is configured through the /etc/inittab file. For BSD-style
systems, init runs various rc scripts to configure services; and for System V–style systems, init
runs scripts under the /etc/rc.d directory. Configuration of the characteristics of any service is
carried out within /etc/inittab and the rc scripts.
The Interix subsystem supports the init tool. It is the first process that runs when the Interix
subsystem starts. It is similar to /etc/init on traditional UNIX systems. However, the Interix version
does not use /etc/inittab because Interix runs only at level 2.
When init starts, it executes all scripts in /etc/rc2.d in alphabetical order. The /etc/rc2.d directory
contains symbolic links to the actual scripts located in /etc/init.d instead of the scripts themselves.
The scripts are typically used to start and stop Interix daemons or to perform other tasks required
when the system initializes or shuts down. The administrator can change the names of symbolic
links in /etc/rc2.d to do the following:
• Control the order in which tools are run or daemons are started or stopped.
• Control whether a tool is run or a daemon is started or stopped.

Using inetd
Windows Services for UNIX 3.5 provides inetd, which behaves like the UNIX inetd. Hence, no
changes are required for a code that uses inetd.
The Interix inetd daemon is started by the init process and runs in the security context of the
local Administrator. The init process is started automatically when the Interix subsystem starts.
The services it starts (like telnet) are disabled by default.
After uncommenting the services you want inetd to run, send a SIGHUP signal to the inetd
process. To start inetd, you must be the administrator because there are special privileges that
some services will need and only the administrator has them (such as "root" on other UNIX
systems).
Additional information is available at
http://www.microsoft.com/technet/interopmigration/unix/sfu/intdrutil.mspx.
Note The inetd program in Interix has an extra -L option, which is used to set the time lockout period
to seconds. This is a security feature to mitigate denial-of-service (DoS) attacks. When the invocation rate
of a service is exceeded (1000, by default), the service becomes unavailable for the time interval that you
set. The default value is 180 seconds and the minimum value is 30 seconds.

The inetd.conf file is the configuration file for the inetd daemon. The file contains a list of Internet-
related services that inetd can invoke when it receives a request from an Internet client.
However, the Windows system has one networking environment in common with Win32 and
Interix applications. Therefore, it is not possible to have the Interix telnetd and the Win32 Telnet
Service listening on the same standard telnet port at the same time. Hence, services that attempt
to open standard ports used by other enabled Windows services like telnet should not be enabled
in inetd.conf.
Note The user entry in inetd.conf should contain the user name of the user under whose account the
server should run. This allows for servers to be given less permission than root. This column was originally
added in UNIX to enhance security. On Interix, this field is always set to the string NULL and is ignored as
it was not implemented in the current versions of Interix.

http://www.microsoft.com/technet/interopmigration/unix/sfu/intdrutil.mspx

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 105

Installation
Default installation of Windows Services for UNIX 3.5 does not install all useful tools. For
example, if you plan to only use the network file system (NFS) portion, you may not want to install
Interix, but you should still install user name mapping. If you want to develop UNIX code, you can
install both the Interix SDK and Interix GNU SDK.

Administration
The Domain Name System (DNS) is the hierarchical, distributed database. It stores information
for mapping Internet host names to IP addresses and vice versa, mail routing information, and
other data used by Internet applications. Clients look up information in the DNS by calling a
resolver library, which sends queries to one or more name servers and interprets the responses.
If you face DNS errors, Interix has resolver routines that provide access to the Internet DNS. The
resolv.conf configuration file contains information that is read by the resolver routines when they
are invoked by a process for the first time. The file is designed to be read by users and contains a
list of keywords with values that provide various types of resolver information. For example, you
can check whether the /etc/resolv.conf file is configured to point to the right DNS.
During installation, the file is configured based on the information it gets from the system.
However, if there is one DNS for external and one DNS for internal, then it might get configured to
the wrong DNS. The information in resolv.conf can become incorrect because it is only set during
the Windows Services for UNIX installation. Furthermore, for non-English Windows systems, the
Windows Services for UNIX script used at installation puts incorrect information in resolv.conf.
The updated BIND 9 tool can be used to configure and work with DHCP and non-English systems
by ignoring the contents of the resolv.conf file. The BIND 9 software distribution contains both a
name server and a resolver library.
Note Additional information is available at the Microsoft home page for Windows Services for UNIX 3.5
at http://www.microsoft.com/windows/sfu/default.asp.

Microsoft support for Windows Services for UNIX 3.5 is available at

http://support.microsoft.com/default.aspx.

You can access a newsgroup for discussion on Windows Services for UNIX 3.5 at

http://communities2.microsoft.com/communities/newsgroups/en-
us/default.aspx?dg=microsoft.public.servicesforunix.general.

Answers to frequently asked questions and problems are available at the Interop Systems Web site at

http://www.interopsystems.com.

This site also provides a list of tools that can be downloaded to obtain added functionality.
Note Help is also available from the UNIX tools discussion forum at

http://www.interopsystems.com/tools/default.aspx.

A lot of information on possible errors is also documented in the Windows Services for UNIX 3.5
Help. You can also refer to the man pages.
Notes:
1. The event log helps fix administrative problems. Interix provides the syslogd, which is a

system message logger. You can see the log file /var/adm/log/logger.
2. syslogd is not started automatically when the Interix subsystem starts. If you need to enable

this service, remove the comment characters from the following lines in /etc/init.d/syslog and
then start the service with the command:
/etc/init.d/syslog start,

or restart the computer.
 # ${SYSLOGD}

 # [$? = 0] && echo "syslogd started"
3. The sendmail tool, although included with Windows Services for UNIX 3.5, is not supported

as a full message transfer agent (MTA) by Microsoft.

http://www.microsoft.com/windows/sfu/default.asp
http://support.microsoft.com/default.aspx
http://communities2.microsoft.com/communities/newsgroups/en-us/default.aspx?dg=microsoft.public.servicesforunix.general
http://communities2.microsoft.com/communities/newsgroups/en-us/default.aspx?dg=microsoft.public.servicesforunix.general
http://www.interopsystems.com/
http://www.interopsystems.com/tools/default.aspx

106 UNIX Custom Application Migration Guide: Volume 2

Interoperability with Windows Services for UNIX
3.5
This section discusses the scenario where Interix and Win32/64 and .NET might be required to
interoperate with each other. The details are covered under the following sections:
• Running Win32-based Programs
• Encapsulating an Interix Application from a Win32 COM Object

Running Win32-based Programs
The Interix subsystem extends the POSIX subsystem so that you can run a Win32-based,
character-based user interface (CUI) and Win32-based graphical user interface (GUI) programs.
The Interix environment ships with the runwin32 command, which simplifies the running of Win32
binaries. Shell scripts to invoke the standard built-in Windows command-line programs and
CMD.exe are also provided in the /usr/contrib/win32/bin directory.
You can easily add the standard Windows command-line programs to your environment. The
/usr/contrib/win32/bin directory is already added to your PATH.
The Interix ksh shell has been enhanced to run case-sensitive searches for Win32 programs as
well.
After a Win32-based application is started, it interacts with the Win32-based subsystem, so there
is no problem with the data generated inside the application. For example, in a file selection box,
the path names are displayed in the Win32 format.

Interactions Between the Subsystems
When you run Win32-based programs from the Interix command line, keep the following in mind:
• You must specify the Win32-based program either with a complete path name or by adding

the Win32-based programs to your PATH. You need to do this only if PATH_WINDOWS is
not set appropriately. The path name is case sensitive.

• The portion of the command line that specifies the Win32-based program must be in the
Interix format because it is handled by the Interix subsystem. The portion of the command
line passed to the Win32-based program must be in the format that the Win32-based
program supports.

• If the Win32-based program makes use of environment variables, they must be in a format
that is supported by a Win32-based program.

• If other Interix programs use the environment variables, they must be converted back to a
format that the Interix programs can use.

• Running a Win32-based program involves the interaction of the two different permission
models: the Interix POSIX model and the Win32 ACL model.
The return value or exit status of a Win32-based program may not have any significance.

• You cannot run a Win32 interpreter program directly with a #! line in a shell script. Instead,
you must use #!/bin/sh or #!/bin/ksh . The ActiveState Perl is an exception. It is possible to
have #!/Perl/bin/Perl.exe as the first line of the shell script, but note that this will work only
from the Interix environment. cmd.exe does not support this construct.

• The Win32-based program may expect any text files to be in the Win32 format (end-of-line
marked by CR-LF) instead of the POSIX format (end-of-line marked by LF).
You can use the flip(1) tool, which is a file interchange program that converts text-file formats
between POSIX and other formats (such as MS-DOS® and Apple Macintosh). The flip(1)
tool converts lines ending with carriage-return (CR) and linefeed (LF) (MS-DOS) or just
carriage-return (Apple) to lines ending with just linefeed, or vice versa.

• When creating pipelines with Win32 commands, you may need to use the cat32.exe
program.

Note For more information on cat32, refer to the Help pages of Windows Services for UNIX 3.5 or
manual page of cat32 in Interix environment.

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 107

Adding Win32-based Programs to Your PATH
You can run such programs as ATTRIB.exe, CACLS.exe, and REGEDT32.exe from the Interix
shells. You can also redirect the input and output of these programs.
You can include the Win32 commands to your environment by adding the appropriate directories
to your PATH. For example:
“${PATH}:/dev/fs/C/WINNT/system32”
Note Add the pathname in the POSIX file name format and not the Win32 format. Note that the case of
the directory must exactly match that of the file system.

When you run a Win32-based program, the Interix subsystem converts your PATH variable back
to the Win32 format so that the Win32-based program has the current PATH. This is the only
environment variable that is converted for you; all others must be handled.
Note Typing the entire file name in the correct case can be difficult. To shorten the frequently used
commands, you can use aliases, links, or a shell script.

Path Names
The unixpath2win tool converts a UNIX path name to a Win32 path name. The winpath2unix
tool converts a Win32 path name to a POSIX path name.
For example, you can easily convert a path from one format to another. To convert the
\\inxsrv\public path to an Interix format, use the following code:
$ winpath2unix ‘\\inxsrv\publics’

/net/inxsrv/publics

$ winpath2unix ‘C:\WINDOWS\system32’

/dev/fs/C/WINDOWS/system32

To convert the path back to Win32 format, use the following code:
$ unixpath2win /net/inxsrv/publics

\\inxsrv\publics

$ unixpath2win /dev/fs/C/WINDOWS/system32

C:\WINDOWS\system32

Environment Variables
Environment variables are used to store information required by several tools or applications.
Often, this information is a path name or a set of command options.
You can change an environment variable in a shell script without fear of conflicts because the
environment of the shell script ends when the script does. Conflicts can arise when you change
the environment variable in your current environment or when an Interix tool later in the script
needs the value of the same environment variable.
The usual practice is to convert the environment variable before calling the Win32-based
program, and then convert it back to the UNIX format after the Win32-based program exits. If the
environment variable contains a directory, you can use the unixpath2win and winpath2unix
tools.

