

UNIX Custom Application Migration
Guide
Version 2.0

Volume 4: Migrate Using .NET

Published: May 2006

 UNIX Custom Application Migration Guide: Volume 4 ii

© 2006 Microsoft Corporation. This work is licensed under the Creative Commons Attribution-NonCommercial
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/2.5

iii

Contents
About This Volume.. 1

Introduction to Volume 4..1
Intended Audience ...2
Knowledge Prerequisites ...2

Layout of the Guide: Volume 4 ..3
Organization of Content..4
Resources ..4

Acronyms ...5
Document Conventions ...5
Code Samples ...5

Chapter 1: Introduction to .NET .. 7
.NET Overview ..7

The .NET Platform..7
Advantages of .NET..9
Features of the .NET Framework ..10

Common Language Runtime (CLR)..10
.NET Framework Base Class Library...12
.NET Tools and Technologies ..13

.NET XML Framework ...13
New Suite of XML APIs..14
.NET XML Namespaces..14

XML-based I/O ...14
.NET DOM Implementation...14
Transformations ...15

.NET Application Security..15
Role-based Security ...15
Code Access Security..15

Implementation in .NET..16
Processes and Threads..16
Memory Management ...16
File Management..16
Signals, Exceptions, and Events ...17
Networking ...17
Interprocess Communication ...17
User Interface ...17
Daemons vs. Services...18
Deployment ..18
Summary of Platform Differences ...19

.NET Migration Paths..21
Analyzing Application Types...21

Static Application..21
Evolving Application..21

Reengineering Using the .NET Framework..22

iv UNIX Custom Application Migration Guide: Volume 4

Interoperating with the Existing Code ...24
Managed Extensions for C++ ...25
.NET Interoperability Services ..25

Utilizing .NET Servers ...27
Migration Scenarios ...28

Rich Client Applications ...28
Web Applications ...28
Database Applications...29

DataSet ..30
DataReader ...30
DataAdapter ..31

References..31
Chapter 2: Developing Phase: Process Milestones and Technology
Considerations.. 33

Goals for the Developing Phase ...33
Major Tasks and Deliverables...33

Starting the Development Cycle...34
Building a Proof of Concept ...35

Interim Milestone: Proof of Concept Complete ..35
Developing the Solution Components ...35

Using the Development Environment ..36
.NET Framework SDK ...36
Visual Studio .NET 2003..36

Developing the Testing Tools and Tests ..37
Unit Testing ..38

Building the Solution..38
Interim Milestone: Internal Release ..38

Chapter 3: Developing Phase: .NET Interoperability 41
.NET Interoperability Mechanisms ..41

Wrapping Unmanaged C++ Classes with Managed Extensions for C++41
Wrapping Technique Considerations ..44
Data Marshaling ...44

Platform Invocation Services..45
P/Invoke with UNIX Code...45
P/Invoke with Win32 API ...47

C++ Interoperability – It Just Works...47
Marshaling Arguments..48

Chapter 4: Developing Phase: Process and Thread Management 51
Process Management ...51

Creating a Process ...51
UNIX Processes vs. .NET Application Domains ..53

Application Domains and Threads..54
Programming with Application Domains ...54

Processes vs. Threads...55
Managing Process Resource Limits..56

Thread Management ..57

 v

Creating a Thread ..58
Terminating a Thread ...60

Suspend, Resume, and Sleep Methods...63
Thread Synchronization ..63

Multiple Nonsynchronized Threads...64
Synchronization Techniques ...66
Advanced Synchronization Techniques in .NET66
Synchronization Using Semaphores ...68
Synchronization Using Mutexes...73

Thread Scheduling and Priorities ..76
Managing Thread State and Priorities in .NET......................................76
Example of Converting UNIX Thread Scheduling into .NET77
Managing Multiple Threads...79

Chapter 5: Developing Phase: Memory and File Management 83
Memory Management...83

Allocating Memory..83
Releasing Memory..84

Releasing Memory for Unmanaged Resources84
Garbage Collection ...84

Forcing Garbage Collection...85
Releasing Unmanaged Resources ...85
Thread Local Storage..91

File Management ...94
File Access Mechanisms ..94

UNIX File Access...94
.NET File Access ...94

File Open and Access Modes ..99
Migrating Using Interoperability Strategies... 100
Working with Directories ... 101

Accessing the Current Working Directory.. 101
Accessing Directories .. 102
Other Directory Operations .. 103

Chapter 6: Developing Phase: Infrastructure Services................................ 107
Signals and Events .. 107

Introduction to Events in .NET ... 107
Delegate... 108
Event Model in .NET ... 108

Raising Events ... 109
Raising Multiple Events.. 109
Consuming Events .. 110

SIGINT Implementation .. 110
Replacing UNIX Signals Within .NET.. 114

Exception Handling in .NET ... 116
Exception Handling Model.. 116

Sockets and Networking ... 119
Interprocess Communication ... 122

vi UNIX Custom Application Migration Guide: Volume 4

Process Pipes .. 122
Named Pipes ... 124
Shared Memory and Memory-Mapped Files .. 127
Message Queues .. 128

Daemons vs. Services .. 128
Database Connectivity.. 129

Chapter 7: Developing Phase: Migrating the User Interface........................ 131
.NET Forms, Drawing, and GDI+.. 131

Windows Forms ... 131
Web Forms ... 131
Drawing and GDI+ ... 132
Windows Forms Designer .. 132

Comparing X Windows and Windows Forms ... 132
User Interface Architecture.. 133
Look and Feel .. 134
Window Types ... 136

Desktop Window... 136
Application Window... 136
Dialog Boxes.. 136
Modeless Dialog Box ... 137
Modal Dialog Box.. 137
Message Box.. 137

Reference Material ... 137
User Interface Programming in X Windows and Windows Forms 137

Programming Principles... 138
Libraries and Include Files ... 139

Core Libraries .. 139
Motif and Windows Forms Common Dialog Boxes 139

Window Management ... 140
Creating Windows .. 141
Creating Controls ... 143
Identifying a Control... 146
Communicating with a Control ... 146

Event Handling.. 148
Capturing Mouse Events.. 148
Capturing Keyboard Events ... 149
Keyboard Focus ... 151

Graphics Device Interface ... 152
Getting the Graphics Object... 152
Device Context .. 153

Windows Character Data Types ... 154
Displaying Text.. 154

Using Fonts ... 155
Creating Fonts ... 156
Device vs. Design Units ... 156
Fonts Example ... 157

 vii

Text and Drawing Operations... 15ii9
Drawing Text ... 159
Filling Shapes... 160
Obtaining the Color of the Display Elements 160
Drawing a Gray Text at the Specified Location 161

Calculating Text Metrics .. 161
Text Widgets and Controls... 162

Drawing ... 164
Display and Color Management .. 164
Drawing Two-Dimensional Lines ... 165
Drawing Shapes and Rectangles... 167

Timers ... 168
X Windows Timer ... 168
.NET Timers .. 169

Migrating Character-based User Interfaces .. 171
Porting OpenGL Applications ... 171
Mapping X Windows Terminology to Windows Forms..................................... 172

Callback vs. Event Handlers... 172
Client vs. Client Window.. 172
Console Mode vs. Command Window .. 172
DPI vs. Screen Resolution ... 172
Graphics Context vs. Graphics Class Object ... 173
Resources vs. Properties ... 173
Resource Files vs. Configuration Files.. 173
Root Window vs. Desktop Window .. 174
/bin vs. /System32... 174
/usr/bin vs. Program Files ... 174
/usr/lib vs. LIB Environment Variable .. 174
/usr/include vs. INCLUDE Environment Variable...................................... 174
Pixmap or Bitmap vs. Bitmap... 174
Window Manager vs. Windows Server 2003 and Windows XP.................... 175
X Library [Xlib] [X11] vs. Drawing Namespace 175
X Toolkit [Intrinsics] [Xt] vs. Windows Forms... 175

Mapping X Windows Tools to Microsoft Windows... 176
Bitmap vs. Mspaint.exe... 176
Manual Pages vs. Help .. 176
xcalc vs. Calc.exe... 176
xclipboard vs. Clipbrd.exe ... 176
xedit vs. Notepad.exe ... 176
xev vs. Spyxx.exe.. 176
xfd vs. Fontview.exe... 177
xkill vs. Kill.exe ... 177
xlsclients vs. Pview.exe... 177
xlsfonts vs. Fonts Control Panel Item .. 177
xmag vs. Magnify.exe or Zoomin.exe.. 177
xon vs. Start.exe or Remote.exe .. 177

 UNIX Custom Application Migration Guide: Volumeviii

xset client vs. Control Panel Items.. 177
User Interface Coding Examples .. 178

X Windows "Hello World" Example .. 178
The xHello.mak File .. 181

.NET "Hello World" Example... 181
Chapter 8: Developing Phase: Additional Features in .NET.......................... 183

Securing Applications in .NET .. 183
Code Access Security.. 183
Role-based Security ... 184
Cryptographic Services ... 184

Isolated Storage.. 185
Serialization.. 185

Run-Time Serialization.. 186
.NET Remoting.. 186
XML Web Services in .NET .. 187
Enterprise Services in .NET ... 187
Enterprise Templates ... 188

Chapter 9: Developing Phase: Deployment Considerations and Testing
Activities... 191

Deployment Considerations... 191
Process Environment .. 191

Environment Variables .. 191
Computer Information... 193
Logging System Messages ... 195

Building the Application in .NET.. 199
.NET Deployment Activities.. 199

Assemblies .. 199
Configuration Files .. 200
Manifests... 202
Packaging Tools ... 202

Instrumentation... 204
Testing Activities ... 205

Integration Testing... 207
Database Testing ... 207
Security Testing... 208
Management Testing .. 209

Interim Milestone: Internal Release n ... 209
Closing the Developing Phase.. 210

Key Milestone: Scope Complete ... 210
Chapter 10: Stabilizing Phase ... 211

Goals for the Stabilizing Phase... 211
Major Tasks and Deliverables... 212

Testing the Solution... 213
User Acceptance Testing ... 213
Regression Testing ... 214

Resolving the Solution Defects .. 214

 ix

Bug Convergence... 214
Interim Milestone: Bug Convergence ... 214

Zero Bug Bounce ... 214
Interim Milestone: Zero Bug Bounce.. 214

Release Candidates .. 215
Interim Milestone: Release Candidate .. 215
Interim Milestone: Preproduction Test Complete 215

Conducting the Solution Pilot... 215
Interim Milestone: Pilot Complete ... 216

Closing the Stabilizing Phase: Release Readiness Approved 216
Tuning ... 216

Performance Tuning ... 216
Scaling Up and Scaling Out.. 217
Multiprocessor Considerations.. 218
Network Utilizations.. 218

Testing and Optimization Tools .. 219
Visual Studio .NET 2003 Tools.. 219
Platform SDK Tools .. 220

Debugging Tools... 220
File Management Tools .. 220
Performance Tools .. 220
Testing Tools ... 221

Other Commonly Used Tools.. 221
Monitoring Tools... 221
Testing Tools ... 221
Source Test Tools ... 222

Further Reading .. 222
Index .. 223

About This Volume

Introduction to Volume 4
Volume 1 of the UNIX Custom Application Migration Guide discussed how to apply the
Envisioning and Planning Phases of the Microsoft® Solutions Framework (MSF) Process Model
when conducting a UNIX to Microsoft Windows® migration project. This volume, Volume 4:
Migrate Using .NET, applies the next phases in the Process Model—the Developing Phase and
the Stabilizing Phase—and directs it specifically for using Microsoft .NET. This volume describes
the architectural and potential coding differences between the UNIX and Windows environments
using .NET and discusses various ways to implement these differences in the Windows
environment using .NET. This volume addresses these potential coding differences by looking at
the solution from various categories. These categories are:
• .NET interoperability.
• Process management.
• Thread management.
• Memory management.
• File management.
• Infrastructure services.
• User interface migration.
• Deployment considerations and testing activities.
• Stabilizing Phase activities.
For each of these categories, this volume:
• Describes the implementation on the .NET environment.
• Outlines options for converting the code using .NET.
• Illustrates the options with source code examples.
This information helps you in choosing the solution that is appropriate to your application.
Sufficient code examples and references are provided in this volume to aid you in the migration
process. You can also refer to the .NET Framework and .NET class library documentation to
obtain more details on .NET.
This volume considers Microsoft Visual Studio® .NET 2003 as the integrated development
environment (IDE) for developing .NET applications. Although newer technologies exist, the guide
is based on best practices developed by partners and customers. As new practices establish,
they will be incorporated into future releases of the guide. These latest technologies and their
features are briefly described in the “Roadmap for Future Migrations” section of Chapter 2,
“Operations” of Volume 5: Deploy and Operate of this guide.
For more information on activities in the Developing Phase as they relate to a migration project,
refer to Chapter 2, “Developing Phase: Process Milestones and Technology Considerations” of
this volume.

2 UNIX Custom Application Migration Guide: Volume 4

Intended Audience
The technical information in this volume is provided to support the activities undertaken during the
Developing Phase of a migration project. It is intended for developers and testers who are
involved in migrating UNIX code to Windows using .NET. The developers could be UNIX or
Windows programmers involved in developing the solution on Windows using .NET. Using the
guidance provided in this volume, a UNIX programmer will learn how to rewrite code so that it can
be recompiled to run in a .NET environment, and a Windows programmer will learn how to use
.NET for achieving the functionality.
Specific advantages that this volume provides the developers and testers are:
• Developers. Developers can learn about the various alternative methods for migrating from

UNIX to Windows using .NET and how to choose the best strategy to fit their environment
and the application types.

• Testers. Testers can gain more insight on the testing methodology that is best suited for their
migration scenario. With the help of this guide they can test the application for such aspects
as functionality, management, performance, and stability.

Knowledge Prerequisites
The readers of this volume should possess the following knowledge prerequisites:
• Basic knowledge of the UNIX and Windows environments.
• Basic understanding of process and thread management, file and memory management, and

various infrastructure services features.
• Hands-on experience on Windows environments.
• Hands-on experience on any one of the .NET programming languages.
• Hands-on experience on using Microsoft Visual Studio .NET 2003.
• Familiarity with UNIX administration skills.
It is also recommended that you read the “About This Guide” section in Volume 1: Plan as well as
the rest of the Plan volume before reading this volume.

About This Volume 3

Layout of the Guide: Volume 4
The following diagram depicts the layout of the guide and how the volumes of the guide correlate
with the components of the MSF Process Model. The portion shaded in white depicts the position
of the current volume in the layout of the entire guide.

Figure 0.1. UCAMG organization

4 UNIX Custom Application Migration Guide: Volume 4

Organization of Content
• About This Volume. This chapter provides information on the organization of the guide and

about its intended audience. It also lists the knowledge prerequisites required for this volume
and provides resources, such as document conventions, used in this guide.

• Chapter 1: Introduction to .NET. This chapter introduces the Microsoft .NET architecture,
application security, and .NET XML Framework. It explains the different paths, scenarios, and
techniques for migrating a UNIX application to .NET using Visual Studio .NET 2003.

• Chapter 2: Developing Phase: Process Milestones and Technology Considerations.
This chapter provides information on starting the Developing Phase and provides insight into
the development environment for the migration exercise. It also discusses the major tasks
and deliverables that should be identified and planned at the start of the Developing Phase.

• Chapter 3: Developing Phase: .NET Interoperability. Microsoft .NET provides several
interoperability mechanisms to interoperate with the native code, thus facilitating the
migration process and preserving the investments in the existing code. This chapter
discusses how these interoperability mechanisms can be applied to reuse the existing code
with minimal changes.

• Chapter 4: Developing Phase: Process and Thread Management. This chapter discusses
the differences between the UNIX and the Microsoft .NET environments in the context of
process and thread management programming. In addition, this chapter outlines the various
options available for converting the code from the UNIX to the Windows environment using
.NET and illustrates these options with appropriate source code examples.

• Chapter 5: Developing Phase: Memory and File Management. This chapter discusses the
programming differences between the Microsoft .NET Framework and the UNIX environment
in the following two categories: memory management and file management.

• Chapter 6: Developing Phase: Migrating Using .NET. This chapter discusses the
programming differences between UNIX and Microsoft .NET Framework. These differences
are addressed in the following categories: signals and events, exception handling in .NET,
sockets and networking, interprocess communication, daemons versus services, and
database connectivity.

• Chapter 7: Developing Phase: Migrating the User Interface. This chapter describes how
to migrate from a UNIX-based user interface (UI) to a Microsoft Windows UI using Windows
Forms provided by Microsoft .NET.

• Chapter 8: Developing Phase: Additional Features in .NET. This chapter describes some
of the other features of the Microsoft .NET Framework that you can use in migrating
applications from UNIX. These features include securing applications in .NET, isolated
storage, serialization, .NET remoting, XML Web services in .NET, Enterprise Services in
.NET, and enterprise templates.

• Chapter 9: Developing Phase: Deployment Considerations and Testing Activities. This
chapter discusses the key development considerations for deploying applications migrated to
the Microsoft .NET Framework. It also discusses the testing activities involved in the
Developing Phase.

• Chapter 10: Stabilizing Phase. This chapter describes the suggested strategy for stabilizing
an application that has been migrated from UNIX to the Microsoft Windows operating system.
The Stabilizing Phase involves testing the application for the expected functionality and
improving the quality of the application to meet the acceptance criteria set for the project.

Resources
This section describes the various resources that are included in the UNIX Custom Application
Migration Guide and information that will assist in using the guide.

About This Volume 5

Acronyms
Please see the Acronyms list accompanying this guide for a list of the acronyms and their
meanings used in this volume.

Document Conventions
The document conventions used in this volume are primarily designed to help you to quickly
identify the operating system and the interface (command line or graphical) being discussed. The
platforms discussed in this volume are Microsoft Windows and UNIX. In general, Windows
operating system commands are executed by clicking user interface (UI) elements, and these
elements are visually distinguished in this volume by the use of bold text. In contrast, the UNIX
operating system typically uses a command-line interface, and these instructions are visually
distinguished in this volume by the use of monospace font.
These interface and execution differences are not absolute; and in cases where visual cues do
not clearly delineate between operating systems, the text will clearly make this distinction.
Table 0.1 lists the document conventions used in this volume.
Table 0.1. Document Conventions

Text Element Meaning

Bold text Used in the context of paragraphs for commands; literal
arguments to commands (including paths when they form part
of the command); switches; and programming elements, such
as methods, functions, data types, and data structures.
Also used to identify the UI elements.

Italic text Used in the context of paragraphs for variables to be replaced
by the user.
Also used to emphasize important information.

Monospace font Used for excerpts from configuration files, code examples,
and terminal sessions.

Monospace bold font Used to represent commands or other text that the user types.
Monospace italic font Used to represent variables that the reader supplies in

command- line examples and terminal sessions.

Shell prompts The MS-DOS® prompt is used in Windows.

Note Represents a note.
Code Represents code.

Code Samples
The build volumes, Volume 2: Migrate Using Windows Service for UNIX 3.5, Volume 3: Migrate
Using Win32/64, and Volume 4: Migrate Using .NET, of this guide contain several code samples
to illustrate certain programming concepts. These code samples are available as source files in a
Tools and Templates folder in the download version of this guide, available at
http://go.microsoft.com/fwlink/?LinkId=30864.
.

http://go.microsoft.com/fwlink/?LinkId=30864

Chapter 1: Introduction to .NET
This chapter introduces the Microsoft® .NET architecture, application security, and .NET XML
Framework. It explains the different paths, scenarios, and techniques for migrating a UNIX
application to .NET using Visual Studio® .NET 2003. The chapter also discusses the platform
differences between UNIX and Microsoft Windows® operating systems and their implementation
in .NET.

.NET Overview
This section provides an overview of the .NET Framework, its components, and their advantages.
The .NET platform is an integral component of the Microsoft Windows operating system for
building and running next generation software applications and Web services. The .NET
development framework provides a new and simplified model for programming and deploying
applications on the Windows platform. It provides such advantages as multiplatform applications,
automatic resource management, and simplification of application deployment. As security is an
essential part of .NET, it provides security support, such as code authenticity check, resources
access authorizations, declarative and imperative security, and cryptographic security methods
for embedding into the user’s application.
.NET provides a simple object-oriented model to access most of the Windows application
programming interfaces (APIs). It also provides mechanisms by which you can use the existing
native code. In addition, it significantly extends the development platform by providing tools and
technologies to develop Internet-based distributed applications.

The .NET Platform
The Microsoft .NET platform, as illustrated in Figure 1.1 and described as follows, consists of four
components:
• .NET Framework. The .NET Framework is a multilanguage, application execution

environment that transparently manages core infrastructure services. It is a set of multiple
languages/technologies used for developing and creating components to create Web Forms,
Web services, and Windows applications. It supports the software life cycle for development,
debugging, deployment, and maintenance of applications. The version of .NET framework
that ships with Visual Studio .NET 2003 is version 1.1. The .NET Framework consists of the
following parts (also depicted in Figure 1.2):
• Common Language Runtime (CLR).
• .NET Framework base class library.
• Common Language Specification (CLS).
• .NET-compliant languages.
• Data and XML classes such as ADO.NET and XML.
• A set of class libraries for building XML Web services.
• ASP.NET Web Forms-based Web applications.
• Windows Forms-based rich client applications.
• Common Type System (CTS).
• Microsoft Visual Studio .NET 2003 integrated development environment (IDE).

8 UNIX Custom Application Migration Guide: Volume 4

• Development tools. Microsoft provides the programming model, the development
environment, and the tools necessary to build, deploy, and operate Web services with
applications such as Visual Studio .NET 2003.

• .NET enterprise servers. The Microsoft .NET enterprise servers make up the Microsoft .NET
server infrastructure for deploying, managing, and operating XML Web services and
traditional applications. Examples of enterprise servers are Microsoft SQL Server™ 2000 and
Microsoft Commerce Server 2000.

• .NET foundation services. A core set of building block services that execute standard tasks
and act as a basis for developers to build upon. These foundation services are known as
Microsoft .NET My Services and provide many features and functions. Most of the foundation
services are hosted (outsourced) services. An example of a currently available Web service
is Microsoft .NET Passport.

Figure 1.1. The .NET Framework overview

Chapter 1: Introduction to .NET 9

Advantages of .NET
The .NET Framework provides the following advantages:
• A consistent, object-oriented programming environment.
• A code-execution environment that:

• Promotes safe execution of code.
• Eliminates the performance problems of scripted or interpreted environments.
• Minimizes software deployment and versioning conflicts.

• A consistent experience for both developers and users across various types of Windows-
based and Web-based applications on multiple devices.

• Communication built on the industry standards to ensure that code based on the .NET
Framework can integrate with any other code.

.NET is based on open Internet standards, which include Hypertext Transfer Protocol (HTTP),
Extensible Markup Language (XML), and Simple Object Access Protocol (SOAP).
Note More information on XML is available at http://msdn.microsoft.com/xml/.

More information on SOAP is available at

http://msdn.microsoft.com/library/en-us/dnsoap/html/understandsoap.asp.

Figure 1.2 depicts the overall architecture of the .NET Framework components.

Figure 1.2. The .NET Framework architecture

http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/en-us/dnsoap/html/understandsoap.asp

10 UNIX Custom Application Migration Guide: Volume 4

Features of the .NET Framework
This section discusses some of the features of the Microsoft .NET Framework and how to use
these features in migrating code from the UNIX environment.

Common Language Runtime (CLR)
The core of the .NET Framework is the CLR, the run-time environment provided by .NET. The
runtime manages code at execution time and provides core services such as memory
management, thread management, remoting, and strict type safety enforcement.
Figure 1.3 depicts the components of CLR.

Figure 1.3. CLR components

CLR Features
UNIX applications, redeveloped on .NET, can make use of all the features provided by the CLR,
including:
• Simplified development and deployment of applications.
• Application memory management.
• Improved performance, scalability, and reliability.
• Cross-language inheritance.
• Multiple language support.
• Automatic garbage collection.
• Security.
• Strong type checking.
• Access to type metadata.
• Unified exception handling.

Chapter 1: Introduction to .NET 11

• Interoperability with existing code in COM (Component Object Model) objects and Microsoft
Win32® DLLs.

• Loading and executing code.
• Just-in-time (JIT) compilation of Microsoft intermediate language (MSIL) to native code.
• Side-by-side execution for multiple assembly versions.
• Other developer support services that include debugging and run-time profiling.
• Versioning and deployment support.
The .NET runtime also enforces other forms of controlled code access that promote security and
robustness. Code management is a fundamental principle of the runtime. Code that targets the
CLR is known as managed code, whereas code that does not target the CLR is known as
unmanaged code. Unmanaged code can also be used in the .NET environment using
interoperability techniques as explained in Chapter 3, “.NET Interoperability” of this volume.
All .NET applications compile to a common language called MSIL. A JIT compiler then compiles
MSIL to optimized native code.

Benefits of CLR
This various benefits offered by the CLR are as follows.
Security
The runtime enforces code access security. The managed components have varied degrees of
trust level depending on a number of factors, including their origin. Even if the same active
application is using the managed component, depending on the trust level, the managed
component might or might not be capable of performing file-access operations, registry-access
operations, or other sensitive functions.
For example, users can trust that an executable embedded in a Web page can play an animation
or a song, but cannot access their personal data, file system, or network.
Code Robustness
The runtime also enforces code robustness by implementing a strict type-and-code-verification
infrastructure called the Common Type System (CTS). The CTS ensures that all managed code
is self-descriptive. The various Microsoft and third-party language compilers generate managed
code that conforms to the CTS.
Developer Productivity
The runtime also accelerates developer productivity by enabling the developers to write
applications in the development language of their choice and still take advantage of all the
features of the runtime. The language compilers that target the .NET Framework make the
features of the .NET Framework available to the existing code written in that language, thus
greatly facilitating the migration process for the existing applications.
Performance
The runtime is designed to enhance performance. JIT compiling enables all managed code to run
in the native code of the system on which it is executed. At the same time, the memory manager
removes the possibilities of fragmented memory and increases the memory locality-of-reference
to improve the performance further.

12 UNIX Custom Application Migration Guide: Volume 4

Interoperability
The runtime, although designed for modern software, also offers backward compatibility by
supporting older software. Interoperability between managed and unmanaged code provides
seamless integration to developers to continue to use necessary COM objects and exported
functions in unmanaged DLLs.

.NET Framework Base Class Library
The Microsoft .NET Framework 1.1 base class library is an object-oriented class library providing
an integrated set of classes that expose the underlying functionality of the Win32 API as well as
some other additional capabilities. These classes integrate tightly with the CLR. Third-party
components can also integrate with the classes in the .NET Framework. In Microsoft .NET library,
all class (types) are grouped in namespaces. A namespace is a grouping of similar kinds of
classes.
The .NET Framework classes enable you to perform a range of common programming tasks
such as string management, data collection, database connectivity, and file access. In addition to
these common tasks, the class library includes classes that support a variety of specialized
development functions. For example, you can use the .NET Framework to develop a variety of
applications such as console applications, GUI (graphic user interface) applications, and Web
applications.
All .NET languages can use these language-independent classes. This enables the programmers
to choose the language and tools best suited for the job or the language with which they have the
most experience and still share their code and create new subclasses from classes written in a
different language. This code reuse can dramatically increase team productivity and decrease
development costs. Figure 1.4 depicts some of the namespaces and their classes in the .NET
Framework.

Figure 1.4. The .NET Framework base class library

Chapter 1: Introduction to .NET 13

.NET Tools and Technologies
From a migration perspective, .NET provides various tools and technologies that help you to
migrate or redevelop a UNIX application on Windows. Some of these tools and technologies are
discussed in the following sections.

Database - ADO.NET
.NET provides ADO.NET for migrating the database-related components of a UNIX application to
.NET. ADO.NET is a collection of classes, structures, and interfaces that manage the data access
for different databases. .NET provides this data access technology to enable you to connect to
different databases including ODBC-aware (open database connectivity) databases.

Networking - System.NET
The System.NET namespace in .NET allows you to replicate the networking functionality of a
UNIX application on Windows.

Transaction - COM+ Services
.NET provides COM+ services, also referred to as Enterprise Services in .NET, to migrate
applications that involve large amount of transactions.

Rich Client - Windows Forms
Windows Forms enable you to replicate the X/Motif-based GUI of a UNIX application on
Windows. Windows Forms facilitate building of Windows rich-client applications that take
advantage of the CLR. The Visual Studio .NET 2003 IDE also aids in the rapid redevelopment of
GUI on Windows with the same look and feel as in UNIX.

Web Applications - ASP.NET
.NET provides Web Forms and ASP.NET for migrating the existing Web application on UNIX to
Windows. Web Forms and ASP.NET enable you to develop real-world Web applications on
Windows.

Application Integration - XML, SOAP, and Web Services
.NET supports XML, SOAP, Web services, and .NET servers that enable a migrated application
to integrate with the older applications and other applications in your enterprise.

.NET XML Framework
This section lists the XML APIs available in the .NET class library that you can use for various
XML-related operations.
XML is truly a core technology substrate in .NET. All other parts of the .NET Framework (such as
ASP .NET and Web services) use XML as their native data representation format. The .NET
Framework XML classes are also tightly coupled with Managed Data Access (ADO .NET).
Traditionally, there have always been different programming models for working with relational
and hierarchical data. .NET breaks that tradition by offering a more deeply integrated
programming model for all types of data.

14 UNIX Custom Application Migration Guide: Volume 4

New Suite of XML APIs
Microsoft .NET introduces a new suite of XML APIs built on such industry standards as Document
Object Model (DOM), XPath, XML Structured Definitions (XSD), and Extensible Stylesheet
Language Transformations (XSLT). The .NET Framework XML classes offer convenience and
better performance. The .NET XML Framework also provides a more familiar programming
model, tightly coupled with the various classes present in System.Data and System.Xml
namespaces, which encapsulate a number of functionalities that previously had to be
accomplished manually.

.NET XML Namespaces
The System.Xml assembly contains a broad range of general-purpose XML support features,
such as:
• Basic I/O model.
• I/O of primitive types.
• In-memory traversal.
• Filtering based on XPath expressions.
• Transformations based on XSLT.
The .NET XML stack is partitioned over several namespaces, such as:
• System.Xml.XPath
• System.Xml.Xsl
• System.Xml.Schema
• System.Xml.Serialization

XML-based I/O
All XML-based I/O is performed using a streaming interface suite as follows:
• Streams are supported in both pull-mode (read) and push-mode (write).
• Built-in streaming adapters use the System.IO.Stream class library.
• Abstract interfaces allow you to provide your own XML providers/consumers.

.NET DOM Implementation
The .NET DOM implementation (System.Xml.XmlDocument) supports all W3C DOM Level 1
core and all DOM Level 2 core specifications, but with a few minor naming changes. The DOM
loading is built on top of XmlReader, while the DOM serialization is built on XmlWriter. This
makes it possible to extend how the DOM interacts with applications in numerous ways.
Note More information on W3C DOM Level 1 core and Level 2 core specifications is available at
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/ and http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113/.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

Chapter 1: Introduction to .NET 15

Transformations
The XslTransform class manages XSLT transformations in the .NET Framework. XslTransform
resides in the System.Xml.Xsl namespace and uses XmlNavigator during the transformation
process. As with all XSLT processors, XslTransform accepts an XML document, an XSLT
document, and some optional parameters as input. It can produce any type of text-based output;
it also supports reading the result of the transformation using a custom XmlReader.

.NET Application Security
This section provides an overview of various security models available in the .NET Framework.
The .NET Framework provides a rich security system, capable of confining code to run in a tightly
constrained, administrator-defined, security context.

Role-based Security
The .NET Framework provides a developer-defined security model called role-based security that
attaches security to the users and their groups (or roles). The principal abstractions of role-based
security are principal and identity.

Code Access Security
Additionally, the .NET Framework also provides security on code, referred to as code access
security (also referred to as evidence-based security). With code access security, a user may be
trusted to access a resource but if the code that the user executes is not trusted, then access to
the resource is denied. Code access security also provides a highly protective way of securing
the assemblies from malicious attacks. Security based on code, as opposed to specific user, is a
fundamental facility that permits security to be expressed on mobile code. Any number of users
may download and execute mobile code, which is unknown at the time of development. Code
access security focuses on some core abstractions, namely, evidence, policies, and permissions.
The security abstractions for role-based security and code access security are represented as
types in the .NET Framework class library and are user-extendable.
The .NET Framework security system functions atop the traditional operating system security.
This adds a second, more expressive and extensible level to the operating system’s security.
Both layers complement each other. (It is conceivable that an operating system security system
can delegate some responsibility to the CLR security system for managed code because the run-
time security system is more configurable then the traditional operating system security.)
Note More information on .NET Framework security is available at
http://msdn.microsoft.com/security/securecode/dotnet/default.aspx.

http://msdn.microsoft.com/security/securecode/dotnet/default.aspx

16 UNIX Custom Application Migration Guide: Volume 4

Implementation in .NET
Chapter 1, “Introduction to Win32/Win64” of Volume 3 has already discussed the platform
differences between UNIX and Windows from various aspects. The following topics give an
overview for implementing the following architectural elements in .NET:
• Processes and threads
• Memory management
• File management
• Signals, exceptions, and events
• Networking
• Interprocess communication
• User interface
• Daemons versus services
• Deployment

Processes and Threads
The .NET Framework further divides an operating system process into lightweight managed
subprocesses, called application domains, which provide a versatile unit of processing in .NET
applications. These application domains are used to provide isolation between applications and
even within a single process. Several application domains can be run in a single process with the
same level of isolation that would exist in separate processes. Historically, process boundaries
have been used to provide isolation between applications, but application domains provide a level
of isolation equivalent to that of a process boundary, however at a much lower cost of
performance.
The System.Threading namespace in .NET provides all the classes and interfaces necessary to
enable multithreaded programming. In addition to classes for synchronizing thread activities and
providing access to data (for example, Mutex, Monitor, Interlocked, and AutoResetEvent), this
namespace includes a ThreadPool class that allows use of a pool of system-supplied threads
and a Timer class that executes callback methods on the thread pool threads. The next chapters
discuss application domains and the threading namespaces in detail.

Memory Management
The garbage collector of the .NET Framework provides automatic memory management. It
allocates and releases the memory for managed objects and, when necessary, executes the
appropriate methods at the appropriate times in order to properly clean up the unmanaged
resources. Automatic memory management simplifies development by eliminating the common
bugs that arise from manual memory management schemes.

File Management
In .NET, the System.IO namespace provides an object-oriented tool to work with files and
folders. It provides a collection of properties, methods, and events to process text and data, thus
enabling you to perform file and directory operations with greater ease. For more information on
the System.IO namespace, refer to Chapter 4, “Memory and File Management” of this volume.

Chapter 1: Introduction to .NET 17

Signals, Exceptions, and Events
.NET Framework provides an event handler mechanism to handle events. An event handler is a
procedure in your code that determines the actions that must be performed when an event (such
as the user clicking a button or a message queue receiving a message) occurs. When an event is
raised, the event handler (or a handler) that receives the event is executed. Events can be
assigned to multiple handlers and the method that handles a particular event can be changed
dynamically.
The .NET Framework handles exceptions through the exception handling mechanism. In the
.NET Framework, an exception is an object that it inherits from the System.Exception class. An
exception originates from an area of code where a problem occurred. The exception is passed up
the stack until the application handles it or the program terminates. All .NET languages handle
exceptions in a similar manner. Each language uses a form of try/catch/finally structured
exception handling.

Networking
The .NET Framework class library includes two namespaces that consists of classes that help
you with networking; these are System.Net and System.Net.Sockets.
The System.Net classes provide a simple, yet complete solution for writing networked
applications in managed code. The System.Net.Sockets classes deals with the TCP/UDP and
sockets.

Interprocess Communication
In the .NET environment, application domains enable more than one application to run within a
single process, thus eliminating the overhead of making cross-process calls but still maintaining
the same level of application isolation that would exist in separate processes. .NET also supports
the concept of thread local storage, by which data can be stored in a thread and accessed
anywhere the thread exists.
Microsoft .NET Remoting provides a rich and extensible framework for objects residing in
different application domains, in different processes, and in different computers to communicate
with each other seamlessly. .NET Remoting offers a powerful, yet simple, programming model
and run-time support for making these interactions transparent.

User Interface
In the .NET environment, user interfaces can be developed as Windows or Web Forms. Some of
the advantages of using these forms include the following:
• Simplicity and power
• Rich graphics
• Flexible controls
• Lower total cost of ownership
• Architecture for controls
• High security
• XML Web services support
• Data awareness
• ActiveX control support
• Easy licensing
• Enhanced printing support
• Accessibility
• Design-time support

18 UNIX Custom Application Migration Guide: Volume 4

Daemons vs. Services
The .NET Framework class library includes the System.ServiceProcess namespace that
provides classes to implement, install, and control Windows service applications.
Services are installed using an installation tool, such as InstallUtil.exe. The
System.ServiceProcess namespace provides installation classes that write service information
to the registry.
The ServiceController class enables you to connect to an existing service and manipulate it or
get information about it. This class is typically used in an administrative capacity; it enables you to
start, stop, pause, continue, or perform custom commands on a service.

Deployment
In .NET Framework applications, assemblies are the building blocks. They form the fundamental
unit of deployment, version control, reuse, activation scoping, and security permissions. Current
Win32 applications have two versioning problems with their building blocks (dynamic-link
libraries):
• Versioning rules cannot be expressed between pieces of an application and enforced by the

operating system.
• Inability to maintain consistency between sets of components that are built together and the

set that is present at runtime.
These two versioning problems combine to create DLL conflicts, or DLL Hell, where installing one
application can inadvertently break an existing application because a certain software component
or DLL that was installed was not fully backward compatible with a previous version. The CLR
uses assemblies to provide a complete solution for DLL conflicts. Assemblies allow the runtime
to:
• Enable developers to specify version rules between different software components.
• Enable the infrastructure to enforce versioning rules.
• Enable the infrastructure to allow multiple versions of a component to run simultaneously

(called side-by-side execution).
Each computer, where the CLR is installed, has a machine-wide code cache called the Global
Assembly Cache (GAC). The GAC stores assemblies specifically designated to be shared by
several applications on the computer.
Assemblies deployed in the GAC must have a strong name. When an assembly is added to the
GAC, integrity checks are performed on all files that make up the assembly. The cache performs
these integrity checks to ensure that an assembly has not been tampered with.

Chapter 1: Introduction to .NET 19

Summary of Platform Differences
Table 1.1 lists the basic platform differences that exist between UNIX, Windows, and .NET.
Table 1.1. Summary of Platform Differences

Architectural
Element

UNIX Windows .NET

Processes Processes have a
parent-child
relationship.
Process boundary
provides isolation
between
applications.

Processes do not
have a parent-child
relationship.
Process boundary
provides isolation
between
applications.

Processes do not have a
parent-child relationship.
An operating system
process is further divided
into subprocesses called
application domains.
Application domains
provide isolation between
applications.

Threads UNIX threads are
built upon the
POSIX standard,
known as Pthreads.

The Windows
operating system
provides built-in
support for threads
and thread
synchronization
using Platform SDK.

.NET provides the
System.Threading
namespace to support
multithreading in
conjunction with Windows
threads.

Memory At application level,
memory
management is
manual (in the
hands of the
programmer).

At application level,
memory
management is
manual (in the
hands of the
programmer).

Memory management is
automatic and controlled by
the CLR, eliminating bugs
such as memory leakages
from manual memory
management.

File File operations are
performed through
low-level I/O
functions and
stream I/O
functions.

File operations are
performed through
low-level I/O
functions and
stream I/O
functions.

The System.IO namespace
provides an object-oriented
framework for handling files
and folders.

Signals UNIX supports a
wide range of
signals. Signals are
software interrupts
that catch or
indicate different
types of events.

Windows supports
only a small set of
signals that is
restricted to
exception events.
Native signals,
event objects, and
messages are the
recommended
mechanisms to
replace common
UNIX signals.

.NET does not support
signals.
Events and exception
handling mechanisms in
.NET are the recommended
mechanisms to replace
common UNIX signals.

Networking UNIX supports
networking through
sockets.

In Windows, sockets
are implemented
using WinSock
libraries.

The System.Net.Sockets
namespace provides
networking support in .NET.

20 UNIX Custom Application Migration Guide: Volume 4

Architectural
Element

UNIX Windows .NET

Interprocess
communication

UNIX provides
shared memory,
pipes, and message
queues for
interprocess
communication.

Windows provides
shared memory,
pipes, events,
Dynamic Data
Exchange (DDE),
Component Object
Model (COM), and
mailslots for
interprocess
communication.

.NET Framework provides

.NET Remoting and
Microsoft Message Queue
for interprocess
communication.

UI differences UI is developed
using X Windows
and Motif, which are
the standard
windowing system
and windowing
system library
respectively on
UNIX.

UI is developed
using MFC
(Microsoft
Foundation
Classes), ATL
(Active Template
Library), or GDI+
(Graphics Device
Interface).

.NET Framework provides
Windows Forms and Web
Forms for development of
UI of rich client and Web
applications respectively.

Deployment
differences

UNIX provides
shared objects for
developers to group
common
functionality and
deploy them.

Windows provides
DLLs for developers
to group common
functionality and
deploy them.

In .NET, assemblies form
the fundamental unit of
deployment, version
control, reuse, activation
scoping, and security
permissions.

Daemons and
services

UNIX supports
daemons (a process
that runs in the
background and
does not require a
user interface).

Windows service is
the equivalent of
daemons.

.NET provides the
System.ServiceProcess
namespace to implement,
install, and control
Windows service
applications.

Chapter 1: Introduction to .NET 21

.NET Migration Paths
This section discusses the various .NET migration paths. You can use this information in
reengineering code in .NET and in understanding the interaction of the .NET code with existing
applications. This section also helps you to choose the best migration path based on the nature of
existing UNIX applications.
To move UNIX applications to the Microsoft .NET Framework, you need to migrate the existing
UNIX C or C++ code to Windows. For example, if the UNIX applications use third-party libraries
and if the equivalents of such third-party libraries are already available on Windows, then the
UNIX to Windows move is much easier. The code migrated from UNIX can then integrate the
.NET Framework features.
For UNIX applications involving code in Java, Visual Studio .NET 2003 provides a tool known as
Java Language Conversion Assistant (JLCA) that can automatically convert existing Java
language code into C#. You can use this tool in migration scenarios where the existing UNIX
application contains Java code.
With a large code base of installed UNIX applications, you are unlikely to relish the thought of
throwing out the entire environment and starting again with an unfamiliar platform. Fortunately,
you do not necessarily have to do this. As illustrated in this guide, methods are available by which
you can preserve the existing code while moving to .NET.

Analyzing Application Types
The application type and the ease with which you can move the application from UNIX to
Windows should decide whether to use the .NET interoperability strategies or to redevelop the
application completely on the .NET environment. Different application types and strategies for
migrating these application types are discussed in the following sections.

Static Application
Static applications are applications that are in the later stages of their life cycle, with stable code,
and with little or no changes planned. If these applications can be migrated to Win32 using little or
no code changes, then they can also be adapted to make use of the capabilities of the .NET
platform by using the interoperability services provided by .NET. This way you can not only speed
the application migration but also preserve your investments in the existing code. If the static
application is an enterprise application, such as a portal or a content management system, then
you can take advantage of the capabilities of the .NET servers, in addition to reusing the existing
code.

Evolving Application
Evolving applications are applications that are constantly being changed and enhanced. An
evolving application typically contains both static and dynamic components. Static components
are the parts of the application that do not change, whereas dynamic components are the parts of
the application that are evolving.
First, identify the static and dynamic components of the application and then use the .NET
interoperability strategies to migrate the static components.
The dynamic components can be redeveloped in .NET targeting the benefits offered by the CLR
and making full use of the other benefits of the .NET development platform.

22 UNIX Custom Application Migration Guide: Volume 4

Table 1.2 lists the .NET migration strategies for the different types of applications.
Table 1.2. Migration Strategies

Application Nature of Existing
Application

Recommended Solution

Static application Native UNIX application (UNIX
APIs, X Windows, and Motif).

Migrate the application to
Win32/Win64 with minor code
changes and then interoperate
with the .NET code to
preserve and make use of the
investments made earlier.

Static application Enterprise applications such
as portal, content
management, and others.

Use .NET servers and
interoperate with the migrated
Win32/Win64 or unmanaged
code.

Evolving application Native UNIX application (Unix
APIs, X Windows, and Motif).

Reengineer in .NET

Evolving application Enterprise applications such
as portal, content
management, and others.

Use .NET servers;
interoperate with the migrated
Win32/Win64 or unmanaged
code, and reengineer in .NET.

The subsequent sections discuss the different migration strategies listed in Table 1.2.
• Reengineering using the .NET Framework.
• Interoperating with the existing code.
• Utilizing .NET servers.

Reengineering Using the .NET Framework
This section describes reengineering the applications using the .NET Framework and its
advantages. A reengineering strategy is appropriate when an application needs to evolve further
and the costs of porting the application outweigh the benefits, or when specific application
qualities (such as performance or scalability) require that the code be written specifically for the
Windows platform.
Rewriting an application has a number of significant advantages, including:
• Code robustness.
• Accelerates developer productivity.
• Enhanced performance and scalability.
• Interoperability between managed code and unmanaged code.
• Flexible language options.
• Improved tool support.
• Rich class library.

Chapter 1: Introduction to .NET 23

You can redevelop an application using any of the .NET compatible languages, such as Microsoft
Visual Basic® .NET, C#, and Managed C++. Managed code, which is compiled to Intermediate
Language (IL) and not to machine code, is created using these languages. The redeveloped code
on .NET can make use of all the features of the CLR. The code that is redeveloped in .NET to
target the CLR goes through the managed execution process. The following steps are involved in
the managed execution process.
1. Choose a compiler.

To obtain the benefits provided by the CLR, you must use one or more language compilers
that target the runtime, such as C#, Microsoft Visual C++®, Microsoft Visual Basic .NET,
Microsoft Visual J#®, Microsoft JScript®, or one of the many third-party compilers such as
Eiffel, Perl, or COBOL. Multiple .NET languages support a common set of data types. For
example, a string in C# is the same data type as a string in Visual Basic .NET. If you are
migrating a C++ application, consider using the Visual C++ .NET for redevelopment. If you
are migrating a Java application, you can consider Visual C# for redevelopment.

2. Compile code.
On compiling the code, it is converted to Microsoft Intermediate Language (MSIL) code using
the selected .NET language compiler. When you execute the code for the first time, the Just-
In-Time (JIT) compiler translates MSIL into the native code. During this compilation, code
must pass a verification process that examines MSIL and the metadata to find out whether
the code can be determined to be type safe. There are two kinds of JIT compilers: Standard
JIT and Econo-JIT. Econo-JIT has a faster compilation speed and a lesser compiler overhead
than Standard-JIT. However, the Standard-JIT generates more optimized code than the
Econo-JIT and includes the verification of MSIL code.

3. Execute code.
The CLR provides the infrastructure for executing the code as well as a variety of services
that can be used during execution.

24 UNIX Custom Application Migration Guide: Volume 4

Figure 1.5 illustrates the managed execution process in a .NET application.

Figure 1.5. Managed execution process
Reengineering is a costly and time-consuming option. This strategy requires a thorough analysis
of the UNIX application functionality before redesigning a .NET-based application architecture.
This ensures that the rewrite of the UNIX code takes full advantage of the .NET platform and the
Windows application platform. This strategy has a great risk, but it also can produce the best
results.

Interoperating with the Existing Code
This section discusses interoperating with existing code and outlines the various interoperability
techniques. With the help of the instructions provided in this section, you can choose the
interoperability technique that is best suited for your UNIX application.
In the interoperate strategy, the application is migrated with the minimum necessary changes to
the source code, using UNIX-compatible libraries and tools that are available on the Windows
platform (and which can include Microsoft Interix). The migrated code may require significant
changes to enable the code to run on the new platform if the original code is not fully standards-
compliant or if the code elements (for example, device drivers) are specific to the original system.
Reasons for choosing to port an application directly to Windows are as follows:
• Rewriting the code from scratch is costly or time consuming.
• A large amount of source code already exists.
• The application requires cross-platform support.
• The application uses a large number of UNIX APIs.
As long as the application functionality is tightly controlled, the interoperate strategy reduces the
risk of negatively altering the application by preserving the business logic, as well as reducing the
need for new documentation.

Chapter 1: Introduction to .NET 25

Unmanaged code is the code that runs outside the CLR. Unmanaged code compiles directly to
machine code, which runs on the computer where you compile the code and on other computers,
as long as the other computers have the same chip or are nearly the same. Unmanaged code
does not get services, such as security or memory management, from an invisible runtime; it gets
these services from the operating system.
.NET provides interoperability with unmanaged code in the following ways:
• Managed Extensions for C++
• .NET Interoperability services

• C++ Interoperability (It Just Works)
• Platform Invocation services (P/Invoke)
• COM Interoperability services

The following sections describe these interoperability techniques in detail.

Managed Extensions for C++
Managed Extensions for C++ provide a systematic methodology for wrapping of the existing
unmanaged C++ classes. This enables use of the unmanaged code from the managed
applications. In this method, a managed wrapper class for the existing C++ unmanaged class is
created. This wrapper class interoperates with its unmanaged equivalent and, in essence, acts as
a proxy for accessing the unmanaged class.
For example, if the UNIX application to be migrated is a high-performance application, then C++
wrappers can be used because they offer the following advantages:
• Single level of wrapping. In COM interoperability, there are two levels of wrapping: one at

the COM level and another at the RCW (runtime callable wrapper) level.
• Limited wrapping. Member functions accessed from the managed code/application only

need to be wrapped.
• Data marshalling. Fine-tuned data marshalling.
However, the disadvantage in using C++ wrappers is that it involves more coding because you
need to wrap the unmanaged class, its constructors, destructors, and member functions.
For more information on wrapping unmanaged classes with Managed Extensions for C++, refer to
Chapter 2, “.NET Interoperability” of this volume.

.NET Interoperability Services

.NET provides the following services for interoperability with unmanaged code:
• Platform Invocation services (P/Invoke)
• C++ Interoperability (It Just Works)
• COM Interoperability services
These topics are explained along with examples in Chapter 3, “.NET Interoperability” of this
volume.

Platform Invocation Services (P/Invoke)
Platform Invocation services (P/Invoke) enable the managed code to call the C-style functions,
which are exposed by the native dynamic-link libraries (DLLs). P/Invoke services provide a direct
way of using the C functions from the existing native DLLs in a managed application. P/Invoke
services are used in conjunction with the DllImport attribute, which is used to import functions
from an unmanaged DLL into a managed application.
As an example, consider a situation where the UNIX code can be migrated to Windows with
minimal changes and you need to use this code in a new C# or Visual Basic .NET application or
project. After migrating to Windows, you can compile the code into a DLL and call it from any
.NET project.

26 UNIX Custom Application Migration Guide: Volume 4

This method provides the following advantages:
• Usage. You can use this method with all .NET languages (C#, Visual Basic .NET, and

Managed Extensions for C++). Therefore, new C# or Visual Basic .NET projects can use the
DLLImport attribute to connect to the unmanaged code.

• Quick reuse of code. This method enables quick reuse of the existing native code.
However, you may not use this method in the following situation: If a function in the DLL returns
an unmanaged string, such as
[DllImport("mylib")]

extern "C" String * MakeSpecial([MarshalAs(UnmanagedType::LPStr)]
String *);

then you will not be able to delete the memory of the unmanaged string that is returned. In such
cases, the C++ Interoperability It Just Works (IJW) method described in the next section is the
best choice.
The disadvantages of the P/Invoke method are:
• Used with attribute only. Unmanaged APIs cannot be used directly without the use of the

DLLImport attribute.
• Memory leakage. This method sometimes causes memory leakages for some C-style

functions using unmanaged data types as illustrated by the earlier example.

C++ Interoperability (It Just Works)
This is a platform invocation service, available only in Managed C++, which is designed for using
the unmanaged APIs directly without using the DLLImport attribute.
When the UNIX code can be migrated to Windows with minimal changes, then this code can also
be compiled in a .NET-managed C++ project using the /CLR switch for the compiler.
This method offers the following advantages:
• No memory leakage. Memory leakages, such as the one shown in P/Invoke with the

DLLImport attribute, do not occur.
• Can be used directly with unmanaged APIs. Use the unmanaged APIs directly.
• Faster execution. This method is slightly faster. For example, the IJW stubs do not need to

check for the pin or copy data items as the developer does that explicitly.
• Better performance. For example, if you need to call several unmanaged APIs using the

same data, marshaling all APIs once up front and passing the marshaled copy around is
much more efficient than remarshaling APIs every time.

• Reuse marshaled data. This method provides the capability to marshal the data once and
reuse the marshaled data at multiple call sites, thereby amortizing the cost of the marshaling.

• Quick reuse of code. This method enables quick reuse of the existing native code.
The disadvantages of this method are:
• Used with C++ language. This method can be used only with the C++ programming

language (although the interop can be used with any language).
• Pointer calls required. Specify explicit marshalling in the code, which means extra pointer

calls are necessary.

COM Interoperability Services
The .NET Framework has made provisions for interoperability by implementing various wrappers
for COM objects to allow exposure of their properties and methods to .NET components. These
wrappers make it easy to make the connection between COM and .NET.
For example, if there is a piece of common code that can be migrated to Windows with minimal
changes and is to be reused across many applications in an enterprise, you can create a COM
component. This COM component can be used in other applications as well as a .NET
application. However, as this method involves creating a COM component over the code
migrated from UNIX, it is least used in UNIX migration scenarios.

Chapter 1: Introduction to .NET 27

Some of the advantages offered by COM Interop services are:
• Used with all COM-enabled languages. Any COM-enabled language can use COM, which

is a well-understood interface.
• Marshaling. COM supports marshaling, although COM objects reside in separate processes

or address spaces or even different computers. The operating system takes care of
marshaling the call and calling objects running in a different application (or address space) on
a different computer.

• Consistency. Maintains the consistency of the programming model.
• Bridge. Provides the bridge between COM and runtime.
For example, a C++ code in UNIX that can run on Windows with minimal changes can interact
with a Visual Basic application that already exists in the Windows platform and the .NET
application on different computers using COM.
Other situations where you can select COM interoperability are:
• Code in UNIX exists. A large amount of UNIX code, which you can make a COM component

with minimal changes.
• Cross-platform libraries. If the code in UNIX makes extensive use of third-party libraries

that are available in Win32, but not in .NET, you can make this code as a COM component
and access the COM component in .NET applications.

• Application defined in layers. If the application is defined in layers and one of the layers
interacts with the system level APIs, which need minimal changes to migrate to Windows, the
components of this layer can be made as COM components and access the COM
components in .NET applications.

However, this method’s performance is low as it involves two levels of wrapping (the COM
interface and RCW).

Performance Considerations
The interoperability strategies discussed earlier involve data marshaling. For example, the strings
in the native code may use the ANSI format. These strings are not compliant with the CLS and so
you cannot use them directly with other .NET Framework-compliant languages. The CLR
supports Unicode string format. Converting between the two formats requires data marshalling,
which creates an additional overhead. However, there is no marshaling cost when converting
between blittable types. Blittable types have the same representation in managed and
unmanaged code. For example, there is no cost for converting between int and Int32.
The P/Invoke services have an overhead of between 10–30 x86 instructions per call. In addition
to this fixed cost, marshaling results in additional overhead. For higher performance, it may be
necessary to have fewer P/Invoke calls that marshal as much data as possible instead of having
more calls that marshal less data per call.

Utilizing .NET Servers
.NET incorporates the .NET enterprise servers, including the Microsoft Application Center,
Microsoft Commerce Server, Microsoft Host Integration Server, Microsoft Internet Security and
Acceleration Server, Microsoft Mobile Information Server, Microsoft SharePoint® Portal Server,
Microsoft BizTalk® Server, Microsoft SQL Server™, and Microsoft Exchange Server. These
servers support the .NET Framework and provide powerful back-office services on which you can
build and run .NET applications.
.NET enterprise servers are integrated tightly with the Windows and COM, and they provide
enhanced performance and capabilities for the existing Windows applications and architectures.
The .NET enterprise servers are XML-enabled so that they also provide a comprehensive set of
services for building applications and enterprise solutions on the new .NET Framework.

28 UNIX Custom Application Migration Guide: Volume 4

For example, an enterprise application in a UNIX environment can be migrated to the Windows
environment by using the BizTalk Server. You can write pipeline components in .NET using any
of the .NET languages, which you can refer in BizTalk Server applications for creating custom
pipelines. The groups of .NET enterprise servers have been renamed as the Windows Server
System.
Note More information on .NET servers is available at
http://www.microsoft.com/windowsserversystem/products/default.mspx.

Migration Scenarios
This section describes the different categories of applications that are migrated, such as rich
client applications, Web applications, and database applications. For each of these categories, it
discusses the various techniques involved in migration.

Rich Client Applications
The majority of UNIX graphical interfaces are built on X Windows and Motif. The main user
interface type in use on the UNIX platform today builds on the X Windows set of standards,
protocols, and libraries.
.NET provides Windows Forms for migrating the GUI of rich client applications built on X
Windows to the Microsoft Windows operating system. Windows Forms is a framework for building
Windows client applications that uses the CLR. This framework provides a clear, object-oriented,
extensible set of classes that enable you to develop rich Windows applications. You can write
Windows Forms applications in any language that the CLR supports. Using Visual Studio.NET
2003 enables you to visually design Windows Forms, use the familiar drag-and-drop double-click
techniques, and enjoy full-fledged code support including statement completion and color-coding.
This enables developers to reengineer an application rapidly.
The application-programming model for Windows Forms consists of forms, controls, and their
events.
• Forms. In Windows, the Form class is a representation of any window displayed in an

application. Designing the user interface typically involves creating a class that derives from
Form and then adding controls, setting properties, creating event handlers, and adding
programming logic to the form.

• Controls. Each component added to a form, such as a button, a text box, or a radio button is
called a control. Typically, you set the properties to alter the appearance and behavior of
controls.

• Events. The Windows Forms programming model is event-based. When a control changes
state, such as when the user clicks a button, it raises an event. To handle an event, an
application registers an event-handling method for that event.

Web Applications
Web applications from a UNIX Web server are, usually, either a Common Gateway Interface
(CGI) or Java Server Page (JSP). The CGI program is a standard for connecting external
applications with information servers, such as Web servers.
A CGI program is executed in real time to generate dynamic information. For example, a CGI
program on the Web server executes to transmit information to a database engine, retrieves
result sets, and displays the result sets to the client browser.
JSP technology also enables development of dynamic Web pages. JSP technology uses tags
and scriptlets written in the Java programming language to encapsulate the logic that generates
the content for the page. The application logic resides in server-based resources such as a
JavaBean component, which the page accesses by using the tags and scriptlets. Formatting tags
such as HTML and XML tags pass directly back to the response page.

http://www.microsoft.com/windowsserversystem/products/default.mspx

Chapter 1: Introduction to .NET 29

.NET provides ASP.NET, a unified Web development model that includes the services necessary
for developers to build enterprise-class Web applications. ASP.NET provides Web Forms and
Web services. Web Forms allow you to quickly build powerful forms-based Web pages. Web
services enable the exchange of data using standards such as HTTP and XML messaging to
move data across firewalls. XML Web services are not tied to a particular component technology
or an object-calling convention. As a result, programs written in any language, using any
component model, and running on any operating system can access XML Web services.
If an application uses CGI, then the migration strategy depends on the language in which the
program was written. The languages include C/C++, Fortran, Perl, Tcl, UNIX shells, and Microsoft
Visual Basic. Many Web developers write CGI programs in Visual Basic language because of its
powerful text-handling capability. CGI2ASP is a framework for porting programs written in Visual
Basic, using Windows CGI, to a component-based ASP application with virtually no change to the
existing Visual Basic-based code.
If an application uses JSP technology, then you need to rewrite the JSP scriptlets (written in Java
and residing in JavaBean components) in Microsoft Visual Basic Scripting Edition or Microsoft
JScript and contained in ASP COM components. A tool named Java Language Conversion
Assistant (JLCA) is also available for use in the Visual Studio .NET 2003 environment; this tool
can automatically convert most JSP code to ASP.NET.

Database Applications
When moving the database applications to .NET, the most common migration strategy is to
reengineer the application to use ADO.NET. Through ADO.NET, you can efficiently manage the
database interactions in an application.
ADO.NET is an evolution of the Microsoft ActiveX® Data Object (ADO) data access model that
directly addresses user requirements for developing scalable applications. ADO.NET was
designed specifically for the Web, keeping scalability, statelessness, and XML in mind. The
ADO.NET version that comes with Visual Studio .NET 2003 is version 1.1, which is the version
used in this guide. A new version of ADO.NET 2.0 has been released with the latest release of
Visual Studio .NET 2005. More details on various new features of ADO.NET 2.0 is available at
http://msdn2.microsoft.com/en-US/library/ex6y04yf.aspx.
ADO.NET uses some of the ADO objects, such as the Connection and Command objects, and
introduces some new objects, such as DataSet, DataReader, and DataAdapter.
The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and
System.Data.SqlClient), which are part of the .NET Framework, provide five basic objects.
These objects are the Connection, Command, DataReader, DataSet, and DataAdapter.
• Connections. Used to connect to the database and manage the transactions against the

database.
• Commands. Used to execute the SQL statements against a database.
• DataSets. Allow you to store the database schema and to program against flat data, XML

data, and relational data.
• DataReaders. Allow you to read a forward-only stream of data records from a data source.
• DataAdapters. Used as a bridge between data source and data sets.
The records are mapped to the given commands accordingly. Figure 1.6 depicts the database
interactions in ADO.NET.

http://msdn2.microsoft.com/en-US/library/ex6y04yf.aspx

30 UNIX Custom Application Migration Guide: Volume 4

Figure 1.6. Database interactions
Three of these objects have been developed since Connections and Commands were introduced.
The following sections describe these new objects: DataSet, DataReader, and DataAdapter.

DataSet
The following are major features of the DataSet object:
• DataSet is a stand-alone entity, which acts as a disconnected recordset that knows nothing

about the source or destination of the data it contains. A DataSet contains entities such as
tables, columns, relationships, constraints, and views.

• DataSet is a memory-resident representation of data that provides a consistent relational
programming model independent of the data source.

• The DataSet has many XML characteristics, including the capability to produce and consume
XML data and XML schemas. XML schemas can be used to describe schemas interchanged
through Web services.

• A DataSet with a schema can actually be compiled for type safety and statement completion.
• The XML-based DataSet object provides a consistent programming model that works with all

models of data storage including flat, relational, and hierarchical.
• The DataSet is independent of the source of its data; the managed provider has detailed and

specific information. The managed provider connects, fills, and persists the DataSets across
the datastores.

DataReader
The following are major features of the DataReader object:
• DataReader allows forward-only access over one or more of the resultsets obtained by

executing a command and access to the column values within each row.
• Results are stored in the network buffer on the client after the execution of a query until you

request them.
• DataReader increases application performance by retrieving data as soon as it is available

instead of waiting for the entire results of the query to be returned.
• DataReader allows storage of only one row at a time in memory to reduce system overhead.

Chapter 1: Introduction to .NET 31

DataAdapter
The following are major features of the DataAdapter object:
• A DataAdapter is the object that connects to the database to fill the DataSet or DataReader

and then connects back to the database to update the data, based on the operations
performed while the DataSet held the data.

• DataAdapter represents a set of data commands and a database connection that are used to
fill the DataSet and update the data source.

• DataAdapter serves as bridge between a DataSet and a data source for retrieving and saving
data.

• DataAdapter has command object properties like InsertCommand, UpdateCommand, and
DeleteCommand to update the data.

References
More information on XML is available at http://msdn.microsoft.com/xml/.
More information on SOAP is available at
http://msdn.microsoft.com/library/en-us/dnsoap/html/understandsoap.asp.
More information on CLR is available at
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconthecommonlanguageruntime.asp.
More information on Windows Forms is available at
http://msdn.microsoft.com/netframework/programming/winforms/.
More information on ADO.NET is available at
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconoverviewofadonet.asp.
More information on wrapping unmanaged classes with Managed Extensions for C++ is available
at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmxspec/html/vcmanexmigrationguidepart1_start.asp.
More information on interop marshaling is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmex/html/vcgrfmanagedextensionsforcdatamarshalingtutorial.asp.
More information on .NET servers is available at
http://www.microsoft.com/windowsserversystem/default.mspx.
More information on .NET Framework security is available at
http://msdn.microsoft.com/security/securecode/dotnet/default.aspx.

http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/en-us/dnsoap/html/understandsoap.asp
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconthecommonlanguageruntime.asp
http://msdn.microsoft.com/netframework/programming/winforms/
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconoverviewofadonet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmxspec/html/vcmanexmigrationguidepart1_start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmxspec/html/vcmanexmigrationguidepart1_start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmex/html/vcgrfmanagedextensionsforcdatamarshalingtutorial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmex/html/vcgrfmanagedextensionsforcdatamarshalingtutorial.asp
http://www.microsoft.com/windowsserversystem/default.mspx
http://msdn.microsoft.com/security/securecode/dotnet/default.aspx

Chapter 2: Developing Phase: Process
Milestones and Technology
Considerations

This chapter provides information on starting the Developing Phase and provides an insight into
the development environment for the migration exercise. It also discusses the major tasks and
deliverables that should be identified and planned at the start of the Developing Phase.

Goals for the Developing Phase
This section describes the primary goals to be achieved in the Developing Phase. It acquaints
you with the major tasks to be performed and the deliverables to be expected from the
Developing Phase so that you can plan activities for your team accordingly.
The primary goal during the Developing Phase is to build the solution components—code as well
as documentation. Apart from code development, the infrastructure is also developed during this
phase, and all roles are active in building and testing the deliverables. The team continues to
identify all risks throughout the phase and address new risks as they emerge.

Major Tasks and Deliverables
Table 2.1 describes the major tasks that you need to complete during the Developing Phase and
lists the roles (owners) responsible for accomplishing them.
Table 2.1. Major Developing Phase Tasks and Owners

Major Tasks Owners

Starting the development cycle
The team begins the development cycle by
verifying that all tasks identified during the
Envisioning and Planning Phases have been
completed.

Development

Building a proof of concept
The team does a final verification of the concepts
from the designs within an environment that mirrors
production as closely as possible.

Development

Developing the solution components
The team develops the solution using the core
components and extends them to the specific
needs of the solution. The team also develops and
conducts unit functional tests to ensure that
individual features perform according to the
specification.

Development, User Experience, Test

Developing the testing tools and tests
The team prepares the test cases to ensure the
entire solution performs according to the
specifications.

Test

34 UNIX Custom Application Migration Guide: Volume 4

Major Tasks Owners

Building the solution
A series of frequent builds culminate with major
internal builds and signify points where the
development team delivers key features of the
solution. These builds are tested against the test
cases to track the overall progress of the solution

Development, Test

Closing the Developing Phase
The team completes all features, delivers the code
and documentation, and considers the solution
complete, thus entering the approval process for
the Scope Complete Milestone.

Project

Starting the Development Cycle
During the Developing Phase, every component of the solution is analyzed in terms of how to
apply code changes to adapt to the Microsoft® Windows® environment. This section focuses on
providing you with the knowledge to identify and monitor the risks involved in the migration
exercise.
The Developing Phase can be the most challenging part of any UNIX migration project. Major
issues that are likely to affect the project will become evident in this phase. How these issues are
resolved will determine whether the project schedules will change, whether funding will be
sufficient, and whether the project will be successful.
The envisioning and planning techniques and tools introduced in Chapters 2 and 3 of Volume 1:
Plan of this guide are designed to prepare for and insulate the project from many of the setbacks
and delays that might occur during the Developing Phase. The capability to identify and mitigate
risks is particularly helpful. A system that identifies, prioritizes, tracks, and mitigates risks is more
useful during the Developing Phase of a project than any other phase.
Any unfinished tasks on the task lists from the Envisioning and Planning Phases could be a risk
during the Developing Phase. Any assumptions made during the Planning and Envisioning
Phases could also be potential risks in the Developing Phase because they could also bring up
unforeseen challenges during the Developing Phase.
The prescriptive checklist to mitigate the risks in this phase is as follows:
• Contact the vendor to expedite delivery of the equipments as per the hardware requirement

list.
• For the GUI aspect of the code migration, procure the necessary software licenses for the

necessary X Server used in the UNIX application from the vendor before starting the project.
• Prepare a requirements specification document, providing a detailed design scope of the

migration project, design and architecture to be followed, and a sign-off from the customer.
• If there are many change requests from the customer, perform an impact analysis of the

changes and get a sign-off from the customer on the project execution approach for the
requested changes.

• Provide necessary training to the project team that will aid in the proper and timely execution
of the project.

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 35

Implementing these suggestions is likely to be much easier if the risks have been identified and
the mitigation plans formulated and evaluated ahead of time. Risk mitigation, as part of the risk
management process, can be used to keep a project on track through adverse situations.
Respecting the tenets and adhering to the procedures in the Microsoft Solutions Framework
(MSF) Risk Management Discipline is key to ensuring that the project risks do not bring the
project to a halt.

Building a Proof of Concept
Typically, the proof of concept is a continuation of the initial development work (the preliminary
proof of concept) completed in the Planning Phase. The proof of concept tests key elements of
the solution in a nonproduction simulation environment that mirrors the proposed operational
environment. The team guides operations staff and users through the solution to validate that
their requirements are met by the new solution.
The proof of concept is not meant to be production-ready although there may be some solution
code or documentation that carries through the different phases to the eventual solution
development deliverables. The proof of concept is considered a throw-away development that
gives the team a final chance to verify the functional specification content and to address issues
and mitigate risks before making the transition into development.

Interim Milestone: Proof of Concept Complete
Reaching this interim milestone marks the point where the team is fully moving from conceptual
validation to building the solution architecture and components.

Developing the Solution Components
After successfully completing the proof of concept, the actual development of the solution
components is started as per the specified solution architecture and design. Important
prerequisites for the development activity, such as the migration approach, the technology to be
used, the language to be used for editing and compilation, are decided before starting the
Developing Phase in order to improve the efficiency of the development activity and reduce the
time required to complete it.
The several technologies used in the UNIX application are identified and analyzed and the
corresponding mechanisms in Windows are chosen to implement the migration process. The
following chapters of this volume address these potential coding differences:
• Process management
• Thread management
• Memory management
• File management
• Infrastructure services

• Signals and events
• Exception handling
• Sockets and networking
• Interprocess communication
• Daemons versus services

• Migrating the Graphical User Interface

36 UNIX Custom Application Migration Guide: Volume 4

You can then choose the solution that is most appropriate to your application and use these
instructions as the basis for constructing your .NET code. This guide gives you sufficient
information to choose the best method of converting the code to .NET. After you have made your
choice, you can refer to the MSDN or .NET Framework documentation to ensure that you
understand the technical details and implement them correctly. Throughout this volume,
references are given for obtaining further information on the recommended coding changes—
including code samples and URLs.

Using the Development Environment
The development environment is the environment in which the user develops and builds the
solution. The development environment provides the necessary compiler, linker, libraries, and
reference objects. In some cases, the integrated development environment (IDE) is also
provided.
This section discusses the important components of the development environment for .NET
applications. The two main components of the .NET development environment are the .NET
Framework SDK and Visual Studio® .NET 2003.

.NET Framework SDK
The .NET Framework Software Development Kit (SDK) contains samples, compilers, and
command-line tools designed to help you build applications and services based on .NET
Framework technology. The SDK also provides documentation that includes an extensive class
library reference, conceptual overviews, step-by-step procedures, tools information, and tutorials
that demonstrate how to create specific types of applications. The .NET Framework SDK should
be the essential reference for developers migrating UNIX applications to .NET. It contains the
following major sections that provide critical information related to .NET:
• Getting Started. For those new to the .NET Framework technologies, the Getting Started

section of the .NET Framework SDK documentation are designed to point you in the right
direction.

• QuickStarts, Tutorials, and Samples. The .NET Framework SDK QuickStarts, tutorials, and
samples are designed to quickly acquaint you with the programming model, architecture, and
components that make up the .NET Framework.

• Documentation. The .NET Framework SDK documentation provides a wide range of
overviews, programming tasks, and class library reference information to help you in
migrating the applications to .NET.

• Tools and Debuggers. The .NET Framework SDK tools and debuggers enable you to
create, deploy, and manage applications and components that target the .NET Framework.

The .NET Framework SDK is freely available for downloading from the MSDN Web site at
http://msdn.microsoft.com/netframework/downloads/updates/default.aspx.

Visual Studio .NET 2003
Visual Studio .NET 2003 is a complete suite of development tools that gives you an ideal platform
for migrating or building various enterprise applications such as Web applications, desktop
applications, or Web services. In addition, you can use its powerful component-based tools and
other technologies to simplify the design, development, and deployment of enterprise solutions.
Visual Studio .NET 2003 supports such languages as Visual C++® .NET, Visual Basic® .NET,
Visual C#® .NET, and Visual J#® .NET, all of which use the same integrated development
environment (IDE).This allows them to share tools and facilitates in the creation of mixed-
language solutions. These languages also take advantage of the functionality of the .NET
Framework, which provides access to key technologies to simplify the migration process.
Visual Studio .NET contains a number of tools and technologies to facilitate the porting and
upgrading of existing applications. It provides various methods for interoperating with existing
application code, which results in a more efficient migration path requiring minimal code changes.

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 37

Some of these technologies are:
• COM+ Services
• .NET Enterprise Services
• P/Invoke methodology
Details of these technologies are described in Chapter 3, “.NET Interoperability“ of this volume.

Developing the Testing Tools and Tests
After developing the solution components, you need to test the code changes made as a part of
the development process. The testing process helps in identifying and addressing potential
issues prior to deployment. Testing spans the Developing and the Stabilizing Phases. It starts
when you begin developing the solution and ends in the Stabilizing Phase when the test team
certifies that the solution components address the schedule and quality goals established in the
project plan. This also involves using the automated test tools and test scripts.
Figure 2.1 depicts project testing processes in the Developing and Stabilizing Phases as per the
Microsoft Solutions Framework (MSF) Process Model.

Figure 2.1. MSF Process Model - Testing processes across the Developing and Stabilizing
Phases
Testing is performed, parallel to development, throughout the Developing Phase. This section
discusses the unit testing activity that needs to be performed during the Developing Phase. The
other necessary testing activities are discussed in Chapter 9, “Deployment Considerations and
Testing Activities” and Chapter 10, “Stabilizing Phase” of this volume.
Testing in the Developing Phase is part of the build cycle, not a stand-alone activity. The
development team designs, documents, and writes code and the test team performs unit testing
and daily builds testing. The test team designs and documents test specifications and test cases,
writes automated scripts, and runs acceptance tests on components submitted for a formal
testing. The test team assesses the solution, makes a report on its overall quality and feature
completeness, and certifies that the solution features, functions, and components meet the
project requirements. This process may be iterated several times based on the test results
achieved from each testing activity.

38 UNIX Custom Application Migration Guide: Volume 4

In migration projects, testing is focused on finding the discrepancies between the behavior of the
original application and that of the migrated application. In the migration of the infrastructure
services, testing is focused on finding the discrepancies between the behavior of the original
service, as seen by the clients, and the service that is exhibited by the newly migrated service.
All discrepancies must be investigated and fixed. It is recommended that you add new
functionality to a migrated application or new capabilities to a migrated service in a separate
project initiated after the migration project is complete.
Unit testing of the solution components is an integral part of the testing activity in the Developing
Phase. Before starting with unit testing, a detailed code review is performed on the developed
components and the review feedback is incorporated into the solution. Then the components are
unit tested for their functionality.

Unit Testing
A unit may be a class, a program, or a specific functionality. Unit testing is part of the
development process. Unit testing is the process of verifying that a specific unit of code functions
according to its functional specifications and that it will be capable of interacting with other units
as detailed in the specifications.
Unit testing in a migration project is the process of finding the discrepancies between the
functionality and the output of individual units in the Windows application and the original UNIX
application. However, this might not always be the case; in some cases, the application design in
Windows may differ from the UNIX design. Therefore, it is important to identify units that are
different in design from the UNIX units. Basic smoke testing, boundary conditions, and error tests
are performed based on the functional specification of the unit.
The test cases for unit testing include constraints on unit inputs and outputs (pre-conditions and
post-conditions), the state of the object (in case of a class), and the interactions between
methods, attributes of the object, and other units.

Building the Solution
By this stage, the individual components of the solution are developed and tested in the Windows
environment using .NET to satisfy the project requirements. This stage helps you build the
solution with the developed and tested components and then make the migrated application
ready for internal release.
As a good practice, MSF recommends that teams working on development projects perform daily
builds of their solution. In migration projects, on the other hand, you typically have to examine
large bodies of existing code to understand what they are intended for and to make changes to
the code. However, code changes can happen only after addressing porting issues, hence daily
builds may not be required. The process of creating interim builds allows a team to find issues
early in the development process, which shortens the development cycle and lowers the cost of
the project. Note that these interim builds are not deployed in the live production environment.
Only when the builds are thoroughly tested and stable are they ready for a limited pilot release to
a subset of the production environment. Rigorous configuration management is essential to
keeping builds in synch.

Interim Milestone: Internal Release
The project needs interim milestones to help the team measure their progress in the actual
building of the solution during the Developing Phase. Each internal release signifies a major step
toward the completion of the solution feature sets and achievement of the associated quality
level. Depending on the complexity of the solution, any number of internal releases may be
required. Each internal release represents a fully functional addition to the solution’s core feature
set that is potentially ready to move on to the Stabilizing Phase. As each new release of the
application is built, fewer bugs must be reported and triaged. Each release marks a significant

Chapter 2: Developing Phase: Process Milestones and Technology Considerations 39

progress in the approach of the team toward deployment. With each new candidate, the team
must focus on maintaining tight control on quality.

Chapter 3: Developing Phase: .NET
Interoperability

As introduced in the “Interoperating with the Existing Code” section in Chapter 1, “Introduction to
.NET” of this volume, Microsoft® .NET provides several interoperability mechanisms to
interoperate with the unmanaged code, thus facilitating the migration process and preserving the
investments in the existing code. This chapter discusses how these interoperability mechanisms
can be applied to reuse the existing code with minimal changes. With this knowledge, you can
evaluate the available options for migrating your UNIX application to Microsoft Windows® using
.NET and choose the best migration approach to carry out the migration exercise. This chapter
also provides appropriate examples that you can use as a basis for constructing your new .NET
application.

.NET Interoperability Mechanisms
The various interoperability mechanisms provided by .NET are:
• Wrapping unmanaged C++ classes with Managed Extensions for C++.
• Platform Invocation services (P/Invoke).
• C++ Interoperability, popularly known as IJW (It Just Works).
• COM Interop services.
Note COM Interop services are not very useful for migrating from UNIX to .NET, and hence will not be
covered at length in this guide.

Wrapping Unmanaged C++ Classes with Managed
Extensions for C++
Managed Extensions for C++ supports the interoperation of code written in any .NET Framework-
compliant language with the code already existing in C++. ("Unmanaged C++" refers to C++ that
is compiled to the assembly language of a processor.) Interoperability is achieved by writing a
proxy, or "wrapper," class in Managed Extensions for C++ for an unmanaged C++ class. A
wrapper class interoperates with its unmanaged counterpart and serves as a managed proxy for
it. It provides an API with a functionality that is similar to the unmanaged class. The API can be
called by code written in any managed language.
If the C++ program on UNIX can be compiled on Windows with minimal code changes, then use
this method to reuse the existing code in .NET. For example, low-level file access programs on
UNIX can be compiled on Windows with a few header file changes. In such a case, consider
using this method of interoperation.
The following C++ example code in UNIX writes to the standard output file descriptor. If any
errors occur, it writes an error message to the standard error file descriptor. This program can be
compiled on Windows by replacing the UNIX header file <unistd.h> with the Windows header file
<io.h>; in this case, the technique of wrapping unmanaged classes is an ideal choice for
migrating this code to .NET.

42 UNIX Custom Application Migration Guide: Volume 4

UNIX example: Code for writing to the standard output
#include <unistd.h>

class StandardOutput

{

public:

StandardOutput(){}

void WriteToStandardOutput();

~StandardOutput() {}

};

void StandardOutput :: WriteToStandardOutput()

{

if ((write(1, "Here is some data\n", 18)) != 18)

 write(2, "A write error has occurred on file descriptor 1\n",46);

}

int main()

{

 StandardOutput *objSO = new StandardOutput();

 objSO->WriteToStandardOutput();

}

(Source File: U_WrapUnmanagedC++-UAMV4C3.01.cpp)

The following example shows the migrated Microsoft Win32® code for the UNIX example. As you
can see, the header <unistd.h> has been replaced with <io.h>.
Windows example: Code for writing to the standard output
#include <io.h>

class StandardOutput

{

public:

StandardOutput(){}

void WriteToStandardOutput();

~StandardOutput() {}

};

void StandardOutput :: WriteToStandardOutput()

{

if ((write(1, "Here is some data\n", 18)) != 18)

 write(2, "A write error has occurred on file descriptor
1\n",46);

}

int main()

{

 StandardOutput *objSO = new StandardOutput();

 objSO->WriteToStandardOutput();

}

(Source File: W_WrapUnmanagedC++-UAMV4C3.01.cpp)

Chapter 3: Developing Phase: .NET Interoperability 43

The following steps explain how the unmanaged class, StandardOutput, can be wrapped using
a managed class, MStandardOutput.
To wrap the unmanaged class, StandardOutput, using a managed class, MStandardOutput
4. Write a managed wrapper class MStandardOutput for the unmanaged class

StandardOutput and declare a single member of MStandardOutput for which the type is
StandardOutput*. This is achieved by adding the __gc keyword before the
MStandardOutput class, which indicates that it is garbage collected and that its lifetime is
managed by the CLR.

5. Define an MStandardOutput constructor for each constructor of StandardOuput. This
creates an instance of StandardOutput through the unmanaged new operator by calling the
original constructor of StandardOutput class.

6. If the managed class MStandardOutput holds the only reference to the unmanaged class
StandardOutput, define a destructor for MStandardOutput, which calls the delete operator
on the member pointer to StandardOutput.

7. For each remaining method in StandardOutput, declare an identical method that delegates
the call to the unmanaged version of the method in StandardOutput, performing any
parameter marshaling if required.

The following Managed C++ code sample illustrates how the unmanaged class StandardOutput
is wrapped.
Windows example: Code illustrating wrapping of unmanaged classes for writing to the
standard output
#using <mscorlib.dll>

#include <io.h>

class StandardOutput

{

public:

void WriteToStandardOutput();

};

void StandardOutput :: WriteToStandardOutput()

{

 if ((write(1, "Here is some data\n", 18)) != 18)

 write(2, "A write error has occurred on file descriptor
1\n",46);

}

__gc class MStandardOutput

{

private:

 StandardOutput *ob;

public:

MStandardOutput()

 {

 ob = new StandardOutput();

44 UNIX Custom Application Migration Guide: Volume 4

 }

~MStandardOutput()

 {

 delete(ob);

 }

void MWriteToStandardOutput()

 {

 ob->WriteToStandardOutput();

 }

};

int main()

{

 MStandardOutput *objSO = new MStandardOutput();

 objSO->MWriteToStandardOutput();

}

(Source File: N_WrapUnmanagedC++-UAMV4C3.01.cpp)

Wrapping Technique Considerations
The specific technique that is used for wrapping an unmanaged class depends on the semantics
of the class. It may not be necessary to wrap all the member functions or data members of the
unmanaged class. Wrap only the selected members of the unmanaged class, such as the
members that must be accessed by managed objects.
Before wrapping an unmanaged C++ class, consider its structure and decide which members
must be wrapped. Following are some simple guidelines for identifying members that need to be
wrapped:
• If a member function or data member is private, then by design it is not meant to be accessed

by other unmanaged classes. That member must not be accessible to managed objects
either.

• Typically, helper functions are used internally by a class and are not designed to be accessed
by other classes. These functions too must not be wrapped.

Note More information on wrapping unmanaged classes with Managed Extensions for C++ is available in
Part I of the Managed Extensions for C++ Migration Guide at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmxspec/html/vcmanexmigrationguidepart1_start.asp.

Data Marshaling
When calling unmanaged functions that take arguments, the data must be marshaled to convert
managed types to unmanaged types. A typical example is the conversion of the .NET Unicode
string to the Win32 ANSI string. For each argument, you must copy the contents of the string from
the common language runtime (CLR) heap into the C++ run-time heap and return a pointer to the
string. The classes provided as part of the .NET Framework class library enable this. The
System::Runtime::InteropServices::Marshal class contains a collection of methods to handle
tasks, such as managed to unmanaged type conversions, unmanaged memory allocations, and
copying of unmanaged memory blocks. The static methods defined in the Marshal class provide
a method to convert between managed and unmanaged data. In general, the methods in the
Marshal class return an IntPtr. This is a CLR pointer.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmxspec/html/vcmanexmigrationguidepart1_start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmxspec/html/vcmanexmigrationguidepart1_start.asp

Chapter 3: Developing Phase: .NET Interoperability 45

One approach is to use the ToPointer() member function of the IntPtr class. This returns a
pointer of type System::Void ** that can be cast to char * as illustrated in the following code
example.
String __gc* str = S"managed string";

char __nogc* pStr =
static_cast<char*>(Marshal::StringToHGlobalAnsi(str).ToPointer());

Platform Invocation Services
Platform Invocation services (also known as P/Invoke), provided by the .NET Framework CLR,
enables managed code to call C-style functions in the existing unmanaged DLLs. P/Invoke can
simplify customized data marshaling because the marshaling information is provided declaratively
in attributes, instead of writing procedural marshaling code.
P/Invoke services first load the DLL containing the function into memory; they then locate the
address of the function in the memory, stack up all the marshaled arguments, and transfer control
to the unmanaged function. If any exceptions are raised in the unmanaged function, the functions
are returned back to the managed caller for resolution. The P/Invoke functionality is also
bidirectional and the Win32 API unmanaged functions can call back into the managed code.
Figure 3.1 shows the P/Invoke functionality.

Figure 3.1. P/Invoke services

P/Invoke with UNIX Code
The following UNIX code sample in C reads characters from the standard input file descriptor and
writes that information to the standard output file descriptor. If any input/output (I/O) errors occur,
an error message is sent to the standard error file descriptor.
An example code in UNIX for using the standard input and output is shown as follows.
UNIX example: Using standard input and output
#include <unistd.h>

int main()

{

 char buffer[129];

 int num_read;

 num_read = read(0, buffer, 128);

46 UNIX Custom Application Migration Guide: Volume 4

 if (num_read == -1)

 write(2, "A read error has occurred\n", 26);

 if ((write(1,buffer,num_read)) != num_read)

 write(2, "A write error has occurred\n",27);

 exit(0);

}

(Source File: U_PInvoke-UAMV4C3.01.c)

Windows example: Using standard input and output through P/Invoke

#include <io.h>

void ReadandWrite()

{

 char buffer[129];

 int num_read;

 num_read = read(0, buffer, 128);

 if (num_read == -1)

 write(2, "A read error has occurred\n", 26);

 if ((write(1, buffer, num_read)) != num_read)

 write(2, "A write error has occurred\n", 27);

}

(Source File: W_PInvoke-UAMV4C3.01.cpp)

The following steps enable reuse of the existing code in your .NET application:
• Migrate the UNIX code in the preceding UNIX example to Win32 by changing the header file.

The changed code is described in the preceding Windows example.
• Compile the changed code into a DLL (ReadandWrite.dll).
• After compiling into a DLL, the code can be accessed from any .NET project by using

P/Invoke. The following code example shows how the changed code is accessed from a C#
project using the DllImport attribute.
using <mscorlib.dll>

using namespace System;

using namespace System.Runtime.InteropServices;

[DllImport("dllFileAccess",CharSet=CharSet::Ansi)]

extern void ReadandWrite();

int main()

{

 ReadandWrite();

}

(Source File: N_PInvoke-UAMV4C3.01.cpp)

Chapter 3: Developing Phase: .NET Interoperability 47

P/Invoke with Win32 API
P/Invoke is also used for calling Win32 functions. A UNIX code that uses the fork() call to create
a process can be easily migrated to Win32, using either the CreateProcess() or _spawnlp()
calls.
The following code example illustrates the use of P/Invoke to call the Win32 API function
_spawnlp() to create a Notepad process. The native function _spawnlp() is defined in msvcrt.dll.
The DllImport attribute is used for the declaration of _spawnlp().
.NET example: Calling the Win32 API function _spawnlp through P/Invoke
using <mscorlib.dll>

using namespace System;

using namespace System::Runtime::InteropServices;

[DllImport("msvcrt",CharSet=CharSet::Ansi)]

extern "C" int _spawnlp(int,[MarshalAs(UnmanagedType::LPStr)]
String*,[MarshalAs(UnmanagedType::LPStr)] String*,int);

int main()

{

 _spawnlp(1,S"notepad",S"notepad",0);

}

(Source File: N_PInvokeWin32API-UAMV4C3.01.cpp)

In the previous example, the CharSet parameter of the DllImport attribute specifies how the
managed strings must be marshaled. In this case, they are marshaled to an ANSI string for the
native side.
The MarshalAs attribute, located in the System::Runtime::InteropServices namespace, is
used to specify the marshaling information for individual arguments on the native side. There are
several choices for marshaling a managed String * argument, such as BStr, ANSIBStr, TBStr,
LPStr, LPWStr, and LPTStr. The default is LPStr and it can be used to marshal other data types
such as arrays.