PATH_WINDOWS
The Interix ksh shell has been enhanced to support Windows style path searching. Using the
PATH_WINDOWS environment variable, it is possible to find .exe, .bat, and other files at the
CMD.exe prompt. You can use this variable to specify the directories that require a searching and
suffix matching mechanism that is not case sensitive.
The Interix profile file sets the PATH_WINDOWS environment variable in which you can specify a
suffix matching order.

108 UNIX Custom Application Migration Guide: Volume 2

Inherited Environment Variables
The environment of your Interix shell session is built by both the Interix subsystem and your
startup files. When the Interix subsystem starts, it converts the Win32 environment in the
following ways:
• All environment variable names are converted to all uppercase—for example, Path becomes

PATH.
• The contents of the PATH environment variable are converted from the Win32 format to the

POSIX format.
• A new HOME environment variable is built from the HOMEDRIVE and HOMEPATH

variables. If you already have HOME defined in your system control box, it is ignored.
The global startup file /etc/profile adjusts the environment in the following ways:
• The old PATH is stored in PATH_ORIG and a new PATH is constructed.
• TMPDIR is set to the first of $OPENNT_TMPDIR, $TMPDIR, $TMP, or $TEMP that actually

exists. TMP and TEMP are not converted because they may be used by Win32-based
programs.

• TERM, TERMCAP, EDITOR, VISUAL, and FCEDIT are set.
• SHELL is unset.

Redirecting Standard Input, Output, and Error
Win32-based programs can accept input redirected from the standard in (as in, < file). You can
also redirect their standard output (with, > file) and their standard error.
Win32-based programs can also be used in command pipelines. However, Win32-based
programs are not required to behave as expected (in terms of the three standard file streams). To
provide a behavior that is more robust, when piping to and from Win32-based programs, Interix
includes a Win32 tool, cat32.exe, which is just a "better behaved" filter. If you experience
problems with a particular Win32-based program in a pipeline, try inserting cat32 into the
pipeline. For example:
$ net.exe users | cat32 | more

Useful Tools
Two tools provided with Interix make it easier to handle the interaction between the two
environments:
• runwin32. The runwin32 tool runs a Windows command. The cmd can be any file with a

.exe extension found in the directories $WINDIR (typically, /dev/fs/C/WINDOWS on
Windows XP and Windows Server 2003 or later), $WINDIR/system32, or any built-in
command of CMD.exe. You can run the Win32 commands directly from the Interix shells, but
using runwin32 eliminates the need to change your PATH environment variable to include
the Windows or system32 directories present in your computer.

• wvisible. The wvisible tool returns true if the current window station is visible and returns
false if it is not. The term "window station" is peculiar to Windows. Every Win32 process is
associated with a window station object. If the window station is visible, Win32 windows are
displayed on the screen of the computer, and the user can interact with these windows using
the keyboard and mouse. If the window station is not visible, Win32 windows are invisible and
noninteractive.

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 109

Encapsulating an Interix Application from a Win32 COM Object
The Component Object Model (COM) is a binary-level specification that allows you to build
applications using interchangeable components. You can write the language-independent
components in C++, Java, C, or the Korn shell because the specification is binary. Client
applications that make use of COM are largely Win32-based (although there is nothing in COM
itself that restricts it to a Windows environment). Applications that use COM to bind components
together can upgrade or customize those components dynamically. This section describes a
method for encapsulating a UNIX application in a Win32 DLL (as a COM object).
For example, consider an application that writes to standard output. You must define a COM
interface to pass this information. The encapsulating DLL is written to invoke the Interix
application (your UNIX code that is ported to Interix) with the correct command-line options. The
routine interprets the output of the application and passes it to the client application.
Defining the interface and writing the DLL are not trivial, but the basic concept is simple. On an
Interix system, the Win32 world can invoke an Interix application as arguments to the POSIX.exe
program. POSIX.exe serves a variety of purposes in the Interix environment, but its primary role
is to serve as the access mechanism for the Win32 subsystem of Windows NT® to start an Interix
process.
Figure 8.2 shows the architecture of the completed system.

Figure 8.2. Architecture of Interix COM application
The client makes a call to the Interix COM DLL module. The DLL invokes POSIX.exe (and
thereby, the Interix subsystem) to run the Interix C application. The DLL captures the output and
passes it back to the Microsoft Visual Basic® GUI front-end application. The DLL does not have
exclusive use of the application, and it can be invoked by another Interix user (for instance,
logged on over telnet) while it is being called by the Visual Basic GUI front-end application.
To build a DLL that wraps a UNIX application, you need to think like both a UNIX programmer
and a COM programmer. The UNIX programmer has to think about getting the command to
produce the correct output. The COM programmer has to think about capturing that output. The
difficult part is to get the POSIX.exe command line correct.

110 UNIX Custom Application Migration Guide: Volume 2

To build the Interix COM DLL module
1. Build the Interix application.
2. Define the COM interface.
3. Implement the interface in the DLL. The basic idea is to invoke POSIX.exe to run the Interix

application, capture the standard output, and pass that data. For this, you need to get the
application command line correct for POSIX.exe. Command-line quoting, if any, must be
handled carefully.

4. Build the DLL.
Note Additional information about building the DLL is available at

http://www.microsoft.com/technet/interopmigration/unix/sfu/intrxcom.mspx.

Interacting with a Win32 Application Using Memory-Mapped
Files
Memory mapping is the technique of making a part of the address space appear to contain a file
or device so that ordinary memory accesses act on it.
Memory mapping uses the same mechanism as used by virtual memory to "trap" accesses to
parts of the address space so that data from the file or device can be paged in (and other parts
paged out) before the access is completed.
An Interix application can interact with the Win32 application using the same memory-mapped
file. The following example shows how the Win32 program and the Windows Services for
UNIX 3.5 program communicate with each other using a memory-mapped file. Compile both the
programs and execute one with argument 1 and the other with argument 2.
Following is a Windows Services for UNIX example:
#include <fcntl.h>

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <sys/mman.h>

#define BufferSize 256

char *Messages[][2]={

 /* Talk of '1' */ /* Talk of '2' */

 {"Hello '2', How are you?", "Not bad '1', how about
yourself?"},

 {"What's up '2'?", "Not much '1'"},

 {"It could be a lot worse!", "Yup!"},

 {"Well, I guess that is that, '2'!", "I guess so '1'..."},

 {0,0}

};

typedef struct ShareData_tag{

 char P1_speaks; /* 'T'=true, 'F'=false */

 char P2_speaks; /* 'T'=true, 'F'=false */

 char Mess_p1_to_p2[BufferSize];

 char Mess_p2_to_p1[BufferSize];

http://www.microsoft.com/technet/interopmigration/unix/sfu/intrxcom.mspx

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 111

} SHARED_DATA;

SHARED_DATA SharedDataInit={

 'F','F',{0},{0}

};

const char *pMemMapFileName="/dev/fs/C/common.mem";

int main(int argc, char *argv[]){

 int Step=0, fd, Done=0;

 SHARED_DATA *pSharedData;

 void *pMem;

 if(argc<2){

 printf("Please invoke with either '1' or '2'\n");

 exit(1);

 }

 if(-1 != (fd=open(pMemMapFileName, O_RDWR | O_CREAT, 0777))){

 /* mmap seems to fail without this write on empty file */

 write(fd, &SharedDataInit, sizeof(SHARED_DATA));

 pMem=mmap(0, sizeof(SHARED_DATA), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

 if((void*)-1 != pMem){

 pSharedData=(SHARED_DATA *)pMem;

 while(!Done){

 /*************************

 * Personality of '1':

 * - Will talk if both are silent

 * - Will stop talking if both are talking

 */

 if('1'==argv[1][0]){

 if('F'==pSharedData->P1_speaks){

 if('F'==pSharedData->P2_speaks){

 strcpy(pSharedData->Mess_p1_to_p2, Messages[Step][0]);

 pSharedData->P1_speaks='T';

 }

 }

 else{

112 UNIX Custom Application Migration Guide: Volume 2

 if('T'==pSharedData->P2_speaks){

 printf("[1,%d] P2 says: %s\n",Step,pSharedData->Mess_p2_to_p1);

 pSharedData->P1_speaks='F';

 Step++;

 if(!Messages[Step][0]) Done=1;

 }

 }

 }

 /*************************

 * Personality of '2':

 * - Will talk if other was talking and it was silent

 * - Will stop talking if other is talking

 */

 else{

 if('F'==pSharedData->P2_speaks){

 if('T'==pSharedData->P1_speaks){

 printf("[2,%d] P1 says: %s\n",Step,pSharedData->Mess_p1_to_p2);

 strcpy(pSharedData->Mess_p2_to_p1, Messages[Step][1]);

 pSharedData->P2_speaks='T';

 Step++;

 if(!Messages[Step][0]) Done=1;

 }

 }

 else{

 if('F'==pSharedData->P1_speaks){

 pSharedData->P2_speaks='F';

 }

 }

 }

 sleep(1);

 }

 /* Wait for other process to finish */

 sleep(2);

 pSharedData->P1_speaks='F'; /* For next time we use the same file */

 pSharedData->P2_speaks='F';

 munmap(pSharedData, sizeof(SHARED_DATA));

 }

 else{

 perror("Could not map memory\n");

 }

 close(fd);

 }

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 113

 else perror("Could not create memory mapping file\n");

}

(Source File: InteropSFU-UAMV2C8.01.c)

Win32 example:
#include <windows.h>

#include <winioctl.h>

#include <conio.h>

#include <stdio.h>

#define BufferSize 256

char *Messages[][2]={

 /* Talk of '1' */ /* Talk of '2' */

 {"Hello '2', How are you?", "Not bad '1', how about
yourself?"},

 {"What's up '2'?", "Not much '1'"},

 {"It could be a lot worse!", "Yup!"},

 {"Well, I guess that is that, '2'!", "I guess so '1'..."},

 {0,0}

};

typedef struct ShareData_tag{

 char P1_speaks; /* 'T'=true, 'F'=false */

 char P2_speaks; /* 'T'=true, 'F'=false */

 char Mess_p1_to_p2[BufferSize];

 char Mess_p2_to_p1[BufferSize];

} SHARED_DATA;

SHARED_DATA SharedDataInit={

 'F','F',{0},{0}

};

const char *pMemMapFileName="C:\\common.mem";

int main(int argc, char *argv[]){

 int Step=0, Done=0;

 SHARED_DATA *pSharedData;

 HANDLE hFile;

114 UNIX Custom Application Migration Guide: Volume 2

 HANDLE hMem;

 if(argc<2){

 printf("Please invoke with either '1' or '2'\n");

 exit(1);

 }

#ifdef XYZ

 if(-1 != (fd=open(pMemMapFileName, O_RDWR | O_CREAT, 0777))){

 write(fd, &SharedDataInit, sizeof(SHARED_DATA));

 pMem=mmap(0, sizeof(SHARED_DATA), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

 if((void*)-1 != pMem){

 pSharedData=(SHARED_DATA *)pMem;

#endif

/**/

 if ((hFile = CreateFile (pMemMapFileName /* szTmpFile */,

 GENERIC_WRITE | GENERIC_READ,

 FILE_SHARE_WRITE | FILE_SHARE_READ,

 NULL,

 OPEN_ALWAYS /* CREATE_ALWAYS */,

 FILE_FLAG_NO_BUFFERING | FILE_FLAG_WRITE_THROUGH,

 NULL)) == INVALID_HANDLE_VALUE){

 printf("Could not create file %s\n",pMemMapFileName /* szTmpFile */);

 exit(1);

 }

 /* Create file mapping. */

 if (!(hMem = CreateFileMapping (hFile,

 NULL,

 PAGE_READWRITE,

 0,

 sizeof(SHARED_DATA),

 NULL))){

 if (hFile){

 CloseHandle (hFile);

 hFile = NULL;

 }

 printf("Mapping file failed\n");

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 115

 exit(1);

 }

 if((pSharedData = (SHARED_DATA *)MapViewOfFile(hMem,

 FILE_MAP_WRITE,

 0,

 0,

 sizeof(SHARED_DATA)))){

 *pSharedData=SharedDataInit;

 FlushViewOfFile(pSharedData, sizeof(SHARED_DATA));

/**/

 while(!Done){

 /*************************

 * Personality of '1':

 * - Will talk if both are silent

 * - Will stop talking if both are talking

 */

 if('1'==argv[1][0]){

 if('F'==pSharedData->P1_speaks){

 if('F'==pSharedData->P2_speaks){

 strcpy(pSharedData->Mess_p1_to_p2, Messages[Step][0]);

 pSharedData->P1_speaks='T';

 FlushViewOfFile(pSharedData, sizeof(SHARED_DATA));

 }

 }

 else{

 if('T'==pSharedData->P2_speaks){

 printf("[1,%d] P2 says: %s\n",Step,pSharedData->Mess_p2_to_p1);

 pSharedData->P1_speaks='F';

 FlushViewOfFile(pSharedData, sizeof(SHARED_DATA));

 Step++;

 if(!Messages[Step][0]) Done=1;

 }

 }

 }

 /*************************

 * Personality of '2':

 * - Will talk if other was talking and it was silent

 * - Will stop talking if other is talking

 */

 else{

116 UNIX Custom Application Migration Guide: Volume 2

 if('F'==pSharedData->P2_speaks){

 if('T'==pSharedData->P1_speaks){

 printf("[2,%d] P1 says: %s\n",Step,pSharedData->Mess_p1_to_p2);

 strcpy(pSharedData->Mess_p2_to_p1, Messages[Step][1]);

 pSharedData->P2_speaks='T';

 FlushViewOfFile(pSharedData, sizeof(SHARED_DATA));

 Step++;

 if(!Messages[Step][0]) Done=1;

 }

 }

 else{

 if('F'==pSharedData->P1_speaks){

 pSharedData->P2_speaks='F';

 FlushViewOfFile(pSharedData, sizeof(SHARED_DATA));

 }

 }

 }

 Sleep(1000);

 }

 /* Wait for other process to finish */

 Sleep(2000);

/**/

 UnmapViewOfFile (pSharedData);

 }

 else printf("Could not obtain mem pointer\n");

 if(hMem){

 CloseHandle (hMem);

 hMem=NULL;

 }

 if (hFile){

 CloseHandle (hFile);

 hFile = NULL;

 }

/**/

#ifdef XYZ

 pSharedData->P1_speaks='F'; /* For next time we use the same file */

 pSharedData->P2_speaks='F';

 munmap(pSharedData, sizeof(SHARED_DATA));

 }

 else{

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 117

 perror("Could not map memory\n");

 }

 close(fd);

 }

 else perror("Could not create memory mapping file\n");

#endif

}

(Source File: InteropWin-UAMV2C8.021.cpp)
Note FlushViewOfFile writes to the disk a byte range, within a mapped view of a file. Flushing a
range of a mapped view causes any dirty pages within that range to be written to the disk. Dirty
pages are those whose contents have changed since the file view was mapped. Because of caching
implementation of the file system support for memory-mapped files, this call may not be required.
However, there is no harm in having this call other than when high performance is a critical factor.

Monitoring and Supporting the Applications
System and application administrators usually want to use tools and scripts to manage migrated
applications. With migrations to Interix, there is an option to also migrate any of the management
tools that were used in the UNIX environment.
This section discusses the options available for managing and supporting migrated applications.
In this case, Windows Services for UNIX 3.5 provides the tools that are necessary to port Perl
and UNIX shell scripts to Win32, including those employing standard UNIX tools such as awk,
sed, and grep.

Deploying Interix Applications Using the Berkeley "r"
Commands
The script copies the updated image of an application remotely to an Interix computer and
modifies the startup symbolic link of the application to point to the new application. This
installation script is copied (using rcp) to the target computer, and then executed using an rsh to
copy a specified application directory to the target computer (where this script is executed). The
following checks must be performed:
• Whether the platform is Interix.
• What the current application version is, if any.
• Whether there is enough disk space at the target computer.
The arguments to this script include:
• The directory or file on the target computer where the application will be installed.
• Disk space (in kilobytes) needed for the file or directory in which the application will be

installed.
• The directory or file that must be removed. This must be different from the second argument.
• The source computer on which the installation directory of the application exists.
• The path of application on the source computer.
If you specify -f, the application directory or file is removed if it already exists, and then the
installation is performed. If this option is not specified and the application directory or the file
exists, it is not removed and the script results in error.

118 UNIX Custom Application Migration Guide: Volume 2

Following is an example of such a script with the relevant error messages:
Script for Remote Deployment of Applications in Interix
#!/bin/ksh

------------------------- Start of Functions-------------------------
--

CHECK_DISK_SPACE ()

{

 TARGET_DIR="$1"

 SPACE_REQ="$2"

 AVAILFILE1="$3"

 AVAILFILE2="$4"

 if [! -d "$TARGET_DIR"]; then

 return 2

 fi

 cd "$TARGET_DIR"

 let AVAILSPACE=`/bin/df -k . | /bin/tail -1 | /bin/awk '{print $4}'`

 TARGET_DIRFILESYSTEM=`/bin/df -k . | /bin/tail -1 | /bin/awk '{print
$1}'`

 if [-a "$AVAILFILE1"]; then

 cd `dirname "$AVAILFILE1"`

 AVAILFILE1FILESYSTEM=`/bin/df -k . | /bin/tail -1 | /bin/awk '{print
$1}'`

 if ["$AVAILFILE1FILESYSTEM" = "$TARGET_DIRFILESYSTEM"]; then

 let AVAILSPACE="$AVAILSPACE"+`/bin/du -skx "$AVAILFILE1" 2>/dev/null
| /bin/awk '{print $1}'`

 fi

 fi

 if [-a "$AVAILFILE2"]; then

 cd `dirname "$AVAILFILE2"`

 AVAILFILE2FILESYSTEM=`/bin/df -k . | /bin/tail -1 | /bin/awk '{print
$1}'`

 if ["$AVAILFILE2FILESYSTEM" = "$TARGET_DIRFILESYSTEM"]; then

 let AVAILSPACE="$AVAILSPACE"+`/bin/du -skx "$AVAILFILE2" 2>/dev/null
| /bin/awk '{print $1}'`

 fi

 fi

 if ["$AVAILSPACE" -lt "$SPACE_REQ"]; then

 return 9

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 119

 fi

 return 0

}

------------------------- End of Functions --------------------------
-

if [`uname` != "Interix"]; then

 echo "The operating system is not Interix."

 exit 1

fi

FORCE="n"

if ["$6" = "-f"]; then

 FORCE="y"

fi

#dir/file where application will be installed

INSTALL_LOC="$1"

#disk space (in KB) needed in `dirname $INSTALL_LOC`

SPACE_REQ="$2"

#dir/file to be removed (should not be same as $INSTALL_LOC)

REMOVE_LOC="$3"

if [-a "$INSTALL_LOC" -a "$FORCE" = "n"]; then

 echo "The product (same or different level) is already installed."

 exit 2

fi

TARGET_DIR=`dirname "$INSTALL_LOC"`

CHECK_DISK_SPACE "$TARGET_DIR" "$SPACE_REQ" "$INSTALL_LOC"
"$REMOVE_LOC"

FLAG="$?"

if ["$FLAG" = "9"]; then

 echo "Not enough disk space is available."

 exit 3

elif ["$FLAG" != "0"]; then

 echo "The available disk space cannot be ascertained."

 exit 4

fi

120 UNIX Custom Application Migration Guide: Volume 2

rm -rf "$INSTALL_LOC"

rm -rf "$REMOVE_LOC"

#Source machine dns name where the application’s installation directory
exists

SOURCE_HOST="$4"

#Directory path of application on source machine

SOURCE_LOC="$5"

rcp –r "$SOURCE_HOST":"$SOURCE_LOC" "$INSTALL_LOC"

Using the Remote Deployment Script
You will be able to deploy your application to a remote computer by using the following
instructions. The remote computer is called targetmachine in these instructions.
To deploy your applications to a remote computer
1. Copy the script install.ksh to target computer using rcp.
2. Execute the install script as follows:

$ rsh targetmachine /dev/fs/C/tmp/install.ksh /dev/fs/C/tmp/test1
200 /dev/fs/C/appdir/app1 sourcehost /dev/fs/E/SFU/app1
Where the arguments are as follows:
• /dev/fs/C/tmp/test1

The directory or file in which application will be installed on the target computer.
• 200

The disk space (in KB) needed for the file or directory in which the application will be
installed.