C++ Interoperability – It Just Works
This technique is basically used to invoke unmanaged code from Managed C++ without using the
DLLImport attribute. While migrating the UNIX code to Windows with minimal changes, the
migrated code can also be compiled in a .NET environment using the /CLR switch for the
compiler. The It Just Works (IJW) interoperability feature allows you to use the unmanaged APIs
directly in managed code without having to use the DllImport attribute. This is done by including
the header file and linking the import library. However, this feature is available only if the .NET
programming language is Managed Extensions for C++.
The following example illustrates how the _spawnlp() function, used in the P/Invoke example, is
implemented with IJW.
.NET example: Calling the Win32 API function _spawnlp
#using <mscorlib.dll>

using namespace System;

using namespace System::Runtime::InteropServices;

#include <process.h>

48 UNIX Custom Application Migration Guide: Volume 4

int main()

{

 String *pStr = S"notepad";

char *pChars = (char *)Marshal:StringToHGlobalAnsi(pStr).ToPointer();

 _spawnlp(1,pChars,pChars,0);

 Marshal::FreeHGlobal(pChars);

}

(Source File: N_IJW-UAMV4C3.01.cpp)

Explicit marshaling APIs return IntPtr types for 32-bit to 64-bit portability. Hence, you must use
additional ToPointer() calls as shown in the earlier example.
The IJW mechanism is slightly faster because the IJW stubs do not need to check for the need to
pin or copy data items as that is done by the developer. More importantly, if many unmanaged
APIs need to be called using the same data, marshaling the APIs once up front and passing the
marshaled copy around is more efficient than remarshaling APIs every time. However, you must
specify the marshaling explicitly in your code. As the marshaling code is inline, it invades the flow
of application logic.
If the migrated application mainly uses unmanaged data types and calls more unmanaged APIs
than the .NET Framework APIs, then consider using the IJW feature. If the migrated application
mainly uses managed data types and makes only occasional calls to the unmanaged APIs, then
consider using P/Invoke with DllImport.

Marshaling Arguments
With P/Invoke, no marshaling is required between blittable types. Blittable types have the same
representation in both the managed and the unmanaged world. For example, no marshaling is
required between Int32 and int and Double and double.
Marshaling is required for types that do not have the same form, such as char, string, and struct
types.
Table 3.1 lists the mappings used by the marshaler for various types.
Table 3.1. Data Type Mapping for Marshaler

 Win32 Data Types in
wtypes.h

C++ Managed Extensions CLR

HANDLE void * void * IntPtr, UIntPtr

BYTE unsigned char unsigned char Byte

SHORT Short short Int16

WORD unsigned short unsigned short UInt16

INT Int Int Int32

UINT unsigned int unsigned int UInt32

LONG Long Long Int32

BOOL Long Bool Boolean

DWORD unsigned long unsigned long UInt32

ULONG unsigned long unsigned long UInt32

CHAR Char Char Char

Chapter 3: Developing Phase: .NET Interoperability 49

 Win32 Data Types in C++ Managed Extensions CLR
wtypes.h

LPSTR char * String * [in],
StringBuilder * [in, out]

String [in],
StringBuilder [in, out]

LPCSTR const char * String * String

LPWSTR Wchar_t * String * [in],
StringBuilder * [in, out]

String [in],
StringBuilder [in, out]

LPCWSTR const wchar_t * String * String

FLOAT Float Float Single

DOUBLE Double double Double

Chapter 4: Developing Phase: Process
and Thread Management

This chapter discusses the differences between the UNIX and the Microsoft® .NET
environments in the context of process and thread management programming. In
addition, this chapter outlines the various options available for converting the code from
the UNIX to the Windows® environment using .NET and illustrates these options with
appropriate source code examples. You can use the information provided in this chapter
to assist you in selecting the appropriate approach for migrating an existing application.
You can also use the examples provided in this chapter as a basis for constructing your
.NET application.

Process Management
The UNIX and Microsoft Windows operating systems provide process and thread
management. Each process may have its own code, data, system resources, and state.
Threads are part of processes and each process may have one or more threads running
in them. Like processes, threads also have resource and state. When you know how
UNIX and .NET differ in their management of processes, you can easily replace UNIX
process routines with the corresponding .NET-compatible routines.
The UNIX and Windows process management models are very different from each other.
The major difference lies in the creation of processes. When converting UNIX code to
make it run on the .NET platform, you need to consider the following areas:
• Creating a process.
• UNIX processes versus .NET application domains.
• Processes versus threads.
• Managing process resources limits.
The following subsections describe these topics in detail.

Creating a Process
UNIX uses fork to create a new copy of a running process and exec to replace the
executable file of a process with a new one.
.NET provides a Process class in the System.Diagnostics namespace to perform
process-related operations. Using this component, you can create a process, obtain a list
of processes running in the system, and access the processes running in the system
(including the system processes). It is also useful for starting, stopping, controlling, and
monitoring applications. A process’ handle identifies it. This process handle is private to
an application and cannot be shared. A process also has a process ID, which is unique
and valid throughout the system. You can access the handle through the Handle property
of the Process class, even after the process has exited. This enables you to access the
administrative information about the process, such as the ExitCode (usually either zero
for success or a nonzero error code) and the ExitTime.
.NET also provides application domains, which map to the processes in UNIX. In UNIX,
an application runs within a process; whereas in .NET, an application runs within an
application domain and there may be several such application domains running within the
same process. Application domains are discussed in the “UNIX Processes vs. .NET
Application Domains” section later in this chapter.

52 UNIX Custom Application Migration Guide: Volume 4

UNIX example: Creating a process using fork and exec
The following example code is a UNIX application that forks to create a child process and
then runs the UNIX ps command by using execlp.
#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

int main()

{

pid_t pid;

printf("Running ps with fork and execlp\n");

pid = fork();

switch(pid)

{

case -1:

perror("fork failed");

exit(1);

case 0:

if (execlp("ps", NULL) < 0) {

perror("execlp failed");

exit(1);

}

break;

default:

break;

}

printf("Done.\n");

exit(0);

}

(Source File: U_CreatingProcess-UAMV4C4.01.c)

.NET example: Creating a process using System.Diagnostics namespace
The following Managed C++ example creates a Notepad process on Windows using the
System::Diagnostics::Process class.
#using <mscorlib.dll>

#using <System.dll>

using namespace System;

int main()

{

try

{

//Creates an object of Process class

System::Diagnostics::Process *objPid = new
System::Diagnostics::Process();

Chapter 4: Developing Phase: Process and Thread Management 53

//Starts a new notepad process

 objPid->Start(S"notepad.exe");

 Console::WriteLine(S"Done");

 } catch (Exception *e) {

 Console::WriteLine(S"Creating Process failed");

 Console::WriteLine(e->Message);

 }

}

(Source File: N_CreateProcess-UAMV4C4.01.cpp)

After creating and initializing an object of Process class, you can use it to obtain
information about the running process. Such information includes the set of threads, the
loaded modules (.dll and .exe files), and the performance information, such as the
amount of memory the process is using.
The Microsoft Win32® API provides a CreateProcess function to create a process and
then execute it. In theory, a P/Invoke call to the Win32 API CreateProcess can also be
used to create a process in .NET. This is an unmanaged call, however, and
CreateProcess can only be used to create unmanaged processes. The common
language runtime (CLR) will not be capable of exercising any control over these
processes.

UNIX Processes vs. .NET Application
Domains
This section elaborates the differences between the UNIX processes and .NET
application domains. It also discusses the advantages of using .NET application domains
and provides instructions to create .NET application domains.
Operating systems and run-time environments generally provide some form of isolation
between applications to ensure that the code running in one application does not affect
other, unrelated applications. In UNIX, process boundaries are used to isolate
applications running on the same computer. Each application is loaded into a separate
process, which isolates the application from other applications running on the same
computer. The applications are isolated because memory addresses are process-
relative.
The .NET Framework further subdivides an operating system process into lightweight
managed subprocesses, called application domains. These application domains provide
isolation between applications. Application domains, which are typically created by run-
time hosts, provide a more secure and versatile unit of processing. In .NET, the managed
code must pass through a verification process before it can be run (unless the
administrator has granted permission to skip the verification process).
The verification process determines that the code does not access invalid memory
addresses or perform some other action that could cause the process in which it is
running to fail. Code that passes this verification test is said to be type-safe. This
capability to verify whether a piece of code is type-safe enables the CLR to provide a
level of isolation that is equivalent to that of a process boundary, however, at a much
lower performance cost.
Several application domains can run in a single process with the same level of isolation
that exists in separate processes, but without the additional overhead of making cross-
process calls or switching between processes. For example, a single browser process
can run controls from several Web applications. However, these controls cannot access
each other’s data and resources.

54 UNIX Custom Application Migration Guide: Volume 4

The following are the benefits offered by application domains:
• Process isolation. Faults in one application cannot affect other applications. The

type-safe code cannot cause memory faults. Application domains ensure that code
running in one domain cannot affect other applications in the process.

• Operational flexibility. You can terminate individual applications without terminating
the entire process. Code running in a single application can be unloaded using
application domains.

• Restricted access to resources. Code running in one application cannot directly
access code or resources from another application. The CLR enforces this isolation
by preventing direct calls between objects in different application domains.

In an application domain, you need to load assemblies before running the application.
Running a typical application causes several assemblies to be loaded into its application
domain. The code segment and data segment of the assembly are isolated from the
application that uses it.

Application Domains and Threads
Application domains (AppDomains) provide an execution boundary for the managed
code. Application domains play the role of an operating system process within the CLR,
but with less overhead than operating system processes. Each AppDomain is hosted in a
process, with more than one AppDomain allowed per process. Application domains are
switched much faster than processes. A thread is an independent path of execution and
is used by the CLR to execute code. During runtime, the run-time host loads the
managed code into an application domain and a particular operating system thread runs
that managed code. The operating system threads can switch application domains much
faster than they switch processes.
One or more managed threads can run in one or any number of application domains
within the same managed process. Although each application domain is started with a
single thread, code in that application domain can create additional application domains
and additional threads. Therefore, a managed thread can move freely between
application domains within the same managed process. No one-to-one correlation exists
between application domains and threads. Several threads can be executing in a single
application domain at any given time, and a particular thread is not confined to a single
application domain. That is, threads are free to cross application domain boundaries and
a new thread is not created for each application domain.
At any given time, every thread is executing in one application domain. The runtime
keeps track of different threads that are running in different application domains. You can
locate the domain in which a thread is executing at any time by calling the
Thread.GetDomain method.

Programming with Application Domains
Application domains are usually created and manipulated programmatically by run-time
hosts. Hence, for most applications, you do not need to create your own application
domain. However, you can create and configure application domains if you create your
own run-time host application or if your application needs to create or work with additional
application domains that are not automatically generated by the runtime. The
AppDomain class is the programmatic interface to application domains. This class
includes methods to create domains, to create instances of types in domains, and to
unload domains. The following C# example code shows how to create an application
domain.

Chapter 4: Developing Phase: Process and Thread Management 55

.NET example: Creating an application domain
The following example creates an application domain using the CreateDomain method in
the System.AppDomain class and executes the assembly at the specified location in
that particular application domain.
using System;

using System.Reflection;

class AppDomain1

{

public static void Main()

{

 Console.WriteLine("Creating new AppDomain.");

 //Creating a new application domain named MyDomain

 AppDomain domain = AppDomain.CreateDomain("MyDomain");

 //Executing an assembly named MyProgram.exe in the application
domain

 domain.ExecuteAssembly("c:\\MyAssemblies\\MyProgram.exe");

 }

}

(Source File: N_ProcessVsAppDomain-UAMV4C4.01.cs)
Note More information and examples on application domains, such as configuring application
domains, retrieving setup information from application domains, loading assemblies into
application domains, obtaining information from assembly, and unloading application domains is
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemappdomainclasstopic.asp.

Processes vs. Threads
This section will help you understand the programming differences between UNIX
processes and .NET threads. In the following example, the UNIX code is forking a
process, but not executing a separate run-time image. This creates a separate execution
path within the application. In Windows, this is achieved by using threads instead of
processes.
UNIX example: Code for forking executable
#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

int main()

{

pid_t pid;

int n;

printf("fork program started\n");

pid = fork();

switch(pid)

{

case -1:

perror("fork failed");

exit(1);

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemappdomainclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemappdomainclasstopic.asp

56 UNIX Custom Application Migration Guide: Volume 4

case 0:

puts("I'm the child");

break;

default:

puts("I'm the parent");

break;

}

exit(0);

}

(Source File: U_Fork-UAMV4C4.01.c))

In .NET, the CLR uses application domains instead of processes. By using the
appropriate methods in the .NET Framework class library, you can instantiate a new
application domain and call a managed program. However, this is not a very efficient
technique for performing multiple operations. Instead, consider using threads.
You can use the System.Threading namespace of .NET to create and manage threads,
which operate within the bounds of the CLR. Threading in .NET is discussed in detail in
the “Thread Management” section later in this chapter. The Win32 API provides a
CreateThread method to achieve a similar functionality. A call to the Win32 API
CreateThread is an unmanaged call, however, and the threads created by this method
will operate outside the bounds of the CLR.

Managing Process Resource Limits
Developers often create processes that run with a specific set of resource restrictions. In
some cases, they may impose the restrictions for stress testing or forced failure condition
testing. In other cases, however, the limitations may be imposed to restrict runaway
processes from using up all the available memory, CPU cycles, or disk space. In UNIX,
the getrlimit function retrieves resource limits for a process, the getrusage function
retrieves current usage, and the setrlimit function sets new limits. Table 4.1 lists the
common limit names and their descriptions.
Table 4.1. Common Limit Names and Their Descriptions

Limit Description

RLIMIT_CORE The maximum size of a core file (in bytes) created by a process. If the
core file is larger than RLIMIT_CORE, the write is terminated at this
value. If the limit is set to 0, then no core files are created.

RLIMIT_CPU The maximum CPU time (in seconds) that a process can use. If the
process exceeds this time, the system generates SIGXCPU for the
process.

RLIMIT_DATA The maximum data segment size (in bytes) of a process. If the data
segment exceeds this value, the functions brk, malloc, and sbrk will
fail.

RLIMIT_FSIZE The maximum size of a file (in bytes) created by a process. If the limit
is 0, the process cannot create a file. If a write or truncation call
exceeds the limit, further attempts will fail.

RLIMIT_NOFILE The highest possible value for a file descriptor, plus one. This limits
the number of file descriptors a process may allocate. If more files are
allocated, functions allocating new file descriptors may fail with the
error, EMFILE.

Chapter 4: Developing Phase: Process and Thread Management 57

Limit Description

RLIMIT_STACK The maximum stack size (in bytes) of a process. The stack will not
automatically exceed this limit; if a process tries to exceed the limit,
the system generates SIGSEGV for the process.

RLIMIT_AS The maximum total available memory (in bytes) for a process. If this
limit is exceeded, the memory functions brk, malloc, mmap, and
sbrk will fail with errno set to ENOMEM, and automatic stack growth
will fail as described for RLIMIT_STACK.

In .NET, you can impose resource restrictions on a process by using the various
properties and members of the Process class. Table 4.2 lists the properties and methods
that you can use to enforce the restrictions.
Table 4.2. Process Class Properties and Their Description

Property Description

MaxWorkingSet Gets or sets the maximum allowable working set size for the
associated process.

MinWorkingSet Gets or sets the minimum allowable working set size for the
associated process.

PriorityClass Gets or sets the overall priority category for the associated
process.

ProcessorAffinity Gets or sets the processors on which the threads in this process
can be scheduled to run.

Threads Gets the set of threads that are running in the associated
process.

Thread Management
This section describes the functionality of threads and their usage in the UNIX and .NET
environments. In thread management, you need to consider the following core areas
when migrating UNIX applications to the .NET environment:
• Creating a thread.
• Terminating a thread.
• Thread synchronization.
• Thread scheduling and priorities.
The following sections describe these areas in detail.
A thread is an independent path of execution in a process that shares the address space,
code, and global data of the process. Time slices are allocated to each thread based on
priority and consist of an independent set of registers, stack, input/output (I/O) handles,
and message queue. Threads can usually run on separate processors on a
multiprocessor computer. Win32 enables you to assign threads to a specific processor on
a multiprocessor hardware platform.
An application using multiple processes usually must implement some form of
interprocess communication (IPC). This can result in significant overhead and possibly a
communication bottleneck. In contrast, threads share the process data among them and
the interthread communication can be much faster. However, threads sharing data can
lead to data access conflicts between multiple threads. You can address these conflicts
using synchronization techniques, such as semaphores and mutexes.

58 UNIX Custom Application Migration Guide: Volume 4

In UNIX, developers implement threads by using the POSIX pthread functions. In .NET,
developers implement threading by using the System.Threading namespace. The
following section describes how you should go about converting UNIX threaded
applications into .NET threaded applications. As discussed in the section on processes,
you may also decide to convert some of the UNIX processes of an application into
threads for better performance.
Note More information on thread management functions in the Threading namespace,
System.Threading, is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemthreading.asp.

Creating a Thread
This section compares the UNIX and .NET functionalities for creating threads and
provides examples. When creating a thread in UNIX, use the pthread_create function.
This function has three arguments: a pointer to a data structure that describes the thread,
an argument specifying the attributes (usually set to NULL indicating default settings) of
the thread, and the function that the thread will run. The thread finishes execution with a
pthread_exit, where (in this case) it returns a string. The process can wait for the thread
to complete using the function pthread_join.
UNIX example: Creating a thread
The following code example shows how to create a thread in UNIX and waits for it to
finish.
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

char message[] = "Hello World";

void *thread_function(void *arg) {

 printf("thread_function started. Arg was %s\n", (char *)arg);

 sleep(3);

 strcpy(message, "Bye!");

 pthread_exit("See Ya");

}

int main() {

 int res;

 pthread_t a_thread;

 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, (void
*)message);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 printf("Waiting for thread to finish...\n");

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreading.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreading.asp

Chapter 4: Developing Phase: Process and Thread Management 59

 res = pthread_join(a_thread, &thread_result);

 if (res != 0) {

 perror("Thread join failed");

 exit(EXIT_FAILURE);

 }

 printf("Thread joined, it returned %s\n", (char
*)thread_result);

 printf("Message is now %s\n", message);

 exit(EXIT_SUCCESS);

}

(Source File: U_CreatingThread-UAMV4C4.01.c)
In .NET, the Thread class and its associates in the System::Threading namespace are
used to create a thread.
To create and run a thread in .NET
8. Create a ThreadStart delegate that refers to the method that the thread would

execute.
9. Create a Thread object using the ThreadStart delegate.
10. Call the start method of the Thread object.
Unlike UNIX, you must always start .NET threads explicitly after they are created. The
ThreadStart delegate must refer to a void method that takes no parameters. This implies
that you cannot start a thread using a method that takes parameters or obtain a return
value from the method. To pass data to a thread, create an object to hold the data and
the thread method, as illustrated by the code example that follows. To retrieve the results
of a thread method, use a callback method.
.NET example: Creating a thread
The following Managed C++ example shows how to create a thread in the .NET
Framework.
#using <mscorlib.dll>

 using namespace System;

 using namespace System::Threading;

 //The managed class ThreadExample

 public __gc class ThreadExample

 {

 private:

 String* tMessage;

 public:

 //Constructor of ThreadExample, which is used to pass arguments

 ThreadExample(String* argMessage)

 {

 tMessage = argMessage;

 }

 //The method that is executed as a seperate thread

 void thread_function()

 {

60 UNIX Custom Application Migration Guide: Volume 4

 Console::WriteLine(S"thread_function started");

 Console::WriteLine(S"Message is {0}",tMessage);

 Thread::Sleep(3000);

 tMessage = S"Bye!";

 Console::WriteLine(S"Message is {0}",tMessage);

 }

 };

 int main()

 {

 String *message = S"Hello World";

 ThreadExample *obTex = new ThreadExample(message);

 /*

Instantiates the Thread class to execute thread_function as a
seperate thread

 */

Thread *oThread = new Thread(new
ThreadStart(obTex,&ThreadExample::thread_function));

 //Starts the thread

 oThread->Start();

 Console::WriteLine(S"Waiting for thread to finish...");

 oThread->Join();

 Console::WriteLine(S"Thread Joined");

 return 0;

 }

(Source File: N_CreatingThread-UAMV4C4.01.cpp)

Terminating a Thread
This section compares the UNIX and .NET functionalities for terminating threads and
provides examples. UNIX uses the POSIX pthread_cancel function to terminate a
thread. UNIX also offers facilities that allow a thread to specify if it is to be terminated
immediately or deferred until it reaches a safe recovery point. Moreover, UNIX provides a
facility known as cancellation cleanup handlers, which a thread can push and pop from a
stack that is invoked in a last-in-first-out order when the thread is terminated. These
cleanup handlers are coded to clean up and restore the resources before the thread is
actually terminated.
UNIX example: Terminating a thread
The following code sample shows how to terminate a thread in UNIX.
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *thread_function(void *arg) {

Chapter 4: Developing Phase: Process and Thread Management 61

 int i, res;

 res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

 if (res != 0) {

 perror("Thread pthread_setcancelstate failed");

 exit(EXIT_FAILURE);

 }

 res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

 if (res != 0) {

 perror("Thread pthread_setcanceltype failed");

 exit(EXIT_FAILURE);

 }

 printf("thread_function is running\n");

 for(i = 0; i < 10; i++) {

 printf("Thread is running (%d)...\n", i);

 sleep(1);

 }

 pthread_exit(0);

}

int main() {

 int res;

 pthread_t a_thread;

 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, NULL);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 sleep(3);

 printf("Cancelling thread...\n");

 res = pthread_cancel(a_thread);

 if (res != 0) {

 perror("Thread cancellation failed");

 exit(EXIT_FAILURE);

 }

 printf("Waiting for thread to finish...\n");

 res = pthread_join(a_thread, &thread_result);

 if (res != 0) {

 perror("Thread join failed");

 exit(EXIT_FAILURE);

 }

 exit(EXIT_SUCCESS);

62 UNIX Custom Application Migration Guide: Volume 4

}

(Source File: U_TerminatingThread-UAMV4C4.01.c)

In .NET, the Thread.Abort method is used to stop a thread permanently. When Abort is
called, the CLR throws a ThreadAbortException in the thread on which Abort is invoked
to begin the process of terminating the thread. Calling this method usually terminates the
thread. The cleanup operations are handled by the CLR.
Thread.Abort does not abort the thread immediately. To ensure that the thread is
stopped, you must call Thread.Join to wait on the thread. Join is a blocking call that does
not return until the thread has actually stopped executing. After a thread is aborted, it
cannot be restarted.
You can also call Thread.Join and pass a time-out period. If the thread dies before the
timeout has elapsed, the call returns true. If the time expires before the thread dies, the
call returns false. Other threads that call Thread.Interrupt can interrupt the threads that
are waiting on a call to Thread.Join.
.NET example: Terminating a thread
The following sample code shows how to terminate a thread in .NET using the
Thread.Abort method with managed C++.
#using <mscorlib.dll>

using namespace System;

using namespace System::Threading;

 //The managed class ThreadExample

 public __gc class ThreadExample

 {

 private:

 String* tMessage;

 public:

 //Constructor of ThreadExample, which is used to pass arguments

 ThreadExample(String* argMessage)

 {

 tMessage = argMessage;

 }

 //The method that is executed as a separate thread

 void thread_function()

 {

 try{

 Console::WriteLine(S"thread_function is running");

 Console::WriteLine(S"Message is {0}",tMessage);

 for(int i = 0; i < 10; i++)

 {

 Console::WriteLine(S"Thread is running
({0})...",i.ToString());

 Thread::Sleep(1000);

 }

 } catch(ThreadAbortException *e) {

Chapter 4: Developing Phase: Process and Thread Management 63

 Console::WriteLine(e->Message);

 }

 }

 };

 int main()

 {

 String *message = S"Hello World";

/*

Instantiates the Thread class to execute thread_function as a
seperate thread

 */

 ThreadExample *obTex = new ThreadExample(message);

Thread *oThread = new Thread(new
ThreadStart(obTex,&ThreadExample::thread_function));

oThread->Start();

//Makes the main thread to sleep for 3 seconds

 Thread::Sleep(3000);

 Console::WriteLine(S"Cancelling Thread...");

 //Terminates the thread

 oThread->Abort();

 Console::WriteLine(S"Waiting for thread to finish...");

oThread->Join();

 return 0;

 }

(Source File: N_TerminatingThread-UAMV4C4.01.cpp)

Suspend, Resume, and Sleep Methods
In .NET, the Thread class also provides a Suspend method, which can be used to
temporarily halt the execution of a thread. The execution of the halted thread can be
resumed by calling the Resume method. Use the Sleep method to stop execution of a
thread for a short period and restart the thread when this period is over.

Thread Synchronization
This section describes usage of the thread synchronization mechanism and various
thread synchronization techniques available in the UNIX and .NET environments. When
more than one thread is executing simultaneously, you have to take the initiative to
protect shared resources. For example, if the thread increments a variable, you cannot
predict the result because the variable may have been modified by another thread before
or after the increment. You cannot predict the result because the order in which threads
access a shared resource is indeterminate. UNIX and Windows provide mechanisms,
called synchronization techniques, for controlling resource access. These techniques are
discussed in the following sections. The next section explains the indeterminate behavior
of the threads when no synchronization techniques are used. The subsequent sections
elaborate on how you can handle this scenario using the various synchronizing
techniques.

64 UNIX Custom Application Migration Guide: Volume 4

Multiple Nonsynchronized Threads
The following example illustrates code that is, in principle, indeterminate. The parent
represents the main thread in the example. It generates a “P” and the child or the
secondary thread outputs a “T”.
Note This is a very simple example and, on most computers, the result would always be the
same, but the important point to note is that this result is not guaranteed.

UNIX example: Threads with no synchronization
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *thread_function(void *arg) {

 int count2;

 printf("thread_function is running. Argument was: %s\n",
(char *)arg);

 for (count2 = 0; count2 < 10; count2++) {

 sleep(1);

 printf("T");

 }

 sleep(3);

}

char message[] = "Hello I'm a Thread";

int main() {

 int count1, res;

 pthread_t a_thread;

 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, (void
*)message);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 printf("entering loop\n");

 for (count1 = 0; count1 < 10; count1++) {

 sleep(1);

 printf("P");

 }

 printf("\nWaiting for thread to finish...\n");

Chapter 4: Developing Phase: Process and Thread Management 65

 res = pthread_join(a_thread, &thread_result);

 if (res != 0) {

 perror("Thread join failed");

 exit(EXIT_FAILURE);

 }

 printf("\nThread joined\n");

 exit(EXIT_SUCCESS);

}

(Source File: U_SyncTechnique-UAMV4C4.01.c)

.NET example: Threads with no synchronization
#using <mscorlib.dll>

 using namespace System;

 using namespace System::Threading;

 public __gc class ThreadExample

 {

 public:

 static void ThreadProc()

 {

 for (int i = 0; i < 10; i++)

 {

 Thread::Sleep(1000);

 Console::Write(S"T");

 }

 Thread::Sleep(3000);

 }

 };

 int main()

 {

 Thread *oThread = new Thread(new ThreadStart(0,
&ThreadExample::ThreadProc));

 oThread->Start();

 Console::WriteLine(S"entering loop");

 for (int i = 0; i < 10; i++)

 {

 Thread::Sleep(1000);

 Console::Write(S"P");

 }

 Console::WriteLine(S"Waiting for thread to finish");

 oThread->Join();

66 UNIX Custom Application Migration Guide: Volume 4

 Console::WriteLine(S"Thread Joined");

 return 0;

 }

(Source File: N_SyncTechnique-UAMV4C4.01.cpp)

In the UNIX example, access to thread_function has not been synchronized; and in the
.NET example, the access to ThreadProc has not been synchronized. It is not possible
to predict the output of these code examples. In most applications, unpredictable results
are an undesirable feature. Therefore, it is important to control access to shared
resources in threaded code. UNIX and .NET provide mechanisms for controlling resource
access.

Synchronization Techniques
Synchronization techniques are used for the following reasons:
• To explicitly control the order in which code runs whenever tasks must be performed

in a specific sequence.
• To prevent the problems that can occur when two threads share the same resource

at the same time.
There are two approaches to synchronization: polling and using synchronization objects.
Note More information on polling is available at

http://msdn.microsoft.com/library/en-us/vbcn7/html/vaconthreadsynchronization.asp.

The next sections discuss the synchronization objects in detail.

Advanced Synchronization Techniques in .NET
The .NET Framework provides a number of objects that help in creating and managing
multithreaded applications. WaitHandle objects help you respond to actions taken by
other threads, especially when interoperating with unmanaged code. The ThreadPool
provides the best basic thread creation and management mechanism for most tasks.
Monitor, Mutex, Interlocked, and ReaderWriterLock objects provide mechanisms for
synchronizing execution at a low level. Timer is a flexible way to raise activities at certain
intervals and I/O asynchronous completion uses the thread pool to notify when the I/O
work is completed, freeing you to do other things in the meantime.

Synchronization Using Interlocked Compare Exchange
The Interlocked methods CompareExchange, Decrement, Exchange, and Increment
provide a simple mechanism for synchronizing access to a variable that is shared by
multiple threads. The threads of different processes can use this mechanism if the
variable is in shared memory.
The Increment and Decrement functions combine the operations of incrementing or
decrementing the variable and checking the resulting value. This atomic operation is
useful in a multitasking operating system in which the system can interrupt execution of
one thread to grant a slice of processor time to another thread. Without such
synchronization, one thread could increment a variable but be interrupted by the system
before it could check the resulting value of the variable. A second thread could then
increment the same variable. When the first thread receives its next time slice, it will
check the value of the variable, which has now been incremented not once but twice. The
Interlocked variable access functions prevent this kind of error.
The Exchange function atomically exchanges the values of the specified variables. The
CompareExchange function combines two operations: comparing two values and
storing a third value in one of the variables based on the outcome of the comparison. You
can use CompareExchange to protect computations that are more complicated than

http://msdn.microsoft.com/library/en-us/vbcn7/html/vaconthreadsynchronization.asp

Chapter 4: Developing Phase: Process and Thread Management 67

simple increment and decrement. The following example demonstrates a thread-safe
method that adds to a running total.
The following example code uses the CompareExchange method of the Interlocked
class to synchronize the threads.
.NET example: Thread synchronization using Interlocked class
#using <mscorlib.dll>

 using namespace System;

 using namespace System::Threading;

 public __gc class ThreadExample

 {

 public:

 int run_now;

 public:

 ThreadExample()

 {

 }

 ThreadExample(int iRun)

 {

 run_now = iRun;

 }

 public:

 void ThreadProc()

 {

 Console::WriteLine(S"thread_function is running.");

 for (int i = 0; i < 10; i++)

 {

 int iLockCompare =
Interlocked::CompareExchange(&run_now,1,2);

 if(iLockCompare ==2)

 {

 Console::Write(S"T-2");

 }

 else

 {

 Thread::Sleep(1000);

 }

 }

 Console::WriteLine(S"Child Thread Terminating");

 Thread::Sleep(3000);

 }

 void ParentThread()

68 UNIX Custom Application Migration Guide: Volume 4

 {

 Console::WriteLine(S"Main thread: Start a second
thread.");

 Thread *oThread = new Thread(new ThreadStart(this,
&ThreadExample::ThreadProc));

 oThread->Start();

 Console::WriteLine(S"entering loop");

 for (int i = 0; i < 10; i++)

 {

 int iLock = Interlocked::CompareExchange(&run_now,2,1);

 if(iLock==1)

 {

 Console::Write(S"P-1");

 }

 else

 Thread::Sleep(1000);

 }

 Console::WriteLine(S"Waiting for thread to finish");

 oThread->Join();

 Console::WriteLine(S"Thread joined");

 }

 };

 int main()

 {

 ThreadExample *objThreadEx = new ThreadExample(1);

 objThreadEx->ParentThread();

 return 0;

 }

(Source File: N_SyncTechnique-UAMV4C4.02.cpp)

Synchronization Using Semaphores
This section describes the usage of semaphore in UNIX applications and the
implementation of the similar functionality in the .NET environment. In the following UNIX
example, two threads are created that use a shared memory buffer. Access to the shared
memory is synchronized using a semaphore. The primary thread (main) creates a
semaphore object and uses this object to handshake with the secondary thread
(thread_function). The primary thread instantiates the semaphore in a state that
prevents the secondary thread from acquiring the semaphore while it is initiated.
After the user types in some text at the console and presses ENTER, the primary thread
relinquishes the semaphore. The secondary thread then acquires the semaphore and
processes the shared memory area. At this point, the main thread is blocked and is
waiting for the semaphore; it will not resume until the secondary thread has given up
control by calling ReleaseSemaphore. In UNIX, the semaphore object functions of
sem_post and sem_wait are all that are required to perform the handshake.

Chapter 4: Developing Phase: Process and Thread Management 69

UNIX example: Synchronizing threads using semaphores
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

#define SHARED_SIZE 1024

char shared_area[SHARED_SIZE];

sem_t bin_sem;

void *thread_function(void *arg) {

 sem_wait(&bin_sem);

 while(strncmp("done", shared_area, 4) != 0) {

 printf("You input %d characters\n", strlen(shared_area) -
1);

 sem_wait(&bin_sem);

 }

 pthread_exit(NULL);

}

int main() {

 int res;

 pthread_t a_thread;

 void *thread_result;

 res = sem_init(&bin_sem, 0, 0);

 if (res != 0) {

 perror("Semaphore initialization failed");

 exit(EXIT_FAILURE);

 }

 res = pthread_create(&a_thread, NULL, thread_function, NULL);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 printf("Input some text. Enter 'done' to finish\n");

 while(strncmp("done", shared_area, 4) != 0) {

 fgets(shared_area, SHARED_SIZE, stdin);

 sem_post(&bin_sem);

 }

 printf("\nWaiting for thread to finish...\n");

 res = pthread_join(a_thread, &thread_result);

70 UNIX Custom Application Migration Guide: Volume 4

 if (res != 0) {

 perror("Thread join failed");

 exit(EXIT_FAILURE);

 }

 printf("\nThread joined\n");

 sem_destroy(&bin_sem);

 exit(EXIT_SUCCESS);

}

(Source File: U_SyncTechnique-UAMV4C4.03.c)

Semaphores are not readily available as part of the .NET Framework 1.1 class library
that comes with Visual Studio .NET 2003. However, there are two ways to implement
semaphores in .NET.
To implement semaphores with Win32 API using P/Invoke
1. Make P/Invoke calls to the semaphore functions in Win32, which are present in the

header file <semaphore.h>. The following examples indicate how the Win32
semaphore functions present in kernel32.dll can be made available to the .NET
classes using the DllImport attribute.
CreateSemaphore
[DllImport("Kernel32.dll", SetLastError = true)]

static extern IntPtr CreateSemaphore(IntPtr
lpSemaphoreAttributes,

int lInitialCount, int lMaximumCount, string lpName);

ReleaseSemaphore
[DllImport("Kernel32.dll", SetLastError = true)]

static extern bool ReleaseSemaphore(IntPtr hSemaphore, int
lReleaseCount,

out IntPtr lpPreviousCount);

WaitForSingleObject
[DllImport("Kernel32.dll", SetLastError = true)]

static extern DWORD WaitForSingleObject(HANDLE hHandle,DWORD
dwMilliseconds);

With Win32, a combination of WaitForSingleObject and ReleaseSemaphore must
be used in both the primary and the secondary threads to facilitate handshaking.

11. Write a semaphore class using the various existing synchronization objects that .NET
Framework provides.

The following Managed C++ example shows how you can write a semaphore class in
.NET by using the Win32 semaphore functions in kernel32.dll through P/Invoke.
.NET example: Implementing semaphore with Win32/Win64 API
#using <mscorlib.dll>

using namespace System;

using namespace System::ComponentModel;

Chapter 4: Developing Phase: Process and Thread Management 71

using namespace System::Runtime::InteropServices;

using namespace System::Threading;

[DllImport("Kernel32.dll", CharSet=CharSet::Ansi)]

extern IntPtr __nogc* CreateSemaphore(IntPtr
lpSemaphoreAttributes,

int lInitialCount, int lMaximumCount, String* lpName);

[DllImport("Kernel32.dll", CharSet = CharSet::Ansi)]

 extern bool ReleaseSemaphore(IntPtr hSemaphore, int
lReleaseCount, IntPtr __nogc* lpPreviousCount);

public __gc __sealed class Semaphore : public WaitHandle

{

public:

 static int _thread = 0;

 Semaphore()

 {

 }

 Semaphore(int maxCount)

 {

Handle = CreateSemaphore(IntPtr::Zero, maxCount, maxCount, NULL);

 if(Handle == InvalidHandle)

 {

 throw new
Win32Exception(Marshal::GetLastWin32Error());

 }

 }

 Semaphore(int initialCount, int maxCount)

 {

Handle = CreateSemaphore(IntPtr::Zero, initialCount, maxCount,
NULL);

 if(Handle == InvalidHandle)

 {

 throw new
Win32Exception(Marshal::GetLastWin32Error());

 }

 }

 Semaphore(int maxCount, String* name)

 {

Handle = CreateSemaphore(IntPtr::Zero, maxCount, maxCount, name);

 if(Handle == InvalidHandle)

 {

72 UNIX Custom Application Migration Guide: Volume 4

 throw new
Win32Exception(Marshal::GetLastWin32Error());

 }

 }

 Semaphore(int initialCount, int maxCount, String* name)

 {

Handle = CreateSemaphore(IntPtr::Zero, initialCount, maxCount,
name);

 if(Handle == InvalidHandle)

 {

 throw new
Win32Exception(Marshal::GetLastWin32Error());

 }

 }

 int ReleaseWin32Semaphore()

 {

 void *p;

 IntPtr __nogc* previousCount = __nogc new
IntPtr(&p);

 if(!ReleaseSemaphore(Handle, 1, previousCount))

 {

 throw new
Win32Exception(Marshal::GetLastWin32Error());

 }

 return previousCount->ToInt32();

 }

 int ReleaseWin32Semaphore(int count)

 {

 void *p;

 IntPtr __nogc* previousCount = __nogc new
IntPtr(&p);

 if(!ReleaseSemaphore(Handle, count,
previousCount))

 {

 throw new
Win32Exception(Marshal::GetLastWin32Error());

 }

 return previousCount->ToInt32();

 }

 }

};

(Source File: N_SyncTechnique-UAMV4C4.03.cpp)

Chapter 4: Developing Phase: Process and Thread Management 73

The latest release of .NET, Visual Studio .NET 2005, contains readymade classes for
semaphores as part of the .NET Framework v2.0 class library. These semaphore classes
allow you to use Win32 semaphores from managed code. More details on the semaphore
class is available at http://msdn2.microsoft.com/en-
US/library/system.threading.semaphore.aspx.

Synchronization Using Mutexes
A mutex is a kernel object that provides a thread with mutually exclusive access to a
single resource. Any thread of the calling process can specify the mutex-object handle in
a call to one of the wait functions. The single-object wait functions return when the state
of the specified object is signaled. The state of a mutex object is signaled when no thread
owns it. When the state of the mutex is signaled, one waiting thread is granted
ownership. The state of the mutex changes to nonsignaled and the wait function returns.
Only one thread can own a mutex at any given time. The owning thread uses the
ReleaseMutex function to release its ownership.
The following example code illustrates the use of mutexes to coordinate access to a
shared resource and to handshake between two threads. The logic is virtually identical to
the semaphore example in the previous section. The only real difference is that this
example uses a mutex instead of a semaphore.
UNIX example: Thread synchronization using mutexes
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

#define SHARED_SIZE 1024

char shared_area[SHARED_SIZE];

pthread_mutex_t shared_mutex; /* protects shared_area */

void *thread_function(void *arg) {

 pthread_mutex_lock(&shared_mutex);

 while(strncmp("done", shared_area, 4) != 0) {

 printf("You input %d characters\n", strlen(shared_area) -
1);

 pthread_mutex_unlock(&shared_mutex);

 pthread_mutex_lock(&shared_mutex);

 }

 pthread_mutex_unlock(&shared_mutex);

 pthread_exit(0);

}

int main() {

 int res;

 pthread_t a_thread;

 void *thread_result;

 res = pthread_mutex_init(&shared_mutex, NULL);

http://msdn2.microsoft.com/en-US/library/system.threading.semaphore.aspx
http://msdn2.microsoft.com/en-US/library/system.threading.semaphore.aspx

74 UNIX Custom Application Migration Guide: Volume 4

 if (res != 0) {

 perror("Mutex initialization failed");

 exit(EXIT_FAILURE);

 }

 res = pthread_create(&a_thread, NULL, thread_function, NULL);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 pthread_mutex_lock(&shared_mutex);

 printf("Input some text. Enter 'done' to finish\n");

 while (strncmp("done", shared_area, 4) != 0) {

 fgets(shared_area, SHARED_SIZE, stdin);

 pthread_mutex_unlock(&shared_mutex);

 pthread_mutex_lock(&shared_mutex);

 }

 pthread_mutex_unlock(&shared_mutex);

 printf("\nWaiting for thread to finish...\n");

 res = pthread_join(a_thread, &thread_result);

 if (res != 0) {

 perror("Thread join failed");

 exit(EXIT_FAILURE);

 }

 printf("\nThread joined\n");

 pthread_mutex_destroy(&shared_mutex);

 exit(EXIT_SUCCESS);

}

(Source File: U_SyncTechnique-UAMV4C4.04.c)

In .NET, use WaitHandle.WaitOne to request ownership of a mutex. The thread that
owns a mutex can request the same mutex in repeated calls to Wait without blocking its
execution. However, the thread must call the ReleaseMutex method the same number of
times to release ownership of the mutex. If a thread terminates normally while owning a
mutex, the state of the mutex is set to signaled and the next waiting thread gets the
ownership. If no one owns the mutex, the state of the mutex is signaled.
.NET example: Thread synchronization using mutexes
#using <mscorlib.dll>

using namespace System;

using namespace System::Threading;

__gc class Test

{

public:

 String* gStr;

Chapter 4: Developing Phase: Process and Thread Management 75

public:

 Test()

 {

 gStr = S"";

 }

public:

 static Mutex* mut = new Mutex();

public:

 void UseResource()

 {

 mut->WaitOne();

 while(!gStr->Equals(S"done"))

 {

Console::WriteLine(S"The length of '{0}' is {1}", gStr,
__box(gStr->Length));

 mut->ReleaseMutex();

 mut->WaitOne();

 }

 mut->ReleaseMutex();

 }

 void Parent()

 {

 mut->WaitOne();

 Thread * myThread = new Thread(new ThreadStart(this,
Test::UseResource));

 myThread->Start();

 while(!gStr->Equals(S"done"))

 {

 gStr = Console::ReadLine();

 mut->ReleaseMutex();

 mut->WaitOne();

 }

 mut->ReleaseMutex();

 Console::WriteLine(S"Waiting for thread to finish...");

 myThread->Join();

 Console::WriteLine(S"Thread joined");

 }

};

int main()

{

 Test* objTest = new Test();

 Console::WriteLine(S"Input some text. Enter 'done' to
finish");

76 UNIX Custom Application Migration Guide: Volume 4

 objTest->Parent();

}

(Source File: N_SyncTechnique-UAMV4C4.04.cpp)
Note More information on the threading and synchronization objects in .NET is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
s/cpguide/html/cpconthreadingobjectsfeatures.asp.

Thread Scheduling and Priorities
This section describes the scheduling priority of a thread in UNIX and .NET. This section
helps you convert the UNIX application with different thread priorities to .NET thread
priorities. A thread in .NET can be assigned any one of the following five priority values:
• Highest
• AboveNormal
• Normal
• BelowNormal
• Lowest
The Thread::Priority property in .NET allows you to set or change the priority of the
thread to any of the five priorities. The threads created within the CLR are initially
assigned the priority of ThreadPriority::Normal. Threads created outside the runtime
retain the priority that they had before they entered the managed environment.
The operating system uses the priority level of all the executable threads to determine
which thread gets the next slice of CPU time. The scheduling algorithm used to
determine the order in which the threads are executed varies with each operating system.
UNIX offers both round-robin and FIFO (first-in-first-out) scheduling algorithms, whereas
Windows uses only a round-robin algorithm. This does not mean that Windows is less
flexible; it just means that any fine-tuning performed on thread scheduling in UNIX is
implemented differently in Windows.
Threads are scheduled for execution based on their priority. Even though threads are
executing within the runtime, all threads are assigned processor time slices by the
operating system. As long as a thread with a higher priority is available to run, lower
priority threads are not executed. When there are no more executable threads at a given
priority, the scheduler moves to the next lower priority and schedules the threads at that
priority for execution. If a higher priority thread becomes executable, the lower priority
thread is preempted and the higher priority thread is allowed to execute once again.

Managing Thread State and Priorities in .NET
The Thread class provides a number of members for managing the thread state and
priorities. Some of these members are:
• ThreadState. Returns the current state of the thread. The initial thread state value is

Unstarted. The other values are Running, WaitSleepJoin, SuspendedRequested,
Suspended, and Stopped.

• Priority. Gets or sets the priority for the specified thread.
• Name. Gets or sets the name of the thread. If the name is not set, it returns null.
• CurrentContext. Gets the current context in which the thread is executing.
• IsBackground. Specifies whether the thread should execute in the background.

Background threads are stopped automatically (if they are still running) when the
program finishes. (Programs will wait for foreground threads to complete before
terminating.)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthreadingobjectsfeatures.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthreadingobjectsfeatures.asp

Chapter 4: Developing Phase: Process and Thread Management 77

Example of Converting UNIX Thread Scheduling into .NET
In this example, the thread priority level is set to the lowest level. For UNIX, lowering the
thread priority level requires creating an attribute object before instantiating the thread,
and then setting the policy of the attribute object. After this, the thread is created with the
modified attribute. On successful instantiation of the thread, the priority level is adjusted
to the lowest level within the designated policy and class. In UNIX, this is accomplished
by a call to pthread_attr_setschedparam.
In .NET, the priority of the thread is set to lowest by setting the priority property to
ThreadPriority::Lowest.
UNIX example: Thread scheduling
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

char message[] = "Hello I’m a Thread";

int thread_finished = 0;

void *thread_function(void *arg) {

 printf("thread_function running. Arg was %s\n", (char *)arg);

 sleep(4);

 printf("Second thread setting finished flag, and exiting
now\n");

 thread_finished = 1;

 pthread_exit(NULL);

}

int main() {

 int count=0, res, min_priority, max_priority;

 struct sched_param scheduling_params;

 pthread_t a_thread;

 void *thread_result;

 pthread_attr_t thread_attr;

 res = pthread_attr_init(&thread_attr);

 if (res != 0) {

 perror("Attribute creation failed");

 exit(EXIT_FAILURE);

 }

 res = pthread_attr_setschedpolicy(&thread_attr, SCHED_OTHER);

 if (res != 0) {

 perror("Setting schedpolicy failed");

 exit(EXIT_FAILURE);

 }

78 UNIX Custom Application Migration Guide: Volume 4

 res = pthread_attr_setdetachstate(&thread_attr,
PTHREAD_CREATE_DETACHED);

 if (res != 0) {

 perror("Setting detached attribute failed");

 exit(EXIT_FAILURE);

 }

 res = pthread_create(&a_thread, &thread_attr,
thread_function, (void *)message);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 max_priority = sched_get_priority_max(SCHED_OTHER);

 min_priority = sched_get_priority_min(SCHED_OTHER);

 scheduling_params.sched_priority = min_priority;

 res = pthread_attr_setschedparam(&thread_attr,
&scheduling_params);

 if (res != 0) {

 perror("Setting schedparam failed");

 exit(EXIT_FAILURE);

 }

 (void)pthread_attr_destroy(&thread_attr);

 while(!thread_finished) {

 printf("Waiting for thread to finish (%d)\n", ++count);

 sleep(1);

 }

 printf("Other thread finished, See Ya!\n");

 exit(EXIT_SUCCESS);

}

(Source File: U_ThreadSchedule-UAMV4C4.01.c)

.NET example: Thread scheduling
#using <mscorlib.dll>

using namespace System;

using namespace System::Threading;

int thread_finished = 0;

public __gc class ThreadExample

{

 private:

 String* tMessage;

 public:

 ThreadExample(String* argMessage)

 {

Chapter 4: Developing Phase: Process and Thread Management 79

 tMessage = argMessage;

 }

 void thread_function()

 {

 Console::WriteLine(S"thread_function running.");

 Console::WriteLine(S"Message is {0}",tMessage);

 Thread::Sleep(4000);

 Console::WriteLine(S"Second thread finished, setting flag,
and exiting now\n");

 thread_finished = 1;

 }

 };

 int main()

 {

 int count = 0;

 String *message = S"Hello! I am Thread";

 ThreadExample *obTex = new ThreadExample(message);

 Thread *oThread = new Thread(new
ThreadStart(obTex,&ThreadExample::thread_function));

 oThread->Start();

 oThread->Priority = ThreadPriority::Lowest;

 while(!thread_finished)

 {

 ++count;

Console::WriteLine("Waiting for the other thread to finish
({0})",count.ToString());

 Thread::Sleep(1000);

 }

 Console::WriteLine(S"Other thread finished, bye!");

 return 0;

 }

(Source File: N_ThreadSchedule-UAMV4C4.01.cpp)

Managing Multiple Threads
In the following UNIX example, numerous threads are created that terminate at random
times. Their termination and display messages are then caught to indicate their
termination status.
UNIX example: Managing multiple threads
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

80 UNIX Custom Application Migration Guide: Volume 4

#define NUM_THREADS 5

void *thread_function(void *arg) {

 int t_number = *(int *)arg;

 int rand_delay;

 printf("thread_function running. Arg was %d\n", t_number);

// Seed the random-number generator with current time so that

// the numbers will be different each time function is run.

 srand((unsigned)time(NULL));

// random time delay from 1 to 10

 rand_delay = 1+ 9.0*(float)rand()/(float)RAND_MAX;

 sleep(rand_delay);

 printf("See Ya from thread #%d\n", t_number);

 pthread_exit(NULL);

}

int main() {

 int res;

 pthread_t a_thread[NUM_THREADS];

 void *thread_result;

 int multiple_threads;

 for(multiple_threads = 0; multiple_threads < NUM_THREADS;
multiple_threads++) {

 res = pthread_create(&(a_thread[multiple_threads]), NULL,
thread_function, (void *)&multiple_threads);

 if (res != 0) {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

 sleep(1);

 }

 printf("Waiting for threads to finish…\n");

 for(multiple_threads = NUM_THREADS - 1; multiple_threads >=
0; multiple_threads--) {

 res = pthread_join(a_thread[multiple_threads],
&thread_result);

 if (res == 0) {

 printf("Another thread\n");

 }

 else {

 perror("pthread_join failed");

Chapter 4: Developing Phase: Process and Thread Management 81

 }

 }

 printf("All done\n");

 exit(EXIT_SUCCESS);

}

(Source File: U_MultipleThreads-UAMV4C4.01.c)

.NET example: Managing multiple threads using ThreadPool class
.NET provides a ThreadPool class to manage multiple threads. When you use the
ThreadPool class, the thread management is done by the infrastructure.

#using <mscorlib.dll>

using namespace System;

using namespace System::Threading;

// TaskInfo holds state information for a task that will be

// executed by a ThreadPool thread.

public __gc class TaskInfo

{

 // State information for the task.

public:

 int Value;

 // Public constructor provides an easy way to supply all

 // the information needed for the task.

 TaskInfo(int number)

 {

 Value = number;

 }

};

__gc class Example

{

public:

// This thread procedure performs the task.

 static void thread_function(Object* stateInfo)

 {

 TaskInfo* ti = dynamic_cast<TaskInfo*>(stateInfo);

Console::WriteLine(S"Thread function running.The arg was {0}",ti-
>Value.ToString());

 Random *objRand = new Random();

 int rand_delay = 1 + (objRand->Next() % 10);

82 UNIX Custom Application Migration Guide: Volume 4

 Thread::Sleep(rand_delay*1000);

 Console::WriteLine(S"See ya from thread #{0}",__box(ti-
>Value));

 }

};

int main()

{

 for(int i=0;i<4;i++)

 {

 TaskInfo *ti = new TaskInfo(i);

ThreadPool::QueueUserWorkItem(new WaitCallback(0,
Example::thread_function),ti);

 Thread::Sleep(1000);

 }

Console::WriteLine(S"Waiting for threads to finish");

 Thread::Sleep(10000);

 Console::WriteLine(S"All done");

 return 0;

}

(Source File: N_MultipleThreads-UAMV4C4.01.cpp)

Chapter 5: Developing Phase: Memory
and File Management

This chapter discusses the programming differences between the Microsoft® .NET
Framework and the UNIX environment in the following two categories:
• Memory management
• File management
In addition, this chapter outlines the various options available for converting the UNIX
code to Microsoft .NET in each of these categories and illustrates the options with
appropriate source code examples.

Memory Management
This section explains the process of memory allocation, de-allocation on the managed
heap, and the garbage collection mechanism in the .NET environment. The following
topics are explained in detail:
• Allocating memory
• Releasing memory
• Garbage collection
• Releasing unmanaged resources
• Thread local storage
UNIX provides the standard heap management functions for memory management. The
standard C runtime on UNIX includes such functions as calloc() and malloc() for
allocating memory and free() for de-allocating memory. The programmer, however, has
to delete the references that are no longer required. Simply put, the programmer has to
free the allocated memory when references to that memory are no longer required.
Otherwise, it could lead to memory leaks.
In the .NET Framework, memory management is automatic. The garbage collector, which
is a part of the common language runtime (CLR), manages the allocation and release of
memory for managed code. Automatic memory management in .NET eliminates some
common problems, such as forgetting to free a reference that causes memory leaks or
attempting to access memory for an object that has already been freed. The following
section describes how the garbage collector allocates and releases the memory for an
application.

Allocating Memory
When a new process is initialized, the runtime reserves a contiguous region of address
space for the process. This reserved address space is called the managed heap. The
managed heap maintains a pointer to the address space, which will be allocated to the
next object in the heap. Initially, this pointer is set to the base address of the managed
heap. All reference types are allocated on the managed heap. When an application
creates the first reference type, memory is allocated for the type at the base address of

84 UNIX Custom Application Migration Guide: Volume 4

the managed heap. When the application creates the next object, the garbage collector
allocates memory for it in the address space immediately following the first object. As
long as address space is available, the garbage collector continues to allocate space for
new objects in this manner.
Allocating memory from the managed heap is faster than the unmanaged memory
allocation. Because the runtime allocates memory for an object by adding a value to a
pointer, it is almost as fast as allocating memory from the stack. In addition, because new
objects that are allocated address spaces consecutively are stored contiguously in the
managed heap, an application can access the objects very quickly.

Releasing Memory
The optimizing engine of the garbage collector determines the best time to perform a
collection based on the allocations made. When the garbage collector performs a
collection, it releases the memory for the objects that are no longer being used by the
application. How the garbage collector identifies the objects that are no longer being used
and how the memory is released is discussed in detail in the “Garbage Collection” section
later in this chapter.
To improve performance, the runtime allocates memory for large objects in a separate
heap. The garbage collector automatically releases the memory allocated for large
objects.

Releasing Memory for Unmanaged Resources
The garbage collector automatically performs the necessary memory management tasks
for the majority of the objects that an application creates. However, unmanaged
resources require an explicit cleanup. When you create an object that encapsulates an
unmanaged resource, it is recommended that you provide the necessary code to clean
up the unmanaged resource in a public Dispose method. A Dispose method enables
users of an object to explicitly free the memory when they are finished with the object.

Garbage Collection
Each time the new operator is used to create an object, the runtime allocates memory for
the object from the managed heap. As long as address space is available in the
managed heap, the runtime continues to allocate memory for new objects. However,
memory is not infinite.
Eventually, the garbage collector must perform a collection to free some memory. The
optimizing engine of the garbage collector determines the best time to perform a
collection, based upon the allocations made. When the garbage collector performs a
collection, it checks the managed heap for objects that are no longer being used by the
application and performs the necessary operations to reclaim the memory.
The garbage collector determines which objects are no longer being used by examining
the roots of the application. Every application has a set of roots and each root refers to an
object on the managed heap. The runtime maintains a list of all the active roots. The
garbage collector accesses the list to identify the unused objects, marks these objects for
release, and releases the memory allocated for them.
Irrespective of the managed language used, the garbage collector of the .NET
Framework provides automatic memory management. It allocates and releases the
memory for the managed objects and, when necessary, executes the Finalize methods
and destructors to properly clean up the unmanaged resources.
Automatic memory management simplifies development by eliminating the common bugs
that arise from the manual memory management schemes. The following steps describe
the life cycle of the object from its creation to destruction:

Chapter 5: Developing Phase: Memory and File Management 85

• Type initialization. When the first instance of an object is created, it executes any
shared initialization and shared constructor code.

• Instance initialization. When an instance of your component is created, data
members that have initialization code are initialized, and the appropriate constructor
overload is executed.

• Disposing of resources. If the object overrides the Dispose method, it frees all
system resources it may have allocated, releases references to other objects, and
renders itself unusable.

• Instance destruction. When garbage collection detects that there are no remaining
references to the component, the runtime calls your component's destructor and
frees the memory.

Forcing Garbage Collection
The garbage collection GC class provides the GC.Collect method, which is used to give
an application some direct control over the garbage collector. In general, avoid calling
any of the collect methods and allow the garbage collector to run independently. In most
cases, the garbage collector is better at determining the best time to perform a collection.
However, in certain rare situations, forcing a collection might improve the performance of
an application.
Use the GC.Collect method in a situation where there is a significant reduction in the
amount of memory being used at a defined point in the application code. For example, an
application might use a document that references a significant number of unmanaged
resources. When the application closes the document, the resources the document has
been using are no longer needed. To improve the performance of the application,
consider releasing the unused resources.
Note More information on GC.Collect method is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemgcclasscollecttopic.asp.

Releasing Unmanaged Resources
The most common type of an unmanaged resource is an object that wraps an operating
system resource, such as a file, a window, or a network connection. Although the
garbage collector can track the lifetime of an object that encapsulates an unmanaged
resource, it cannot clean up the resource. For these types of objects, the .NET
Framework provides the Object.Finalize method, which allows an object to clean up its
unmanaged resources properly when the garbage collector reclaims the memory used by
the object. In C#, finalizers are expressed using the destructor syntax.
To properly dispose of the unmanaged resources, consider implementing a public
Dispose method, which executes the necessary cleanup code for the object. The
IDisposable interface in the System namespace provides the Dispose method for the
resource classes that implement the interface. This method is public and hence the users
of an application can call the Dispose method directly to free the memory used by the
unmanaged resources. If a Dispose method is properly implemented, the destructor or
the finalize method becomes a safeguard to clean up the unmanaged resources in case
the Dispose method is not called.
The Dispose method of an object type should release all the resources that it owns. In
addition, it should also release all the resources owned by its base types by calling the
Dispose method of its parent type. The Dispose method of the parent type should
release all the resources that it owns and in turn call the Dispose method of its parent
type.
A Dispose method calls the GC.SuppressFinalize method for the object that it is
disposing. If an object is currently on the finalization queue, GC.SuppressFinalize
prevents the Finalize method from being called. Executing the Finalize method affects

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemgcclasscollecttopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemgcclasscollecttopic.asp

86 UNIX Custom Application Migration Guide: Volume 4

performance. Therefore, if the Dispose method has already done the work to clean up an
object, then it is not necessary for the garbage collector to call the Finalize method of the
object.

Chapter 5: Developing Phase: Memory and File Management 87

The BaseResource class of the .NET Framework implements the IDisposable interface
and defines a public Dispose method. The cleanup code for the object is executed in this
Dispose method. The Dispose method takes either a true or a false as an argument
depending on the identity of the caller. If the argument is true, it means that the method
has been called by the code; hence, all the managed and unmanaged resources can be
disposed. If the argument is false, it means that the method has been called from the
runtime; hence, only the unmanaged resources can be disposed. The BaseResource
class also provides a destructor as a safeguard mechanism in case the Dispose method
is not called.
The following example code illustrates a design pattern for implementing the Dispose
method for classes that encapsulate unmanaged resources. This pattern is implemented
throughout the .NET Framework.
In this example, the class MyResourceWrapper illustrates how to derive from a class
that implements resource management using the Dispose method.
MyResourceWrapper overrides the virtual Dispose(bool) method and provides clean-
up code for the managed and unmanaged resources that it creates.
MyResourceWrapper also calls the Dispose method on its base class, BaseResource,
to ensure that its base is properly cleaned up.
.NET example: Code for implementing the Dispose method
using System;

using System.ComponentModel;

// Design pattern for the base class.

// By implementing IDisposable, you are announcing that instances

// of this type allocate scarce resources.

public class BaseResource: IDisposable

{

 // Pointer to an external unmanaged resource.

 private IntPtr handle;

 // Other managed resource this class uses.

 private Component Components;

 // Track whether Dispose has been called.

 private bool disposed = false;

 // Constructor for the BaseResource object.

 public BaseResource()

 {

 // Insert appropriate constructor code here.

 }

 // Implement IDisposable.

 // Do not make this method virtual.

 // A derived class should not be able to override this method.

 public void Dispose()

 {

 Dispose(true);

 // Take yourself off the Finalization queue

88 UNIX Custom Application Migration Guide: Volume 4

 // to prevent finalization code for this object

 // from executing a second time.

 GC.SuppressFinalize(this);

 }

 // Dispose(bool disposing) executes in two distinct scenarios.

 // If disposing equals true, the method has been called
directly

 // or indirectly by a user's code. Managed and unmanaged
resources

 // can be disposed.

 // If disposing equals false, the method has been called by
the

 // runtime from inside the finalizer and you should not
reference

 // other objects. Only unmanaged resources can be disposed.

 protected virtual void Dispose(bool disposing)

 {

 // Check to see if Dispose has already been called.

 if(!this.disposed)

 {

 // If disposing equals true, dispose all managed

 // and unmanaged resources.

 if(disposing)

 {

 // Dispose managed resources.

 Components.Dispose();

 }

 // Release unmanaged resources. If disposing is false,

 // only the following code is executed.

 CloseHandle(handle);

 handle = IntPtr.Zero;

 // Note that this is not thread safe.

 // Another thread could start disposing the object

 // after the managed resources are disposed,

 // but before the disposed flag is set to true.

 // If thread safety is necessary, it must be

 // implemented by the client.

 }

 disposed = true;

 }

 // Use C# destructor syntax for finalization code.

Chapter 5: Developing Phase: Memory and File Management 89

 // This destructor will run only if the Dispose method

 // does not get called.

 // It gives your base class the opportunity to finalize.

 // Do not provide destructors in types derived from this
class.

 ~BaseResource()

 {

 // Do not recreate Dispose clean-up code here.

 // Calling Dispose(false) is optimal in terms of

 // readability and maintainability.

 Dispose(false);

 }

 // Allow your Dispose method to be called multiple times,

 // but throw an exception if the object has been disposed.

 // Whenever you do something with this class,

 // check to see if it has been disposed.

 public void DoSomething()

 {

 if(this.disposed)

 {

 throw new ObjectDisposedException();

 }

 }

public void CloseHandle(IntPtr h)

 {

 //cleanup of handle

 // Write code here to cleanup your unmanaged resource

 }

 public void CloseHandle(NativeResource n)

 {

 CloseHandle(n.handle);

 }

}

public class ManagedResource:BaseResource

{

};

public class NativeResource:BaseResource

{

};

// Design pattern for a derived class.

90 UNIX Custom Application Migration Guide: Volume 4

// Note that this derived class inherently implements the

// IDisposable interface because it is implemented in the base
class.

public class MyResourceWrapper: BaseResource

{

 // A managed resource that you add in this derived class.

 private ManagedResource addedManaged = new
ManagedResource();

// A native unmanaged resource that you add in this derived
class.

 private NativeResource addedNative = new NativeResource();

 private bool disposed = false;

 // Constructor for this object.

 public MyResourceWrapper()

 {

 // Insert appropriate constructor code here.

 }

 protected override void Dispose(bool disposing)

 {

 if(!this.disposed)

 {

 try

 {

 if(disposing)

 {

 // Release the managed resources you added in

 // this derived class here.

 addedManaged.Dispose();

 }

 // Release the native unmanaged resources you added

 // in this derived class here.

 CloseHandle(addedNative);

 this.disposed = true;

 }

 finally

 {

 // Call Dispose on your base class.

 base.Dispose(disposing);

 }

 }

 }

Chapter 5: Developing Phase: Memory and File Management 91

}

// This derived class does not have a Finalize method

// or a Dispose method without parameters because it inherits

// them from the base class.

(Source File: N_MemMgt-UAMV4C5.01.cs)

Thread Local Storage
The Thread Local Storage (TLS) mechanism enables storing of data in a thread and
accessing the data anywhere the thread exists. The System.Threading namespace
allows developers to use TLS within their multithreaded applications.
Whenever a process is created, the CLR allocates a multislot data store array to each
and every process. Threads, with the help of the flexible access methods, can use these
data slots within the data stores to store and retrieve information that is unique to a
thread and an application. There are two types of data slots: named slots and unnamed
slots. The named slots can use a mnemonic identifier. However, other components can,
intentionally or unintentionally, modify them by using the same name for their own thread-
relative storage. However, if an unnamed data slot is not exposed to other code, it cannot
be used by any other component. To use managed TLS, create a data slot using
Thread.AllocateNamedDataSlot or Thread.AllocateDataSlot, and use the appropriate
methods to set or retrieve the information placed there.
The following is an example of a console application in .NET illustrating the use of TLS
for storing information specific to a thread. A dispatcher object is created, which keeps
calling the ProcessSignal() method of the receiver in a loop. The receiver object
generates a random number for every call from the dispatcher and writes this number on
the TLS, which the dispatcher can read.
.NET example: Using Thread Local Storage
using System;

using System.Threading;

namespace TLSExample

{

// This Console Application is to demonstrate how TLS can be used
to store

// information specific to a thread

class TLSExample

{

 public static void Main(string[] args)

 {

 // Allocate a named data slot on all threads

 Thread.AllocateNamedDataSlot ("receivervalue");

 Despatcher desOb =new Despatcher ();

 // Thread out to the other classes

 ThreadStart myThreadStart = new ThreadStart
(desOb.DespatchWork);

 Thread myThread = new Thread(myThreadStart);

92 UNIX Custom Application Migration Guide: Volume 4

 // Start the thread here.

 myThread.Start();

 // free the memory on all threads

 Thread.FreeNamedDataSlot("receivervalue");

 }

}

public class Despatcher

{

 // This is class implementation that despatches down into
other classes

 private Receiver recOb;

 public Despatcher()

 {

 recOb = new Receiver();

 }

 public void DespatchWork()

 {

 // Looping to simulate processing

 for(int i=0;i<50;i++)

 {

 // The Despatcher despatches to receiver by calling

 // the processSignal method of the Receiver

 recOb.ProcessSignal();

 //After processing by the Receiver, the calling class
needs to

 //access the information on TLS

 int valueFromReceiver = DetermineVFR();

Console.WriteLine ("The value pulled from TLS " +
valueFromReceiver);

 }

 }

 public int DetermineVFR()

 {

 LocalDataStoreSlot vfcTLS;

 vfcTLS = Thread.GetNamedDataSlot("receivervalue");

 int vfc = (int) Thread.GetData(vfcTLS);

 return(vfc);

 }

}

Chapter 5: Developing Phase: Memory and File Management 93

public class Receiver

{

// This class processes work from the despatcher and returns back
to

// despatcher with information on thread

 private Random ranTime;

 private int max;

 public Receiver()

 {

 ranTime = new Random();

 max = 500;

 }

 public bool ProcessSignal()

 {

 // Generate some random number to store different values on
all threads

 int rndValue=ranTime.Next(max);

 LocalDataStoreSlot myData;

 myData = Thread.GetNamedDataSlot("receivervalue");

 // Set the named data slot equal to the random number
created above

 Thread.SetData(myData,rndValue);

 return true;

 }

}

}

(Source File: N_MemMgt-UAMV4C5.02.cs)

94 UNIX Custom Application Migration Guide: Volume 4

File Management
This section details the file management techniques in the UNIX and .NET environments.
The following topics are explained in detail:
• File access mechanisms
• File open and access modes
• Migrating using interoperability strategies
• Working with directories
Every program that runs from the UNIX shell opens three standard files: standard input,
standard output, and standard error. These files have the integer file descriptors and
provide the primary means of communication between the programs. These file
descriptors are 0, 1, and 2 respectively for standard input, standard output, and standard
error. These files exist as long as the process runs. UNIX provides two kinds of file
access: low-level file access and standard, or stream, file access.

File Access Mechanisms
This section describes the various file access mechanisms using low-level file
input/output routines and the stream file access routines on the UNIX and .NET
environments.

UNIX File Access
UNIX file access is mainly classified as two types: low-level file access and stream file
access.

Low-Level File Access
The low-level input/output (I/O) functions invoke the operating system more directly for
low-level operations than that provided by standard (or stream) I/O. Function calls
relating to low-level input and output do not buffer or format data. They deal with bytes of
information, which means that you are using the binary files instead of the text files. The
low-level file handles or file descriptors, which give a unique integer number to identify
each file, are used instead of file pointers.

Stream File Access
The standard, or stream, I/O functions process data in different sizes and formats,
ranging from a single character to large data structures. They also provide buffering,
which can improve performance. Using the stream file access functions, you can open a
file either in the binary mode or in the text mode. In the binary mode, a program can
access every byte in the file, whereas the text mode is normally used for text files in
which some characters may be "hidden" from the program.

.NET File Access
In .NET, the System::IO namespace provides a FileStream method to access the
contents of a file. If a low-level file access or the binary mode in a stream file access is
used in UNIX, then consider using the BinaryReader and BinaryWriter classes in .NET.
These .NET classes enable you to read from and write into binary files. The System::IO
namespace also provides the StreamReader and StreamWriter classes for processing
text files, which can be used for migrating the nonbinary mode file access code.

Chapter 5: Developing Phase: Memory and File Management 95

File Access Through the FileStream Class
The FileStream class provides access to files, including the standard input, output, and
error devices. Use the FileStream class to read from, write to, open, and close files on a
file system, as well as to manipulate other file-related operating system handles such as
pipes, standard input, and standard output. The FileStream class also buffers input and
output for better performance.
There are different types of FileStream constructors that you can use depending on your
requirement. One common usage is as follows.
FileStream (“File name”, FileMode, FileAccess)

You can also use the FileInfo class, which helps in the creation of FileStream objects.
Note More information on the usage of the FileStream class in the System.IO namespace is
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfSystemIOFileStreamClassTopic.asp.

File Access Through BinaryReader and BinaryWriter
The BinaryReader class is used for reading strings and elementary data types as binary
values, whereas the BinaryWriter class is used for writing elementary types in binary
data. When writing to files, an application may have to create a file if the file to which the
application is trying to write does not exist. To do so, the application requires permission
for the directory in which the file is to be created. However, if the file already exists, the
application only requires write permission to the file itself. Wherever possible, it is more
secure to create the file during deployment and only grant write permission to that file
instead of granting permission to the entire directory. It is also more secure to write data
to the user directories than to the root directory or the Program Files directory.

File Access Through StreamReader and StreamWriter
The System.IO namespace class allows you to read and write characters to and from
files as streams, or contiguous groups of data, using specific encoding to convert
characters to and from bytes. It includes the StreamReader and StreamWriter classes,
which enable you to read or write a sequential stream of characters to or from a file. The
StreamReader and StreamWriter classes mirror the functionality of the BinaryReader
and BinaryWriter classes, but they read and write information as text rather than as
binary data.
The following code sample reads up to 1 KB of characters from the input file and writes
that information to the output file. If any input/output errors occur, an error message is
output to the standard error file descriptor.
UNIX example: Reading and writing files using low-level functions
#include <unistd.h>

#include <sys/stat.h>

#include <fcntl.h>

int main()

{

 char block[1024];

 int in, out;

 int num_read;

 in = open("input_file", O_RDONLY);

 if (in == -1) {

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemIOFileStreamClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemIOFileStreamClassTopic.asp

96 UNIX Custom Application Migration Guide: Volume 4

 write(2, "An error has occurred opening the file:
‘input_file’\n", 52);

 exit(1);

 }

 out = open("output_file", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);

 if (out == -1) {

 write(2, "An error has occurred opening the file:
‘output_file’\n", 53);

 exit(1);

 }

 while((num_read = read(in,block,sizeof(block))) > 0)

 write(out, block, num_read);

 exit(0);

}

(Source File: U_FileMgt-UAMV4C5.01.c)

The Managed C++ code sample reads up to 1 KB of characters from the input file and
writes them to the output file.
.NET example: Reading and writing files using BinaryReader and BinaryWriter
#using <mscorlib.dll>

#define BUF_SIZE 1024

using namespace System;

using namespace System::IO;

int main(int argc, char *argv[])

{

 try

 {

 Byte block[] = new Byte[BUF_SIZE];

 FileStream *in =

 new FileStream("input_file", FileMode::Open,
FileAccess::Read);

 FileStream *out =

 new FileStream("output_file", FileMode::Create,
FileAccess::ReadWrite);

 BinaryReader *source = new BinaryReader(in);

 BinaryWriter *dest = new BinaryWriter(out);

 while (int numBytes = source->Read(block, 0, BUF_SIZE))

 {

 dest->Write(block, 0, numBytes);

Chapter 5: Developing Phase: Memory and File Management 97

 }

 source->Close();

 dest->Close();

 in->Close();

 out->Close();

 }

 catch (Exception *e)

 {

 Console::WriteLine(e->get_Message());

 }

}

(Source File: N_FileMgt-UAMV4C5.01.cpp)

The following code sample reads characters from the input file opened with the standard
file I/O library function fopen() and writes that information to the output file, also opened
with fopen(). Then it uses a loop of the fgetc and fputc calls to transfer the contents of
"input_file" to "output_file".
UNIX example: Copying a file using stream file functions
#include <stdio.h>

int main()

{

 int c;

 FILE *in, *out;

 in = fopen("input_file","r");

 if (in == NULL) {

 write(2, "An error has occurred opening the file:
‘input_file’\n", 52);

 exit(1);

 }

 out = fopen("output_file","w");

 if (out == NULL) {

 write(2, "An error has occurred opening the file:
‘output_file’\n", 53);

 exit(1);

 }

 while((c = fgetc(in)) != EOF)

 fputc(c,out);

 fclose(in);

 fclose(out);

98 UNIX Custom Application Migration Guide: Volume 4

 exit(0);

}

(Source File: U_FileMgt-UAMV4C5.02.c)
.NET provides a simpler way of copying the contents of one file into another. The
following code sample uses the ReadToEnd() method of the StreamReader class to
read the contents of the input file to a string and later writes the read string to the output
file.
.NET example: Copying files using StreamReader and StreamWriter
#using <mscorlib.dll>

using namespace System;

using namespace System::IO;

int main()

{

 try

 {

 FileStream *in =

 new FileStream("input_file", FileMode::Open,
FileAccess::Read);

 FileStream *out =

 new FileStream("output_file", FileMode::Create,
FileAccess::ReadWrite);

 StreamReader *source = new StreamReader(in);

 StreamWriter *dest = new StreamWriter(out);

 String *str = source->ReadToEnd();

 dest->Write(str);

 source->Close();

 dest->Close();

 in->Close();

 out->Close();

 }

 catch (Exception *e)

 {

 Console::WriteLine(e->get_Message());

 }

}

(Source File: N_FileMgt-UAMV4C5.02.cpp)

Chapter 5: Developing Phase: Memory and File Management 99

File Open and Access Modes
Table 5.1 lists the file access modes used in the fopen() statement in UNIX and its
equivalent in the .NET Framework.
Table 5.1. Mapping of File Modes in fopen() to System::IO Namespace

File Modes in
fopen()

File Modes in
System::IO

Operation

r FileMode::Open
FileAccess:Read

Opens a text file for reading.

w FileMode::OpenOrCreate
FileAccess:Write

Opens a text file for writing. If the file
does not exist, a new file is created.

a FileMode::Append
FileAccess::Write

Opens a text file for appending. The
text that is written to is added at the
end of the file. If the file does not
exist, a new file is created.

rb FileMode::Open
FileAccess::Read
Use the BinaryReader
class for reading.

Opens a binary file for reading.

wb FileMode::OpenOrCreate
FileAccess::Write
Use the BinaryWriter
class for writing.

Opens a binary file for writing. If the
file does not exist, a new file is
created.

ab FileMode::Append
FileAccess::Write
Use the BinaryWriter
class for writing.

Opens a binary file for appending. If
the file does not exist, a new file is
created.

r+ FileMode::Open
FileAccess::ReadWrite

Opens a text file for reading and
writing.

w+ FileMode::OpenOrCreate
FileAccess::ReadWrite

Creates a new text file for reading
and writing. If a file with the same
name already exists, it is over-
written. If the file does exist, a new
file is created.

a+ Append access can be
requested only in write
mode.
To write use the
following:
FileMode::Append
FileAccess::Write

Opens a text file for reading and
appending.

100 UNIX Custom Application Migration Guide: Volume 4

File Modes in
fopen()

File Modes in
System::IO

Operation

r+b FileMode::Open
FileAccess::ReadWrite
Use the BinaryReader
and BinaryWriter
classes for reading and
writing.

Opens a binary file for reading and
writing.

w+b FileMode::OpenOrCreate
FileAccess::ReadWrite
Use the BinaryReader
and BinaryWriter
classes for reading and
writing.

Creates a binary file for reading and
writing. If a file with the same name
already exists, it is overwritten.

a+b Append access can be
requested only in write
mode.
Use the following modes:
FileMode::Append
FileAccess::ReadWrite
Use the BinaryReader
and BinaryWriter
classes for reading and
writing.

Opens a binary file for reading and
appending.

Migrating Using Interoperability Strategies
File I/O calls are provided by the standard I/O library stdio.h. This library is a part of ANSI
standard C; hence it ports directly to Microsoft Windows. Similarly, many C and C++ file-
related programs on UNIX can be recompiled on Windows with minimal changes. These
programs can also be directly recompiled in a .NET Managed C++ project using the /CLR
compiler switch (IJW mechanism).
You can also use the other .NET interoperability strategies, such as wrapping the
unmanaged classes, or Platform Invocation services (DllImport) to migrate the file-related
code to .NET. However, as explained in the “.NET Interoperability Mechanisms” section
in Chapter 3, “.NET Interoperability” of this volume, the file-operations code will run
unmanaged in the .NET environment.

Chapter 5: Developing Phase: Memory and File Management 101

Working with Directories
This section describes various routines to perform actions related to directories in UNIX
and .NET such as accessing the current working directory, changing a directory, and
deleting a directory.

Accessing the Current Working Directory
Directory operations involve calling the appropriate functions to traverse a directory
hierarchy and to list the contents of a directory. The Directory class of the System.IO
namespace in .NET contains all such appropriate directory access and manipulation
functions.
UNIX provides the _getcwd(), _get_current_dir_name(), and _getwd() functions to get
the current working directory.
#include <unistd.h>

char *getcwd(char *buf, size_t size);

char *get_current_dir_name(void);

char *getwd(char *buf);

This code sample prints out the current working directory using the
get_current_dir_name() function.
UNIX example: Print the current working directory
#include <unistd.h>

#include <stdio.h>

int main()

{

 char *cwd;

 cwd = (char *)get_current_dir_name();

 printf("Current working directory: %s", cwd);

 exit(0);

}

(Source File: U_WorkingWithDir-UAMV4C5.01.c)

The Directory class in the System.IO namespace provides a static method called
GetCurrentDirectory() to print the current directory. The following Managed C++ code
sample prints out the current working directory using the GetCurrentDirectory() method.
.NET example: Print the current working directory
#using <mscorlib.dll>

using namespace System;

using namespace System::IO;

 int main()

 {

 try

 {

 String* cwd;

102 UNIX Custom Application Migration Guide: Volume 4

 cwd = Directory::GetCurrentDirectory();

 Console::WriteLine(S"Current working
directory:{0}",cwd);

 }

 catch (Exception *e)

 {

 Console::WriteLine(S"The process failed:{0}",e);

 }

 }

(Source File: N_WorkingWithDir-UAMV4C5.01.cpp)

Most of the methods in the Directory class provide an object-oriented mechanism to
access the underlying Microsoft Win32® application programming interface (API). For
example, the Directory::GetCurrentDirectory() internally calls the Win32 API function
GetCurrentDirectory(), which has been discussed in Volume 3: Migrate Using
Win32/Win64 of this guide. Similarly, the Directory class has a method called
GetLogicalDrives (), which returns all available drives in the system as an array of
strings. Internally, this method calls kernel32.dll GetLogicalDrives(), which is a file I/O
function in the kernel32.dll library.
Similarly, all Directory class methods internally invoke the Win32 native functions. In
addition, all methods in the Directory class are static and need not be instantiated.

Accessing Directories
UNIX provides two system—opendir() and readdir()—to open and display the contents
of a UNIX directory. The following code example in UNIX takes the name of the directory
from the command line and displays its contents using the earlier system calls.
UNIX example: Accessing directories
#include <dirent.h>

#include <stdio.h>

#include <iostream>

void main(int argc, char *argv[])

{

 struct dirent *entryp;

 DIR *dp;

 char *directory = argv[1];

 if ((dp = opendir(directory)) == NULL)

 {

 perror("opendir failed");

 exit(1);

 }

 while ((entryp = readdir(dp)) != NULL)

 cout << entryp->d_name << endl;

 exit(0);

Chapter 5: Developing Phase: Memory and File Management 103

}

(Source File: U_WorkingWithDir-UAMV4C5.02.c)

The same operation can be achieved in .NET by using the Directory class and the
GetFiles() method. The following Managed C++ code example shows how the earlier
UNIX example is migrated to .NET.
.NET example: Accessing directories
#using <mscorlib.dll>

using namespace System;

using namespace System::IO;

void _tmain(int argc, char *argv[])

{

 try

 {

 String *fileNames[];

 String *directoryName = argv[1];

 fileNames = Directory::GetFiles(directoryName);

 for (int i = 0; i < fileNames->Length; i++)

 Console::WriteLine(fileNames[i]);

 }

 catch (Exception *e)

 {

 Console::WriteLine(e->get_Message());

 }

}

(Source File: N_WorkingWithDir-UAMV4C5.02.cpp)

Other Directory Operations
The following examples show how some common directory operations, such as creating
a directory, changing the current directory, and deleting a directory, are performed using
the System::IO namespace of .NET.
.NET example: Creating a new directory
The following Managed C++ creates a new directory called Test.
#using <mscorlib.dll>

using namespace System;

using namespace System::IO;

int main()

 {

 try

 {

 String* newDir = S"Test";

104 UNIX Custom Application Migration Guide: Volume 4

 Directory::CreateDirectory (newDir);

 Console::WriteLine (S"New Directory created");

 } catch(Exception *e){ Console::WriteLine(S"The process
failed:{0}",e); }

}

(Source File: N_WorkingWithDir-UAMV4C5.03.cpp)

UNIX example: Changing the current directory
The following code example in UNIX changes the current directory to a directory called
Test if such a directory exists within the current directory. It uses the function chgdir() for
this purpose.
#include <unistd.h>

#include <stdio.h>

int main()

{

 char chgDir[] = "Test";

 int res;

 res = chdir(chgDir);

 if(res == 0)

 {

 printf("Change Directory successful");

 }

 else

 {

 printf("Error in Change Directory");

 exit(1);

 }

}

(Source File: U_WorkingWithDir-UAMV4C5.04.c)

.NET example: Changing the current directory
The following Managed C++ sample code changes the current directory to a directory
called Test if such a directory exists within the current directory.
#using <mscorlib.dll>

using namespace System;

using namespace System::IO;

int main()

 {

 try

 {

 String* chgDir = "Test";

 if(Directory::Exists(chgDir))

 {

Chapter 5: Developing Phase: Memory and File Management 105

 Directory::SetCurrentDirectory(chgDir);

 Console::WriteLine(S"The Directory changed");

 }

 else

 {

 Console::WriteLine(S"The Directory does not exist");

 }

 } catch(Exception *e){Console::WriteLine(S"The process
failed:{0}",e); }

 }

(Source File: N_WorkingWithDir-UAMV4C5.04.cpp)

UNIX example: Deleting a directory
The following code example in UNIX deletes a directory named Test if such a directory
exists within the current directory. It uses the remove() function for this purpose.
#include <unistd.h>

#include <stdio.h>

int main()

{

 char delDir[] = "Test";

 int res;

 res = remove(delDir);

 if(res == 0)

 {

 printf("The directory successfully deleted");

 }

 else

 {

 printf("Unable to delete the directory");

 }

}

(Source File: U_WorkingWithDir-UAMV4C5.05.c)

.NET example: Deleting a directory
The following Managed C++ code example deletes a directory named Test if such a
directory exists within the current directory.
#using <mscorlib.dll>

using namespace System;

using namespace System::IO;

int main() {

 // Specify the directories you want to manipulate.

 String* delDir = S"Test";

106 UNIX Custom Application Migration Guide: Volume 4

 try {

 // Determine whether the directory exists.

 if (Directory::Exists(delDir))

{

 Directory::Delete(delDir);

 Console::WriteLine(S"The Directory Deleted");

 }

 else

 {

 Console::WriteLine(S"Directory does not exist");

 }

 } catch (Exception* e) {

 Console::WriteLine(S"The process failed: {0}", e);

 }

}

Chapter 6: Developing Phase:
Infrastructure Services

This chapter discusses the programming differences between UNIX and Microsoft® .NET
Framework. These differences are addressed in the following categories:
• Signals and events
• Exception handling in .NET
• Sockets and networking
• Interprocess communication
• Daemons versus services
• Database connectivity
In addition, this chapter outlines the various options available for converting the UNIX code to
.NET in each of these categories and illustrates the options with appropriate source code
examples. This information will assist you in choosing the appropriate approach for migrating your
application to .NET. You can also use the examples in this chapter as a basis for constructing
your .NET application.

Signals and Events
This section discusses the signal-specific implementations in UNIX and their suitable replacement
mechanisms in .NET. It provides different alternatives for converting the signal-specific code on
UNIX to event-specific code on .NET and suggests the pros and cons for each alternative.
The UNIX operating system supports a wide range of signals. UNIX signals are software
interrupts that catch or indicate different types of events. Microsoft .NET Framework, on the other
hand, supports a mechanism called events to provide the same functionality as UNIX signals.

Introduction to Events in .NET
An event is a message sent by an object to signal the occurrence of an action. The action could
be caused by user interaction, such as a mouse click, or it could be triggered by some other
program logic. The object that raises (triggers) the event is called the event sender. The object
that captures the event and responds to it is called the event receiver.
Frequently, objects register themselves with another object to receive notifications for certain
events. For example, consider an object that requires a notification when a Button object is
clicked. The Button object offers a Click event that enables other objects to receive notification of
the Click event. Objects that need to receive the notification create delegates (callback methods)
and register themselves with the event. When the user clicks the button, the Button object fires
the event, which sends the notification to all objects registered with the Button object.
An event handler is a method that is bound to an event. When the event is raised, the code within
the event handler is executed.
In event communication, the event sender class does not know which object or method will
receive (handle) the events it raises. What is needed is an intermediary (or a pointer mechanism)
between the source and the receiver. The .NET Framework defines a special type (delegate) that
meets this purpose and provides the functionality similar to function pointers in C++. Delegates
are mainly used to handle the events in the .NET Framework.