• /dev/fs/C/appdir/app1
The directory or file to be removed (must be different from the second argument).

• sourcehost
The source computer in which the installation directory of the application exists.

• /dev/fs/E/SFU/app1
The directory path of application on the source computer.

If you attempt to run the script twice, the following is displayed:
$ rsh targetmachine /dev/fs/C/tmp/install.ksh /dev/fs/C/tmp/test1
200 /dev/fs/C/appdir/app1 sourcehost /dev/fs/E/SFU/app1

$ "The product (same or different level) is already installed."

This is because the application already exists on the target computer. If you use the -f option,
the following is displayed because installation would have occurred twice:
$ rsh targetmachine /dev/fs/C/tmp/install.ksh /dev/fs/C/tmp/test1
200 /dev/fs/C/appdir/app1 sourcehost /dev/fs/E/SFU/app1 –f

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 121

Testing Activities
This section discusses the testing activities designed to identify and address potential solution
issues prior to deployment. Testing starts when you begin developing the solution and ends when
the testing team certifies that the solution components meet the schedule and quality goals
established in the project plan.
Testing in migration projects involving infrastructure services is focused on finding discrepancies
between the behavior of the original application, as seen by its clients, and the behavior of the
newly migrated application. All discrepancies must be investigated and fixed.
In the Developing Phase, the testing team executes the test plans for acceptance tests on the
application submitted for a formal round of testing on the test environment. The testing team
assesses the solution, makes a report on its overall quality and feature completeness, and
certifies that the solution features, functions, and components address the project goals.
The inputs required for the Developing Phase include:
• Functional specifications document.
• A feature-complete application, which has been unit tested.
The documents that are used during the Developing Phase include:
• Test plan. The test plan is prepared during the Planning Phase. It should describe in detail

everything that the test team, the program management team, and the development team
must know about the testing to be done.

• Test specification. The test specification conveys the entire scope of testing required for a
set of functionality and defines individual test cases sufficiently for the testers. It also
specifies the deliverables and the readiness criteria.

• Test environment. The test environment is an exact replica of the live environment; it is
used to test the application under realistic environments. It also describes the software,
hardware, and tools required for testing purposes.

• Test data. The test data is a set of data for testing the application. Test data is usually a
diverse set of data that helps test the application under different conditions.

• Test report. The test report is an error report of the tests done. It includes a description of
the errors that occurred, steps to reproduce the errors, severity of the errors, and names of
the developers who are responsible for fixing them.
The test report is updated during the Stabilizing Phase and is also one of the outputs of this
phase, along with the tested and stabilized application.

The key deliverables of the Developing Phase include:
• Application ready to be deployed on the production environment.
• Application source code.
• Project documentation and user manual.
• Test plan, test specification, and test reports.
• Release notes.
• Other project-related documents.

122 UNIX Custom Application Migration Guide: Volume 2

Testing behind with a code review of the application and unit testing. In the Developing Phase,
the application is subjected to various tests. The test plan organizes the testing process into the
following different elements:
• Code component testing
• Integration testing
• Database testing
• Security testing
• Management testing
You can test the migrated application in all the scenarios using a defined testing strategy.
Although each test has a different purpose, together they verify that all system elements are
properly integrated and perform their allocated functions.

Code Component Testing
A component may be a class or a group of closely related classes performing a similar task.
Component testing is the next step after unit testing. Component testing is the process of
verifying a software component with respect to its design and functional specifications.
Component testing in a migration project is the process of finding the discrepancies between the
functionality and output of components in the Windows application and the original UNIX
application. Basic smoke testing, boundary conditions, and error test cases are written based on
the functional specification of the component.
The code component testing round tests the components for:
• Functionality.
• Input and output, interactions within and with other components.
• Stress testing.
• Performance.
The test cases for component testing cover, either directly or indirectly, constraints on their inputs
and outputs (pre-conditions and post-conditions), the state of the object, interactions between
methods, attributes of the object, and other components. The code component testing requires
the following inputs:
• Test plan and specification. It provides the test cases.
• System requirements. These are used to determine the required behaviors for individual

domain-level classes. The use case model is also used to determine which parts of a
component must be tested for vulnerabilities.

• Specifications of the component. The specifications are used to build the functional test
cases. Information on the component inputs, outputs, and interactions with other components
can be derived from here.

• Design document. The actual implementation of the design provides the information
necessary to construct the structural and interaction test cases.

Components must also be stress tested. Stress testing is the process of loading the component
to the defined and undefined limits. Each component must be stressed under a load to ensure
that it performs well within a reasonable performance limit.
System CPU and memory usage per component can also be measured and monitored to know
the performance of individual components. For this, you can use tools such as the Windows
Performance Monitor. For more information, refer to the "Testing and Optimization Tools" section
in Chapter 9, “Stabilizing Phase” of this volume.

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 123

Integration Testing
Integration testing involves testing the application as a whole, with all the components of the
application put together. Component testing is done during the testing performed in the
Developing Phase. Integration testing is the process of verifying the application with respect to
the behavior of components in the integrated application, interaction with other components, and
the functional specifications of the application as a whole. Integration testing in a migration project
is the process of finding discrepancies in the interaction between components and the behavior of
components in the Windows application and the original UNIX application.
Integration testing tests the components for:
• Functionality, behavior of the application as a whole and the individual components after

integration.
• Input and output, interactions within and with other components.
• Response to various types of stresses.
• Performance.
Test cases for integration testing directly or indirectly include functionality of the components,
constraints on their inputs and outputs (pre- and post-conditions), the state of the object,
interactions between components, attributes of the object, and other components. The application
must also be stress tested. Inputs required for integration testing include:
• Test plan. It provides the details of testing the application.
• Test specification. It is used to determine the required behaviors for individual domain-level

classes. The use case model is also used to determine which parts of the application must be
tested for vulnerabilities.

Stress testing must also be performed. Stress testing is the process of loading the application to
the defined and undefined limits to ensure that it performs well within a reasonable performance
limit.
System testing is also performed after completion of integration testing. System testing is the
process of ensuring that the integrated application is compatible with all platforms and to test
against its requirements. The system CPU and memory usage for the application can also be
measured and monitored to determine their performance. For this, you can use tools such as the
Windows Performance Monitor.
Note More information on these tools is available at "Testing and Optimization Tools" in Chapter 9,
“Stabilizing Phase” of this volume.

Database Testing
The database component is a critical piece of any data-enabled application. In a migration
project, the database may be the same or may have been replaced by another database. In both
cases, data must be migrated to the respective database on Windows. Testing of a migrated
database includes testing of:
• Migrated procedural code.
• Data integration with heterogeneous data sources (if applicable).
• Customized data transformations and extraction.
Database testing also involves testing at the data access layer, which is the point at which your
application communicates with the database. Database testing in a migration project involves:
• Testing the data and the structure and design of the migrated database objects.
• Testing the procedures and functions related to database access.

124 UNIX Custom Application Migration Guide: Volume 2

• Security testing, which tests the database to guarantee proper authentication and
authorization so that only the users with the appropriate authority access the database. The
database administrator must establish different security settings for each user in the test
environment.

• Testing of data access layer.
• Performance testing of data access layer.
• Manageability testing of the database.
An application maintains the following three databases, which are replicas of each other:
• Development database. This is where most of the testing is carried out.
• Deployment database (or integration database). This is where the tests are run prior to

deployment to ensure that the local database changes are applied.
• Live database. This has the live data and cannot be used for testing.
Database testing is done on the development database during development, and the integrated
application is tested using the deployment database.

Security Testing
Security is about controlling access to a variety of resources, such as application components,
data, and hardware. Security testing is performed on the application to ensure that only the users
with the appropriate authority are able to use the applicable features of the application. Security
testing also involves testing the application from the point of providing the same security features
and measures that were provide by the original application.
To ensure that the application is secure, most security measures are based on the following four
concepts:
• Authentication. This is the process of confirming the identity of the users, which is one layer

of security control. Before an application can authorize access to a resource, it must confirm
the identity of the requestor.

• Authorization. It is the process of verifying that an authenticated party has the permission to
access a particular resource, which is the layer of security control following the authentication
layer.

• Data protection. It is the process of providing data confidentiality, integrity, and
nonrepudiability. Encrypting the data provides data confidentiality. Data integrity is achieved
through the use of hash algorithms, digital signatures, and message authentication codes.
Message authentication codes (MACs) are used by technologies such as SSL/TLS to verify
that data has not been altered while in transit.

• Auditing. It is the process of logging and monitoring events that occur in a system and which
are of interest to security.
Note For more information, refer to "Event Logging" on the TechNet Web site at
http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-
ebe8a76648a91033.mspx.

The systems engineer establishes different security settings for each user in the test
environment. Network security testing is performed to guarantee that the network is secure from
unauthorized users. To minimize the risks associated with unchecked errors on the system, you
should know the user context in which system processes run, keeping to a minimum the
privileges that these accounts have, and log their access to these accounts. Active monitoring
can be accomplished using the Windows Performance Monitor for real-time feedback.
All security settings and security features of the application must be documented properly.

http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx

Chapter 8: Developing Phase: Deployment Considerations and Testing Activities 125

Notes

More information about security testing is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxcontestingforsecurability.asp.

More information on how to make your code secure is available at

http://msdn.microsoft.com/security/securecode/.

More information on secure coding guidelines for the .NET Framework is available at

http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-
us/dnnetsec/html/seccodeguide.asp.

Management Testing
Testing for manageability involves testing the deployment, maintenance, and monitoring
technologies that you have incorporated into your migrated application.
Following are some important testing recommendations to verify that you have developed a
manageable application:
• Test Windows Management Instrumentation (WMI). WMI can provide important

information about your application and the resources it uses. During the design of your
application, you made certain decisions about the types of WMI information that must be
provided. These might include server and network configurations, event log error messages,
CPU consumption, available disk space, network traffic, application settings, and many other
application messages. You must test every source of information and be certain you can
monitor each one.
Note More information on usage of WMI in applications is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp.