108 UNIX Custom Application Migration Guide: Volume 4

Delegate
The delegate in .NET Framework is a class that can hold references to methods that match its
signature. It is a type-safe function pointer or a callback method. Events and delegates are
closely associated in .NET. An event is a message sent by an object based on the occurrence of
some external interaction. Delegate is a form of object-oriented function pointer to invoke the
function indirectly through its reference. Events are implemented using delegates. Event
delegates are multicast, which means that the delegates can hold references to more than one
event handling method, thus enabling flexibility and fine-grained control in event handling. It also
acts as an event dispatcher for the class that raises the event by maintaining a list of registered
event handlers for the event.
Delegates can be bound to a single method or to multiple methods, referred to as multicasting.
Multicasting allows multiple events to be bound to the same method, thus allowing a many-to-one
notification. The binding mechanism used with delegates is dynamic, which means that a
delegate can be bound at run time to any method whose signature matches with that of the event
handler. It can also be used on static methods and to call instance methods on objects.
Delegates can also be chained together into a linked-list, so that calling through a delegate calls
all the callback methods in the linked-list chain.
A more common use of delegates is to enable an object to implement a callback mechanism that
other objects can "register." Implementing event notification registration typically entails having
the callback method placed on a list of callback methods that is invoked when an event occurs.
When events occur, the "event generating" object calls all the callback methods in its callback list.
The event-generating object only looks for the signature of its callback method and does not care
about any other details of the called object.

Event Model in .NET
This section describes the elements of the .NET event model and describes the various actions
that can be performed:
• Raising events
• Raising multiple events
• Consuming events
The event model in .NET has the following four elements:
• A class that provides event data.

public class EventNameEventArgs:EventArgs

{

 //Declaration of Event Data

 //Properties for the Event Data

}
• An event delegate.

public delegate void EventNameEventHandler(object sender,
EventNameEventArgs e)

• A class that raises the event.

public class ControlName

{

 //An event declaration

 public event EventNameEventHandler EventName;

 //A method named onEventName that raises the event

Chapter 6: Developing Phase: Infrastructure Services 109

protected virtual void OnAlarm(AlarmEvent e){...}

}
• A class that contains the event handler.

public class EventTest

{

 //Wires the handler method to the event

 Control.Event += new EventNameEventHandler(EventHandlerMethod);

 //Method that handles the event

 public void EventHandlerMethod(object sender, EventNameEventArgs
e)

 {…}

}

Raising Events
To raise an event, the following elements are required:
• A class that holds event data. This class must derive from System.EventArgs.
• A delegate for the event.
• A class that raises the event. This class must provide:

• An event declaration.
• A method that raises the event.

The event data class and the event delegate class might already have been defined in the .NET
Framework class library or in a third-party class library. In that case, you do not have to define
these classes.

Raising Multiple Events
If a class needs to raise multiple events, the .NET Framework provides a construct called event
properties that can be used with another data structure (of your choice) to store event delegates.
Event properties consist of event declarations accompanied by event accessors. Event accessors
are methods that allow event delegate instances to be added or removed from the storage data
structure. Note that the event properties are slower than event fields because each event
delegate has to be retrieved before it can be invoked. The trade-off is between memory and
speed. If the class defines many events that are infrequently raised, consider implementing event
properties. Windows Forms controls and ASP.NET server controls use event properties instead
of event fields.
The .NET Framework provides a data structure for storing event delegates, the
System.ComponentModel.EventHandlerList class, which is used by classes in the .NET
Framework that raise multiple events. You can use this class or define your own data structure for
storage.

110 UNIX Custom Application Migration Guide: Volume 4

Consuming Events
To consume an event in an application, you must provide an event handler (an event-handling
method) that executes program logic in response to the event and registers the event handler
with the event source. This process is referred to as event wiring.
Each event handler provides two parameters that allow you to handle the event properly.
//Method that handles the event

public void EventHandlerMethod(object sender, EventNameEventArgs e)

{…}

The first parameter, sender, provides a reference to the object that raised the event. The second
parameter, e in the earlier example, passes an object specific to the event that is being handled.
By referencing the properties—and, sometimes—the methods of the object, you can obtain
information such as the location of the mouse for mouse events or the data being transferred in
drag-and-drop events.
You can create an event handler at design time within the Windows Forms Designer. Double-click
the design surface (either the form or a control) to create an event handler for the default action
for that item.
You can create an event handler at run time. This allows you to connect event handlers based on
conditions in code at run time instead of having the event handlers connected when the program
initially starts.
In the application design, it may be necessary to have a single event handler used for multiple
events or the multiple events fire the same procedure. For example, it is a powerful time-saver to
have a menu command fire the same event as a button on the form does if they expose the same
functionality.

SIGINT Implementation
The following example is a simple instance of catching SIGINT to detect CTRL-C.
UNIX example: Managing SIGINT signal
#include <unistd.h>

#include <stdio.h>

#include <signal.h>

/* The intrpt function reacts to the signal passed in the parameter
signum. This function is called when a signal occurs. A message is
output, and then the signal handling for SIGINT is reset (by default
generated by pressing CTRL-C) back to the default behavior.

*/

void intrpt(int signum)

{

printf("I got signal %d\n", signum);

(void) signal(SIGINT, SIG_DFL);

}

/* main intercepts the SIGINT signal generated when Ctrl-C is input.
Otherwise, sits in an infinite loop, printing a message once a second.

*/

int main()

{

(void) signal(SIGINT, intrpt);

Chapter 6: Developing Phase: Infrastructure Services 111

while(1) {

printf("Hello World!\n");

sleep(1);

}

}

(Source File: U_EventHandling-UAMV4C6.01.c)

.NET example: SIGINT implementation
SIGINT is implemented in .NET by using the SetConsoleCtrlHandler, the Windows API that
adds or removes an application-defined HandlerRoutine function from the list of handler
functions for the calling process.
using System;

using System.Threading;

using System.Runtime.InteropServices;

namespace KeyPressEvents

{

/// <summary>

/// Class to catch console control events (Ctrl+C, Ctrl+Break, etc) in
C#.

/// Calls SetConsoleCtrlHandler() in Win32 API

/// </summary>

public class ConsoleAppCtrl: IDisposable

{

/// <summary>

/// Declaration of an enumeration (An enumeration list that consists of
a set of named constants)

/// The events that can be captured by SetConsoleCtrlHandler()

/// </summary>

public enum ConsoleEvent

{

CTRL_C = 0,

CTRL_BREAK = 1,

CTRL_CLOSE = 2,

CTRL_LOGOFF = 5,

CTRL_SHUTDOWN = 6

}

/// <summary>

/// Event Handler to be called when a console event occurs.

/// </summary>

public delegate void ControlEventHandler(ConsoleEvent consoleEvent);

/// <summary>

/// Event fired when a console event occurs

/// </summary>

public event ControlEventHandler ControlEvent;

112 UNIX Custom Application Migration Guide: Volume 4

ControlEventHandler eventHandler;

/// <summary>

/// Create a new instance.

/// </summary>

public ConsoleAppCtrl()

{

eventHandler = new ControlEventHandler(Handler);

SetConsoleCtrlHandler(eventHandler, true);

}

~ConsoleAppCtrl()

{

Dispose(false);

}

public void Dispose()

{

Dispose(true);

}

/// <summary>

/// Disposing the handler

/// </summary>

/// <param name="disposing"></param>

void Dispose(bool disposing)

{

if (eventHandler != null)

{

SetConsoleCtrlHandler(eventHandler, false);

eventHandler = null;

}

}

/// <summary>

/// Event Handler method that is called when the event occurs

/// </summary>

/// <param name="consoleEvent"></param>

private void Handler(ConsoleEvent consoleEvent)

{

if (ControlEvent != null)

ControlEvent(consoleEvent);

}

/// <summary>

/// PInvoke usage of SetConsoleCtrlHandler present in kernel32.dll

/// </summary>

/// <param name="e"></param>

/// <param name="add"></param>

Chapter 6: Developing Phase: Infrastructure Services 113

/// <returns></returns>

[DllImport("kernel32.dll")] // PInvoke usage of Windows API
//SetConsoleCtrlHandler

static extern bool SetConsoleCtrlHandler(ControlEventHandler e, bool
add);

}

class ConsoleClass

{

/// <summary>

/// The Event handler method to capture the Console events that occur

/// </summary>

/// <param name="consoleEvent"></param>

public static int iFlag = 0;

public static void MyHandler(ConsoleAppCtrl.ConsoleEvent consoleEvent)

{

switch(consoleEvent)

{

case ConsoleAppCtrl.ConsoleEvent.CTRL_C:

Console.WriteLine("Ctrl+C Captured");

iFlag = iFlag+1;

break;

case ConsoleAppCtrl.ConsoleEvent.CTRL_BREAK:

Console.WriteLine("Ctrl+Break Captured");

break;

default:

break;

}

}

public static void Main()

{

ConsoleAppCtrl cc = new ConsoleAppCtrl();

cc.ControlEvent += new ConsoleAppCtrl.ControlEventHandler(MyHandler);

while (true)

{

Console.WriteLine("Hello World!");

Thread.Sleep(1000);

if(iFlag == 2)

{

break;

}

}

}

}

114 UNIX Custom Application Migration Guide: Volume 4

}

(Source File: N_EventHandling-UAMV4C6.01.cs)

Replacing UNIX Signals Within .NET
This section explains how to replace the UNIX signal with the .NET event mechanism. UNIX uses
signals to send alerts to processes when specific events occur. A UNIX application uses the kill
function to activate signals internally. .NET does not support signals. Therefore, you have to
rewrite the existing code to use another form of event notification in .NET.
The following example code illustrates how you can redevelop the UNIX code in .NET. It shows a
simple main process that forks a child process, which issues the SIGALRM signal. The parent
process catches the alarm and outputs a message when the signal is received.
UNIX example: Managing the SIGALRM signal
#include <unistd.h>

#include <stdio.h>

#include <signal.h>

static int alarm_fired = 0;

/* The alrm_bell function simulates an alarm clock. */

void alrm_bell(int sig)

{

alarm_fired = 1;

}

int main()

{

int pid;

/* Child process waits for 5 sec's before sending SIGALRM to its
parent. */

printf("alarm application starting\n");

if((pid = fork()) == 0) {

sleep(5);

kill(getppid(), SIGALRM);

exit(0);

}

/* Parent process arranges to catch SIGALRM with a call to signal

and then waits for the child process to send SIGALRM. */

printf("waiting for alarm\n");

(void) signal(SIGALRM, alrm_bell);

pause();

if (alarm_fired)

printf("Ring...Ring!\n");

printf("alarm application done\n");

exit(0);

}

(Source File: U_EventHandling-UAMV4C6.02.c)

.NET example: Managing the SIGALRM signal

Chapter 6: Developing Phase: Infrastructure Services 115

The Timer class in .NET can function as the SIGALARM signal in UNIX. The following example in
Managed C++ illustrates how the UNIX example is implemented in .NET.
#include "stdafx.h"

#using <mscorlib.dll>

using namespace System;

using namespace System::Threading;

__gc class CppTimer

{

public:

CppTimer()

{

}

void execTimer(Object *stateInfo)

{

AutoResetEvent* objAutoEvt = dynamic_cast<AutoResetEvent*>(stateInfo);

Console::WriteLine(S"Ring...Ring!");

//Sets the state of the specified event to signaled.

objAutoEvt->Set();

}

};

void main()

{

CppTimer* objCppTimer = new CppTimer();

//The object of the AutoResetEvent class notifies the waiting thread
that an event has occured.

AutoResetEvent* objAutoReset = new AutoResetEvent(false);

//TimerCallback delegate represents the method that handles the calls
from a Timer object.

TimerCallback* objTimerCallBack = new TimerCallback(objCppTimer,
&CppTimer::execTimer);

Console::WriteLine(S"alarm application starting");

//The Timer class represents a mechanism for executing a method at
specific intervals

Timer* objTimer = new Timer(objTimerCallBack,objAutoReset,5000,0);

//WaitOne method blocks the current thread until the current WaitHandle
receives a signal.

objAutoReset->WaitOne(-1,false);

objTimer->Dispose();

Console::WriteLine(S"alarm application done");

}

(Source File: N_EventHandling-UAMV4C6.02.cpp)
Note More information on event handling and code samples for handling and raising events is available
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconevents.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconevents.asp

116 UNIX Custom Application Migration Guide: Volume 4

Exception Handling in .NET
This section describes the exception handling mechanism in .NET and its advantages and
provides some examples of the exception handling process.
An exception is any error condition or unexpected behavior encountered by an executing
program. Exceptions can be raised because of a fault in your code or in the code that you call
(such as a shared library), unavailable operating system resources, and unexpected conditions
that the common language runtime (CLR) encounters (such as code that cannot be verified).
Applications can recover from some of these conditions, but not others. Generally, applications
can recover from most application exceptions, but not from most run-time exceptions.
In .NET Framework, an exception is an object that inherits from the Exception class. An
exception is thrown from an area of code where a problem has occurred. The exception is passed
up the stack until the application handles it or the program terminates. All .NET Framework
operations indicate failure by throwing exceptions.
Traditionally, error-handling models relied on either the specific language’s unique way of
detecting errors and locating handlers for them or on the error handling mechanism provided by
the operating system. The runtime implements exception handling with the following features:
• Handles exceptions without regard for the language that generates the exception or the

language that handles the exception.
• Does not require any particular language syntax for handling exceptions, but allows each

language to define its own syntax.
• Allows exceptions to be thrown across processes and even computer boundaries.
Exceptions offer several advantages over other methods of error notification, such as return
codes. These advantages include:
• Failures do not go unnoticed.
• Invalid values do not continue to propagate through the system.
• Programmers do not have to check return codes.
• Exception-handling code can be easily added to increase program reliability.
• The exception handling of the runtime is faster than Windows-based C++ error handling.

Exception Handling Model
The runtime uses an exception-handling model based on Exception objects and protected blocks
of code. An Exception object is created to represent an exception when it occurs.
.NET supports structured exception handling (SEH), which helps you create and maintain
programs with robust, comprehensive error handlers. The SEH code is designed to detect and
respond to errors during execution by combining a control structure known as try-catch-finally.
Using the try-catch-finally statements, you can protect blocks of code that have the potential to
raise errors.
During execution, the CLR creates an exception information table for each executable. Each
method of the executable has an associated array of exception handling information (which can
be empty) in the exception information table. Each entry in the array describes a protected block
of code, any exception filters associated with that code, and any exception handlers (catch
statements). This exception table is extremely efficient in terms of performance, use of processor
time, and memory use when an exception does not occur. The resources are used only when an
exception occurs. The exception information table represents the following four types of exception
handlers for protected blocks:
• A "finally" handler that executes whenever the block exits, whether that occurs by typical

control flow or by an unhandled exception. This is useful when a cleanup or closure of
resources is critical before continuing to the next section of code.

Chapter 6: Developing Phase: Infrastructure Services 117

• A fault handler that must execute if an exception occurs, but does not execute on completion
of typical control flow.

• A type-filtered handler that handles any exception of a specified class or any of its derived
classes.

• A user-filtered handler that runs user-specified code to determine whether the exception
should be handled by the associated handler or should be passed to the next protected
block.

Each language implements these exception handlers according to its specifications. For example,
Microsoft Visual Basic® .NET provides access to the user-filtered handler through a variable
comparison (using the When keyword) in the catch statement; C# does not implement the user-
filtered handler.
When an exception occurs, the runtime begins the following two-step process:
1. The runtime searches the array for the first protected block that:

a. Protects a region that includes the currently executing instruction.
b. Contains an exception handler or contains a filter that handles the exception.

2. If a match occurs, the runtime creates an Exception object that describes the exception. The
runtime then executes all finally or fault statements between the statement where the
exception has occurred and the statement handling the exception. The order of exception
handlers is important; the innermost exception handler is evaluated first. The exception
handlers can access the local variables and local memory of the routine that catches the
exception; but intermediate values, generated at the time the exception is thrown, are lost.
If no match occurs in the current method, the runtime searches each caller of the current
method and continues this path all the way up the stack. If no caller has a match, the runtime
allows the debugger to access the exception. If the debugger does not attach to the
exception, the runtime raises the UnhandledException event. If there are no listeners for the
UnhandledException event, the runtime dumps a stack trace and ends the program.

UNIX example: Exception handling
#include <iostream.h>

int main () {

 try

 {

 char * str;

 str = new char [100];

 if (str == NULL) throw "New was unable to allocate memory";

 int i = 0;

 for (;;)

 {

 if (i>9) throw i;

 str[i]='z';

 i++;

 }

 }

 catch (char * strEx)

 {

 cout << "Exception Caught: " << strEx << endl;

 }

 catch (int i)

 {

118 UNIX Custom Application Migration Guide: Volume 4

 cout << "Exception Caught: " <<"Index No." ;

 cout << i << " is out of range" << endl;

 }

 return 0;

}

(Source File: U_ExcepHandle-UAMV4C6.01.cpp)

.NET example: Exception handling
#include "stdafx.h"

#using <mscorlib.dll>

using namespace System;

int main()

{

try

{

// managed char data type declaration

char __gc* str;

str = new char[100];

int i=0;

for(;;)

{

// throwing a user defined exception if i exceeds 9

if(i>9)

throw i;

str[i] = 'Z';

i++;

}

}

//Catching the user defined exception

catch(int i)

{

 Console::WriteLine(S"User defined exception thown :{0} ",
i.ToString());

}

//Catching the Sytem thrown exceptions - For example in the statement
//"str = new char[100]"

//if new was unable to allocate memory, then a NullReferenceException
//would have thrown.

catch(Exception* objExcp)

{

Console::WriteLine(S"Exception Caught : {0} ", objExcp->Message);

}

Chapter 6: Developing Phase: Infrastructure Services 119

__finally

{

Console::WriteLine(S"Statement in finally block – always executed");

}

return 0;

}

(Source File: N_ExcepHandle-UAMV4C6.01.cpp)
Note More information on exception handling in .NET is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconExceptionHandlingFundamentals.asp.

Sockets and Networking
This section describes the sockets- and networking-related implementation mechanisms in .NET
and details how to implement sockets- and networking-related code in the .NET application.
The .NET Framework class library includes two namespaces that help you with networking; these
are the System.Net and System.Net.Sockets namespaces.
The System.Net classes:
• Provide a simple, yet complete solution for writing networked applications in managed code.

Using a layered approach, the System.Net classes enable applications to access the
network with varying levels of control, depending upon the needs of the application. The
spectrum covered by these levels includes nearly every scenario on the Internet today, from
a fine-grained control over sockets to a generic request/response model. In addition, the
model is extensible; thus the model can continue to work with your application as the Internet
evolves.

• Expose a robust implementation of the Hypertext Transfer Protocol (HTTP).
With a large share of Web traffic today going over the HTTP, the importance of HTTP as an
application protocol is significant. The System.Net classes support most of the HTTP 1.1
features. The advanced features include pipelining, chunking, authentication,
preauthentication, encryption, proxy support, server certificate validation, connection
management, and HTTP extensions.

• Are designed for writing scalable, high-performance middle-tier applications.
The System.Net classes were designed specifically for a common Web server scenario; a
single client browser request makes multiple requests to back-end or external servers. This
scenario requires a robust middle-tier networking stack that can stand up to a high load. Such
features as connection management, pipelining, keep-alive, and asynchronous send and
receive ensure strong support for the middle tier. In addition, because the System.Net
classes are part of an overall framework, integration with ASP+ features such as
impersonation and caching is seamless.

WebRequest/WebResponse classes and HTTP classes are found in the System.Net
namespace, while TCP/UDP and Sockets are found in the System.Net.Sockets namespace.
UNIX example: Server using sockets
#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdio.h>

void error(char *);

int main(int argc,char *argv[])

{

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconExceptionHandlingFundamentals.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconExceptionHandlingFundamentals.asp

120 UNIX Custom Application Migration Guide: Volume 4

 int sockfd,newsockfd,portno,clilen;

 char buffer[256];

 struct sockaddr_in serv_addr,cli_addr;

 int n;

 printf("Server Running........\n");

 if(argc<2)

 {

 fprintf(stderr,"ERROR, no port provided\n");

 exit(1);

 }

 sockfd=socket(AF_INET,SOCK_STREAM,0);

 if(sockfd<0)

 error("ERROR Opening Socket");

 bzero((char *) &serv_addr,sizeof(serv_addr));

 portno=atoi(argv[1]);

 serv_addr.sin_family=AF_INET;

 serv_addr.sin_addr.s_addr=INADDR_ANY;

 serv_addr.sin_port=htons(portno);

 if(bind(sockfd,(struct sockaddr *)
&serv_addr,sizeof(serv_addr))<0)

 error("Error in Binding");

 listen(sockfd,5);

 clilen=sizeof(cli_addr);

 newsockfd=accept(sockfd,(struct sockaddr *) &cli_addr,&clilen);

 if(newsockfd<0)

 error("ERROR on Accept");

 bzero(buffer,256);

 n=read(newsockfd,buffer,255);

 if(n<0)

 error("ERROR Reading from Socket");

 printf(" %s\n",buffer);

 printf("the above message was received from the client\n");

 char szBuf1[256];

 bzero(szBuf1,256);

 strcpy(szBuf1,"from server to client: hi client\0");

 n=write(newsockfd,szBuf1,256);

 printf("n:%d",n);

 if(n<0)

 error("ERROR Writing to Socket");

 return 0;

}

void error(char *msg)

{

Chapter 6: Developing Phase: Infrastructure Services 121

 perror(msg);

 exit(0);

}

(Source File: U_Sockets-UAMV4C6.01.c)

.NET example: Server using sockets
#include "stdafx.h"

#using <mscorlib.dll>

using namespace System;

using namespace System::Net;

using namespace System::Net::Sockets;

using namespace System::Text;

using namespace System::IO;

int main()

{

 String* args[] = Environment::GetCommandLineArgs();

 String* serverName = Dns::GetHostName();

 Char asciiChars[] = new Char[S"From the Server- Hi Client"-
>Length];

 asciiChars = S"From the Server- Hi Client"->ToCharArray();

 TcpListener *objTCP = new TcpListener(Convert::ToInt32(args[1]));

 objTCP->Start();

Console::WriteLine("Server named: {0} waiting on port: {1} ",
serverName,args[1]);

 Socket *objSock = objTCP->AcceptSocket();

 int byteNum = 0;

 String* strRec = "";

 if(objSock->Connected)

 {

 Console::WriteLine(S"Client Connected");

 NetworkStream *objNs = new
NetworkStream(objSock,true);

 StreamReader *objReader = new StreamReader(objNs);

 String* readLine = objReader->ReadLine();

Console::WriteLine("Message from the client {0}", readLine);

 StreamWriter *objWriter = new StreamWriter(objNs);

 objWriter->Write(asciiChars);

 objWriter->Flush();

 }

 objSock->Close();

 return 0;

}

(Source File: N_Sockets-UAMV4C6.01.cpp)

122 UNIX Custom Application Migration Guide: Volume 4

For High-Performance Computing (HPC) applications, Microsoft provides Windows Compute
Cluster Server 2003 as a member of the Windows Server family. It is a specialized 64-bit version
server running Windows Server 2003 to support high-performance software. It enables workers to
perform multinode workload computing and also supports execution of parallel applications based
on the Message Passing Interface (MPI) standard. The latest versions of Visual Studio are
designed for parallel computing and parallel debugging capability with MPI support.
Note More information on the Windows Compute Cluster Server 2003 is available at

http://www.microsoft.com/windowsserver2003/hpc/.

More information on the System.Net namespace is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemnet.asp.

More information on the System.Net.Sockets namespace is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemNetSockets.asp.

Interprocess Communication
The operating system designed for multiprocessing or multitasking provides a mechanism for
sharing the data between different applications, known as interprocess communication (IPC).
This section describes various IPC mechanisms available in the UNIX and .NET environments
and provides examples of these processes. The different forms of IPC that are described are:
• Process pipes
• Named pipes
• Shared memory
• Memory-mapped files
• Message queues
Sockets, discussed in the previous section, can also be used for IPC. .NET provides extensive
support for implementation of sockets. Process pipes, named pipes, memory-mapped files, and
shared memory can be implemented in .NET by invoking their respective Microsoft Win32® APIs
through P/Invoke. .NET also supports the other forms of IPC, including message queuing (such
as Microsoft Message Queuing and IBM MQSeries), .NET Remoting, and COM+.
MPI can also be used as an IPC mechanism for high-performance applications. MPI is a standard
application programming interface (API) and specification for message passing, designed for
high-performance computing scenarios. The Microsoft MPI in Windows Compute Cluster Server
2003 uses the Winsock Direct protocol for best performance and CPU efficiency.
Note More information on the Microsoft MPI is available at

http://technet2.microsoft.com/WindowsServer/en/Library/4cb68e33-024b-4677-af36-
28a1ebe9368f1033.mspx.

This section describes how you can convert UNIX code that uses the different forms of IPC. It
also introduces new methods of IPC that are not available in UNIX but might provide a better
solution that meets the IPC requirements of your application.

Process Pipes
Process pipes are not supported in .NET but can be implemented in .NET using the P/Invoke
services. The following example in UNIX shows the implementation of process pipes in UNIX.
UNIX example: Implementation of process pipes
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

http://www.microsoft.com/windowsserver2003/hpc/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemNetSockets.asp
http://technet2.microsoft.com/WindowsServer/en/Library/4cb68e33-024b-4677-af36-28a1ebe9368f1033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/4cb68e33-024b-4677-af36-28a1ebe9368f1033.mspx

Chapter 6: Developing Phase: Infrastructure Services 123

{

 FILE *read_fp;

 char buffer[BUFSIZ + 1];

 int chars_read;

 memset(buffer, '\0', sizeof(buffer));

 read_fp = (FILE *) popen("uname -a", "r");

 if (read_fp != NULL) {

 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

 if (chars_read > 0) {

 printf("Output is:\n%s\n", buffer);

 }

 pclose(read_fp);

 exit(EXIT_SUCCESS);

 }

 exit(EXIT_FAILURE);

}

(Source File: U_ProcessPipes-UAMV4C6.01.c)

For implementing this example in .NET, the code has to be first implemented in Win32 by
changing the header files and the function names for popen and pclose. After writing the code
successfully in Win32, it is compiled into a DLL (ProcessPipes.dll), and then it can be accessed
from any .NET project, using the P/Invoke services. The following example shows how the earlier
code is written using the Win32 API and then accessed from a C# project using the DllImport
attribute.
Win32 example: Implementation of process pipes
#include <windows.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

processPipes()

{

 FILE *read_fp;

 char buffer[BUFSIZ + 1];

 size_t chars_read;

 memset(buffer, '\0', sizeof(buffer));

 read_fp = (FILE *)_popen("uname -a", "r");

 if (read_fp != NULL) {

 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

 if (chars_read > 0) {

 printf("Output is:\n%s\n", buffer);

 }

 _pclose(read_fp);

 exit(EXIT_SUCCESS);

124 UNIX Custom Application Migration Guide: Volume 4

 }

 exit(EXIT_FAILURE);

}

(Source File: W_ProcessPipes-UAMV4C6.01.cpp)

.NET example: Using Win32 implementation of process pipes
using <mscorlib.dll>

using namespace System;

using namespace System.Runtime.InteropServices;

[DllImport("ProcessPipes.dll",CharSet=CharSet::Ansi)]

extern void processPipes();

int main()

{

 processPipes();

return 0;

}

(Source File: N_ProcessPipes-UAMV4C6.01.cpp)

Named Pipes
In this section, examples are given to illustrate how named pipes are implemented in UNIX and
.NET. Named pipes are sometimes referred to as first-in-first-out (FIFO) and are generally half-
duplex pipes as only one-way communication is possible.
Note More information on the implementation of named pipes for IPC in .NET is available at
http://support.microsoft.com/?kbid=871044.

UNIX example: Implementation of named pipes
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

int main(int argc, char *argv[])

{

 int fd;

 int i;

if (argc < 2) {

http://support.microsoft.com/?kbid=871044

Chapter 6: Developing Phase: Infrastructure Services 125

 fprintf(stderr, "Usage call once with \"r\" and then with
\"w\"\n");

 exit(EXIT_FAILURE);

}

// Check if the FIFO exists and create it if necessary.

 if (access(FIFO_NAME, F_OK) == -1) {

 fd = mkfifo(FIFO_NAME, 0777);

 if (fd != 0) {

 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);

 exit(EXIT_FAILURE);

 }

 }

 printf("Process %d opening FIFO\n", getpid());

// Open FIFO and output status result

 if (strncmp(argv[1], "r", 1))

 fd = open(FIFO_NAME, O_RDONLY | O_NONBLOCK);

 else if (strncmp(argv[1], "w", 1))

 fd = open(FIFO_NAME, O_WRONLY | O_NONBLOCK);

 else {

 fprintf(stderr, "Usage call once with \"r\" and then with
\"w\"\n");

 exit(EXIT_FAILURE);

 }

 printf("Process %d file descriptor: %d\n", getpid(), fd);

 sleep(3);

// Close FIFO

 if (fd != -1) close(fd);

 printf("Process %d finished\n", getpid());

 exit(EXIT_SUCCESS);

}

(Source File: U_NamedPipes-UAMV4C6.01.c)

The following example creates a named pipe from .NET by making a P/Invoke call to the Win32
API function CreateNamedPipe().
.NET example: Implementation of named pipes
using namespace System;

using namespace System::Runtime::InteropServices;

using namespace System::Diagnostics;

using namespace System::Threading;

[DllImport("Kernel32.dll", CharSet=CharSet::Ansi)]

126 UNIX Custom Application Migration Guide: Volume 4

extern int CreateNamedPipe(char* lpName, int dwOpenMode, int
dwPipeMode, int nMaxInstances, int nOutBufferSize, int nInBufferSize,
int nDefaultTimeOut, IntPtr lpSecurityAttributes);

[DllImport("msvcrt.dll", CharSet=CharSet::Ansi)]

extern int _open(char * lpName, int rdOnly);

[DllImport("msvcrt.dll", CharSet=CharSet::Ansi)]

extern void _close(int fd);

[DllImport("msvcrt.dll", CharSet=CharSet::Ansi)]

extern int _getpid();

int main()

{

 const short FILE_ATTRIBUTE_NORMAL = 0x00000080;

 const int FILE_FLAG_NO_BUFFERING = 0x20000000;

 const int FILE_FLAG_WRITE_THROUGH = 0x80000000;

 const short PIPE_ACCESS_DUPLEX = 0x00000003;

 const short PIPE_READMODE_MESSAGE = 0x00000002;

 const short PIPE_TYPE_MESSAGE = 0x00000004;

 const short PIPE_WAIT = 0x00000000;

 const short INVALID_HANDLE_VALUE = -1;

 const int RDONLY = 0x0000;

 char* pipeName = "\\\\.\\pipe\\mynamedpipe";

 int pipeHandle = 0;

 int fd = -1;

 int processId = _getpid();

pipeHandle =
CreateNamedPipe(pipeName,PIPE_ACCESS_DUPLEX|FILE_FLAG_WRITE_THROUGH,PIP
E_WAIT|PIPE_TYPE_MESSAGE|PIPE_READMODE_MESSAGE,10,10000,2000,5000,
IntPtr::Zero);

 if(pipeHandle == INVALID_HANDLE_VALUE)

 {

Console::WriteLine(S"Could not create FIFO {0}",
Convert::ToString(pipeName));

 return 0;

 }

 Console::WriteLine(S"Process {0} opening FIFO",
processId.ToString());

 fd = _open(pipeName,RDONLY);

Console::WriteLine(S"Process {0} file descriptor: {1}",
processId.ToString(),fd.ToString());

 Thread::Sleep(5000);

 if(fd!=-1)

 {

 (void)_close(fd);

Chapter 6: Developing Phase: Infrastructure Services 127

 Console::WriteLine(S"Pipe {0} closed",
Convert::ToString(pipeName));

 }

 Console::WriteLine(S"Process {0} finished",
processId.ToString());

 return 0;

}

(Source File: N_NamedPipes-UAMV4C6.01.cpp)

Shared Memory and Memory-Mapped Files
Shared memory allows two or more threads or processes to share a region of memory. It is
generally considered the most efficient method of IPC because data is not copied as part of the
communication process. Instead, both the client and the server access the same physical area of
memory. The System V IPC mechanisms for shared memory include the shm*() APIs, namely
shmat, shmctl, shmdt and shmget. The signatures of these methods are given as follows:
Int shmget(key_t key, size_t size, int shmflg)

void *shmat(int shmid, const void *shmaddr, int shmflg)

int shmdt(const void *shmaddr)

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

UNIX example: Creating a shared memory area and mapping it
A simple example of creating a shared memory area and mapping it in UNIX is as follows:
if ((fd = open("/dev/zero", O_RDWR)) < 0)

 err_sys("open error");

if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0)) == (caddr_t) -1)

 err_sys("mmap error");

close(fd); // can close /dev/zero now that it's mapped

The .NET Framework class library does not provide any direct implementation for shared
memory. Win32/Win64 does not support the shm*() APIs. However, MKS and Cygwin support
the shm*() APIs for Win32/Win64. Win32/Win64 supports memory-mapped files and memory-
mapped page files, which can be used to translate the UNIX code with the shm*() APIs. UNIX
shm*() API calls identify the shared memory section with an identification number and Windows
memory mapping calls identify with a character string name. The Win32 API functions
CreateFileMapping and MapViewOfFile are used for this. It involves making P/Invoke calls to
these functions for the .NET implementation of the shared memory. How they can be imported in
a C# or Managed C++ .NET project using the DllImport attribute is shown in the following code
example.

128 UNIX Custom Application Migration Guide: Volume 4

CreateFileMapping
[DllImport("Kernel32.dll", SetLastError = true)]

extern IntPtr CreateFileMapping(IntPtr hFile,IntPtr
lpFileMappingAttributes,

IntPtr flProtect,IntPtr dwMaximumSizeHigh,IntPtr
dwMaximumSizeLow,IntPtr lpName);

MapViewOfFile
[DllImport("Kernel32.dll", SetLastError = true)]

extern IntPtr MapViewOfFile(IntPtr hFileMappingObject,IntPtr
dwDesiredAccess,

IntPtr dwFileOffsetHigh,IntPtr dwFileOffsetLow,IntPtr
dwNumberOfBytesToMap);
Note More information on the CreateFileMapping and the MapViewOfFile functions is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/createfilemapping.asp and

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/mapviewoffile.asp.

Message Queues
Microsoft Windows out-of-the box does not support UNIX System V style message queues.
However, Windows supports message queues through the use of Microsoft Message Queuing
(MSMQ). Additionally, System V-style support is available from third-party products like MKS or
Cygwin. MSMQ is used in Windows to perform message queuing in your application. Message
queuing is covered comprehensively in other Microsoft documentation and, therefore, is only
briefly described here.
Note More information on Microsoft Message Queuing is available at
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.mspx.

Message queuing technology enables applications running at different times to communicate
across heterogeneous networks and systems that may be temporarily offline. Applications send
messages to queues and read messages from queues. Message Queuing provides guaranteed
message delivery, efficient routing, security, and priority-based messaging. It can be used to
implement solutions for both asynchronous and synchronous scenarios requiring high
performance.
Note More information on implementation of MSMQ technology in .NET is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetasync1.asp.

Daemons vs. Services
This section provides an overview of the UNIX daemons and Windows services, and explains
their similarities and differences.
A daemon in UNIX is a process that runs in the background to provide service to other
applications and does not require a user interface. A service on Windows is the equivalent of an
UNIX daemon. Normally, a daemon is started when the system is booted and runs without
supervision until the system is shut down. Similarly, Windows services enable you to create long-
running executable applications that run in their own Windows sessions. These services can be
automatically started when the computer boots to continue across the logon sessions, can be
paused and restarted, and do not show any user interface. Services are ideal for use on a server
or for long-running functionality that does not interfere with other users who are working on the
same computer. It is possible to run services in the security context of a specific user account that
is different from the logged-on user or the default computer account.
Note More information about services and Windows sessions is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/about_services.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/createfilemapping.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/mapviewoffile.asp
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetasync1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/about_services.asp

Chapter 6: Developing Phase: Infrastructure Services 129

Using Microsoft Visual Studio .NET or the Microsoft .NET Framework SDK, you can easily create
services by creating an application that is installed as a service. This type of application is called
a Windows Service application. With .NET Framework features, you can create services, install
services, start or stop services, and otherwise control their behavior.
The System.ServiceProcess namespace provides classes that allow you to implement, install,
and control Windows Service applications. Implementing a service involves inheriting from the
ServiceBase class and defining the specific behavior to be processed when start, stop, pause,
and continue commands are passed as well as custom behavior and actions when the system
shuts down.
Services are installed using an installation tool, such as InstallUtil.exe. The
System.ServiceProcess namespace provides installation classes that write service information
to the registry. The ServiceProcessInstaller class provides an encompassing class, which
installs components common to all the services in an installation. For each service, create an
instance of the ServiceInstaller class to install service-specific functionality.
The ServiceController class enables you to connect to an existing service and manipulate or get
information about it. This class is typically used in an administrative capacity and enables you to
start, stop, pause, continue, or perform custom commands on a service. The ServiceBase class
defines the processing that a service performs when a command occurs; the ServiceController
is the agent that enables you to call those commands on the service.
Note More information on creating, installing, and controlling Windows Service applications is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vbconintroductiontontserviceapplications.asp.

Database Connectivity
Database connectivity in UNIX applications is typically achieved using either ODBC (Open
Database Connectivity) drivers or OCI (Oracle Call Interface, which is used for Oracle databases
only).
ODBC provides access to an RDBMS (Relational Database Management System) using a
standard data access interface. ODBC uses an RDBMS-specific driver to interact with the
underlying data source.
OCI is a native library with a set of low-level APIs that allows fast access to the Oracle database.
.NET ships with ADO.NET, a data access technology that utilizes the features of CLR and the
.NET Framework classes. The ADO.NET object model provides two basic components: the
DataSet and DataProvider.
.NET data providers are available for all ODBC-compliant data sources (such as Oracle, Sybase,
and DB2), Microsoft SQL Server™, and other OLE DB data sources.
To port the database access code in your application to .NET, you could rewrite the code to make
use of ADO.NET. However, if your UNIX application uses direct OCI calls to connect to the
Oracle database, consider making P/Invoke calls to OCI to reuse the existing code.
Note More information on access to the Oracle database in ADO.NET is available at
http://www.fawcette.com/vsm/2003_01/magazine/features/beauchemin/.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp
http://www.fawcette.com/vsm/2003_01/magazine/features/beauchemin/

Chapter 7: Developing Phase: Migrating
the User Interface
This chapter describes how to migrate from a UNIX-based user interface (UI) to a Microsoft®
Windows® UI using Windows Forms provided by Microsoft .NET. Windows Forms is a framework
for building Windows rich-client applications that use the common language runtime (CLR).
Because the overwhelming majority of UNIX graphical interfaces are built on X Windows and
Motif, this chapter focuses on porting code from X Windows to .NET using Windows Forms.
This chapter covers the following topics:
• Architectural and visual differences between the UNIX and .NET environments.
• Programming principles used by X Windows and Windows Forms.
• Migrating different types of graphical constructs from one environment to the other.
This chapter also includes sections on migrating from other UNIX UI types, including text-based
and OpenGL-based interfaces, and provides code examples illustrating how to migrate the UIs.

.NET Forms, Drawing, and GDI+
This section covers Windows Forms that are used for developing rich client applications, Web
Forms that are used for developing Web applications, and Drawing and GDI+ namespaces and
classes provided by the .NET Framework for drawing and graphics.

Windows Forms
Windows Forms is the new platform for Windows application development, based on the .NET
Framework. This framework provides a clear, object-oriented, extensible set of classes that
enable you to develop rich Windows applications.
The System.Windows.Forms namespace contains the group of classes that form the Windows
Forms technology. These classes include the following:
• The Control class
• The Form class
• The Component class
• The CommonDialog class
These classes are discussed in detail later in this chapter, where a particular X Windows
functionality is mapped to its corresponding functionality in .NET.

Web Forms
Web Forms can be used to create programmable Web pages that serve as the user interface of
your Web application. It presents information to the user in any browser or client device and
implements application logic using server-side code.

132 UNIX Custom Application Migration Guide: Volume 4

The System.Web.UI namespace provides classes and interfaces that allow you to create various
controls and pages that will appear in your Web applications as user interface elements. The
namespace provides the following important features by its classes:
• The Control class provides all the server controls with a common set of functionality.
• The Page class represents the Web Forms page that is requested from the Web server and

contains the related methods and properties.
• The data binding classes provide the server controls with data binding functionality.
• Classes like BaseParser provide parsing functionality for the controls.

Drawing and GDI+
GDI stands for Graphics Device Interface. GDI+ is a class-based application-programming
interface (API) for C and C++ programs. GDI+ enables programmers to build applications that
use graphics and formatted text on the screen as well as the printer. When using GDI+, you do
not need to access the graphics hardware directly. Instead, GDI+ interacts with device drivers on
behalf of applications. GDI+ is also supported by the 64-bit Windows operating system.
In the Microsoft .NET library, all the classes related to GDI+ are grouped under six namespaces
and reside in the System.Drawing.dll assembly. The drawing namespace and the five
subnamespaces are as follows:
• System.Drawing
• System.Drawing.Design
• System.Drawing.Printing
• System.Drawing.Imaging
• System.Drawing.Drawing2D
• System.Drawing.Text
These namespaces and the important classes associated with them are discussed in detail later
in this chapter, where a particular X Windows functionality is mapped to its corresponding
functionality in .NET.

Windows Forms Designer
Windows Forms, when used in conjunction with the Microsoft Visual Studio® .NET 2003
integrated development environment (IDE), enable Rapid Application Development (RAD)
techniques for building applications. RAD enables you to just drag and drop controls onto your
form, double-click that particular control, and write the code that corresponds to that particular
event in the code editor. The Windows Forms Designer and the Visual Studio .NET 2003 IDE
greatly facilitate the process of replicating the look of your graphical user interface (GUI) in the
Windows environment.

Comparing X Windows and Windows Forms
The main UI type in use on the UNIX platform today builds on the X Windows set of standards,
protocols, and libraries. To understand how to migrate such a UI, it is worth comparing the UI
architecture and the resulting "look and feel" in the X Windows and Windows models. It is also
useful to understand the similarities and differences in windowing terminology used in the two
environments.
X Windows and Windows Forms are compared in the following concepts, which are explained in
detail in the later subsections:
• User interface architecture
• Look and feel
• Window types

Chapter 7: Developing Phase: Migrating the User Interface 133

User Interface Architecture
The architecture of X Windows-based interfaces differs significantly from Windows architecture.
The first and most fundamental difference is the orientation of client and server. For X Windows,
the client is the application that requests services and receives information from the UI. The user-
facing elements of the interface are based on what is termed the X Server.
In the X Windows-based system, the client application sends requests to the server to display
graphics and to send mouse and keyboard events. The X Server is responsible for doing all the
work on behalf of the client. The client might run on a remote system with no graphics hardware
or on the same physical computer as the server. In either case, the client does not interact with
the display, mouse, or keyboard. Figure 7.1 shows the X Windows client-server architecture.

Figure 7.1. X Windows architectural model

134 UNIX Custom Application Migration Guide: Volume 4

A standard .NET-based, rich client application is not responsible for dealing with the display,
mouse, or hardware. Figure 7.2 shows the Windows UI architecture using Windows Forms. It
shows the path from an application, through the layers, to the hardware in the .NET environment.

Figure 7.2. Windows UI architecture using Windows Forms

Look and Feel
X Windows is normally used with the Motif widget library, which is a library of UI components
(such as scroll bars, buttons, drop-down lists, and dialog boxes) that can be used off the shelf.
Motif is the most commonly used library to develop the UI component of X Windows applications.
According to the Motif Programming Manual and the Microsoft Official Guidelines for User
Interface Developers and Designers, all applications that a user can run on the desktop should
have a consistent "look and feel" as well as functional design. Otherwise, it is likely to confuse
users, possibly to such an extent that they will not use the application.
Although there are many differences, UIs of both Microsoft Windows and X Windows with Motif
have roots in the IBM Common User Access (CUA) guidelines. The resulting similarity in look and
feel is not too surprising. Every windowing system needs to perform the same tasks, which are as
follows:
• Determine the font to be used to display text.
• Determine the background color.
• Specify the location where a check box appears.
• Show that a user has clicked a particular button.