• Test Network Load Balancing (NLB) and cluster configuration. You can use Application
Center 2000 clustering to add a front-end or back-end server while the application is still
running. After installing new server hardware on the network, use your monitoring console to
replicate the application image and start the server. The new server should automatically
begin sharing some of the workload. You can set up the Application Center 2000
Performance Monitor (PerfMon) to track multiple front-end Web servers. After setting up
PerfMon, make some requests to generate traffic. PerfMon will show you that there is an
increase in traffic in the back-end servers and that the workload is evenly spread across the
front-end computers.
Note More information about Application Center 2000 is available at

http://www.microsoft.com/applicationcenter/.

• Test change control procedures. An important part of application management is the
handling of both scheduled and emergency maintenance changes. Test and validate all of
the change control procedures including the automated and manual processes.
It is especially important to test all people-based procedures to ensure that the necessary
communication, authority, and skills are available to support an error-free change control
process.
Note More information on this is available on the MSDN Web site at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxcontestingformanageability.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingforsecurability.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingforsecurability.asp
http://msdn.microsoft.com/security/securecode/
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_reference.asp
http://www.microsoft.com/applicationcenter/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingformanageability.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingformanageability.asp

126 UNIX Custom Application Migration Guide: Volume 2

Interim Milestone: Internal Release n
The project needs interim milestones to help the team measure their progress in the actual
building of the solution during the Developing Phase. Each internal release signifies a major step
toward the completion of the solution feature sets and achievement of the associated quality
level. Depending on the complexity of the solution, a number of internal releases may be
required. Each internal release represents a fully functional addition to the solution’s core feature
set, indicating that it is potentially ready to move on to the Stabilizing Phase.

Closing the Developing Phase
Closing the Developing Phase requires completing a milestone approval process. The team
documents the results of different tasks that it has performed in this phase and obtains a sign-off
on the completion of development from the stakeholders (including the customer).

Key Milestone: Scope Complete
The Developing Phase culminates in the Scope Complete Milestone. At this milestone, all
features are complete and the solution is ready for external testing and stabilization. This
milestone is the opportunity for customers and users, operations and support personnel, and key
project stakeholders to evaluate the solution and identify any remaining issues that must be
addressed before beginning the transition to stabilization and, ultimately, to release.
Key stakeholders, typically, representatives of each team role and any important customer
representatives who are not on the project team, signal their approval of the milestone by signing
or initialing a document stating that the milestone is complete. The sign-off document becomes a
project deliverable and is archived for future reference.
Now the team must shift its focus to verify that the quality of the solution meets the acceptance
criteria for release readiness. The next phase, the Stabilizing Phase, describes the activities (for
example, user acceptance testing (UAT), regression testing, and conducting the pilot) required to
achieve these objectives.

Chapter 9: Stabilizing Phase
This chapter describes the suggested strategy for stabilizing an application that has been
migrated from UNIX to the Microsoft® Windows® operating system. The Stabilizing
Phase involves testing the application for the expected functionality and improving the
quality of the application to meet the acceptance criteria set for the project.
This chapter also describes the objectives of testing in the Stabilizing Phase. It introduces
testing processes and methodologies that can be used to test applications with different
architectures. You need to test the applications to verify that they meet the expected
functionality and acceptance criteria set for the project. Various tools that you can use to
test applications are also discussed here. The information in this chapter will enable you
to choose the most appropriate tools for testing your application.

Goals for the Stabilizing Phase
This section describes the primary goals that you need to accomplish in the Stabilizing
Phase. This section acquaints you with the major tasks to be performed and the
deliverables expected from the Stabilizing Phase.
The primary goal of the Stabilizing Phase is to improve the quality of the solution so that it
meets the acceptance criteria and can be released into the production environment.
During this phase, the team tests the feature-complete migrated application. At this point
in the Stabilizing Phase, the applications are subjected to various tests such as user
acceptance testing (UAT), regression testing, and bug tracking based on the application’s
requirements. The build must demonstrate that it reaches the defined quality and
performance levels and is ready for full production deployment.
Testing during the Stabilizing Phase is an extension of the testing that was conducted
during the development of the application in the Developing Phase. Testing in the
Stabilizing Phase tests usage and operation of the application under realistic conditions.
Test plans include testing the functionality in the migrated application and making a
comparison of the migrated application’s functionality with that provided by the original
application. Test plans also must include test cases for testing the new features added to
the application.
After a build is stabilized, the solution is deployed. This phase culminates with the
Release Readiness Approved Milestone, indicating that the team and customer agree
that all the outstanding issues have been addressed.

128 UNIX Custom Application Migration Guide: Volume 2

Major Tasks and Deliverables
Table 9.1 describes the major tasks that must be completed during the Stabilizing Phase
and lists the processes and roles responsible for achieving them.
Table 9.1. Major Stabilizing Phase Tasks and Owners

Major Tasks Owners

Testing the solution
The team executes the test cases that
were created during the Planning Phase
and enhanced and tested during the
Developing Phase. Testing includes
comparing the test results of the parent
application and the migrated application as
well as testing the applications from
different perspectives.

Test

Resolving defects
The team triages the defects identified and
resolves them. New tests are developed to
reproduce issues reported from other
sources. The new test cases are integrated
into the test suite.

Development, Test

Conducting the solution pilot
This task involves setting up the
deployment environment and the migrated
application on the staging area to test the
application before it is deployed. The team
moves a solution pilot from the
development area to a staging area to test
the solution with the actual users and real
scenarios. It also includes testing the
solution in a live environment. The solution
pilot is conducted before starting the
Deploying Phase.

Release Management

Closing the Stabilizing Phase
The team documents the results of the
tasks performed in this phase and solicits
management approval at the Release
Readiness Approved Milestone meeting.

Project

Chapter 9: Stabilizing Phase 129

Table 9.2 lists the tasks described in Table 9.1 and considers the tasks from the
perspective of the team roles. The primary team roles directing the Stabilizing Phase are
Test and Release Management.
Table 9.2. Role Cluster Focuses and Responsibilities in Stabilizing Phase

Role Cluster Focus and Responsibility

Product Management Execute communications plan and launch test
phase.

Program Management Track project and bug triage.

Release Management Preparation for deployment of the application
and setting up the production environment.

Development Bug triage and resolution, code optimization,
and hardware or service reconfiguration.

User Experience Stabilization of user documentation and training
materials.

Test Generate build and triage plan.
Track test schedule.
Review bugs entered in the bug-tracking tool and
monitor their status during triage meeting.
Generate weekly status reports.
Escalate issues that are blocking progress,
review impact analysis, and generate change
management document.
Ensure that the appropriate level of testing is
achieved for a particular release.
Lead the actual Build Acceptance Test (BAT)
execution.
Execute test cases and generate test report.

Testing the Solution
This section describes the testing activities that are performed in the Stabilizing Phase. In
the Stabilizing Phase, testing is performed not only on individual components of the
solution, but on the solution as a whole, because all features and functions of the solution
are now complete, and all solution elements have been built. The testing that began
during the Developing Phase according to the test plan created during the Planning
Phase continues with further testing, tracking, documentation, and reporting activities.
This mainly involves UAT and regression testing as explained in the next subsections in
detail.

130 UNIX Custom Application Migration Guide: Volume 2

User Acceptance Testing (UAT)
The Stabilizing Phase emphasizes UAT to ensure that the migrated solution meets the
business needs. UAT is performed on a collection of business functions in a production
environment after the completion of functional testing. This is the final stage in the testing
process before the system is accepted for operational use. It involves testing the system
with data supplied by the actual user or customer instead of the simulated data
developed as part of the testing process. The result of UAT confirms that the solution
meets the overall user requirements and determines the release readiness status of the
system. Running a pilot for a select set of users helps to identify areas where users have
trouble understanding, learning, and using the solution.
For migration projects, UAT involves testing the migrated application and identifying the
defects. These defects are addressed and regression testing is conducted for each fixed
defect to ensure the fix doesn’t break any other functionality of the migrated application.
The UAT Summary confirms that the solution meets the customer’s acceptance criteria,
thereby assisting in customer acceptance of the solution.

Regression Testing
Regression testing refers to retesting previously tested components and functionality of
the system to ensure that they function properly even after a change has been made to
parts of the system. For migration projects, this is the most important class of tests. As
defects are discovered in a component, modifications should be made to correct them.
This may require retesting of other components or the entire solution in the testing
process.
The regression test helps in the following areas:
To ensure that no new problems are introduced and that the operational performance is

not degraded because of the modifications.
To ensure that the effects of the changes are transparent to other areas of the application

and other components that interact with the application.
To modify the original test data and test cases from other levels of testing.

Resolving the Solution Defects
In order to resolve defects, they must be reproduced and tested in the test environment.
Each reproduced defect in the test environment should be tracked with its status and
severity. An important aspect of such tests involves test tracking and test reporting. Test
tracking and reporting occurs at frequent intervals during the Developing and Stabilizing
Phases. During the Stabilizing Phase, this reporting is driven by the bug count. Regular
communication of the test status to the team and other key stakeholders ensures that the
project runs smoothly. After fixing the defects, test cases and test data should be updated
and integrated with the test suite.

Bug Convergence
Bug convergence is the point at which the team makes visible progress against the active
bug count. At bug convergence, the rate of bugs resolved exceeds the rate of bugs
found, thus the actual number of active bugs decreases. After bug convergence, the
number of bugs should continue to decrease until the zero bug bounce task, as explained
in the next sections.

Chapter 9: Stabilizing Phase 131

Interim Milestone: Bug Convergence
Bug convergence tells the team that most of the bugs have been addressed and the rate
of bugs resolved is higher than the rate of new bugs found. This can be considered as
the interim milestone and the migrated application can be taken for zero bug bounce
verification.

Zero Bug Bounce
Zero bug bounce is the point in the project when development finally catches up to
testing and there are no active bugs for the moment. After zero bug bounce, the number
of bugs should continue to decrease until the product is sufficiently stable for the team to
build the first release candidate.

Interim Milestone: Zero Bug Bounce
Achieving zero bug bounce is a clear sign that the solution is near to being considered a
stable release candidate.

Release Candidates
After the first achievement of zero bug bounce, a series of release candidates are
prepared for release to the pilot group. Each release is marked as an interim milestone.
Guidelines for declaring a build a release candidate include the following:
• Each release candidate has all the required elements to qualify for release to

production.
• The test period that follows determines whether a release candidate is ready to

release to production or if the team must generate a new release candidate with
appropriate fixes.

• Testing the release candidates, carried out internally by the team, requires highly
focused and intensive efforts and concentrates heavily on discovering critical bugs.