Chapter 7: Developing Phase: Migrating the User Interface 135

Given the task list, it just becomes a matter of the methodology used for accomplishing these
tasks. Figure 7.3 and Figure 7.4 are examples of a Motif dialog box and a Windows dialog box
respectively. Notice the similarities in terminology and appearance of dialog box elements in
these two figures.

Figure 7.3. An example Motif dialog box

136 UNIX Custom Application Migration Guide: Volume 4

Figure 7.4. An example Windows dialog box
Note To ensure a consistent look and feel with other Windows-based applications, the development of a
GUI on Windows using Windows Forms should be governed by the official Microsoft guidelines.

Window Types
Window types are very similar between the X Windows and Windows environments, as detailed
in the following sections.

Desktop Window
The X Windows system automatically creates the desktop window. This is a system-defined
window that is the base for all windows displayed by all applications. In X Windows, it can be
thought of in the same general terms as the root window.

Application Window
The application window is the interface between the user and the application. Such elements as a
menu bar, window menu, minimize and maximize buttons, Close button, title bar, sizing border,
client area, and scroll bars typically appear in the application window.

Dialog Boxes
A dialog box is a temporary window, typically used by a user to create some additional input. A
dialog box contains one or more controls, such as buttons and check boxes, to elicit user input.

Chapter 7: Developing Phase: Migrating the User Interface 137

Modeless Dialog Box
A modeless dialog box becomes the active window when the system creates it. The modeless
dialog box neither disables its parent window nor sends messages to its parent window.
However, it stays at the top of the z-order, even when the parent window becomes the active
window. You use this mainly when you want to perform activities in the parent window and dialog
box in any order. Applications can create a modeless dialog box by using the
System.Windows.Forms.Form constructor and its various properties.

Modal Dialog Box
A modal dialog box becomes the active window when the system creates it and remains active
until a call to System.Windows.Forms.Form.Close is made, which destroys the modal dialog
box. Neither the application nor the user can make the parent window active. Form.Close must
be called to close the modal dialog box. You use this mainly when you want to take some
necessary action from the dialog box and want to make the decision before doing any other
action.
An application uses the System.Windows.Forms.Form constructor, with the modal property set
to true, to create a modal dialog box in Windows Forms.

Message Box
A message box is a special dialog box that displays a note, caution, or warning to the user. For
example, a message box can inform the user of a problem that the application has encountered
while performing a task.
An application uses System.Windows.Forms.MessageBox.Show to create a message box.

Reference Material
Table 7.1 lists the reference materials available for X Windows/Motif and Microsoft Windows. All
of these Microsoft documents are available on the MSDN® Web site.
Table 7.1. References for X/Motif and Microsoft Windows

X Windows/Motif Reference Microsoft Windows Reference

Motif Style Guide Official Guidelines for User Interface Developers
and Designers

Motif Programming Manual <To be provided>

Motif Reference Manual <To be provided>

Note The Microsoft .NET Framework SDK is available for download at
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-
a333c6b9181d&displaylang=en.

User Interface Programming in X Windows
and Windows Forms
The core functionality offered by the X Windows environment is similar to the one that the
Windows Forms environment offers. This section discusses the programming principles for
developing UIs in both environments and provides information about libraries and include files.
This section helps you in understanding Windows Forms programming and explains how to use
these programming concepts to replace the X Windows UI.

http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d&displaylang=en

138 UNIX Custom Application Migration Guide: Volume 4

Programming Principles
The basic structure of an X Windows–based application that uses Motif is very similar to the
structure of a Microsoft Windows-based application.
To initiate an X Windows–based interface
3. Initialize the toolkit.
4. Create widgets.
5. Manage widgets.
6. Set up callbacks.
7. Display widgets.
8. Enter the main program event handler.
The following example code illustrates these steps.
topWidget = XtVaAppInitialize();

frame = XtVaCreateManagedwidget("frame",xmFrameWidgetFrams,
topWidget,,,);

button = XmCreatePushButton(frame, "EXIT", NULL, 0);

XtManageChild(button)

XtAddCallback(button, XmNactivateCallback, myCallback, NULL);

XtRealizeWidget(topWidget);

XtAppMainLoop();

To initiate a Windows Forms-based application
1. Write your own form class that inherits from the System.Windows.Forms.Form class.
2. Instantiate the form class you have written.
3. Call the static method Run() of the Application class with the instance of your class as

argument to launch your Windows application.
The following C# example code illustrates these steps.
using System;

using System.Windows.Forms;

namespace FirstWinFormAppl

{

 public class Form1 : System.Windows.Forms.Form

 {

 static void Main()

 {

 Application.Run(new Form1());

 }

 }

}

After launching your application, you can instantiate new forms and display them using the
show() method. The following example code illustrates this.
Form obForm = new Form();

obForm.Show();

Chapter 7: Developing Phase: Migrating the User Interface 139

Libraries and Include Files
Despite differences in their underlying architectures, many of the graphical functions used in
X Windows and Windows Forms perform similar tasks. These include the core libraries and
common dialog boxes.

Core Libraries
A number of functions exist to support the core API used in a GUI. X Windows includes the
libraries X and Xlib and the X Windows Intrinsics toolkit. The .NET equivalent is the
System.Windows.Forms namespace, which includes extensive UI-related classes. The
namespace can be compared to the X Library and X Windows Intrinsics toolkit because they
provide nearly all of the basic window management and two-dimensional graphics APIs.

Motif and Windows Forms Common Dialog Boxes
Dialog box functionality is provided by the Motif library in UNIX and by the Windows Forms dialog
classes in .NET. If you migrate code from Motif, there is probably an equivalent Windows Forms
common dialog box for each Motif function.
For example, the Motif function XmCreateFileSelectionDialog() is very similar to the
OpenFileDialog.ShowDialog() function. The X Motif code must include the Xm/FileSB.h header
file. The Windows Forms application must include the System.Windows.Forms namespace.
Calling the OpenFileDialog.ShowDialog() function displays the Open File dialog box, as shown
in Figure 7.5.

Figure 7.5. The OpenFileDialog.ShowDialog() common dialog box

140 UNIX Custom Application Migration Guide: Volume 4

Table 7.2 lists the common dialog boxes and related methods in .NET.
Table 7.2. Common Dialog Box and Related Methods in the .NET Framework API

Function Description

System.Windows.Forms.ColorDialog constructor Creates a Color dialog box that
enables the user to select a color.

System.Windows.Forms.FontDialog constructor Creates a Font dialog box that
enables the user to choose
attributes for a logical font.

System.IO.FileInfo.Name Retrieves the name of the specified
file.

System.Windows.Forms.OpenFileDialog.ShowDialog Creates an Open dialog box that
enables the user to specify the
drive, the directory, and the name of
a file or set of files to open.

System.Windows.Forms.SaveFileDialog.ShowDialog Creates a Save dialog box that
enables the user to specify the
drive, the directory, and the name of
a file to save.

System.Windows.Forms.PageSetupDialog.ShowDialog Creates a Page Setup dialog box
that enables the user to specify the
attributes of a printed page.

System.Windows.Forms.PrintDialog.ShowDialog Displays a Print dialog box.

PrintDlgEx() Displays a Print property sheet that
enables the user to specify the
properties of a particular print job.

Note The Find and Replace dialog box, which enables the user to search for a text and replace it, is not
readily available as part of the .NET Framework API.

The API for the Find and Replace dialog box is available for download at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/userinput/commondialogboxlibrary/aboutcommondialogboxes/findan
dreplacedialogboxes.asp.

Window Management
Window management functions cover the creation, initialization, management, and eventual
removal of dialog boxes and other window types. This section discusses the following activities in
window management:
• Creating windows.
• Creating controls.
• Identifying the control.
• Communicating with the control.
You can use the information in this section to create windows, create and identify controls, and
communicate with controls using Windows Forms.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/commondialogboxlibrary/aboutcommondialogboxes/findandreplacedialogboxes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/commondialogboxlibrary/aboutcommondialogboxes/findandreplacedialogboxes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/userinput/commondialogboxlibrary/aboutcommondialogboxes/findandreplacedialogboxes.asp

Chapter 7: Developing Phase: Migrating the User Interface 141

Creating Windows
The sample code provided in this section illustrates some of the X Windows and .NET
implementations of window management. It is unlikely that any large-scale X Windows client or
.NET Windows Forms–based application would actually be implemented as these code examples
are. However, it will help you understand the conceptual similarities and some differences
between the X Windows and .NET implementation of window management.
An X Windows X11 client might use XtAppInitialize(), XtVaAppInitialize(),
XtOpenApplication(), or XtVaOpenApplication to get a top-level widget to create a window, as
shown in the following example code.
X Windows example: Creating a window
main (int argc, char *argv[])

{

 Widget toplevel; /* Conceptual Application Window */

 XtAppContext app; /* context of the app */

 toplevel = XtVaAppInitialize(&app,

 "myClassName",

 NULL,0,&argc,argv,NULL,NULL);

The following is an alternative example code to get a top-level widget to create a window.
 toplevel = XtOpenApplication(&app,

 "myClassName",

 NULL,0,&argc,argv,NULL,

 whateverWidgetClass, NULL,0);

 …

 …
In the following example code, a .NET Windows Forms application creates a main window.
.NET example: Creating a window
private void createWindow()

{

System.Windows.Forms.Form objForm = new System.Windows.Forms.Form();

objForm.Name = "myFormName";

objForm.Text = "myWindowName";

objForm.Height = 145;

objForm.Width = 500;

objForm.Show();

}

142 UNIX Custom Application Migration Guide: Volume 4

An X Windows client can create a control or widget, as shown in the following example code.
X Windows example: Creating a window with a control
main (int argc, char *argv[])

{

 Widget toplevel; /* Conceptual Application Window */

 Widget button;

 XtAppContext app; /* context of the app */

 toplevel = XtVaAppInitialize(&app, "Example",
NULL,0,&argc,argv,NULL,NULL);

 button = XtVaCreateManagedWidget("command",

 commandWidgetClass, /* class
*/

 toplevel, /* parent */

 XtNheight, 50,

 XtNwidth, 100,

 XtNlabel, "Press To Exit",

 NULL);

A .NET Windows Forms application can create a control, as shown in the following example
code.
.NET example: Creating a window with a control
private void createWindow()

{

System.Windows.Forms.Form objForm = new System.Windows.Forms.Form();

objForm.Name = "myFormName";

objForm.Text = "myWindowName";

objForm.Height = 145;

objForm.Width = 500;

objForm.Controls.Add(createButton());

objForm.Show();

}

private System.Windows.Forms.Button createButton()

{

System.Windows.Forms.Button objButton = new
System.Windows.Forms.Button();

objButton.Name = "myButton";

objButton.Text = "Press To Exit";

objButton.Top = 50;

objButton.Left = 150;

objButton.Height = 20;

objButton.Width = 100;

return objButton;

}

Chapter 7: Developing Phase: Migrating the User Interface 143

Creating Controls
Controls, such as X Windows widgets, come in all shapes, sizes, colors, and functions. There are
two ways to create controls in a .NET environment. The first and simplest method is by using the
form designer in Visual Studio .NET 2003 or by writing the code to generate a control.
Using Visual Studio .NET 2003, you can drag and drop controls onto a form, which in X Windows
is a widget itself.
Using a form designer in Visual Studio .NET 2003 produces the following code in the code editor.
Note The following code is generated by the form designer in the code editor for a sample application
that has a window, a text box, and a button.

.NET example: Creating controls
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Configuration;

namespace WindowAppTest

{

 public class WindowsAppTestForm : System.Windows.Forms.Form

 {

 private System.Windows.Forms.TextBox Display;

 private System.Windows.Forms.Button ClickMe;

 private System.ComponentModel.Container components = null;

 #region WindowsAppTestForm

 public WindowsAppTestForm()

 {

 InitializeComponent();

 }

 protected override void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

 /// <summary>

144 UNIX Custom Application Migration Guide: Volume 4

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.Display = new System.Windows.Forms.TextBox();

 this.ClickMe = new System.Windows.Forms.Button();

 this.SuspendLayout();

 //

 // Display

 //

 this.Display.Location = new System.Drawing.Point(40,
32);

 this.Display.Name = "Display";

 this.Display.Size = new System.Drawing.Size(224, 20);

 this.Display.TabIndex = 0;

 this.Display.Text = "";

this.Display.TextChanged += new
System.EventHandler(this.Display_TextChanged);

 //

 // ClickMe

 //

 this.ClickMe.Location = new System.Drawing.Point(88,
80);

 this.ClickMe.Name = "ClickMe";

 this.ClickMe.Size = new System.Drawing.Size(96, 40);

 this.ClickMe.TabIndex = 1;

 this.ClickMe.Text = "Click Me";

this.ClickMe.Click += new System.EventHandler(this.button1_Click);

 //

 // WindowsAppTestForm

 //

 this.AutoScaleBaseSize = new System.Drawing.Size(5,
13);

 this.ClientSize = new System.Drawing.Size(292, 141);

 this.Controls.Add(this.ClickMe);

 this.Controls.Add(this.Display);

 this.Name = "WindowsAppTestForm";

 this.Text = "WindowsAppTestForm";

 this.ResumeLayout(false);

 }

 #endregion

 /// <summary>

Chapter 7: Developing Phase: Migrating the User Interface 145

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.Run(new WindowsAppTestForm());

 }

private void ClickMe_Click(object sender,System.EventArgs e)

 {

 System.Windows.Forms.MessageBox.Show(Display.Text);

 }

private void Display_TextChanged(object sender, System.EventArgs e)

 {

 String s = "Text Entered: ";

 s += Display.Text;

System.Windows.Forms.MessageBox.Show(s,"Now entered");

 }

 }

}

The second method is to instantiate the objects of the corresponding classes, such as
System.Windows.Forms.Form and System.Windows.Forms.Button. To produce the desired
control at the desired location inside a parent window, the properties of the objects can be set.
A sample code to produce a control in X Windows is as follows:
thisButton =

 XtVaCreateManagedWidget("Fire Phasers", button text

 commandWidgetClass, the type of widget

 parentWidget, parent widget

 NULL);

A sample code to produce a control in .NET Windows Forms is as follows:
private System.Windows.Forms.Button createButton()

{

System.Windows.Forms.Button objButton = new
System.Windows.Forms.Button();

objButton.Name = "myButton";

objButton.Text = "Press To Exit";

objButton.Top = 50;

objButton.Left = 150;

objButton.Height = 20;

objButton.Width = 100;

return objButton;

}

146 UNIX Custom Application Migration Guide: Volume 4

Identifying a Control
To communicate with or to respond to a control, it is necessary to identify the control. Controls
are identified using the name property associated with the control object. For example:
System.Windows.Forms.Button objButton = new
System.Windows.Forms.Button();

objButton.Name = "myButton";

The name property of the object can be used to get or set the name of the object.

Communicating with a Control
After the application identifies a control, it can communicate with it. The following are some
examples of sending and receiving commands or messages from controls in .NET and
X Windows.
.NET example: Adding strings to a list box
//+

// programmatically add strings to the list box

//-

// .NET

//

private System.Windows.Forms.ListBox mylistBox;

mylistBox.Items.Add("one");

mylistBox.Items.Add("two");

mylistBox.Items.Add("three");

X Windows example: Adding strings to a list box
// X11/Motif

//

XmString newString;

newString = XmStringCreateLocalized(“String One”);

XmListAddItem(listWidget, newString, 0);

XmStringFree(newString);

newString = XmStringCreateLocalized(“String Two”);

XmListAddItem(listWidget, newString, 0);

XmStringFree(newString);

newString = XmStringCreateLocalized(“String Three”);

XmListAddItem(listWidget, newString, 0);

XmStringFree(newString);

Chapter 7: Developing Phase: Migrating the User Interface 147

.NET example: Setting the current focus
//+

// programmatically force the current focus

// to this control, i.e., make the user select

// something now!

//-

// .NET

//

mylistBox.Focus();

X Windows example: Setting the current focus
// Xlib

//

XSetInputFocus(display, listWidget, RevertToParent, timeNow);

.NET example: Selecting a list box item
//+

// programmatically pick a string for them!

//-

// .NET

//

mylistBox.SelectedIndex = 2;

X Windows example: Selecting a list box item
// X11/Motif

//

XmListSelectPos(listWidget, 2, 0);

The “Signals and Events” section in Chapter 6, “Infrastructure Services” of this volume has a
detailed discussion on communicating with controls and handlers for the events generated. The
next section also describes keyboard and mouse event handling in .NET.

148 UNIX Custom Application Migration Guide: Volume 4

Event Handling
UI devices include keyboards and mouse devices, tablets, touchpads, and other devices. The
most frequently used devices in many applications are the mouse and the keyboard. The
following sections cover the mouse and keyboard events in Windows Forms.

Capturing Mouse Events
Like X Windows, mouse events can be associated with controls in Windows Forms. These events
occur depending on the various mouse operations over the controls. Table 7.3 lists the various
mouse events that are available in Windows Forms.
Table 7.3. Mouse Events in Windows Forms

Event Argument Description

Click EventArgs Occurs when a control is clicked.

DoubleClick EventArgs Occurs when a control is double-clicked.

MouseEnter EventArgs Occurs when a mouse cursor enters a control.

MouseLeave EventArgs Occurs when a mouse cursor leaves a control.

MouseHover EventArgs Occurs when a mouse cursor hovers over a
control.

MouseDown MouseEventArgs Occurs when the mouse cursor is over a
control and the mouse button is pressed.

MouseUp MouseEventArgs Occurs when the mouse cursor is over a
control and the mouse button is released.

MouseMove MouseEventArgs Occurs when the mouse cursor is moved over
a control.

MouseWheel MouseEventArgs Occurs when the mouse wheel is rotated.

The MouseEventArgs class provides two properties X and Y, which return the x-coordinate and
the y-coordinate of the mouse pointer in pixels relative to the window’s client area. There are two
types of mouse events: the client-area mouse events and the nonclient-area mouse events.
Client-area mouse events are those events that occur within the client area of the window or the
form. Nonclient-area mouse events are those events that occur within the window but outside the
client area. The nonclient area includes border, title bar, menu, scroll bars, and minimize and
maximize buttons.
The following example code shows how the coordinates of the mouse are determined, whenever
the MouseMove event occurs, using the MouseEventArgs class.
.NET example: Using the mouse coordinates
private void panel1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e) {

 // Update the mouse path that is drawn onto the Panel.

 int mouseX = e.X;

 int mouseY = e.Y;

 }

Chapter 7: Developing Phase: Migrating the User Interface 149

Capturing Keyboard Events
In most applications, it may be necessary to capture keystrokes and perform some actions based
on those keystrokes. Like X Motif, Windows Forms also provides a number of keyboard events.
The KeyDown event occurs when a key is pressed and the KeyUp event occurs when the key is
released. Table 7.4 lists the three keyboard events in Windows Forms.
Table 7.4. Key Events in Windows Forms

Event Event Data Description

KeyDown KeyEventArgs Occurs when a key is pressed.

KeyUp KeyEventArgs Occurs when a key is released.

KeyPress KeyPressEventArgs Occurs between the KeyDown and the KeyUp events
and only when a character-generating key is pressed.

You can use the KeyEventArgs event data associated with the KeyDown and KeyUp events to
obtain low-level information about the keystroke, such as determine the keycode (code that is
used to uniquely identify a particular key) of the key that was pressed. It is also used to determine
such things as whether any modifier keys (Alt, Ctrl, Shift keys, and the various combinations of
these keys) were pressed or to determine whether a lowercase or an uppercase character was
pressed.
You can use the KeyPressEventArgs event data associated with the KeyPress event to obtain
a type that contains the ASCII character of the pressed key. The following example code shows
how to catch the key events when text is entered in a text box control, named textBox1.
.NET example: Handling the KeyDown event
// Handle the KeyDown event to determine the type of character entered
into the control.

private void textBox1_KeyDown(object sender,
System.Windows.Forms.KeyEventArgs e)

{

//Sample Handler code

switch(e.KeyCode)

{

case Keys.D0:

// Keystroke is number 0

..

..

case Keys.Back:

//Keystroke is backspace

..

..

}

}

//Handle the KeyUp event

private void textBox1_KeyUp(object sender,
System.Windows.Forms.KeyEventArgs e)

150 UNIX Custom Application Migration Guide: Volume 4

{

 //Handler code

}

//Handle the KeyPress event

private void textBox1_KeyPress(object sender,
System.Windows.Forms.KeyPressEventArgs e)

{

 //handler code.

}

For most purposes, the standard KeyUp, KeyDown, and KeyPress events are sufficient to
capture and handle keystrokes. However, not all controls raise these events for all keystrokes
under all conditions. Follow the steps in the following paragraph to capture keystrokes, regardless
of the state of the control.
To capture keystrokes in a Windows Forms control, you must derive a new class that is based on
the class of the control that you want and override the ProcessCmdKey method. In this
overridden method, place the code to process the keystrokes that you want to capture.
The following sample code is an example of the basic structure for such a class. The code
demonstrates how to catch the keystrokes UP ARROW, DOWN ARROW, TAB, CTRL+M, and
ALT+Z. The code given here is written to work with the DataGrid because this feature is most
frequently requested for the DataGrid control. You can use the same approach with other .NET
controls as well.
.NET example: Processing keystrokes
protected override bool ProcessCmdKey(ref Message msg, Keys keyData)

{

 const int WM_KEYDOWN = 0x100;

 const int WM_SYSKEYDOWN = 0x104;

 if ((msg.Msg == WM_KEYDOWN) || (msg.Msg == WM_SYSKEYDOWN))

 {

 switch(keyData)

 {

 case Keys.Down:

 this.Parent.Text="Down Arrow Captured";

 break;

 case Keys.Up:

 this.Parent.Text="Up Arrow Captured";

 break;

 case Keys.Tab:

 this.Parent.Text="Tab Key Captured";

 break;

 case Keys.Control | Keys.M:

Chapter 7: Developing Phase: Migrating the User Interface 151

 this.Parent.Text="<CTRL> + M Captured";

 break;

 case Keys.Alt | Keys.Z:

 this.Parent.Text="<ALT> + Z Captured";

 break;

 }

 }

 return base.ProcessCmdKey(ref msg,keyData);

}

The system passes two parameters to the ProcessCmdKey method: msg and keyData. The msg
parameter contains the Windows message, such as WM_KEYDOWN. The keyData parameter
contains the key code of the key that was pressed. If CTRL or ALT was also pressed, the
keyData parameter contains the ModifierKey information.
Using the msg parameter is not mandatory. However, it is a good practice to test the message. In
this example, test WM_KEYDOWN to verify that this is a keystroke event. Also, test
WM_SYSKEYDOWN to ensure that it is possible to catch keystroke combinations that include
control keys (primarily ALT and CTRL).
To capture specific keys, you can evaluate the keyCode by comparing it to the keys enumeration.
The code demonstrates how to catch the keystrokes UP ARROW, DOWN ARROW, TAB,
CTRL+M, and ALT+Z.

Keyboard Focus
Keyboard focus is a temporary property of a control or a widget. The window or widget that is
listening is said to have the current focus, keyboard focus, or focus.
Setting focus in Windows Forms–based applications involves calling the focus method on a
particular control for which focus is requested. For example, if you want to set focus to a
particular text box, then you need to call the focus method on that text box. The
Control.GotFocus() is the event that is raised when a control gains focus and the
Control.LostFocus() is the event that is raised when a control loses focus. This is similar to
using XmNfocusCallback and XmNlosingFocusCallback for focus callbacks set up within
X Motif.
The following example code shows how GotFocus and LostFocus events are handled for a text
box named Textbox1.
.NET example: Textbox focus events
// This method handles the GotFocus event for TextBox1

private void TextBox1_GotFocus(object sender, System.EventArgs e)

{

 //Perform operations that needs to be done when TextBox1 gains
focus

}

// This method handles the LostFocus event for TextBox1

private void TextBox1_LostFocus(object sender, System.EventArgs e)

{

152 UNIX Custom Application Migration Guide: Volume 4

 //Perform operations that needs to be done when TextBox1 loses
focus.

}

You can also manually raise the GotFocus event by using the Control.OnGotFocus() method.
Table 7.5 lists the events for getting current focus in the X Windows and .NET Framework
environments.
Table 7.5. Getting Current Focus in X Windows and .NET Framework API

X Windows .NET Framework API

No equivalent System.Windows.Forms.Form.ActiveForm

XGetInputFocus() System.Windows.Forms.Form.ActiveForm

XmGetFocusWidget() System.Windows.Forms.Control.Controls[].Focused

Table 7.6 lists the events for setting current focus in the X Windows and .NET Framework
environments.
Table 7.6. Setting Current Focus in X Windows and .NET Framework API

X Windows .NET Framework API

No equivalent System.Windows.Forms.Form.Focus

No equivalent System.Windows.Forms.Activate

XSetInputFocus() System.Windows.Forms.Form.Activate

Graphics Device Interface
The Graphics Device Interface (GDI) is a set of classes and functions used to generate graphics
for devices such as displays and printers. These classes help you in creating graphics objects
such as Pens, Brush, and Palette and in drawing shapes such as lines, circles, and rectangles.
This section describes the GDI-specific routines and functions used in X Windows applications
and their corresponding replacements in the .NET environment. Using this information, you can
identify the best approach to migrate the GDI-specific routines in your UNIX application to the
.NET environment.

Getting the Graphics Object
Applications on both platforms use a context to control the drawing functions. In X Windows
systems, this context is known as the graphics context (GC) and in Microsoft Win32®-based GDI
systems, this context is known as the device context (DC). Windows Forms provides a Graphics
class that encapsulates the GDI+ drawing surface and maintains its state.
You can obtain the Windows Forms graphics object in several ways.
To obtain the Windows Forms graphics object
• Override the OnPaint event handler method. This method takes PaintEventArgs as a

parameter. PaintEventArgs has a property that returns a graphics object. This is illustrated
by the following example code:
protected override void OnPaint (PaintEventArgs e)

{

 Graphics g = e.Graphics;

}

Or

Chapter 7: Developing Phase: Migrating the User Interface 153

• Call the CreateGraphics method on a control or a form, which would return the graphics
object. The following example code illustrates this.

Graphics g = this.CreateGraphics();

Device Context
Applications on both UNIX and Windows use a context that controls the behavior of drawing
functions. Windows Forms provides a System.Drawing namespace, which includes the
Graphics class that encapsulates the GDI+ drawing surface and maintains its state.
However, there are some differences in UNIX and Windows regarding the use of context. The
first difference is the location where the operating system stores and manages drawing attributes
such as the width of lines or the current font. In X Windows, these values belong to the graphics
context. When using XCreateGC() or XtGetGC(), it is necessary to provide a values mask and
values structure. These values are used to store settings such as line width, foreground color,
background color, and font style.
The following code is an example of the process of setting the foreground and background colors
in X Windows.
X Windows example: Setting the foreground and background colors

GC gcRedBlue;

XGCValues gcValues;

unsigned long gcColorRed;

unsigned long gcColorBlue;

unsigned long gcColorWhite;

Widget myWidget;

int main (int args, char **argv)

{

 // initialize colors - widget - etc.

 gcValues.foreground = gcColorRed;

 gcValues.background = gcColorBlue;

 gcRedBlue = XtGetGC (myWidget, GCForeground | GCBackground,
&gcValues);

}

154 UNIX Custom Application Migration Guide: Volume 4

The following code shows a .NET based method to set the foreground and background color of a
form.
.NET example: Setting the foreground and background color of a form

private void setColor()

{

System.Windows.Forms.Form objForm = new Form();

objForm.ForeColor = System.Drawing.Color.White;

objForm.BackColor = System.Drawing.Color.Black;

objForm.Show();

}

.NET-based applications use a different approach. Apart from the Graphics class, the
System.Drawing namespace also includes the classes for displaying text, a pen for line drawing,
and a brush for painting and filling and drawing lines, rectangles, and text.
The following code shows a .NET based application that creates a pen and then uses it to draw
lines.
.NET example: Creating a pen and drawing lines
private void DrawBlueLine()

{

System.Drawing.Pen objBlue = new Pen(System.Drawing.Color.Blue);

System.Drawing.Graphics objGraph = this.CreateGraphics();

objGraph.DrawLine(objBlue,0,0,100,200);

objBlue.Dispose();

objGraph.Dispose();

}

Windows Character Data Types
This section describes various routines and functions related to fonts and character sets used in
X Windows applications and their alternatives in the .NET environment. The information provided
in this section will enable you to identify the font- and text-specific routines in your UNIX
applications and implement their replacements in the .NET environment. The subsections discuss
the following topics in detail:
• Displaying text
• Text and drawing operations
• Calculating text metrics
• Text widgets and controls

Displaying Text
Ensuring that the visual display of text is as readable as possible requires creating and using the
appropriate fonts and selecting the best mapping modes.

Chapter 7: Developing Phase: Migrating the User Interface 155

Using Fonts
Fonts control the display characteristics of text. An X Windows client application can use the
XLoadQueryFont() and XSetFont() functions to apply a font to a given graphics context (GC), as
shown in the following code.
X Windows example: Using the fonts
#define FONT1 "-*-lucida-medium-r-*-*-12-*-*-*-*-*-*-*"

Font font1;

XFontStruct *font1Info;

main() {

 Display *pDisplay;

 int iScreen;

 GC gc;

 pDisplay = XOpenDisplay(“myDisplay”);

 iScreen = DefaultScreen(pDisplay);

 //+

 // get the Graphics Context

 //-

 gc = DefaultGC(pDisplay,iScreen);

 //+

 // attempt to load the font

 //-

 font1Info = XLoadQueryFont(pDisplay,FONT1);

 font1 = font1Info->fid;

 //+

 // Set the font in the GC

 //-

 XSetFont(pDisplay, gc, font1);

 …
In .NET, the System.Drawing namespace provides a Font class, which defines the format and
characteristics for text, including font face, size, and style attributes. In .NET, the graphics object
is a high-level encapsulation of the graphics context. The text drawing function (DrawString ())
displays a text with a particular font on the form by taking that Font class object as one of its
arguments.
All controls have a Font property, which defines the typeface, size, and style for any text
displayed by that particular control. In addition, the Windows default font will be the default font
for any control. To change the Windows default font, go to Control Panel, click Display, select
Properties, and then click the Settings tab.
Note Windows provides several tools for adding and editing fonts.

156 UNIX Custom Application Migration Guide: Volume 4

The Eudcedit.exe tool, which comes with the operating system, allows the user to create unique
characters such as logos and special characters. Eudcedit Help provides guidance on how to create, store,
and use these characters in the font library.

The Charmap.exe tool, which comes with the operating system, allows the user to view, find, and copy
characters from the Windows, MS-DOS®, and Unicode character sets. Charmap Help provides guidance on
how to copy these characters.

The Fontedit.exe tool, which comes with Visual Studio .NET 2003, allows the user to create and edit
raster fonts.

Creating Fonts
The System.Drawing.Font constructor is used for creating logical fonts, based on the fonts
loaded in the system. The following example code duplicates the Times New Roman Windows
font of size 14 pt and Bold style.
.NET Windows example: Creating the fonts
Public Font CreateTimesNewRomanFont()

{

int size = 14;

FontFamily fontFamily = new FontFamily("TimesNewRoman");

Font font = new Font(fontFamily,size, FontStyle.Regular,
GraphicsUnit.Point);

}

There are 13 overloaded types of the font constructor and you can use any one of these
constructors to create logical fonts in your application. For further information on the Font class,
refer to System.Drawing.Font in MSDN.

Device vs. Design Units
An application can retrieve font metrics for a particular family/style combination using the
FontFamily class. The methods supported by this class are as follows:
• GetEmHeight(FontStyle)
• GetCellAscent(FontStyle)
• GetCellDescent(FontStyle)
• GetLineSpacing(FontStyle)
The numbers returned by these methods are in font design units; therefore, they are independent
of the size and units of a particular Font object. The font metrics specific to the device are known
as device units. Portable metrics in fonts are known as design units. To apply the design units to
a specified device, convert design units to device units by using the following formula.
DeviceUnits = (DesignUnits/unitsPerEm) * (PointSize/72) * DeviceResolution
Note For a full explanation of device units, design units, and pixels, refer to the System.Drawing
namespace at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDrawing.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDrawing.asp

Chapter 7: Developing Phase: Migrating the User Interface 157

Fonts Example
The following example code overrides the OnPaint event of the form, creates a Font object
(based on the Arial family) with size 16 pixels and displays the metrics (in pixels) for that
particular Font object.
.NET example: Handling the OnPaint event
protected override void OnPaint (PaintEventArgs e)

{

string infoString = ""; // enough space for one line of output

int ascent; // font family ascent in design units

float ascentPixel; // ascent converted to pixels

int descent; // font family descent in design units

float descentPixel; // descent converted to pixels

int lineSpacing; // font family line spacing in design
units

float lineSpacingPixel; // line spacing converted to pixels

FontFamily fontFamily = new FontFamily("Arial");

Font font = new Font(

 fontFamily,

 16, FontStyle.Regular,

 GraphicsUnit.Pixel);

PointF pointF = new PointF(10, 10);

SolidBrush solidBrush = new SolidBrush(Color.Black);

// Display the font size in pixels.

infoString = "font.Size returns " + font.Size + ".";

e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down one line.

pointF.Y += font.Height;

// Display the font family em height in design units.

infoString = "fontFamily.GetEmHeight() returns " +

 fontFamily.GetEmHeight(FontStyle.Regular) + ".";

e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down two lines.

pointF.Y += 2 * font.Height;

// Display the ascent in design units and pixels.

ascent = fontFamily.GetCellAscent(FontStyle.Regular);

// 14.484375 = 16.0 * 1854 / 2048

158 UNIX Custom Application Migration Guide: Volume 4

ascentPixel =

 font.Size * ascent /
fontFamily.GetEmHeight(FontStyle.Regular);

infoString = "The ascent is " + ascent + " design units, " +
ascentPixel +

 " pixels.";

e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down one line.

pointF.Y += font.Height;

// Display the descent in design units and pixels.

descent = fontFamily.GetCellDescent(FontStyle.Regular);

// 3.390625 = 16.0 * 434 / 2048

descentPixel =

 font.Size * descent /
fontFamily.GetEmHeight(FontStyle.Regular);

infoString = "The descent is " + descent + " design units, " +

 descentPixel + " pixels.";

e.Graphics.DrawString(infoString, font, solidBrush, pointF);

// Move down one line.

pointF.Y += font.Height;

// Display the line spacing in design units and pixels.

lineSpacing = fontFamily.GetLineSpacing(FontStyle.Regular);

// 18.398438 = 16.0 * 2355 / 2048

lineSpacingPixel =

font.Size * lineSpacing /
fontFamily.GetEmHeight(FontStyle.Regular);

infoString = "The line spacing is " + lineSpacing + " design
units, " +

 lineSpacingPixel + " pixels.";

e.Graphics.DrawString(infoString, font, solidBrush, pointF);

}

Chapter 7: Developing Phase: Migrating the User Interface 159

Text and Drawing Operations
This section describes how you can perform the following text and drawing operations in the .NET
environment.
• Drawing text.
• Filling shapes.
c. Obtaining the color of the display elements.
• Drawing a gray text at the specified location.
This section also discusses the classes and related methods that help achieve these
functionalities.

Drawing Text
There are two methods of drawing text: the X Windows XDrawString() function in X Windows
and the DrawString() function of Graphics class in .NET. The XDrawString() requires a context
to draw on, the x and y coordinates, the string, and the string length in characters. Similarly, the
DrawString() method requires an object of the Graphics class to call it, the x and y coordinates,
and the string to be drawn.
The code examples provided in this section draw the "Hello World" string in the current font and
colors at the specified coordinates. It is often desirable to set a particular font or color before
writing the text. The following code examples show how this task is accomplished in the two
systems.
A programmer can code font and text display in X Windows as follows.
X Windows example: Drawing the text
Font = XLoadQueryFont (display,"fixed");

XSetFont (display, gc, font->fid);

XSetBackground (display, gc, WhitePixel (display,screen));

XSetForeground (display, gc, BlackPixel (display, screen));

XDrawString (display, d, gc, x, y, "Hello World", 11);

The DrawString() function in the Graphics class draws a formatted text in the specified location.
The following code example creates a text, creates a font (Arial 16 pt), creates a solid black brush
to draw with, and draws the text at the specified location in vertical format.
.NET example: Drawing the text
public void DrawStringFloatFormat(PaintEventArgs e)

{

// Create string to draw.

String drawString = "Sample Text";

// Create font and brush.

Font drawFont = new Font("Arial", 16);

SolidBrush drawBrush = new SolidBrush(Color.Black);

// Create point for upper-left corner of drawing.

float x = 150.0F;

float y = 50.0F;

// Set format of string.

StringFormat drawFormat = new StringFormat();

drawFormat.FormatFlags = StringFormatFlags.DirectionVertical;

160 UNIX Custom Application Migration Guide: Volume 4

// Draw string to screen.

e.Graphics.DrawString(drawString, drawFont, drawBrush, x, y,
drawFormat);

}

One drawback of using XDrawString() is that the background is not erased before drawing the
text string. Continually outputting strings to the same x and y coordinates results in a jumble of
unreadable text strings, one upon the other. The X Windows library provides the
DrawImageString() function, which calculates a rectangle containing the string and fills it with the
background pixel color before drawing the text in the foreground pixel color.
However, in .NET, this is taken care of by an overloaded version of DrawString(). The syntax of
that overloaded version is as follows:
public void DrawString(

 string s,

 Font font,

 Brush brush,

 RectangleF layoutRectangle

);

Filling Shapes
The constructor of System.Drawing.SolidBrush defines a brush of a single color. Brushes are
used to fill graphics shapes, such as rectangles, ellipses, pies, polygons, or paths. The following
example code shows the SolidBrush constructor. Color is a structure that represents the color of
the brush.
public SolidBrush(

 Color color

);

Obtaining the Color of the Display Elements
The System.Drawing.SystemColors class contains several properties; each of these properties
is a Color structure that represents the color of a Windows display element. Display elements are
the parts of a window and the Windows display that appear on the system display screen. Some
of the properties of the SystemColors class are explained in the following table.
Table 7.7. Properties of SystemColors Class

Property Name Use of Property

SystemColors.ActiveBorder Gets a Color structure that is the color of the active
window's border.

SystemColors.Desktop Gets a Color structure that is the color of the desktop.
SystemColors.Menu

Gets a Color structure that is the color of a menu's
background.

SystemColors.ScrollBar

Gets a Color structure that is the color of the
background of a scroll bar

Chapter 7: Developing Phase: Migrating the User Interface 161

The SetTextColor() function sets the text color for the specified device context to the specified
color, as shown in the following example:
COLORREF SetTextColor(

 HDC hdc, // handle to DC

 COLORREF crColor // text color

);

Drawing a Gray Text at the Specified Location
To draw a gray string at the specified location, you must pass Drawing.Brushes.Gray as the
Brushes argument in the constructor of the DrawString function. The following example code
draws a gray string at the specified location.
.NET example: Drawing the text with Brushes at specified location
public void DrawGrayString(PaintEventArgs e)

{

// Create string to draw.

String drawString = "Gray Text";

// Create font and brush.

Font drawFont = new Font("Arial", 16);

// Create point for upper-left corner of drawing.

float x = 150.0F;

float y = 50.0F;

// Draw string to screen.

e.Graphics.DrawString(drawString, drawFont, Brushes.Gray, x, y);

}

Calculating Text Metrics
The X Windows programmer can rely on XTextWidth() to get the length of a character string in
pixels. The Windows Forms programmer has an equivalent method called MeasureString()
available in the Graphics class. This method returns a SizeF structure that represents the size, in
pixels, of the specified string drawn with the specified font. From the SizeF structure, both the
width and height of the string can be obtained. SizeF.Width represents the width of the string and
SizeF.Height represents the height of the string.
The MeasureString() method is as follows.
public SizeF MeasureString(

 string text,

 Font font,

 int width

);

162 UNIX Custom Application Migration Guide: Volume 4

The following example code shows the use of MeasureString. It creates a string to measure and
a font object set to Arial (16 pt). It then sets the maximum width of the string, creates a size
object, and then uses the font object and the maximum string width to measure the size of the
string. Finally, it draws a red rectangle using the measured size of the string and draws the string
within the drawn rectangle.
.NET example: Measuring the string
 public void MeasureStringWidth(PaintEventArgs e)

 {

// Set up string.

string measureString = "Measure String";

Font stringFont = new Font("Arial", 16);

// Set maximum width of string.

int stringWidth = 200;

// Measure string.

SizeF stringSize = new SizeF();

stringSize = e.Graphics.MeasureString(measureString, stringFont,
stringWidth);

// Draw rectangle representing size of string.

e.Graphics.DrawRectangle(

new Pen(Color.Red, 1),

0.0F, 0.0F, stringSize.Width, stringSize.Height);

// Draw string to screen.

e.Graphics.DrawString(

measureString,

stringFont,

Brushes.Black,

new PointF(0, 0));

}

Text Widgets and Controls
A text widget or control is used to display, enter, and edit text. The exact functionality of a text
widget or control depends upon how its resources are set.
In X Windows, the widget functionality is set as shown in the following example.
X Windows example: Setting widget functionality
text = XtVaCreateManagedWidget ("myTextWidget",

 asciiTextWidgetClass,

 parentWidget,

 XtNfromHoriz,

 quit,

 XtNresize,

 XawtextResizeBoth,

 XtNresizable,

 True,

 NULL);

Chapter 7: Developing Phase: Migrating the User Interface 163

In Motif, the widget functionality is set as shown in the following example.
Motif example: Setting widget functionality
main (int argc, char *argv[])

{

 Widget mainWidget;

 Widget textWidget;

 XtAppContext appContext;

 mainWidget =

 XtVaOpenApplication (&appContext,

 "TextExample",

 NULL,

 0,

 &argc,

 argv,

 NULL,

 sessionShellWidgetClass,

 NULL);

 (…)

 textWidget =

 XmCreateText (mainWidget,"textWidget",NULL,0);

 (…)

 XtAppMainLoop(appContext);

}

In Windows Forms, a text box is used to display, enter, and edit text. A text box can be inserted
into a form using the drag and drop feature of the IDE or it can be programmatically inserted into
a form. The following example code shows how a text box is programmatically added to a form
and displayed to the user.
.NET example: Using text box
public class FrmText : System.Windows.Forms.Form

{

private TextBox txtDisplay;

 public Form1()

 {

 txtDisplay = new TextBox();

 txtDisplay.Location = new Point(50,50);

164 UNIX Custom Application Migration Guide: Volume 4

 txtDisplay.Text = "Default Text";

 Controls.Add(txtDisplay);

}

 static void Main()

 {

 FrmText obFrm = new FrmText();

 Application.Run(obForm);

 }

}

Drawing
Drawing functions present graphical information on the screen. These range from primitive
functions, such as turning a pixel on or off, to complex two-dimensional and three-dimensional
drawing functions. The following are some notable differences in how drawing functions work on
the X Windows and .NET platforms:
• Display and color management.
• Drawing two-dimensional lines.
• Drawing shapes and rectangles.
You can use the information in this section to assist you in understanding the programming
differences in the drawing areas between the UNIX and .NET environments and in replacing the
UNIX drawing routines with the equivalent .NET classes.

Display and Color Management
X Windows and Win32-based GDI are both constrained by the physical limitations of the available
display hardware. One such limitation is the number of colors a display adapter is capable of
showing.
All X Windows applications use a color map. This map can be shared or private. A shared color
map is used by all applications that are not using a private map. Using a private map gives an
application better control over color and a greater number of colors. However, there is one
problem with private maps: When the mouse moves on or off the client area using a private map,
the screen colors change.
.NET-based applications typically use color with no regard for the display device. If the application
uses a color that is beyond the capabilities of the display device, the system approximates that
color within the limits of the hardware. On display devices that support a color palette,
applications sensitive to color quality can create and manage one or more logical palettes.
The System.Drawing.Image.Palette property is used to create a logical palette in .NET. The
Palette property gets or sets the color palette (object of System.Drawing.Imaging.ColorPalette)
used for the Image object. The System.Drawing.Imaging.ColorPalette defines an array of
colors that make up a color palette. The colors are 32-bit ARGB colors.
To determine the capabilities of the hardware and calculate the best possible behaviors of the
display, an X Windows program can use such functions as DefaultColorMap(), DefaultVisual(),
DisplayCells(), DisplayPlanes(), XGetVisualInfo(), and XGetWindowAttributes().
A .NET-based application can rely on System.Drawing.Graphics properties. The Graphics
properties get or set device context information.
Note More information on the ColorPalette class and its members is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemdrawingimagingcolorpaletteclasstopic.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingimagingcolorpaletteclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingimagingcolorpaletteclasstopic.asp

Chapter 7: Developing Phase: Migrating the User Interface 165

Drawing Two-Dimensional Lines
Two sets of line and curve drawing functions are provided in the .NET environment.
System.Drawing.Graphics.DrawLine and System.Drawing.Graphics.DrawLines are used for
drawing lines. System.Drawing.Graphics.DrawArc and
System.Drawing.Graphics.DrawBeziers are used for drawing curves.
The following table describes the preceding functions (one of overloaded functions) and their
usage.
Table 7.8. Drawing lines in .NET

Function Name Function Signature Usage

System.Drawing.Graphics.DrawLine public void DrawLine(

Pen, // Object of Pen class

int, // x1 co-ordinate

int, // y1 co-ordinate

int, // x2 co-ordinate

int // y2 co-ordinate

);

To draw a line from
the current position up
to, but not including, a
specified point.

System.Drawing.Graphics.DrawLines public void DrawLines(

Pen, // Objetc of Pen class

Point[] //Array of Point
Structure

);

To draw a series of
line segments by
connecting the points
in the specified array.

System.Drawing.Graphics. DrawArc public void DrawArc(
 Pen pen,
 Rectangle rect,
 float startAngle,
 float sweepAngle
);

To draw an arc
representing a portion
of an ellipse specified
by a Rectangle
structure.

System.Drawing.Graphics.DrawBeziers public void DrawBeziers(
 Pen pen,
 Point[] points
);

To draw a series of
Bézier splines from an
array of Point
structures.

Note More information on drawing curves is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfSystemDrawingGraphicsMethodsTopic.asp.

The following example shows the use of XDrawLine() in X Windows.
X Windows example: Using XDrawLine() to draw a line
int main (int argc, char **argv)

{

 XtToolkitInitialize ();

 myApplication = XtCreateApplicationContext ();

 myDisplay = XtOpenDisplay(myApplication,

 NULL,

 NULL,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDrawingGraphicsMethodsTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDrawingGraphicsMethodsTopic.asp

166 UNIX Custom Application Migration Guide: Volume 4

 "XBlaat",

 NULL,

 0,

 &argc,

 argv);

 myWindow = RootWindowOfScreen(DefaultScreenOfDisplay (mydisplay));

 //+

 // now we need a surface to draw on

 //-

 myMap = XCreatePixmap (myDisplay,myWindow,64,64, 1);

 values.foreground =

 BlackPixel (myDisplay, DefaultScreen (myDisplay));

 myGC = XCreateGC (myDisplay, mySurface, GCForeground, &values);

 //+

 // draw two diagonal lines across the 64x64 surface

 //

 XDrawLine(myDisplay,mySurface,myGC,0,0,63,63);

 XDrawLine(myDisplay,mySurface,myGC,0,63,63,0);

 …

}

The following example shows the use of DrawLine method in .NET to draw lines.
.NET example: Using DrawLine to draw lines
private void DrawX()

{

System.Drawing.Pen objPen = new Pen(System.Drawing.Color.Black);

System.Drawing.Graphics objGraph = this.CreateGraphics();

objGraph.DrawLine(objPen,0,0,63,63);

objGraph.DrawLine(objPen,0,63,63,0);

objPen.Dispose();

objGraph.Dispose();

}

Chapter 7: Developing Phase: Migrating the User Interface 167

Drawing Shapes and Rectangles
Filled shapes are geometric forms that the current pen can outline and the current brush can fill.
There are five filled shapes:
• Ellipse
• Chord
• Pie
• Polygon
• Rectangle
The X Windows version of XDrawRectangle() uses an upper-left–corner point and the width and
height.
In .NET, System.Drawing.Graphics.DrawRectangle() draws a rectangle specified by a
coordinate pair: a width, and a height. System.Drawing.Graphics.FillRectangle() fills the
interior of a rectangle specified by a pair of coordinates: a width, and a height.
Rectangle functions that fill the rectangle are:
• X Windows: XFillRectangle()
• .NET: System.Drawing.Graphics.FillRectangle()
Rectangle functions that draw the outline only are:
• X Windows: XDrawRectangle()
• .NET: System.Drawing.Graphics.DrawRectangle()

The following example demonstrates rectangle functions in X Windows.
X Windows example: Drawing a rectangle
void drawSomeRectangles()

{

 //+

 // fill the rectangle and then draw a black border around it

 //-

 XFillRectangle (myDisplay, mySurface, myWhiteGC, 0, 0, 31, 31);

 XDrawRectangle (myDisplay, mySurface, myBlackGC, 0, 0, 31, 31);

 //+

 // draw an empty rectangle ten pixels square

 //-

 XDrawRectangle(myDislay, mySurface, myBlackGC, 0,0, 10,10);

}

168 UNIX Custom Application Migration Guide: Volume 4

The following example demonstrates rectangle functions in .NET.
.NET example: Drawing a rectangle
private void DrawRec()

{

System.Drawing.Pen objPen = new Pen(System.Drawing.Color.Black);

System.Drawing.SolidBrush objBrush = new
SolidBrush(System.Drawing.Color.White);

System.Drawing.Graphics objGraph = this.CreateGraphics();

objGraph.FillRectangle(objBrush,0,0,31,31);

objGraph.DrawRectangle(objPen,0,0,31,31);

objGraph.DrawRectangle(objPen,0,0,10,10);

objPen.Dispose();

objBrush.Dispose();

objGraph.Dispose();

}

Timers
Timers are required to determine and act on delays in user input. The functionality and
differences between X Windows timeouts and .NET timers are discussed in the following
sections.

X Windows Timer
An X Windows client program can use the XtAddAppTimeOut() and XtRemoveTimeOut()
functions with a callback to perform processing based on an interval specified in milliseconds.
The following code shows an example of this.
X Windows example: Handling timer events
//+

// perform task every one second

//-

void myTimerProc(Widget w,

 XEvent *event,

 String *pars,

 Cardinal *npars)

{

 …

 …

}

//+

// start a 1 second timer

//-

void startTimer(XtIntervalId *timer)

{

 (*timer) = XtAppAddTimeOut(gContext, 1000, myTimerProc, NULL);

Chapter 7: Developing Phase: Migrating the User Interface 169

}

//+

// stop the timer

//-

void stopTimer(XtIntervalId * timer)

{

 if(*timer) {

 XtRemoveTimeOut(*timer);

 (*timer) = NULL;

 }

}

.NET Timers
You can use .NET timers in two scenarios. First, as in the X Windows approach, a callback
function can be identified to execute at each timer interval. Second, an event can be raised to
process timer intervals.
The System.Threading.Timer class provides a mechanism for executing a method at specified
intervals.
The following example shows the callback version using System.Threading.Timer.
.NET example: Handling timer events with System.Threading
using System;

using System.Threading;

namespace AlarmSignal

{

 /// <summary>

 /// Class to simulate the alarm

 /// </summary>

 class TimerSample

 {

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 static void Main()

 {

 CallBackClass objCallBack = new CallBackClass();

//The object of the AutoResetEvent class notifies the waiting thread
that an event has occured.

 AutoResetEvent objState = new AutoResetEvent(false);

//TimerCallback delegate represents the method that handles the calls
from a Timer object.

170 UNIX Custom Application Migration Guide: Volume 4

TimerCallback objTimerCallBack = new
TimerCallback(objCallBack.execTimer);

 Console.WriteLine("alarm application starting");

//The Timer class represents a mechanism for executing a method at
specific intervals

Timer objTimer = new Timer(objTimerCallBack,objState,5000,0);

 Console.WriteLine("waiting for alarm");

//WaitOne method blocks the current thread until the current WaitHandle
receives a signal.

 objState.WaitOne(-1,false);

 objTimer.Dispose();

 Console.WriteLine("alarm application done");

 }

 }

 /// <summary>

 /// Class that has the method for executing the alarm.

 /// </summary>

 class CallBackClass

 {

 public void execTimer(Object stateInfo)

 {

 AutoResetEvent objAutoEvt = (AutoResetEvent)
stateInfo;

 Console.WriteLine("Ring...Ring!");

 //Sets the state of the specified event to signaled.

 objAutoEvt.Set();

 }

 }

}

(Source File: N_Timers-UAMV4C7.01.cs)

The System.Timers namespace provides the Timer component, which allows you to raise an
event on a specified interval.
The following example shows the raising of an event to process time intervals.
.NET example: Handling timer events with System.Timers
using System;

using System.Timers;

public class Timer1

{

 public static void Main()

 {

Chapter 7: Developing Phase: Migrating the User Interface 171

 System.Timers.Timer aTimer = new System.Timers.Timer();

 aTimer.Elapsed+=new ElapsedEventHandler(OnTimedEvent);

 // Set the Interval to 5 seconds.

 aTimer.Interval=5000;

 aTimer.Enabled=true;

 Console.WriteLine("Press \'q\' to quit the sample.");

 while(Console.Read()!='q');

 }

 // Specify what you want to happen when the Elapsed event is
raised.

 private static void OnTimedEvent(object source, ElapsedEventArgs
e)

 {

 Console.WriteLine("Hello World!");

 }

}

(Source File: N_Timers-UAMV4C7.02.cs)

Migrating Character-based User Interfaces
Not all UNIX-based interfaces are graphical. Character-based interfaces were the original
mainstay of UNIX computing, long before the graphical workstation was developed. The
character-based UIs can be replaced with a Windows Forms–based or HTML-based UIs using
.NET.

Porting OpenGL Applications
OpenGL was originally developed by Silicon Graphics as a platform-independent set of graphics
APIs. This has made OpenGL an attractive option for developers who want to target multiple
platforms. The interface of the OpenGL library is standardized by specifications that are available
publicly. New functionalities called OpenGL Extensions can also be added without updating the
entire specification.
However, OpenGL is not a set of windowing libraries. An OpenGL application with windows uses
either the windowing system of the target platform (X Windows or Win32) or a cross-platform
library such as the OpenGL Graphics Library Utility Kit (GLUT). Because of licensing concerns,
however, most commercial applications incorporate the target platform windowing system.
When moving a UNIX application that uses OpenGL to .NET, the .NET interoperability strategies
are used. While migrating the OpenGL libraries using .NET interoperability mechanism, the
migrated libraries are treated as unmanaged code. Some third-party open source .NET classes
are available, which wrap access to OpenGL and allow .NET to act as a container to access
OpenGL. Internally, these classes have used the interoperability mechanisms such as P/Invoke
only. An example of this is the C# OpenGL library.
Note More information on this library is available at

http://csgl.sourceforge.net/.

More information on OpenGL and platform-specific examples is available at

http://www.sgi.com/software/opengl/ and

http://www.opengl.org/.

http://csgl.sourceforge.net/
http://www.sgi.com/software/opengl/
http://www.opengl.org/

172 UNIX Custom Application Migration Guide: Volume 4

Mapping X Windows Terminology to
Windows Forms
The graphical models of UNIX and Windows are very different. There are conceptual similarities,
but little side-by-side mapping is possible. The following sections describe the possible mappings.
In the headings of the following sections, the Win32 GDI term is followed by the corresponding
X Windows term in the following format: X Windows term vs. .NET term.

Callback vs. Event Handlers
Windows Forms uses the Event Handler functions in the same capacity as Callback in
X Windows.

Client vs. Client Window
X Windows consists of a protocol that describes how a client interacts with a server that could be
running on a remote computer. How objects are drawn is the responsibility of the server. This
provides device-independence for the client application because it is not responsible for knowing
anything about the physical hardware.
In the Windows environment, the Windows Forms provide a layer of device-independence and
are not required to access the graphics hardware directly.
A single Windows-based application can contain any number of separate windows. Each of these
windows can have a window frame, caption bar, system menu, minimize and maximize buttons,
and its own main display area, which is referred to as the client window.
Multiple document interface (MDI) applications have three kinds of windows: a frame window, an
MDI client window, and a number of child windows. The term "iclient window" takes on a special
meaning in this case. iClient is special kind of an application with visualization, input ctrl, and local
models.
Note More information about MDI and the MDI documentation is available at

http://msdn2.microsoft.com/en-us/library/ms171654.aspx.

Console Mode vs. Command Window
If X Windows or some other GUI is not running on a UNIX system, a user must work in text only
or in console mode.
Windows is exactly the opposite. If a console is not running, the user must work in GUI mode.
Windows text-based mode is provided by running the Cmd.exe tool. This environment is also
referred to as a command window or the MS-DOS prompt. To run the Cmd.exe tool, click Start,
and then click Run. Type cmd, and then click OK. Alternatively, on the keyboard, press the
Windows key and then press R. The Run dialog box appears.

DPI vs. Screen Resolution
When starting an X Windows session, using the -dpi (dots per inch) option can improve
appearance on displays with larger resolutions, such as 1600 × 1200. The -dpi option also helps
to work around possible font issues.
A Windows-based application is usually built with no assumptions about the capabilities of the
system that the application will run on. The .NET Framework API provides various classes to
access system and device-specific information. The properties of
System.Windows.Forms.SystemInformation are used to retrieve system metrics and
configuration settings. System.Drawing.Graphics properties and
System.Drawing.Printing.PrinterSettings and System.Management classes are used to
retrieve device-specific information for the specified device.

http://msdn2.microsoft.com/en-us/library/ms171654.aspx

Chapter 7: Developing Phase: Migrating the User Interface 173

Graphics Context vs. Graphics Class Object
The X Windows graphics context (GC) contains required information about how drawing functions
are to be executed. In .NET, the Graphics class object provides similar information. The
Graphics class here is an encapsulation of the GDI+ drawing surface, which includes the Win32
device context (DC). Table 7.9 lists X Windows graphic context and the corresponding Win32
device context.
Table 7.9. X Windows GC and Win32 DC Comparable Functions

Xlib .NET Framework API

XtGetGC To retrieve a Graphics class object, use any of the following:
System.Drawing.Graphics.FromHwnd(Windows.Forms.Control.Handle)
System.Drawing.Printing.PrintPageEventArgs.Graphics
System.Windows.Forms.PaintEventArgs.Graphics
To explicitly retrieve a handle, use the following:
System.Drawing.Graphics.GetHdc

XtReleaseGC System.Drawing.Graphics.ReleaseHdc

Resources vs. Properties
In X Windows terminology, a widget is defined by its resources. Width, height, color, and font are
examples of resources. Resources can be managed by using the XtVaCreateManagedWidget()
method, by using resource files, or by using XtVaGetValues() and XtVaSetValues().
In Windows Forms terminology, a control is defined by its properties. For example, a text control
has the following properties: Center Vertically, No Wrap, Transparent, Right-Aligned Text, and
Visible.

Resource Files vs. Configuration Files
X Windows systems use configuration files, referred to as resource files, to store information
about system settings or preferences for a particular X Windows client.
In .NET, these settings and preferences for applications are generally stored in application
configuration files, which are in XML format. The following is a sample configuration file, which an
application reads.
 <?xml version="1.0" encoding="utf-8" ?>

 <configuration>

 <appSettings>

 <add key="LabelColor" value="Yellow" />

 <add key="MaximumWeight" value="150" />

 <add key="Title" value="MyApplication" />

 </appSettings>

 </configuration>

The configuration file should be in the same directory as the application. The name of the
configuration file should be the same as the application, with .config at the end. For example, an
application called MyApplication.exe should have a configuration file called
MyApplication.exe.config.

174 UNIX Custom Application Migration Guide: Volume 4

Root Window vs. Desktop Window
All X Windows windows are descendents of the root window. In the Windows environment, the
desktop window is a system-defined window that is the base for all windows displayed by all
applications.

/bin vs. /System32
In Windows, the /System32 directory is roughly equivalent to the /bin directory on a UNIX system.
This is where the system executable files are located. The /System32 directory is located in the
system root directory. To find the system root, type set at the command prompt and press
ENTER. This displays a listing of the current environment. In the list, locate SYSTEMROOT.
Under SYSTEMROOT, there is an entry similar to SYSTEMROOT=C:\WINNT. This is the system
directory and under that directory is the /System32 directory.

/usr/bin vs. Program Files
The Program Files directory on a Windows-based system is similar to the /usr/bin directory on a
UNIX system. This is the default location for user applications. In Windows, a user can create
more than one such directory. Each drive, for example, might have a Program Files directory. The
system environment variable, ProgramFiles, contains the path of one default location. For
example, ProgramFiles=C:\ProgramFiles.

/usr/lib vs. LIB Environment Variable
In Windows, the path to user libraries can be anywhere. To manage this relationship, retrieve or
set the system environment variable LIB.

/usr/include vs. INCLUDE Environment Variable
In Windows, the path to user include files can be anywhere. To manage this relationship, retrieve
or set the system environment variable INCLUDE.

Pixmap or Bitmap vs. Bitmap
In X Windows, bitmap and pixmap have the same use as Windows bitmaps. For example, they
can be used as pictures, fill patterns, icons, and cursors. They are, however, very different in
form.
The following example represents a simple 16 × 16 "X" figure in X Windows.
#define simple_width 16

#define simple_height 16

static unsigned char simple_bits[] = {

 0x01, 0x80, 0x02, 0x04, 0x20, 0x08, 0x10, 0x10, 0x08, 0x20, 0x04,

 0x40, 0x02, 0x80, 0x01, 0x80, 0x01, 0x02, 0x20, 0x04, 0x10, 0x08,

 0x08, 0x10, 0x04, 0x20, 0x02, 0x40, 0x01, 0x80

};

Chapter 7: Developing Phase: Migrating the User Interface 175

The following example represents a simple 16 × 16 "X" figure in Windows.

000000 42 4D 7E 00 00 00 00 00 00 00 3E 00 00 00 28 00

000010 00 00 10 00 00 00 10 00 00 00 01 00 01 00 00 00

000020 00 00 40 00 00 00 CA 0E 00 00 C4 0E 00 00 00 00

000030 00 00 00 00 00 00 00 00 00 00 FF FF FF 00 7F FE

000040 00 00 BF FD 00 00 DF FB 00 00 EF F7 00 00 F7 EF

000050 00 00 FB DF 00 00 FD BF 00 00 FE 7F 00 00 FE 7F

000060 00 00 FD BF 00 00 FB DF 00 00 F7 EF 00 00 EF F7

000070 00 00 DF FB 00 00 BF FD 00 00 7F FE 00 00

Window Manager vs. Windows Server 2003 and
Windows XP
A special kind of X Windows client called the Window Manager provides a consistent working
environment in the root window.
In a Windows environment, the operating system itself is the window manager and provides the
desktop window. When a user logs on, the system creates three desktops within the WinSta0
windows station.
Note For additional information, search for "WinSta0" on the MSDN Web site at

http://msdn.microsoft.com/.

Widgets are usually represented as controls in Windows Forms–based applications. Like the
X Windows environment, Windows Forms offers many widgets. For example, X Windows dialog
boxes are widgets. In Windows Forms, however, dialog boxes are not considered controls,
although objects such as dialog boxes, buttons, and scroll bars are all windows.

X Library [Xlib] [X11] vs. Drawing Namespace
The X Windows library [Xlib][X11] is the lowest level library. Like the System.Drawing
namespace, it provides all the basic drawing functions.

X Toolkit [Intrinsics] [Xt] vs. Windows Forms
The X Toolkit (Xt) is a library that accesses the lower-level graphics functionality of Xlib
(X Windows) and provides UI elements such as menus, buttons, and scroll bars. It is similar to
Windows Forms, which provides all the UI elements in the .NET environment.

http://msdn.microsoft.com/

176 UNIX Custom Application Migration Guide: Volume 4

Mapping X Windows Tools to Microsoft
Windows
The primary tools for .NET development are the .NET Framework SDK and Visual Studio .NET. If
Visual Studio .NET is installed in the default location, tools are found in DriveLetter:\Program
Files\Microsoft Visual Studio .NET 2003\Common7\Tools. Help provides information on these
tools.
Note In some cases, the X Windows tool and the Windows tool have the same name but do not perform
the same function. The bitmap tool is an example.

Bitmap vs. Mspaint.exe
In Visual Studio .NET, you can use the forms designer to create and edit bitmaps and icons. You
can also use Mspaint.exe to edit bitmaps. This tool is found in the /System32 directory.

Manual Pages vs. Help
UNIX provides online documentation, which explains commands and procedures, in the form of
manual pages. To access a particular manual page, type man command_name at the shell
prompt.
Windows systems use the commands help and help CommandName. The Windows Help
provides a similar look and feel to man on UNIX systems. However, most of Windows Help is
found on the Start menu under Help. Additionally, most, if not all, of the components of the
Microsoft development environment (MSDN, compilers, Visual Studio .NET, and Word) provide
topical help and context-sensitive help.
At a command prompt, type help and press ENTER to see a list of available commands. Typing
help followed by the name of the command (for example, typing help setlocal) provides
information about the specified command. Windows Advanced Server installations provide
ntbooks.exe in the /System32 directory. This is an excellent Help resource for all Windows server
commands.

xcalc vs. Calc.exe
The Calc.exe tool is the Windows calculator program. It is located in the /System32 directory and
provides number base conversion between decimal, hexadecimal, and binary.

xclipboard vs. Clipbrd.exe
The Clipbrd.exe tool is found in the /System32 directory and provides the Windows Clipboard
viewing, sharing, and saving functions.

xedit vs. Notepad.exe
The Notepad.exe tool is a simple text editor such as xedit. Notepad is located in the system root
directory.

xev vs. Spyxx.exe
The Spyxx.exe tool provides functionality similar to that of xev. This tool allows selection of a
window and filtering of desired events and messages. The Spyxx.exe tool is provided in the .NET
Framework SDK and can be located at DriveLetter:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools.

Chapter 7: Developing Phase: Migrating the User Interface 177

xfd vs. Fontview.exe
The Fontview.exe command-line tool enables viewing of fonts. For example, the following
command displays the Modern fonts.
fontview modern.fon

However, the Charmap.exe tool, a GUI tool located in the /System32 directory, is a much better
choice for viewing and manipulating fonts in a graphical manner.

xkill vs. Kill.exe
The Win32 Kill.exe tool provides the same functionality as the X Windows xkill command. The
Kill.exe tool is located in the /System32 directory.
When a user presses CTRL+ALT+DEL on a Windows-based system, a dialog box appears. Click
the Task Manager button to display the Task Manager dialog box. To display the process ID
(PID) of the currently running tasks, click the Processes tab in the Task Manager dialog box.
Locate the errant process in the list and use that PID in the kill command, or click the process
and then click End Process.

xlsclients vs. Pview.exe
Like xlsclients, the Pview.exe tool lists the current running applications. Pview is a GUI
application that can be used to select the name of a computer to view.

xlsfonts vs. Fonts Control Panel Item
The Windows Control Panel Fonts item provides all font management functionality. For more
information, refer to Fonts Help in the /System/Help Fonts.chm file.

xmag vs. Magnify.exe or Zoomin.exe
The Windows Magnify.exe tool is equivalent to X Windows xmag. Magnify is located in the
/System32 directory on Windows 2000 and Windows XP.

xon vs. Start.exe or Remote.exe
Like the X Windows xon command, the Windows Start.exe tool starts a new command window
to run a specified program or command.

xset client vs. Control Panel Items
Windows provides a GUI interface for managing the keyboard, the mouse, and the screen.
Control Panel includes an item for managing each of these devices.
The Mode, Color, and Graftabl commands can be used to perform some device management.
To see a list of features for these three commands, type help mode, help color, or help graftabl
at the command prompt.
If a particular application requires advanced device control, that application must provide code to
perform this required functionality. Use the SystemParametersInfo() function to set or retrieve
system-wide parameters.

178 UNIX Custom Application Migration Guide: Volume 4

User Interface Coding Examples
The following examples show how to port an X Windows–based application to Windows:
• X Windows "Hello World" example (including xHello.mak)
• .NET "Hello World" example

X Windows "Hello World" Example
The following example demonstrates the "Hello World" code for X Windows.
/*

** xHello.c

**

** One possible “Hello World” according to X11

**

*/

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <X11/Intrinsic.h>

char helloString[] = "Hello World";

int main(int argc, char **argv)

{

 int iScreen;

 unsigned long ulForeground;

 unsigned long ulBackground;

 Display *pDisplay;

 Window exampleWindow;

 GC gc;

 XSizeHints sizeHints;

 XWMHints wmHints;

 XTextProperty textProperty;

 XEvent xEvent;

 pDisplay = XOpenDisplay(NULL);

 iScreen = DefaultScreen(pDisplay);

 ulBackground = WhitePixel(pDisplay, iScreen);

 ulForeground = BlackPixel(pDisplay, iScreen);

 sizeHints.x = 0;

 sizeHints.y = 0;

Chapter 7: Developing Phase: Migrating the User Interface 179

 sizeHints.width = 250;

 sizeHints.height = 30;

 sizeHints.flags = (PPosition | PSize);

 wmHints.flags = InputHint;

 wmHints.input = True;

 exampleWindow = XCreateSimpleWindow(pDisplay,

 DefaultRootWindow(pDisplay
),

 sizeHints.x,

 sizeHints.y,

 sizeHints.width,

 sizeHints.height,

 2,

 ulForeground,

 ulBackground);

 XStringListToTextProperty(&argv[0],1,&textProperty);

 XSetWMName(pDisplay, exampleWindow ,&textProperty);

 XSetWMProperties(pDisplay,

 exampleWindow,

 &textProperty,

 NULL,

 NULL,

 0,

 &sizeHints,

 &wmHints,

 NULL);

 gc = XCreateGC(pDisplay, exampleWindow, 0,0);

 XSetBackground(pDisplay, gc, ulBackground);

 XSetForeground(pDisplay, gc, ulForeground);

 XSelectInput(pDisplay, exampleWindow, (KeyPressMask | ExposureMask
));

 XMapWindow(pDisplay, exampleWindow);

180 UNIX Custom Application Migration Guide: Volume 4

 do {

 XNextEvent(pDisplay, &xEvent);

 if (xEvent.type == Expose) {

 if (xEvent.xexpose.count == 0) {

 XClearWindow(pDisplay, exampleWindow);

 XDrawImageString(pDisplay,

 exampleWindow,

 gc,

 (sizeHints.width/10),

 (sizeHints.height/2),

 helloString,

 (strlen(helloString)));

 }

 }

 } while (1);

 exit(0) ;

}

(Source File: U_UIExample-UAMV4C7.01.c)

Chapter 7: Developing Phase: Migrating the User Interface 181

The xHello.mak File
The following example shows the X Windows xHello.mak file used with the previous "Hello World"
code.
CC = cc

INSTALL = ./

INCLUDES = -I/usr/X11R6/include

LIBS = -L/usr/X11R6/lib -lX11 -lXaw -lXt -lXext

OBJS = xHello.o

xHello : ${OBJS}

 ${CC} -o xHello ${OBJS} ${INCLUDES} ${LIBS}

clean:

 rm -fr *.o xHello

.NET "Hello World" Example
The following example demonstrates the corresponding "Hello World" code in C#.
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

namespace WindowAppTest

{

 public class HelloWindowsForms : System.Windows.Forms.Form

 {

 //Label 1 displays the text message "Hello Windows Forms!"

 private System.Windows.Forms.Label label1;

 //The constructor is where all initialization happens.

//Forms created with the designer have an //InitializeComponent()
//method.

 public HelloWindowsForms()

 {

//Initializes the label that will display the Hello World text

 this.label1 = new System.Windows.Forms.Label();

//Sets the background color to black and the foreground color to white

 this.BackColor = Color.Black;

 this.ForeColor = Color.White;

//Specifies the location of the label in the form

182 UNIX Custom Application Migration Guide: Volume 4

 label1.Location = new System.Drawing.Point(8,
8);

 //Specifies the text of the label

 label1.Text = "Hello Windows Forms!";

 //Specifies the width and height of the label

 label1.Size = new System.Drawing.Size(408, 48);

//Specifies the font type and style that needs to be

//used to display the text in the label

label1.Font = new System.Drawing.Font("Microsoft Sans Serif", 24f);

 //Specifies the tab index of the label

 label1.TabIndex = 0;

 //Specifies the alignment of text in the label

 label1.TextAlign =
ContentAlignment.MiddleCenter;

 //Specifies the Form title

 this.Text = "Hello World";

 //Disables the maximize property of the form

 this.MaximizeBox = false;

//Specifies the base size used for autoscaling of the form

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.FormBorderStyle =
FormBorderStyle.FixedDialog;

 this.MinimizeBox = false;

 this.ClientSize = new System.Drawing.Size(426,
55);

 //Adds the label to the form

 this.Controls.Add(label1);

 }

 // This main function instantiates a new form and runs it.

 public static void Main(string[] args)

 {

 Application.Run(new HelloWindowsForms());

 }

 }

 } // end of namespace

(Source File: N_UIExample-UAMV4C7.01.cs)

Chapter 8: Developing Phase: Additional
Features in .NET

This chapter describes some of the additional features of the Microsoft® .NET Framework that
you can use in migrating applications from UNIX. These features include:
• Securing applications in .NET.
• Isolated storage.
• Serialization.
• .NET Remoting.
• XML Web services in .NET.
• Enterprise Services in .NET.
• Enterprise Templates.

Securing Applications in .NET
The .NET Framework and the common language runtime (CLR) provide new features that
facilitate development of more secure applications. They provide many useful classes and
services that enable developers to easily write more secure code. These classes and services
also enable system administrators to customize code access to protected resources. In addition,
the runtime and the .NET Framework provide useful classes and services that facilitate the use of
cryptography and role-based security. The major security mechanisms available in the .NET
Framework are described in the following sections.

Code Access Security
Code access security allows code to be trusted to varying degrees, depending on where the code
originates and on other aspects of the code's identity. All managed code that targets the common
language runtime receives the benefits of code access security. The following code access
security concepts should always be considered in .NET:
• Writing type-safe code
• Imperative and declarative syntax
• Requesting permissions for your code
• Using secure class libraries

184 UNIX Custom Application Migration Guide: Volume 4

Role-based Security
Business applications often provide access to data or resources based on credentials supplied by
the user. Typically, such applications check the role of a user and provide access to resources
based on that role. .NET Framework role-based security supports authorization by making
information about the principal available to the current thread. A principal represents the identity
and role of a user and acts on the user's behalf. A principal is constructed from an associated
identity; the identity can be either based on a Windows account or be a custom identity unrelated
to a Windows account. .NET Framework applications can make authorization decisions based on
the principal's identity or role membership, or both. Role-based security in the .NET Framework
supports three kinds of principals:
• Generic principals. Represent users and roles that exist independent of Microsoft Windows

operating system users and roles.
• Windows principals. Represent Windows users and their roles.
• Custom principals. Define an application's principals.
Note More information on role-based security is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconRole-
BasedSecurity.asp.

Cryptographic Services
.NET provides various classes in the cryptography namespace to manage many details of
cryptography, such as unmanaged Microsoft CryptoAPI and other managed implementations.
Cryptography is used to achieve the following goals:
• Confidentiality. To help protect a user's identity or data from being read.
• Data integrity. To help protect data from being altered.
• Authentication. To ensure that data originates from a trusted data source.
To achieve these goals, a combination of algorithms and practices can be used as part of .NET
cryptography as described as follows:
• Secret-key or symmetric encryption
• Public-key or asymmetric encryption
• Digital signatures
• Hash values
• Random number generation
Note More information about the preceding mechanisms is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconCryptographyOverview.asp.

.NET Application Security is also discussed in detail in Chapter 1, “Introduction to .NET” in this volume.
More information on how to develop secured applications in .NET is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vxoriSecuringApplications.asp

and

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconsecuringyourapplication.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconRole-BasedSecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconRole-BasedSecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconCryptographyOverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconCryptographyOverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxoriSecuringApplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxoriSecuringApplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconsecuringyourapplication.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconsecuringyourapplication.asp

Chapter 8: Developing Phase: Additional Features in .NET 185

Isolated Storage
Isolated storage is a data storage mechanism that provides isolation and safety by defining
standardized methods for associating code with saved data. With isolated storage, data is always
isolated by user and by assembly. Credentials such as the origin or the strong name of the
assembly determine assembly identity. Data can also be isolated by the application domain,
using similar credentials. When using isolated storage, applications save data to a unique data
compartment that is associated with some aspect of the code's identity, such as its Web site,
publisher, or signature. The data compartment is an abstraction, not a specific storage location. It
consists of one or more isolated storage files, called stores, which contain the actual directory
locations where data is stored.
Administrators can limit how much isolated storage an application or a user has available, based
on an appropriate trust level. In addition, administrators can remove all a user's persisted data.
To create or access isolated storage, code must be granted the appropriate
IsolatedStorageFilePermission.
To access isolated storage, the code must have all necessary native platform operating system
rights. Microsoft .NET Framework applications already have operating system rights to access
isolated storage unless they perform (platform-specific) impersonation. In this case, the
application is responsible for ensuring that the impersonated user identity has the proper
operating system rights to access isolated storage. The three main classes provided to help you
perform tasks that involve isolated storage are:
• IsolatedStorageFile. It derives from IsolatedStorage and provides basic management of

stored assembly and application files. An instance of the IsolatedStorageFile class
represents a single store located in the file system.

• IsolatedStorageFileStream. It derives from System.IO.FileStream and provides access to
the files in a store.

• IsolatedStorageScope. It is an enumeration that enables you to create and select a store
with the appropriate isolation type.

The isolated storage classes enable you to create, enumerate, and delete isolated storage. The
methods for performing these tasks are available through the IsolatedStorageFile object. Some
operations require you to have the IsolatedStorageFilePermission that represents the right to
administer isolated storage. The Isolated Storage tool, Storeadm.exe, can also be used for
simple store management such as listing or deleting all the stores for the current user.
Note More information on isolated storage is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconisolatedstorage.asp.

Serialization
Serialization is the process of converting an object or a graph of objects into a linear sequence of
bytes either for storage or for transmission to another location. Through serialization, a developer
can perform actions like sending the object to a remote application by means of a Web service,
passing an object from one domain to another, passing an object through a firewall as an XML
string, or maintaining security or user-specific information across applications. When the object is
serialized to a stream, it carries not just the data, but information about the object's type, such as
its version, culture, and assembly name. From that stream, it can be stored in a database, a file,
or memory. Deserialization is the process of taking in stored information and recreating objects
from it.
The .NET Framework provides built-in mechanisms for implementing serialization and
deserialization of objects such as run-time serialization, binary serialization, and XML
serialization. These mechanisms are described in detail in the following section.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemSecurityPermissionsIsolatedStorageFilePermissionClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconisolatedstorage.asp

186 UNIX Custom Application Migration Guide: Volume 4

Run-Time Serialization
The namespace associated with run-time serialization in the .NET Framework is
System.Runtime.Serialization. It contains classes that can be used for serializing and
deserializing objects. It also implements the ISerializable interface, which provides a way for
classes to control their own serialization behavior. Classes in the
System.Runtime.Serialization.Formatters namespace control the actual formatting of various
data types encapsulated in the serialized objects.
Two kinds of serialization can be used to serialize any object at run time. They are:
• Binary serialization. Binary serialization uses binary encoding to produce compact

serialization for uses such as storage or socket-based network streams. The
System.Runtime.Serialization.Formatters.Binary namespace contains the
BinaryFormatter class, which can be used to serialize and deserialize objects in binary
format.

• XML serialization. XML serialization serializes the public fields and properties of an object,
or the parameters and return values of methods, into an XML stream that conforms to a
specific XML schema definition language (XSD) document. XML serialization results in
strongly typed classes with public properties and fields that are converted to XML. The
System.Xml.Serialization namespace contains the classes necessary for serializing and
deserializing XML.

Note More information on the run-time serialization namespace is available at

http://msdn2.microsoft.com/en-us/library/system.runtime.serialization.aspx.

.NET Remoting

.NET Remoting provides a rich and extensible framework for objects residing in different
application domains, processes, and computers to communicate with each other seamlessly. The
framework provides a number of services, including activation and lifetime support, as well as
communication channels for transporting messages to and from remote applications. Formatters
are used for encoding and decoding the messages that are transported by the channel. Remoting
was designed with security in mind, and a number of hooks are provided that allow channel sinks
to gain access to the messages and serialized stream before the stream is transported over the
channel.
.NET Remoting also provides an abstract approach to interprocess communication that separates
the remotable object from a specific client or server application domain and from a specific
mechanism of communication. As a result, it is flexible and easily customizable. You can replace
one communication protocol with another or one serialization format with another without
recompiling the client or the server. In addition, the remoting system assumes no particular
application model. You can communicate from a Web application, a console application, a
Windows service—from almost anything you want to use.
To use .NET Remoting to build an application in which two components communicate directly
across an application domain boundary, you need to build only the following:
• A remotable object.
• A host application domain to listen for requests for that object.
• A client application domain that makes requests for that object.
Note More information on building a .NET Remoting application is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconbuildingbasicnetremotingapplication.asp.

http://msdn2.microsoft.com/en-us/library/system.runtime.serialization.formatters.aspx
http://msdn2.microsoft.com/en-us/library/system.runtime.serialization.formatters.binary.binaryformatter.aspx
http://msdn2.microsoft.com/en-us/library/system.xml.serialization.aspx
http://msdn2.microsoft.com/en-us/library/system.runtime.serialization.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconbuildingbasicnetremotingapplication.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconbuildingbasicnetremotingapplication.asp

Chapter 8: Developing Phase: Additional Features in .NET 187

XML Web Services in .NET
XML Web services are the fundamental building blocks of distributed computing on the Internet.
The focus on communication and collaboration among people and applications and open
standards have created an environment where XML Web services are becoming the platform for
application integration. Applications are constructed using multiple XML Web services from
various sources that work together regardless of where the applications reside or how the
applications were implemented.
There are as many definitions of XML Web services as there are companies building them.
However, almost all definitions have the following points in common:
• XML Web services expose useful functionality to Web users through a standard Web

protocol. In most cases, the protocol used is Simple Object Access Protocol (SOAP).
• XML Web services describe their interfaces in sufficient detail to allow a user to build a client

application to talk to the services. This description is usually provided in an XML document
called a Web Services Description Language (WSDL) document; it mainly consists of the
metadata necessary for the client applications to consume the Web service.

• XML Web services are registered so that users can find the services easily. This is done with
Universal Discovery Description and Integration (UDDI).

Note More information on XML Web services is available at

http://msdn.microsoft.com/webservices/.

Enterprise Services in .NET
Component-based applications can be built using COM. However, the plumbing work required to
write COM components is significant and repetitive. COM+ is not just a new version of COM;
rather, COM+ provides a services infrastructure for components. The components are built and
then installed in COM+ applications to build scalable server applications that achieve high
throughput and are easy to deploy. (If a component does not need to use any services, then it
should not be placed in a COM+ application). Scalability and throughput is achieved by designing
applications that make use of services such as transactions, object pooling, and activity
semantics.
The .NET Framework provides a way of writing component-based applications that has the
following advantages over the COM programming model:
• Better tool support.
• Common language runtime (CLR).
• Easier coding syntax.
The .NET Framework provides a managed class into COM+ called Enterprise Services (ES)
within the System.EnterpriseServices namespace. This simplifies the programmatic usage of
the settings in COM+ catalog by reducing the COM+ component configuration and administration
time.

http://msdn.microsoft.com/webservices/

188 UNIX Custom Application Migration Guide: Volume 4

Figure 8.1 depicts usage of COM+ and .NET.

Figure 8.1. Usage of COM+ services in .NET Framework
The COM+ services infrastructure can be accessed from managed as well as unmanaged code.
Services in unmanaged code are known as COM+ services. In .NET, these services are referred
to as Enterprise Services. Deriving a class from the ServicedComponent class indicates that
services will be required for a component. (If a component does not need to use any services,
then it should not derive from ServicedComponent). The important features provided by COM+
services or the .NET Enterprise Services are:
• Automatic transaction processing
• Just In Time activation
• Object pooling
• Queued components
• Role-based security
Note More Information about the COM+ services and .NET Enterprise Services is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconsummaryofservices.asp.

Enterprise Templates
Visual Studio .NET 2003 Enterprise edition provides a set of Enterprise Templates to use as a
basis for developing more complex applications. They are based on the task the application is
trying to accomplish instead of focusing on the programming language being used. Enterprise
Templates perform three fundamental services that improve development effectiveness and
reduce the overall cost of distributed applications:
• Defining the initial structure of a distributed application. Enterprise Templates provide

architectural guidance in the form of the initial application structure and the policy that defines
where various components and technologies can be used. Visual Studio .NET 2003 provides
several templates targeted at generic distributed applications. Typically, this generic structure
divides an application into a set of components, such as Web/Windows User Services,
Business Facade/Logic, and Data Services/Storage, and populates each tier of the solution
with language projects to provide the application's components, interfaces, and services.

• Reducing complexity for developers. An Enterprise Template makes it easier for less-
experienced developers to make appropriate choices by presenting those choices that are
recommended by the organization's architectural experts. Enterprise Templates implement
preferred development policies, controlling available options and properties in the Visual
Studio integrated development environment (IDE), and specifying custom help to guide
project completion. These development policies apply to the entire application, projects,
classes, and other solution items.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconsummaryofservices.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconsummaryofservices.asp

Chapter 8: Developing Phase: Additional Features in .NET 189

• Providing architectural and technological guidance. Architectural guidance is about using
proven, reusable building blocks for an application's structure. Each Enterprise Template
provides such architectural guidance by defining a basic application structure, providing the
beginning project files, controlling associated development policy, and displaying appropriate
developer guidance information through dynamic Help and Task List items. The policy and
guidance information drives developer completion of the application's final components,
interfaces, and services.

Creating an Enterprise Template in Visual Studio .NET is a two-step process. First, you must
create an "Enterprise Template Project" project in Visual Studio .NET, which allows you to define
the application skeleton developers receive when they create a project with your template. Next,
you must expose the template to developers so that it can be accessed by the environment's
New Project dialog box. The latter step is accomplished by converting the template into a format
understood by Visual Studio .NET.
Note More information on Enterprise Templates is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvsent/html/vsent_enterprisetemplatesbk.asp.

Along with the features described in this chapter, .NET also supports various new features in the
latest versions of .NET Framework 2.0 and Visual Studio .NET 2005.
Note More information on .NET Framework 2.0 and its new features is available at

http://msdn2.microsoft.com/en-US/library/t357fb32.aspx.

More information on Visual Studio .NET 2005 and its new features is available at

http://msdn.microsoft.com/vstudio/products/newfeatures/default.aspx.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvsent/html/vsent_enterprisetemplatesbk.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvsent/html/vsent_enterprisetemplatesbk.asp
http://msdn2.microsoft.com/en-US/library/t357fb32.aspx
http://msdn.microsoft.com/vstudio/products/newfeatures/default.aspx

Chapter 9: Developing Phase: Deployment
Considerations and Testing Activities

This chapter discusses the key development considerations for deploying applications migrated
to the Microsoft® .NET Framework. It also discusses the testing activities involved in the
Developing Phase. This chapter will help you identify the activities and milestones required to
complete the Developing Phase.

Deployment Considerations
To ensure a smooth deployment in the upcoming Deploying Phase, you need to address the
following topics in the Developing Phase:
• Process environment
• Building the application in .NET
• .NET deployment considerations
• Instrumentation
The process for deploying the migrated application is discussed in detail in Volume 5, Deploy and
Operate of this guide.
You can use the information provided in this section to identify implementation requirements,
such as environment variables and system message logging, which need to be considered when
creating the migrated environment in .NET.

Process Environment
This section describes the key elements of the process environment and highlights the notable
differences in these elements between UNIX and .NET. The process environment contains the
following key elements:
• Environment variables
• Computer information
• Logging system messages
This section also provides the necessary information for setting up or retrieving various
environment-specific details in the .NET environment.

Environment Variables
Every process has an environment block associated with it. An environment block is a block of
memory allocated within the address space of the process. Each block contains a set of
environment variables and their values. Both UNIX and Microsoft Windows® operating systems
support the process environment blocks, although differences may exist depending on the
supplier and the version of UNIX.
The .NET Framework provides an Environment class in the System namespace that provides
information about, and the means to manipulate, the current environment and platform. You can
use the Environment class to retrieve information such as command-line arguments, the exit
code, environment variable settings, contents of the call stack, time since last system boot, and
the version of the common language runtime (CLR).
The following C# code example accesses the environment block in .NET.