Interim Milestone: Release Candidate
As each new release candidate is built, there should be fewer bugs reported, classified,
and resolved. Each release candidate marks significant progress in the team’s approach
toward deployment. With each new candidate, the team must focus on maintaining tight
control over quality.

Interim Milestone: Preproduction Test Complete
Eventually, a release candidate is prepared that contains no defects. After this has
occurred, no defects should be found within the isolated staging environment. At this
stage, all testing that can be done before putting the migrated component into production
has been completed.

132 UNIX Custom Application Migration Guide: Volume 2

Conducting the Solution Pilot
This section describes the best practices to be adopted for conducting a pilot of the
migrated application. This section provides you with information regarding various points
to be considered while conducting a pilot and deciding the next steps to take after the
pilot.
A pilot release is a deployment into a subset of the live production environment or user
group. During the pilot, the team tests as much of the entire solution as possible in a true
production environment. Depending on the context of the project, the pilot can take
various forms:
• In an enterprise, a pilot can be a group of users or a set of servers in a data center.
• For migration projects, the pilot might involve testing the most demanding application

or database that is being migrated with a sophisticated group of users that can
provide helpful feedback.

The common element in all the piloting scenarios is testing under live conditions. The
pilot is not complete until the team ensures that the solution is viable in the production
environment and that the solution is ready for deployment.
Some of the best practices that should be followed while conducting a pilot are:
• Before beginning a pilot, the team and the pilot participants must clearly identify and

agree upon the success criteria of the pilot. These should map back to the success
criteria for the development effort.

• Any issues identified during the pilot must be resolved either by further development,
by documenting resolutions and workarounds for the installation team and production
support staff, or by incorporating them as supplemental material in training or help
documentation.

• Before the pilot is started, a support structure and an issue-resolution process must
be in place. This may require the support staff getting trained in the application area
that is being piloted.

• To identify any issues and confirm that the deployment process will work, it is
necessary to implement a trial run or a rehearsal of all the elements of the
deployment prior to the actual deployment.

After you collect and evaluate the pilot data, a corresponding strategy should be selected
based on the findings from the analysis of pilot data. The next strategy could be one of
the following:
• Stagger forward. Deploy a new release to the pilot group.
• Roll back. Execute the rollback plan and revert the pilot group to the stable state

they had before the pilot started.
• Suspend. Suspend the entire pilot.
• Fix and continue. If you find an issue during the pilot, fix the issue and continue with

the next steps.
• Proceed. Advance to the Deploying Phase.
After the pilot has been completed, the pilot team must prepare a report detailing each
lesson learned and how new information was incorporated and issues were resolved.

Interim Milestone: Pilot Complete
This milestone signifies that the pilot has been successfully completed and that the team
is ready to proceed to the Deploying Phase.

Chapter 9: Stabilizing Phase 133

Closing the Stabilizing Phase— Release
Readiness Approved
The Stabilizing Phase culminates with the Release Readiness Approved Milestone. The
team builds a release candidate (with all the major defects fixed) that satisfies the
necessary quality policy of the organization. All rounds of testing must be completed,
meaning that all test plans have been executed and test cases satisfied before the
migrated component can be moved into the production environment. Then the release is
approved with a formal sign-off marking that the Release Readiness Approved Milestone
has been reached.
Key stakeholders, typically representatives of each team role and any important customer
representatives who are not on the project team, signal their approval of the milestone by
signing or initialing a document stating that the solution is complete and approved for
release. The sign-off document becomes a project deliverable and is archived for future
reference.
The performance of the application following deployment in the production environment is
a key criterion in indicating a successful application migration. The following sections will
help you to optimize the performance of the application and the tools following
deployment.

Tuning
This section discusses tuning of the solution in detail, including how to performance-tune
the migrated application, and scaling up and scaling out of the application. In addition, the
section discusses multiprocessor considerations for applications and network utilizations.
You can use this information to identify the parameters that affect application
performances and the steps to consider in the scalability of the applications.

Performance Tuning
Performance management starts with the gathering of a data baseline that indicates what
system performance should look like. After establishing a baseline, it is used to evaluate
the performance of the application. Performance problems typically do not become
apparent until the application is placed under an increased load.
Measuring the performance of an application when placed under ever increasing loads
determines the scalability of that application. When the performance begins to fall below
the stated minimum performance requirements, you have reached the limit of scalability
of the application. For more information about scaling, refer to the "Scaling Up and
Scaling Out" section later in this chapter.
Performance tuning can be carried out in the following ways:
• Tuning the computer hardware by adding more memory, updating CPUs, adding disk

controllers, or upgrading network controllers. This is the most efficient way and helps
performance-tune the application as well.

• Application rearchitecture to remove bottlenecks such as poor threading and looping
and checking for other loops that use too much CPU time. This step also helps
considerably in performance tuning.

• Operating system parameter tuning. This involves adjusting the amount of page store
and tweaking network stack parameters.

• Tuning of the configurations on a database server, application server, or Web server.

134 UNIX Custom Application Migration Guide: Volume 2

In UNIX, performance is monitored using a type of kernel-level instrumentation, along
with rudimentary tools for monitoring the CPU, disk, and memory usage.
Windows Server™ 2003 is designed such that it exposes a great deal of performance
data. Tools like Windows Performance Monitor (PerfMon) can be used to export detailed
information about the processor, memory, disk, and network usage. Performance Monitor
support is integrated throughout Windows. Administrators can gather a variety of
performance data from many computers simultaneously.
UNIX kernels tend to have many configurable parameters that can be fine-tuned for
specific applications. By contrast, the Windows kernel is largely self-tuned. The virtual
memory, thread scheduling, and I/O subsystems all dynamically adjust their resource
usage and priority to maximize throughput. The difference between these two
approaches is that the UNIX approach is to tweak kernel parameters for maximum
advantage in the benchmark, even if those tweaks affect the real-world performance,
while the Windows approach is to let the kernel tune itself for whatever load is placed on
it.
Notes

More information on improving performance and writing faster managed code is available at

.

More information on writing high-performance managed applications is available at

Scaling Up and Scaling Out
Scalability is a measure of how easy it is to modify the application infrastructure and
architecture to meet variances in utilization. As with other application capabilities, the
decisions you make during the design and early coding phases largely dictate the
scalability of your application.
Application scalability requires a balanced partnership between two distinct domains:
software and hardware.
Scaling up is achieving scalability with the use of better, faster, and more expensive
hardware to move the processing capacity limit from one part of the computer to another.
Scaling up includes adding more memory, adding more or faster processors, or just
migrating the application to a more powerful, single computer. Typically, this method
allows for an increase in capacity without requiring changes to source code. However,
adding CPUs may not add performance in a linear fashion. Instead, the performance gain
curve slowly tapers off as each additional processor is added.
Scaling out distributes the processing load across more than one server by dedicating
several computers to common tasks. In this scenario, the fault tolerance of the
application can be increased. Scaling out also presents a greater management challenge
because of the increased number of computers.
Developers and administrators use a variety of load-balancing techniques to scale out
with the Windows platform. Load balancing allows an application to scale out across a
cluster of servers, making it easy to add capacity by adding replicated servers. It provides
redundancy, giving the site failover capabilities so that it remains available to users even
if one or more servers fail or are taken down.
Scaling out provides a method of scalability that is not hampered by hardware limitations.
Each additional server provides a near linear increase in scalability.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
 us/dndotnet/html/fastmanagedcode.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
 us/dndotnet/html/highperfmanagedapps.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp

Chapter 9: Stabilizing Phase 135

The key to successfully scaling out of an application is location transparency. If any of the
application code depends on knowing which server is running the code, location
transparency has not been achieved and scaling out will be difficult. This situation
requires code changes to scale out an application from one server to many, which is
seldom an economical option. If you design the application with location transparency in
mind, scaling out becomes an easier task.
Notes

More information on scaling is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
 us/vsent7/html/vxconmanageabilityoverview.asp.

Microsoft Application Center 2000 reduces the complexity and the cost of scaling out. More
information on Application Center 2000 is available at
http://www.microsoft.com/applicationcenter/default.mspx.

More information on scaling network-aware applications is available at
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.
asp.

Multiprocessor Considerations
Application performance improves by having multiple processors perform the same task.
You can distribute the processing load across the several processors.
Computationally intensive tasks are characterized by intensive processor usage with
relatively few I/O operations. The ongoing challenge with these applications is to improve
the performance. You can do this with a faster computer, a more efficient algorithm, and
by improving the implementation or using more processors. You can improve the
performance with the help of tuning techniques as well.
Using additional processors can mean taking advantage of an SMP computer or by using
distributed computing with multiple networked computers. However, adding CPUs does
not add performance in a linear fashion. Instead, the performance gain curve slowly
tapers off as each additional processor is added. The characteristics of this behavior
depend on how the application is designed. For computers with SMP configurations,
each additional processor incurs system overhead. After you have upgraded each
hardware component to its maximum capacity, you will eventually reach the real limit of
the processing capacity of the computer. At that point, the next step is to move to another
computer.
Multiprocessor optimization can be achieved by making use of threads.
Note More information on multiprocessor optimizations is available at
http://msdn.microsoft.com/msdnmag/issues/01/08/Concur/.

Network Utilizations
Network resources, such as available bandwidth and latency, must be predicted and
managed on computers and devices throughout the network.
Optimal network utilization is achieved with cooperation among end nodes, switches,
routers, and wide area network (WAN) links through which data must pass. There are
tools that help analyze network traffic, provide network statistics and packet information,
and thereby better use the network by analyzing areas of congestion.
Quality of Service (QoS), an industry-wide initiative, achieves a more efficient use of
network resources by differentiating between data subsets. Windows 2000 implements
QoS by including a number of components that can cooperate with one another.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconmanageabilityoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconmanageabilityoverview.asp
http://www.microsoft.com/applicationcenter/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp
http://msdn.microsoft.com/msdnmag/issues/01/08/Concur/

136 UNIX Custom Application Migration Guide: Volume 2

Notes

More information on QOS on Windows is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/qos/qos/qos_start_page.asp.

Network Monitor captures network traffic for display and analysis. More information on Network
Monitor is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netmon/netmon/network_monitor.asp.

Network Probe is another tool for traffic-level network monitoring and for analysis and
visualization. More information on Network Probe is available at
http://www.objectplanet.com/probe/.

Testing and Optimization Tools
The following are some of the commonly used tools for Windows Services for UNIX 3.5.

Monitoring Tools
• netstat. Allows you to track the state of the socket ports. This tool is a part of

Windows.

Testing and Debugging Tools
• Electric Fence. A malloc debugger and bounds checker. It uses the virtual memory

hardware of your system to detect when software overruns the boundaries of a
malloc buffer. It also detects any accesses of memory released by free.

• hexdump. Gives an ASCII, decimal, hexadecimal, and octal dump. The hexdump
command can be used to display the contents of a binary file or a file that contains
unprintable characters.

• nm. Used to examine binary files (including libraries, compiled object modules,
shared-object files, and stand-alone executables) and to display the contents of
those files or the meta information stored in them.

• ulimit. Used to display or control the resources available to a process.
• xev. Prints contents of X Windows events. It is useful for seeing what causes events

to occur and to display the information that they contain.
• truss. A run-time system call tracker. It follows the detailed history of system calls. It

is useful for narrowing down errors before starting a debugger.
• pstat. Displays detailed process information and provides detailed run-time

information per process. This tool is a part of Windows Services for UNIX.
• ps. Provides run-time information about processes and their interrelationships. This

tool is a part of Windows Services for UNIX.
• Objdump. Displays information about a binary/object that can be useful for tracking

down run-time problems (that is, shared library dependencies). This tool is a part of
Windows Services for UNIX.

• pstruct. Dumps information about C structures, such as offsets, and actual member
sizes. Good for checking alignment problems. This tool is a part of Windows Services
for UNIX 3.5.

• expect. Scripts user activity and responses interactively to programs.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/qos/qos/qos_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp
http://www.objectplanet.com/probe/

Chapter 9: Stabilizing Phase 137

Other Commonly Used Tools
This section lists other commonly used tools that are useful in testing and monitoring
applications.

Monitoring Tools
• Diskmon. This tool captures all hard disk activity or acts such as a software disk

activity light in your system tray. This tool is available for download at
http://www.sysinternals.com/ntw2k/freeware/diskmon.shtml.

• Filemon. This monitoring tool allows you to view all file system activity in real-time.
This tool works on all versions of Windows NT, Windows 2000, Windows 2003, and
Windows XP. It also works with the Windows XP 64-bit edition. This tool is available
for download at http://www.sysinternals.com/ntw2k/source/filemon.shtml.

• PMon. This is a Windows NT GUI/device driver program that monitors process and
thread creation and deletion, as well as context swaps if it is running on a
multiprocessing or checked kernel. This tool is available for download at
http://www.sysinternals.com/ntw2k/freeware/pmon.shtml.

• Portmon. You can monitor serial and parallel port activity with this advanced
monitoring tool. It knows about all standard serial and parallel IOCTLs and even
shows you a portion of the data being sent and received. This tool is available for
download at http://www.sysinternals.com/ntw2k/freeware/portmon.shtml.

• Regmon. This monitoring tool allows you to view all registry activity in real-time. This
tool is available for download at
http://www.sysinternals.com/ntw2k/source/regmon.shtml.

• TCPView. You can view all the open TCP and UDP endpoints. TCPView even
displays the name of the process that owns each endpoint. This tool is available for
download at http://www.sysinternals.com/ntw2k/source/tcpview.shtml.

• Task Manager. Task Manager provides run-time information on processes. The Task
Manager tool is available as part of Windows.

Testing Tools
• WinRunner. Winrunner helps in GUI capture and playback testing for Windows

applications. More information on WinRunner is available at
http://www.mercury.com/us/products/quality-center/functional-testing/winrunner/.

• Silktest. Silktest is an object-oriented software testing tool for Windows applications.
More information on Silktest is available at
http://www.segue.com/products/functional-regressional-testing/silktest.asp.

• LoadRunner. LoadRunner is an automated client/server system testing tool that
provides performance testing, load testing, and system tuning for multiuser
applications. More information on LoadRunner is available at
http://www.mercury.com/us/products/performance-center/loadrunner/.

• Rational Robot Automated Test. Rational Robot Automated Test provides
automated functional, regression, and smoke tests for e-applications. More
information on Rational Robot is available at http://www-306.ibm.com/software/rational/.

• Microsoft Application Center Test. Designed to stress test Web servers and
analyze performance and scalability problems with Web applications, including Active
Server Pages (ASP) and the components they use. It simulates a large group of
users by opening multiple connections to the server and rapidly sending HTTP
requests. More information on Microsoft Application Center Test is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/act/htm/actml_main.asp.

http://www.sysinternals.com/ntw2k/freeware/diskmon.shtml
http://www.sysinternals.com/ntw2k/source/filemon.shtml
http://www.sysinternals.com/ntw2k/freeware/pmon.shtml
http://www.sysinternals.com/ntw2k/freeware/portmon.shtml
http://www.sysinternals.com/ntw2k/source/regmon.shtml
http://www.sysinternals.com/ntw2k/source/tcpview.shtml
http://www.mercury.com/us/products/quality-center/functional-testing/winrunner/
http://www.segue.com/products/functional-regressional-testing/silktest.asp
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www-306.ibm.com/software/rational/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp

138 UNIX Custom Application Migration Guide: Volume 2

Source Test Tools
• gdb. Used to view the current activities inside another program while it executes or to

view the state of another program with which you can monitor the processes and
threads of an application at the moment of the application’s crash.

• Purify. Purify is a run-time error and memory leak detector. More information on
Purify is available at http://www-306.ibm.com/software/sw-bycategory.

Tools for Win64:
• VTune Performance Analyzer. Intel VTune Analyzers help locate and remove

software performance bottlenecks by collecting, analyzing, and displaying
performance data from the system-wide level down to the source level. More
information on VTune Performance Analyzer is available at
http://www.intel.com/software/products/vtune/.

• Lint. A source code (C language) checker. Lint highlights possible problem areas
with code successfully compiled by cc. Additional information is available at
http://www.pdc.kth.se/training/Tutor/Basics/lint/index-frame.html.

Further Reading
For more information, refer to:
• “Testing Software Patterns” on the MSDN Web site at

http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-
us/dnpag/html/tsp.asp.

http://www-306.ibm.com/software/sw-bycategory
http://www.intel.com/software/products/vtune/
http://www.pdc.kth.se/training/Tutor/Basics/lint/index-frame.html
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/tsp.asp
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/tsp.asp

Index
.NET,from SFU ... 106
ActivePerl.. 98
archiving tools... 101
auditing ... 124
authentication ... 124
authorization ... 124
Berkeley r commands ... 117
Berkeley remote shell commands............................... 97
BSD 4.3 .. 12
building application ... 28
C shell ... 98
cluster configuration.. 125
code component testing.. 122
COM

Interix,encapsulating... 109
command line, SFU3.5 ... 9
computer information .. 92
configuration ... 103

inetd .. 104
logon/logoff scripts.. 104

daemons 15–16, 15–16, 16, 57, 72–77, 73
converting code .. 77
cron service .. 74
porting,Interix .. 76–77, 76
porting,Interix service.. 76

data protection .. 124
database

accessing, SFU3.5.. 95
connectivity ... 94–97, 94
data source ... 94
driver... 94
odbc .. 94
unixODBC... 95

database testing ... 123
debugging application... 29
deploying

archiving tools....................................... 101–3, 101
code modification.. 100
compression ... 102
configuration ... 103
Interix .. 98, 117–20, 117
packaging tools... 101
pushing, desktop... 98
remote management... 98
remote,Interix.. 118
scripts ... 97

tools.. 97
deploying, application... 97–101
deployment ... 91
depoying

libraries... 103
developing phase ... 19, 21

end ... 126
goals... 7, 19
introduction... 19
milestone .. 126
tasks ... 19–20, 20

developing Pphase... 19, 20, 21
directory

operations... 50–51, 50
working directory .. 50

environment
deployment... 91
live .. 91
process... 91
temporary files.. 92
variables ... 91

environment variables .. 107
error handler ... 59
file ... 14, 22, 45, 47

contol.. 47, 48
create ... 48, 49
file Nnames .. 14
Gdbm.. 54
group .. 48
mount entry .. 53
NTFS .. 51
operations... 51–53, 51
path Nnames .. 14, 28
permissions,Interix ... 48
permissions,win32.. 49
security ... 48
systems,UNIX... 52

file I/O differences, UNIX.. 47
file management .. 10, 14–15, 14, 15, 46–56, 47, 50, 51,
52, 53, 63, 64, 94, 97, 107
File management.. 14, 22, 45
FreeTDS... 96
Gdbm.. 53–56, 54
header files 23, 26, 27, 28, 81, 101, 103
inetd.. 104
infrastructure services 15, 22, 57

input,output,error .. 108
integration testing ... 123
Interix

building application 28–29, 28
COM,encapsulating .. 109
debugging application............................. 29–30, 29
development environment ... 19, 23, 28, 29, 31, 39,
 47, 81, 97, 106, 109
differences,UNIX................................... 9–17, 9–17
environment 19, 23, 28, 29, 31, 39, 47,
 48–49, 81, 97, 106, 109
functions ... 85
header files 23, 26, 27, 28
introduction ... 7, 8
MSI ... 100
remote,deployment ... 118
SDK 16, 17, 28, 29, 67, 81, 82, 83, 89, 105
sub-system ... 8

Interix,functions
BSD string and bit... 88
command line api.. 87
math.. 85–86, 85
regular expressions .. 86
shell api... 87
string manipulation.................................. 88–89, 88

interprocess communication 62–67, 63
message queues .. 67
shared memory... 46
unnamed pipes ... 63

Invoke .NET,from SFU.. 106
Invoke win32/64,from SFU 106
ioctl 26, 47–48, 47, 48, 82, 83, 100
ipc

shared memory... 46
Ipcm .. 46, 64
Ipcs ... 13, 46, 64
Korn .. 98
libraries ... 103
live environment.. 91
logon/logoff scripts.. 104
management testing ... 125
memory

functions ... 45
heap.. 45
shared... 46
synchronize access .. 46

memory management................... 10, 13, 22, 45–46, 45
Microsoft Solutions Framework 19, 30, 31
migrating scripts.. 93–94, 93
monitoring ... 117
Motif .. 83
MSF .. 19, 30, 31
MSI ... 100
MSI, Interix rsh.. 100

multiprocessor considerations.................................. 135
network

security testing ... 124
Network Information Service 15, 69, 103
network security testing.. 124
network utilization... 135
networking

host name... 68–69, 68, 69
Remote Procedure Call (RPC) 68
socket calls... 69
Sockets... 69
Transport Level Interface (TLI)............... 71–72, 71
User Datagram Protocol (UDP).......................... 71
X/Open Transport Interface (XTI)....................... 71

New Technology File System..................................... 51
NIS.. 15, 69, 103
nterix

header files... 23–28
NTFS .. 51
OpenGL.. 83
packaging tools... 101
pathnames.. 107
performance tuning... 133
Perl ... 96, 97
pipes

unnamed .. 63
Platform SDK.. 23
POSIX 11, 12, 13, 15, 28, 34, 35, 46, 49, 58, 59, 60, 62,
 75, 81, 82–83, 82, 101, 106, 107, 108, 109, 110
POSIX.1.. 12, 82, 101
POSIX-compliant threads... 13
process

create ... 33
groups .. 33, 37
hierarchy... 11, 34
multitasking .. 10, 11
multithreading... 11
multiuser... 11
priority... 38
replace process image 34
resource limits .. 35–37, 36
scheduling .. 11, 38, 43
waiting .. 35

process environment .. 91
computer information.. 92
system messages... 92
temporary files.. 92
variables ... 91

process management 10, 22, 33–39
proof of Cconcept ... 21, 22
Pthread ... 11
Python .. 98
remote management .. 98
remote shell commands ... 97

Index 3

remote,deployment in Interix 118
Ruby ... 98
running .NET,from SFU .. 106
running win32/64,from SFU 106
runwin32 ... 106, 108
scaling... 134
scripts ... 97

ActivePerl.. 98
C shell... 98
Korn .. 98
Perl ... 97
Python... 98
Ruby ... 98
Tcl/Tk .. 98

scripts, migration... 93
secure code .. 125
security ... 33

group... 59
token... 58–59
user... 59

security testing.. 124
services... 16, 73, 104
Services For UNIX 3.5

command- line .. 9
installation... 9
overview.. 7

SFU3.5
building application ... 28
command- line .. 9
debugging application... 29
debugging tools .. 136
installation... 9
monitoring tools .. 136
overview.. 7
testing tools... 136

shared memory... 46
shell scripts, migration .. 93
signals... 11–12, 12, 60–62, 60

bsd_signal... 61, 62
socket

contol .. 47, 48
sockets

domain name.. 68, 69
host name... 68, 69
socket calls ... 69
Transport Level Interface (TLI) 71
User Datagram Protocol (UDP) 71
winsock ... 53, 67, 69
X/Open Transport Interface (XTI) 71

stabilizing
multiprocessor considerations 135
network utilization ... 135
scaling... 134
testing ... 121

tuning.. 133
stabilizing goals .. 127
stabilizing phase... 127
standard input,output,error 108
system messages... 92
System V 12, 13, 29, 46, 63, 64, 67, 82, 83, 92, 93, 104
Tcl/Tk.. 98
temporary files .. 92
test data.. 121
test environment ... 121
test network load balancing 125
test plan .. 121, 127
test report ... 121
test specification... 121
testing ... 121–25, 127

code component... 122
code review .. 30–31
database... 123
integration... 123
management .. 125
network load balancing 125
security ... 124
unit.. 122

thread
attributes... 43
detaching.. 41
model.. 39
priority... 33, 43, 45
scheduling .. 11, 33, 43, 45
synchronization .. 41–42
synchronization, condition variables................... 42
synchronization, mutex....................................... 42
synchronization, semaphores............................. 42
terminating.. 41

thread management 10, 13, 22, 33, 39–44
tools 8, 9, 17, 20, 21, 28, 29, 39, 49, 53, 56, 74, 80, 81,

89, 95, 97, 98, 100, 102, 103, 105, 117, 127,
137
debugging... 16, 17, 136
development... 7, 16
monitoring... 136, 137
source test.. 138
testing... 136, 137
win64 .. 138

tuning.. 133–36, 133
performance ... 133

UI
character-based UI... 81
curses... 83
Motif.. 83
ncurses... 83
OpenGL.. 83
POSIX terminal I/O... 82
terminal I/O... 82

termio.. 82
UNC .. 14
unit testing .. 122
Universal Naming Convention 14
UNIX

kernel .. 9
shell .. 9
utilities... 9

unixODBC driver manager.. 95
win32, Interix... 100
win32/64,from SFU ... 106
win64

tools .. 138
Windows

security model,comparison with UNIX................ 15
Windows Installer Service... 97
Windows NTFS... 51

Windows Platform SDK .. 23
Windows Services for UNIX

command- line.. 9
installation .. 9
overview ... 7–9, 7

wvisible ... 108
X Windows

building ... 81
characters... 81
client ... 79
header .. 81
libraries... 81
manager ... 80
programs,Interix ... 80
server ... 79
X11 server .. 80

X11 server .. 80

	UNIX Custom Application Migration Guide
	Contents
	About This Volume
	Introduction to Volume 2
	Intended Audience
	Knowledge Prerequisites

	Layout of the Guide: Volume 2
	Organization of Content
	Resources
	Acronyms
	Document Conventions
	Code Samples

	Chapter 1: Introduction to Windows Services for UNIX 3.5
	Overview of Windows Services for UNIX 3.5
	Architectural Differences Between UNIX and Interix
	Features in Interix
	Process Management
	Multitasking
	Multiple Users
	Multithreading
	Process Hierarchy
	Signals

	Thread Management
	Memory Management
	File Management
	File Names and Path Names

	Infrastructure Services
	Security
	Daemons and Services

	Development and Debugging Tools

	Chapter 2: Developing Phase: Process Milestones and Technology Considerations
	Goals for the Developing Phase
	Starting the Development Cycle
	Building a Proof of Concept
	Interim Milestone: Proof of Concept Complete

	Developing the Solution Components
	Development Environment
	Using Interix

	Developing the Testing Tools and Tests
	Unit Testing

	Building the Solution
	Interim Milestone: Internal Release

	Chapter 3: Developing Phase: Process and Thread Management
	Process Management
	Creating a New Process
	Replacing a Process Image
	Maintaining Process Hierarchy
	Waiting for a Child Process
	Managing Process Resource Limits
	Supporting Process Groups
	Managing and Scheduling the Processes
	Terminating the Processes

	Thread Management
	Creating New Threads
	Detaching a Thread
	Terminating a Thread
	Synchronizing Threads
	Synchronization Using Mutexes
	Synchronization Using Condition Variables
	Synchronization Using Semaphores

	Associating Thread Attributes
	Scheduling and Prioritizing Threads

	Chapter 4: Developing Phase: Memory and File Management
	Memory Management
	Heap Management
	Memory-Mapped Files
	Shared Memory Management
	Synchronizing Access to Shared Resources

	File Management
	Differences Between Interix and UNIX File I/O
	The Interix ioctl() Function Implementation
	Terminal Control and ioctl()
	File Control and ioctl()
	Socket Control and ioctl()

	File Security
	Files Created in the Interix Environment
	Files Created in the Win32 Subsystem

	Directory Operations
	File System Operations in Interix
	File System Mount Entry Management
	Gdbm Library

	Chapter 5: Developing Phase: Infrastructure Services
	Security
	File System Security
	User-Level Security
	Process Level Security

	Error Handlers
	Signals
	UNIX bsd_signal Code Replacement

	Interprocess Communication
	Pipes (Unnamed/Named, Half/Full Duplex)
	Anonymous Pipes
	Named Pipes (FIFOs)
	Shared Memory

	System V Message Queues

	Networking
	 TCP/IP Protocols and Tools
	Remote Procedure Call
	Sockets

	Daemons and Services
	Daemons
	Cron Service
	Remote Shell Service
	The Interix Remote Shell Daemon
	regpwd
	rcp
	rlogin and rlogind

	Porting a Daemon to Interix
	Porting a Daemon to Interix Service
	Converting Daemon Code into Interix Service Code

	Chapter 6: Developing Phase: Migrating the User Interface
	X Windows Support on Windows Services for UNIX 3.5
	X Windows Programs Supported by Interix
	Building X Windows Applications

	Migrating Character-based User Interfaces
	POSIX Terminal I/O
	Porting Curses and Terminal Routines to Interix

	Porting OpenGL, Motif, and Xview Applications

	Chapter 7: Developing Phase: Functions to Change for Interix
	Math Routines
	Regular Expressions
	System/C Library and Miscellaneous APIs
	Command-Line and Shell APIs
	String-Manipulation Functions
	BSD String and Bit Functions
	Time-Handling APIs
	Other System/C Library Functions

	Chapter 8: Developing Phase: Deployment Considerations and Testing Activities
	Deployment Considerations
	Process Environment
	Environment Variables
	Temporary Files
	Computer Information
	Logging System Messages

	Migration of Scripts
	Porting UNIX Shell Scripts to Interix

	Database Connectivity
	Open Database Connectivity
	Accessing Databases from Windows Services for UNIX 3.5

	Deploying the Application
	Tools for Deploying Interix Applications
	Deploying Interix Applications
	Code Modification
	Packaging and Archiving Tools
	Using Libraries
	Configuring the System
	Installation
	Administration

	Interoperability with Windows Services for UNIX 3.5
	Running Win32-based Programs
	Encapsulating an Interix Application from a Win32 COM Object
	Interacting with a Win32 Application Using Memory-Mapped Files

	Monitoring and Supporting the Applications
	Deploying Interix Applications Using the Berkeley "r" Commands
	Using the Remote Deployment Script

	Testing Activities
	Integration Testing
	Database Testing
	Security Testing
	Management Testing

	Interim Milestone: Internal Release n
	Closing the Developing Phase
	Key Milestone: Scope Complete

	Chapter 9: Stabilizing Phase
	Goals for the Stabilizing Phase
	Major Tasks and Deliverables

	Testing the Solution
	User Acceptance Testing (UAT)
	Regression Testing

	Resolving the Solution Defects
	Bug Convergence
	Interim Milestone: Bug Convergence

	Zero Bug Bounce
	Interim Milestone: Zero Bug Bounce

	Release Candidates
	Interim Milestone: Release Candidate
	Interim Milestone: Preproduction Test Complete

	Conducting the Solution Pilot
	Interim Milestone: Pilot Complete

	Closing the Stabilizing Phase— Release Readiness Approved
	Tuning
	Performance Tuning
	Scaling Up and Scaling Out
	Multiprocessor Considerations
	Network Utilizations

	Testing and Optimization Tools
	Monitoring Tools
	Testing and Debugging Tools
	Other Commonly Used Tools
	Monitoring Tools
	Testing Tools
	Source Test Tools

	Further Reading

	Index