192 UNIX Custom Application Migration Guide: Volume 4

.NET example: Accessing the environment block
using System;

using System.Collections;

class Sample

{

 public static void Main()

 {

 String str;

 String nl = Environment.NewLine;

 Console.WriteLine("-- Environment members --");

 Console.WriteLine("ExitCode: {0}", Environment.ExitCode);

 Console.WriteLine("MachineName: {0}",
Environment.MachineName);

Console.WriteLine("OSVersion: {0}", Environment.OSVersion.ToString());

Console.WriteLine("SystemDirectory: {0}", Environment.SystemDirectory);

Console.WriteLine("UserDomainName: {0}", Environment.UserDomainName);

 Console.WriteLine("UserName: {0}", Environment.UserName);

Console.WriteLine("Version of the CLR: {0}",
Environment.Version.ToString());

String query = "My system drive is %SystemDrive% and my system root is
%SystemRoot%";

 str = Environment.ExpandEnvironmentVariables(query);

 Console.WriteLine("ExpandEnvironmentVariables: {0} {1}",
nl, str);

Console.WriteLine("GetEnvironmentVariable: {0} My temporary directory
is {1}.", nl,

 Environment.GetEnvironmentVariable("TEMP"));

 Console.WriteLine("GetEnvironmentVariables: ");

IDictionary environmentVariables =
Environment.GetEnvironmentVariables();

 foreach (DictionaryEntry de in environmentVariables)

 {

 Console.WriteLine(" {0} = {1}", de.Key, de.Value);

 }

 }

}

(Source File: N_ProcessEnv-UAMV4C9.01.cs)

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 193

Computer Information
At times, it is necessary to obtain information about a computer. This is particularly important
when an application is designed to support multiple users or different types of hardware and
operating systems. Some information that an application may require are:
• The host name.
• The operating system name.
• The network name of the computer.
• The release level of the operating system.
• The version number of the operating system.
In UNIX, the gethostname and uname functions are used to obtain this information. In.NET
Framework, there are two classes—the System.Environment class and the
System.Windows.Forms.SystemInformation class—that provide the system information. The
following code example in UNIX prints out the system information, such as the computer host
name, node name, operating system release, and version number, to the console.
UNIX example: Printing the system information
#include <unistd.h>

#include <stdio.h>

#include <sys/utsname.h>

int main()

{

 char computer[256];

 struct utsname uts;

 if(gethostname(computer, 255) != 0 || uname(&uts) < 0) {

 fprintf(stderr, "Could not get host information\n");

 exit(1);

 }

 printf("Computer host name is %s\n", computer);

 printf("Nodename is %s\n", uts.nodename);

 printf("Version is %s, %s\n", uts.release, uts.version);

 exit(0);

}

(Source File: U_SysInfo-UAMV4C9.01.c)

The following example in C# displays some of the system information, such as the computer host
name, domain name, user name of the currently logged on user, the operating system version
number, and the current platform to the console using the System.Environment class. If you are
developing a Windows Forms application, then consider using the
System.Windows.Forms.SystemInformation class.
.NET example: Printing the system information
using System;

public class MySysInfo

{

 static void Main()

194 UNIX Custom Application Migration Guide: Volume 4

 {

 //Creates an object of OperatingSystem class

 OperatingSystem obOS = System.Environment.OSVersion;

 //Displays the Host name of the Computer

 Console.WriteLine("Computer
Name:{0}",System.Environment.MachineName);

 //Displays the Domain name of the computer

 Console.WriteLine("Domain
Name:{0}",System.Environment.UserDomainName);

 //Displays the log-in name of the user currently logged in

 Console.WriteLine("Logged In
User:{0}",System.Environment.UserName);

 //Displays the OS Version No(Major,Minor and Revision No
combined)

 Console.WriteLine("OS Version:{0}",obOS.Version.ToString());

 //Displayes the current platform

 Console.WriteLine("Platform:{0}",obOS.Platform.ToString());

 }

}

(Source File: N_SysInfo-UAMV4C9.01.cs)
Note More information on the Environment class and its members is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfSystemEnvironmentClassTopic.asp.

More information on the SystemInformation class and its members is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemwindowsformssysteminformationmemberstopic.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemEnvironmentClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemEnvironmentClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformssysteminformationmemberstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformssysteminformationmemberstopic.asp

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 195

Logging System Messages
In UNIX, diagnostic messages are logged by writing the formatted output to the system logger.
The diagnostic messages are written to the system log files, such as USERS, or forwarded to the
appropriate computer. If a log daemon process is not running, the log information may be written
to a standard log file, such as /var/adm/log/logger.
Table 9.1 lists the numerous levels of logged information contained in the daemon syslogd in
UNIX.
Table 9.1. UNIX Logging System Messages

Priority Description

LOG_EMERG A panic condition.

LOG_ALERT A condition that should be corrected immediately.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING Warnings.

LOG_NOTICE Non-error–related conditions.

LOG_INFO Informational messages.

LOG_DEBUG Messages intended for debug purposes.

The .NET Framework provides an EventLog class that interacts with the Windows event logs.
The EventLog class enables you to access or customize Windows event logs, which record
information about important software or hardware events. Using EventLog, you can read from
the existing logs, write entries to logs, create or delete event sources, delete logs, and respond to
log entries. The CreateEventSource method is used to create an event source for writing entries
to a log. While creating an event source, you can specify the name of the log such as application,
security, system, or custom event log. The WriteEntry method can be used to write any
customized message into the event source. The event type of the event log can also be specified
in this method. This type can be one of the following examples listed in Table 9.2.
Table 9.2. .NET EventLog Class Event Types

Name of Event Description

Error This indicates a significant problem the user should know
about, usually a loss of functionality or data.

FailureAudit This indicates a security event that occurs when an
audited access attempt fails.

Information This indicates a significant, successful operation.

SuccessAudit This indicates a security event that occurs when an
audited access attempt is successful.

Warning This indicates a problem that is not immediately
significant but that may signify conditions that could
cause future problems.

196 UNIX Custom Application Migration Guide: Volume 4

UNIX example: System logging
#include <syslog.h>

#include <stdio.h>

int main()

{

 FILE *fp;

 fp = fopen("Bad_File_Name","r");

 if(!fp)

 syslog(LOG_INFO|LOG_USER,"error - %m\n");

 fclose(fp);

 exit(0);

}

(Source File: U_SysLog-UAMV4C9.01.c)

The message in this example would be logged to /var/log/messages on a typical Linux system, to
/var/adm/messages on a Solaris system, and to /var/adm/log/messages on Interix (when syslogd
in running). Refer to the /etc/syslog.conf file for more specific information—specifically, a *.info
entry that specifies the file where the preceding message will be logged.
.NET example: System logging
using System;

using System.Diagnostics;

using System.Threading;

class MySample{

 public static void Main(){

 // Create the source, if it does not already exist.

 if(!EventLog.SourceExists("MySource")){

 EventLog.CreateEventSource("MySource", "MyNewLog");

 Console.WriteLine("CreatingEventSource");

 }

 // Create an EventLog instance and assign its source.

 EventLog myLog = new EventLog();

 myLog.Source = "MySource";

 // Write an informational entry to the event log.

 myLog.WriteEntry("Writing to event log.");

 }

}

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 197

(Source File: N_SysLog-UAMV4C9.01.cs)

If the log that you specify in a call to CreateEventSource does not exist on the computer, the
system creates a custom log and registers the application as a source for that log. You can use
the EventLog class to read and write entries to any event log for which you have the appropriate
access. Figure 9.1 depicts a new log, MyNewLog, created using the CreateEventSource call. As
the log did not initially exist on the computer, the log is created after running the Eventvwr.exe
code.

Figure 9.1. Windows Event Viewer

198 UNIX Custom Application Migration Guide: Volume 4

Double-clicking the Information option in the Type column opens a detailed view of the event, as
depicted in Figure 9.2.

Figure 9.2. Details of an event in Windows Event Viewer
This is a very simple example of generating log information and posting it to the Windows event
log.
Note More details and complexities of event logging in Windows are available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vbconIntroductionToEventLogComponents.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconIntroductionToEventLogComponents.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconIntroductionToEventLogComponents.asp

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 199

Building the Application in .NET
Microsoft Visual Studio® .NET 2003 offers a variety of methods for organizing the files that are to
be included in a build of a solution or a project, setting the project properties in effect while
building and arranging the order in which the projects is to be built.
Following are the common Visual Studio procedures for preparing and managing builds.
To build or rebuild an entire solution
9. In Solution Explorer, select or open the desired solution.
10. On the Build menu, click Build Solution or Rebuild Solution as per the following

requirements:
• Click Build <ProjectName> to compile only the necessary project files and components

in the project named <ProjectName> of the solution.
• Click Build Solution to compile only those project files and components in all the

projects of the solution.
• Click Rebuild Solution to clean the solution first, and then build all the project files and

components.
Note "Cleaning" a solution or project deletes all the intermediate and output files, leaving only
the project and component files, from which new instances of the intermediate and output files
are built.

Note More information on building the application in .NET using the Visual Studio .NET integrated
development environment (IDE) is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vxtskPrepareandManageBuilds.asp.

.NET applications can also be built from the command line. The syntax for building a .NET
application from the command line is given as follows:
devenv /build ConfigName [/project ProjName] [/projectconfig ConfigName] SolutionName .
The summary information for builds, including errors, appears in the command prompt. It can also
be redirected to any log file using the /out argument.
Note More information on the available command-line parameters for building the application from the
command line is available at

http://msdn.microsoft.com/library/en-us/vsintro7/html/vxlrfBuild.asp.

.NET Deployment Activities
Deploying an application involves at least two different activities: packaging the code and
distributing the packages to the various clients and servers on which the application is to be
deployed. One of the primary goals of the .NET Framework is to simplify the deployment process,
especially the distribution aspect, by making the zero-impact install and an XCopy deployment
feasible. The following subsections describe the most important .NET deployment considerations:
assemblies, configuration files, and packaging tools.

Assemblies
The .NET Framework introduces assemblies, which form the fundamental unit of deployment,
version control, reuse, activation scoping, and security permissions. Assemblies act as the
smallest distribution unit for the component code in the .NET Framework. Assemblies are self-
describing deployment units; they are self-describing through metadata called a manifest. The
.NET Framework uses the metadata to describe the types as well as the assemblies that contain
the types.
Assemblies consist of four elements: the assembly metadata (manifest), metadata describing the
types, the intermediate language (IL) code that implements the types, and a set of resources. Not
all of these elements are present in each assembly. The manifest is mandatory for all assemblies
and either types or resources are needed to give the assembly any meaningful functionality.
Versioning in .NET is done at the assembly level.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxtskPrepareandManageBuilds.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxtskPrepareandManageBuilds.asp
http://msdn.microsoft.com/library/en-us/vsintro7/html/vxlrfBuild.asp

200 UNIX Custom Application Migration Guide: Volume 4

There are two types of assemblies in the .NET infrastructure: private and shared.

Private Assemblies
Private assemblies are not designed to be shared. They are designed to be used by one
application and must reside in the directory or subdirectory of that application. By default, all
assemblies are private. An XCopy deployment can only be done for private assemblies.

Shared Assemblies
For the components that must be distributed, .NET offers the shared assembly. The shared
assembly concept is centered on two principles. The first, called side-by-side execution, allows
the CLR to house multiple versions of the same component on a single computer. The second,
termed binding, ensures that the clients obtain the version of the component that they expect.
Shared assemblies have the following two issues:
• Shared assemblies can be updated by anyone in the absence of a proper authorization.
• If an assembly is shared by more than one party and one or more components in the

assembly are updated without the knowledge of the other sharing parties, the clients may
receive the incorrect version of one or more requested components.

The first issue can be resolved by using a private key to sign an assembly, allowing only the
developer signing the key to update the assembly. Using the Global Assembly Cache (GAC), a
computer-wide code cache that exists on a computer where the CLR is installed, can resolve the
second issue. GAC can house multiple copies of a shared assembly based on the signature and
the version information used to build it. Before installing the assemblies to GAC, they should be
strongly named using the Strong Name tool (Sn.exe), provided with Visual Studio .NET 2003.
The Global Assembly Cache tool (GACUtil.exe) allows you to view and manipulate the contents
of the global assembly cache. This information (signature and version) is stored in the manifest of
all clients who want to access the assembly, allowing the CLR to load the appropriate version at
run time.
Note More information about assemblies in .NET is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconassemblies.asp.

More information on Global Assembly Cache (GAC) is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconglobalassemblycache.asp.

Configuration Files
Configuration files in .NET are XML files that can be changed as required. Developers can use
the configuration files to change the settings without recompiling the applications. Administrators
can use the configuration files to set policies that affect how the applications run on the
computers. This section helps you understand the .NET configuration files and their role in .NET
applications.
The .NET Framework provides the System.Configuration class to read the setting from the
configuration files. There are three types of configuration files in .NET:
• Machine configuration files
• Application configuration files
• Security configuration files
Note More information on configuration files in .NET and their formats is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconconfigurationfiles.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconassemblies.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconfigurationfiles.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconfigurationfiles.asp

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 201

Machine Configuration Files
The machine configuration file, Machine.config, contains settings that apply to an entire
computer. This file is located in the %runtime install path%\Config directory. Machine.config
contains configuration settings for the machine-wide assembly binding, built-in remoting
channels, authentication modes, and authorization modes for ASP.NET applications.
The configuration system first looks in the machine configuration file for the <appSettings>
element and other configuration sections that a developer might define. After that, the
configuration system looks in the application configuration file.

Application Configuration Files
It is possible to configure an application by using a configuration file in the same directory as the
application. The name of the configuration file is the name of the application with a .config
extension for Windows applications or Web.config for the Web applications. Therefore, a
configuration file for the ListBoxAdd application is called ListBoxAdd.exe.config.
The application configuration file contains settings specific to an individual application. This file
contains configuration settings that the CLR can read (such as assembly binding policy and
remoting objects) and settings that the application can read (such as the location of the files and
database connection string). The assembly binding policy that defines how assemblies should be
probed is also configured in this file.
If probing fails to find an assembly in either the application directory or a subdirectory with the
same name as the assembly, it next looks for probing instructions in the application configuration
file (if one exists).
Here is an example of an application configuration file:
<configuration>

<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <probing privatePath="AssemblyDir1;AssemblyDir2"/>

 </assemblyBinding>

</runtime>

</configuration>

This application configuration file uses a probing tag to set the private path to be probed to
include two directories, called AssemblyDir1 and AssemblyDir2. These directories are considered
as subdirectories that exist below the application directory.

Security Configuration Files
The security configuration file contains information about the code group hierarchy and the
permission sets associated at a policy level. It is strongly recommended that you use the .NET
Framework Configuration tool (Mscorcfg.msc) or Code Access Security Policy tool (Caspol.exe)
to modify the security policy to ensure that the policy changes do not corrupt the security
configuration files.
Note More information on the .NET Framework Configuration tool is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cptools/html/cpconNETFrameworkAdministrationToolMscorcfgmsc.asp.

More information on the Code Access Security Policy tool is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cptools/html/cpgrfCodeAccessSecurityPolicyUtilityCaspolexe.asp.

More information on configuration files in .NET is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconconfigurationfiles.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconNETFrameworkAdministrationToolMscorcfgmsc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconNETFrameworkAdministrationToolMscorcfgmsc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfCodeAccessSecurityPolicyUtilityCaspolexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfCodeAccessSecurityPolicyUtilityCaspolexe.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconfigurationfiles.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconconfigurationfiles.asp

202 UNIX Custom Application Migration Guide: Volume 4

Manifests
Manifests are XML files used to describe the side-by-side execution of assemblies or the isolated
application through the assembly's <assemblyIdentity> element. Side-by-side execution is the
process of maintaining multiple of versions of the same assembly on a single computer.
Manifests contain information used for binding and activation. Side-by-side assemblies are not
registered on the system but are available to applications and other assemblies on the system
that specify dependencies in manifest files. Side-by-side assemblies can be installed as shared
assemblies or as private assemblies.
The following types of manifests are used with side-by-side assemblies:
• Assembly manifests describe side-by-side assemblies. These are used to manage the

names, versions, resources, and dependent assemblies of side-by-side assemblies. The
manifests of shared assemblies are stored in the WinSxS folder of the system. Private
assembly manifests are stored either as a resource in the DLL or in the application folder.

• Application manifests describe isolated applications. These are used to manage the
names and versions of shared side-by-side assemblies that the application should bind to at
run time. Application manifests are copied into the same folder as the application executable
file or included as a resource in the application's executable file.

• Application Configuration Files. These are manifests used to override and redirect the
versions of dependent assemblies used by side-by-side assemblies and applications.

• Publisher Configuration Files. These are manifests used to redirect the version of a side-
by-side assembly to another compatible version. The version that the assembly is being
redirected to should have the same major.minor values as the original version.

Packaging Tools
The .NET Framework comes with tools that allow developers to quickly build and deploy robust
applications that take advantage of the new CLR environment to provide a fully managed and
feature-rich application-execution environment. The .NET Framework also provides the following
benefits:
• Improved isolation of application components.
• Simplified application deployment.
• Robust version numbering.
The .NET Framework SDK includes several useful tools for examining assemblies and working
with the system assembly cache. Following is the list of the tools:
• Assembly Linker (Al.exe). For creating assembly manifests, satellite assemblies, and

working with the Global Assembly Cache (GAC).
• Global Assembly Cache Tool (Gacutil.exe). Console tool that manages the Global

Assembly (GAC) and download caches.
• MSIL Disassembler (Ildasm.exe). Windows-based tool for examining the manifest

(containing metadata) and MSIL code inside assemblies.
• Assembly Binding Log Viewer (Fuslogvw.exe). Windows-based tool for examining

assembly and resource bind requests.
• Strong Name Tool (Sn.exe). Console tool to help generate strongly named assemblies.
Note More information on these tools is available at

http://msdn.microsoft.com/library/en-
us/cptutorials/html/Appendix_B___Packaging_and_Deployment_Tools.asp.

The following five packaging options are available in the .NET Framework:
• As-built (DLLs and EXEs). An application can be deployed in the format produced by

building the application using the development tool. In many scenarios, no special packaging
is required.

• CAB files. CAB files can be used to compress an application for more efficient downloads.
CAB files provide the following benefits:

http://msdn.microsoft.com/library/en-us/cptutorials/html/Appendix_B___Packaging_and_Deployment_Tools.asp
http://msdn.microsoft.com/library/en-us/cptutorials/html/Appendix_B___Packaging_and_Deployment_Tools.asp

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 203

• Delivery of all application files in one file.
• Prevention of partial installations.
• Capability to install an application from multiple sources.
You can use Microsoft Visual Studio .NET 2003 to generate a CAB file automatically, or you
can create a custom CAB file. You can distribute the CAB files for an application from a
variety of sources, including a Web site, a memory storage card, another device, or a server
or desktop computer.
Note More information on CAB file projects is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vbconcabfileprojects.asp.

• Microsoft Windows Installer packages. Visual Studio .NET 2003 and other installation
tools allow developers to build Windows Installer packages (.msi files), which enable
developers to take advantage of the application repair, on-demand install, and other Microsoft
Windows application-management features.
Windows Installer is based on a data-driven model that provides all installation data and
instructions in a single package. In contrast, traditional scripted setup programs were based
on a procedural model, providing scripted instructions for application installations. Scripted
setup programs focused on how to install something, whereas Windows Installer focuses on
what to install.
With Windows Installer, each computer keeps a database of information about every
application that it installs, including files, registry keys, and components. When an application
is uninstalled, the database is checked to ensure that no other applications rely on a file,
registry key, or component before removing it. This prevents breaking of other applications
because of the removal of an application.
Windows Installer also supports self-repair, the capability of an application to automatically
reinstall missing files that may have inadvertently been deleted by the user. In addition,
Windows Installer provides the capability to roll back an installation. For example, if an
application relies on a specific database and the database is not found during the installation,
installation can be aborted and the computer returned to its preinstallation state.
The deployment tools in Visual Studio .NET 2003 build on the foundation of Windows
Installer, providing you with rich capabilities for rapidly deploying and maintaining applications
built with Visual Studio .NET 2003.
Note More information of Windows Installer is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vbconwhatyouneedtoknowaboutmicrosoftwindowsinstaller.asp.

• Merge module projects. Merge module projects allow developers to create reusable setup
components. A merge module (.msm file) is a single package that contains all the files,
resources, registry entries, and setup logic necessary to install a component. Merge modules
cannot be installed alone, but must be used within the context of a Windows Installer (.msi)
file.
Note More information on merge module projects is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vbconMergeModuleProjects.asp.

• Setup projects. Setup projects allow developers to create installers to distribute an
application. The resulting Windows Installer (.msi) file contains the application, any
dependent files, and information about the application, such as registry entries and
instructions for installation. There are two types of setup projects in Visual Studio: Setup
projects and Web Setup projects. The distinction between a Setup project and a Web Setup
project is the location where the Windows Installer will be deployed. Setup projects will install
files into the file system of a target computer; whereas Web Setup projects install files into a
virtual directory of a Web server.
Note More information on Setup projects is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vbconSetupProjects.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconcabfileprojects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconcabfileprojects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconwhatyouneedtoknowaboutmicrosoftwindowsinstaller.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconwhatyouneedtoknowaboutmicrosoftwindowsinstaller.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconMergeModuleProjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconMergeModuleProjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconSetupProjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vbconSetupProjects.asp

204 UNIX Custom Application Migration Guide: Volume 4

• ClickOnce. ClickOnce is the feature supported by the latest versions of Visual Studio .NET
2005. ClickOnce provides a new deployment technology that gives the best of a rich
Windows-based application user experience and the deployment and maintenance benefits
of Web applications. It allows a user to download and execute a rich client application over
the Web, off a network file share, or from local media. It offers a full Windows user interface
running on a desktop, while allowing single server deployment of application files and
updates. Client applications are automatically deployed and updated on the user's computer
from the deployment server in a safe way and will not affect other applications or data that
already exists on the computer.
Note More information on ClickOnce is available at

http://msdn.microsoft.com/msdnmag/issues/04/05/ClickOnce/.

The following are three third-party products that you can use for packaging the developed
application:
• InstallShield Developer. More information on InstallShield Developer is available at

http://www.installshield.com.
• Wise for Windows Installer. More information on Wise for Windows Installer is available at

http://www.wise.com/.
• Veritas WinINSTALL. More information on Veritas WinINSTALL is available at

http://www.veritas.com.
Note More information on deploying the applications in Visual Studio .NET 2003 is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsintro7/html/vboriDeploymentInVisualStudio.asp.

Instrumentation
Windows Management Instrumentation (WMI) provides a rich set of system management
services built into the Microsoft Windows operating system. The use of WMI-based management
systems leads to a more robust computing environment and an increased level of system
reliability, which allows the automation of administrative tasks in an enterprise environment.
In the .NET Framework, the System.Management namespace provides common classes to
traverse the WMI schema. In addition to the .NET Framework, you must have WMI installed on
the computer to make use of the management features in this namespace.
Note More information on instrumentation in .NET is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconmanagingapplicationsusingwmi.asp.

http://msdn.microsoft.com/msdnmag/issues/04/05/ClickOnce/
http://www.installshield.com/
http://www.wise.com/
http://www.veritas.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vboriDeploymentInVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vboriDeploymentInVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconmanagingapplicationsusingwmi.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconmanagingapplicationsusingwmi.asp

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 205

Testing Activities
This section discusses the testing activities designed to identify and address potential solution
issues prior to deployment. Testing starts when you begin developing the solution and ends when
the testing team certifies that the solution components meet the schedule and quality goals
established in the project plan.
Testing in migration projects involving infrastructure services is focused on finding discrepancies
between the behavior of the original application, as seen by its clients, and the behavior of the
newly migrated application. All discrepancies must be investigated and fixed.
In the Developing Phase, the testing team executes the test plans for acceptance tests on the
application submitted for a formal round of testing on the test environment. The testing team
assesses the solution, makes a report on its overall quality and feature completeness, and
certifies that the solution features, functions, and components address the project goals.
The inputs required for the Developing Phase include:
• Functional specifications document.
• A feature-complete application, which has been unit tested.
The documents that are used during the Developing Phase include:
• Test plan. The test plan is prepared during the Planning Phase. It should describe in detail

everything that the test team, the program management team, and the development team
must know about the testing to be done.

• Test specification. The test specification conveys the entire scope of testing required for a
set of functionality and defines individual test cases sufficiently for the testers. It also
specifies the deliverables and the readiness criteria.

• Test environment. The test environment is an exact replica of the production environment; it
is used to test the application under realistic environments. It also describes the software,
hardware, and tools required for testing purposes.

• Test data. The test data is a set of data for testing the application. Test data is usually a
diverse set of data that helps test the application under different conditions.

• Test report. The test report is an error report of the tests performed. It includes a description
of the errors that occurred, steps to reproduce the errors, severity of the errors, and names of
the developers who are responsible for fixing them.
The test report is updated during the Stabilizing Phase and is also one of the outputs of this
phase, along with the tested and stabilized application.

The key deliverables of the Developing Phase include:
• Application ready to be deployed in the production environment.
• Application source code.
• Project documentation and user manual.
• Test plan, test specification, and test reports.
• Release notes.
• Other project-related documents.
Testing begins with a code review of the application and unit testing. In the Developing Phase,
the application is subjected to various tests. The test plan organizes the testing process into the
following elements:
• Code component testing
• Integration testing
• Database testing
• Security testing
• Management testing

206 UNIX Custom Application Migration Guide: Volume 4

You can test the migrated application in all the scenarios by using a defined testing strategy.
Although each test has a different purpose, together they verify that all system elements are
properly integrated and perform their allocated functions.
Visual Studio .NET 2005 provides the integrated test environment along with the integrated
development environment (IDE).
Note More information on Testing features of Visual Studio .NET 2005 is available at

http://msdn.microsoft.com/vstudio/products/newfeatures/209/default.aspx.

Code Component Testing
A component may be a class or a group of related classes performing a similar task. Component
testing is the next step after unit testing. Component testing is the process of verifying a software
component with respect to its design and functional specifications.
Component testing in a migration project is the process of finding the discrepancies between the
functionality and output of components in the Windows application and the original UNIX
application. Basic smoke testing, boundary conditions, and error test cases are written based on
the functional specification of the component.
Code component testing tests the components for the following:
• Functionality
• Input and output, interactions within and with other components
• Stress testing
• Performance
The test cases for component testing cover, either directly or indirectly, constraints on their inputs
and outputs (pre-conditions and post-conditions), the state of the object, interactions between
methods, attributes of the object, and other components.
The code component testing requires the following inputs:
• Test plan and specification. It provides the test cases.
• System requirements. These are used to determine the required behaviors for individual

domain-level classes. The use case model is also used to determine which parts of a
component must be tested for vulnerabilities.

• Specifications of the component. The specifications are used to build the functional test
cases. Information on the component inputs, outputs, and interactions with other components
can be derived from here.

• Design document. The actual implementation of the design provides the information
necessary to construct the structural and interaction test cases.

Components must also be stress tested. Stress testing is the process of loading the component
to the defined and undefined limits. Each component must be stressed under a load to ensure
that it performs well within a reasonable performance limit.
System CPU and memory usage per component can also be measured and monitored to
determine the performance of individual components. For this, you can use such tools as the
Windows Performance Monitor. For more information, refer to the "Testing and Optimization
Tools" section of Chapter 10, “Stabilizing Phase” of this volume.

http://msdn.microsoft.com/vstudio/products/newfeatures/209/default.aspx

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 207

Integration Testing
Integration testing involves testing the application as a whole, with all the components of the
application put together. Component testing is done during the testing performed in the
Developing Phase. Integration testing is the process of verifying the application with respect to
the behavior of components in the integrated application, interaction with other components, and
the functional specifications of the application as a whole. Integration testing in a migration project
is the process of finding discrepancies in the interaction between components and the behavior of
components in the Windows application and the original UNIX application.
Integration testing tests the components for:
• Functionality: behavior of the application as a whole and the individual components after

integration.
• Input and output: interactions within and with other components.
• Response to various types of stresses.
• Performance.
Test cases for integration testing directly or indirectly include functionality of the components,
constraints on their inputs and outputs (pre-conditions and post-conditions), the state of the
object, interactions between components, attributes of the object, and other components. The
application must also be stress tested. Inputs required for integration testing include:
• Test plan. It provides the details of testing the application.
• Test specification. It is used to determine the required behaviors for individual domain-level

classes. The use case model is also used to determine which parts of the application must be
tested for vulnerabilities.

Stress testing must also be performed. Stress testing is the process of loading the application to
the defined and undefined limits to ensure that it performs well within a reasonable performance
limit.
System testing is also performed after completion of integration testing. System testing is the
process of ensuring that the integrated application is compatible with all platforms and to test
against its requirements. The system CPU and memory usage for the application can also be
measured and monitored to determine their performance. For this, you can use such tools as the
Windows Performance Monitor.
Note For more information, refer to the "Testing and Optimization Tools" section of Chapter 10,
"Stabilizing Phase."

Database Testing
The database component is a critical piece of any data-enabled application. In a migration
project, the database may be the same or may have been replaced by another database. In both
cases, data must be migrated to the respective database on Windows. Testing of a migrated
database includes testing of:
• Migrated procedural code.
• Data integration with heterogeneous data sources (if applicable).
• Customized data transformations and extraction.
Database testing also involves testing at the data access layer, which is the point at which your
application communicates with the database. Database testing in a migration project involves:
• Testing the data and the structure and design of the migrated database objects.
• Testing the procedures and functions related to database access.
• Security testing, which tests the database to guarantee proper authentication and

authorization so that only users with the appropriate authority access the database. The
database administrator must establish different security settings for each user in the test
environment.

208 UNIX Custom Application Migration Guide: Volume 4

i. Testing of data access layer.
• Performance testing of data access layer.
• Manageability testing of the database.
An application maintains the following three databases, which are replicas of each other:
• Development database. This is where most of the testing is carried out.
• Deployment database (or integration database). This is where the tests are run prior to

deployment to ensure that the local database changes are applied.
• Live database. This has the live data; it cannot be used for testing.
Database testing is done on the development database during development, and the integrated
application is tested using the deployment database.

Security Testing
Security is about controlling access to a variety of resources, such as application components,
data, and hardware. Security testing is performed on the application to ensure that only users
with the appropriate authority are able to use the applicable features of the application. Security
testing also involves testing the application from the point of view of providing the same security
features and measures that were provide by the original application.
To ensure that the application is as secure as possible, most security measures are based on the
following four concepts:
• Authentication. This is the process of confirming the identity of the users, which is one layer

of security control. Before an application can authorize access to a resource, it must confirm
the identity of the requestor.

• Authorization. This is the process of verifying that an authenticated party has the permission
to access a particular resource, which is the layer of security control following the
authentication layer.

• Data protection. This is the process of providing data confidentiality, integrity, and
nonrepudiability. Encrypting the data provides data confidentiality. Data integrity is achieved
through the use of hash algorithms, digital signatures, and message authentication codes.
Message authentication codes (MACs) are used by technologies such as SSL/TLS to verify
that data has not been altered while in transit.

• Auditing. This is the process of logging and monitoring events that occur in a system and are
of interest to security.
Note For more information, refer to "Event Logging" on the TechNet Web site at
http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-
ebe8a76648a91033.mspx.

The systems engineer establishes different security settings for each user in the test
environment. Network security testing is performed to help secure the network from unauthorized
users. To minimize the risks associated with unchecked errors on the system, you should know
the user context in which system processes run, keeping to a minimum the privileges that these
accounts have, and log their access to these accounts. Active monitoring can be accomplished
using the Windows Performance Monitor for real-time feedback.
All security settings and security features of the application must be documented properly.
Notes

More information about security testing is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxcontestingforsecurability.asp.

More information on how to make your code more secure is available at
http://msdn.microsoft.com/security/securecode/.

More information on "Secure Coding Guidelines for the .NET Framework" is available at
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-
us/dnnetsec/html/seccodeguide.asp.

http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/0473658c-693d-4a06-b95b-ebe8a76648a91033.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingforsecurability.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingforsecurability.asp
http://msdn.microsoft.com/security/securecode/
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-us/dnnetsec/html/seccodeguide.asp

 Chapter 9: Developing Phase: Deployment Considerations and Testing Activities 209

Management Testing
Testing for manageability involves testing the deployment, maintenance, and monitoring
technologies that you have incorporated into your migrated application.
Following are some important testing recommendations to verify that you have developed a
manageable application:
• Test Windows Management Instrumentation (WMI). WMI can provide important

information about your application and the resources it uses. During the design of your
application, you made certain decisions about the types of WMI information that must be
provided. These might include server and network configurations, event log error messages,
CPU consumption, available disk space, network traffic, application settings, and many other
application messages. You must test every source of information and be certain you can
monitor each one.

• Test Network Load Balancing (NLB) and cluster configuration.You can use Application
Center 2000 clustering to add a front- or back-end server while the application is still running.
After installing new server hardware on the network, use your monitoring console to replicate
the application image and start the server. The new server should automatically begin
sharing some of the workload. You can set up the Application Center 2000 Performance
Monitor (PerfMon) to track multiple front-end Web servers. After setting up PerfMon, make
some requests to generate traffic. PerfMon will show you that there is an increase in traffic in
the back-end servers and that the workload is evenly spread across the front-end computers.
Note Additional information about Application Center 2000 is available at

http://www.microsoft.com/applicationcenter/.

• Test change control procedures. An important part of application management is the
handling of both scheduled and emergency maintenance changes. Test and validate all of
the change control procedures including the automated and manual processes. It is
especially important to test all people-based procedures to ensure that the necessary
communication, authority, and skills are available to support an error-free change control
process.
Note Additional information on testing for manageability is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxcontestingformanageability.asp.

Interim Milestone: Internal Release n
The project needs interim milestones to help the team measure their progress in the actual
building of the solution during the Developing Phase. Each internal release signifies a major step
toward the completion of the solution featuresets and achievement of the associated quality level.
Depending on the complexity of the solution, a number of internal releases may be required.
Each internal release represents a fully functional addition to the solution’s core feature set,
indicating that it is potentially ready to move on to the Stabilizing Phase.

http://www.microsoft.com/applicationcenter/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingformanageability.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxcontestingformanageability.asp

210 UNIX Custom Application Migration Guide: Volume 4

Closing the Developing Phase
Closing the Developing Phase requires completing a milestone approval process. The team
documents the results of different tasks that it has performed in this phase and obtains a sign-off
on the completion of development from the stakeholders (including the customer).

Key Milestone: Scope Complete
The Developing Phase culminates in the Scope Complete Milestone. At this milestone, all
features are complete and the solution is ready for external testing and stabilization. This
milestone provides the opportunity for customers and users, operations and support personnel,
and key project stakeholders to evaluate the solution and identify any remaining issues that must
be addressed before beginning the transition to stabilization and, ultimately, to release.
Key stakeholders, typically representatives of each team role and any important customer
representatives who are not on the project team, signal their approval of the milestone by signing
or initialing a document stating that the milestone is complete. The sign-off document becomes a
project deliverable and is archived for future reference.
Now the team must shift its focus to verify that the quality of the solution meets the acceptance
criteria for release readiness. The next phase, the Stabilizing Phase, describes the activities—for
example, user acceptance testing (UAT), regression testing, and conducting the pilot—required to
achieve these objectives.

Chapter 10: Stabilizing Phase
This chapter describes the suggested strategy for stabilizing an application that has been
migrated from UNIX to the Microsoft® Windows® operating system. The Stabilizing Phase
involves testing the application for the expected functionality and improving the quality of the
application to meet the acceptance criteria set for the project.
This chapter describes the objectives of testing in the Stabilizing Phase. It introduces testing
processes, methodologies, and tools that can be used to test applications with different
architectures.

Goals for the Stabilizing Phase
The primary goal of the Stabilizing Phase is to improve the quality of the solution so that it meets
the acceptance criteria and can be released to the production environment. During this phase, the
team tests the feature-complete migrated application by subjecting it to various tests, such as
User Acceptance Testing (UAT), regression testing, and bug tracking based on the application
requirements. The build must demonstrate that it reaches the defined quality and performance
levels and is ready for full production deployment.
Testing during the Stabilizing Phase is an extension of the testing that was conducted during the
development of the application in the Developing Phase. Testing in the Stabilizing Phase tests
the usage and operation of the application under realistic conditions. Test plans include testing
the functionality in the migrated application and making a comparison of the migrated
application’s functionality with that provided by the original application. Test plans also must
include test cases for testing the new features added to the application.
After a build is stabilized, the solution is deployed. This phase ends with the Release Readiness
Approved Milestone, indicating that the team and customer agree that all the outstanding issues
have been addressed.

212 UNIX Custom Application Migration Guide: Volume 4

Major Tasks and Deliverables
Table 10.1 describes the tasks that must be completed during the Stabilizing Phase and lists the
owners responsible for achieving them.
Table 10.1. Major Stabilizing Phase Tasks and Owners

Major Tasks Owners

Testing the solution
The team executes the test cases that were
created during the Planning Phase and
enhanced and tested during the Developing
Phase. Testing includes comparing the test
results of the parent application with the
migrated application as well as testing the
application from different perspectives.

Test

Resolving defects
The team triages the defects identified and
resolves them. New tests are developed to
reproduce issues reported from other sources.
The new test cases are integrated into the test
suite.

Development, Test

Conducting the solution pilot
This task involves setting up the deployment
environment and testing the migrated
application on the staging area before it is
deployed. The team moves a solution pilot from
the development area to a staging area in
order to test the solution with the actual users
and real scenarios. It also includes testing the
solution in a live environment. The solution pilot
is conducted before starting the Deploying
Phase.

Release Management

Closing the Stabilizing Phase
The team documents the results of the tasks
performed in this phase and solicits
management approval at the Release
Readiness Approved Milestone meeting.

Project

 Chapter 10: Stabilizing Phase 213

Table 10.2 lists the tasks described in Table 10.1 and considers the tasks from the perspective of
the team roles. The primary team roles driving the Stabilizing Phase are Test and Release
Management.
Table 10.2. Role Cluster Focuses and Responsibilities in Stabilizing Phase

Role Cluster Focus and Responsibility

Product Management Execute communications plan and launch test phase.

Program Management Track project and bug triage.

Release Management Preparation for deployment of the application and
setting up the production environment.

Development Bug triage and resolution, code optimization, and
hardware or service reconfiguration.

User Experience Stabilization of user documentation and training
materials.

Test Generate build and triage plan.
Track test schedule.
Review bugs entered in the bug-tracking tool and
monitor their status during triage meeting.
Generate weekly status reports.
Escalate issues that are blocking progress, review
impact analysis, and generate change management
document.
Ensure that the appropriate level of testing is
achieved for a particular release.
Lead the actual Build Acceptance Test (BAT)
execution.
Execute test cases and generate test report.

Testing the Solution
This section describes the testing activities that are performed in the Stabilizing Phase. In the
Stabilizing Phase, because all features and functions of the solution are now complete and all
solution elements have been built, testing is performed on the solution as a whole, not just on
individual components. The testing that began during the Developing Phase according to the test
plan created during the Planning Phase continues with further testing, tracking, documentation,
and reporting activities during the Stabilizing Phase. This mainly involves user acceptance testing
(UAT) and regression testing as explained in the next subsections in detail.

User Acceptance Testing
The emphasis on user acceptance testing (UAT) during the Stabilizing Phase is to ensure that the
migrated solution meets the business needs. UAT is performed on a collection of business
functions in a production environment after the completion of functional testing. This is the final
stage in the testing process before the system is accepted for operational use. It involves testing
the system with data supplied by the actual user or customer instead of the simulated data
developed as part of the testing process. UAT helps to validate the solution for the overall user
requirements and also determines the release readiness status of the system. Running a pilot for
a select set of users helps to identify areas where users have trouble understanding, learning,
and using the solution.

214 UNIX Custom Application Migration Guide: Volume 4

For migration projects, UAT involves testing the migrated application and identifying its defects.
These defects are addressed and regression testing is conducted for each fixed defect to ensure
that the fix doesn’t break any other functionality of the migrated application. The UAT Summary
confirms that the solution meets the customer’s acceptance criteria, thereby assisting in customer
acceptance of the solution.

Regression Testing
Regression testing refers to retesting previously tested components and functionality of the
system to ensure that they function properly even after a change has been made to parts of the
system. For migration projects, this is the most important class of tests. As defects are discovered
in a component, modifications should be made to correct them. This may require retesting of
other components or the entire solution.
Regression testing helps in the following areas:
• To ensure that no new problems are introduced and that the operational performance has not

been degraded because of modifications.
• To ensure that the effects of the changes are transparent to other areas of the application

and other components that interact with the application.
• To modify the original test data and test cases from other testing activities.

Resolving the Solution Defects
In order to resolve defects, they must be reproduced and tested in the test environment. Each
reproduced defect in the test environment should be tracked with its status and severity. An
important aspect of such tests involves test tracking and test reporting. Test tracking and
reporting occurs at frequent intervals during the Developing and Stabilizing Phases. During the
Stabilizing Phase, this reporting is driven by the bug count. Regular communication of the test
status to the team and other key stakeholders ensures that the project runs smoothly. After fixing
the defects, test cases and test data should be updated and integrated with the test suite.

Bug Convergence
Bug convergence is the point at which the team makes visible progress against the active bug
count. At bug convergence, the rate of bugs resolved exceeds the rate of bugs found, thus the
actual number of active bugs decreases. After bug convergence, the number of bugs should
continue to decrease until the zero bug bounce task, as explained in the next sections.

Interim Milestone: Bug Convergence
Bug convergence tells the team that most of the bugs are addressed and the rate of bugs
resolved is higher than the rate of new bugs found. This can be considered as the interim
milestone and the migrated application can be considered for zero bug bounce verification.

Zero Bug Bounce
Zero bug bounce is the point in the project when development finally catches up to testing and no
active bugs currently exist. After zero bug bounce, the number of bugs should continue to
decrease until the product is sufficiently stable for the team to build the first release candidate.

Interim Milestone: Zero Bug Bounce
Achieving zero bug bounce is a clear sign that the solution is near to being considered a stable
release candidate.

 Chapter 10: Stabilizing Phase 215

Release Candidates
After the first achievement of zero bug bounce, a series of release candidates is prepared for
release to the pilot group. Each release is marked as an interim milestone.
Guidelines for declaring a build as a release candidate include the following:
• Each release candidate has all the required elements to qualify for release to production.
• The test period that follows determines whether a release candidate is ready to release to

production or if the team must generate a new release candidate with appropriate fixes.
• Testing the release candidates, performed internally by the team, requires highly focused,

intensive efforts and concentrates heavily on discovering critical bugs.

Interim Milestone: Release Candidate
As each new release candidate is built, there should be fewer bugs reported, classified, and
resolved. Each release candidate marks significant progress in the team’s approach toward
deployment. With each new candidate, the team must focus on maintaining tight control on
quality.

Interim Milestone: Preproduction Test Complete
Eventually, a release candidate is prepared that contains no defects. When this has occurred, no
defects should be found within the isolated staging environment. At this stage, all testing that can
be done before putting the migrated component into production has been completed.

Conducting the Solution Pilot
This section describes the best practices to adopt for conducting a pilot of the migrated
application. This section provides you with information regarding various points to be considered
while conducting a pilot and deciding the next steps after the pilot.
A pilot release is a deployment into a subset of the live production environment or user group.
During the pilot, the team tests as much of the entire solution as possible in a true production
environment. Depending on the context of the project, the pilot can take various forms:
• In an enterprise, a pilot can be a group of users or a set of servers in a data center.
• For migration projects, the pilot might involve testing the most demanding application or

database that is being migrated with a sophisticated group of users who can provide helpful
feedback.

The common element in all piloting scenarios is testing under live conditions. The pilot is not
complete until the team ensures that the solution is viable in the production environment and that
the solution is ready for deployment.
Some of the best practices that should be followed while conducting a pilot are:
• Before beginning a pilot, the team and the pilot participants must clearly identify and agree

upon the success criteria for the pilot. These should map back to the success criteria for the
development effort.

• Any issues identified during a pilot must be resolved either by further development, by
documenting resolutions and workarounds for the installation team and production support
staff, or by incorporating them as supplemental material in training or Help documentation.

• Before the pilot is started, a support structure and an issue-resolution process must be in
place. This may require that the support staff receive training in the application area that is
being piloted.

• In order to determine any issues and confirm that the deployment process will work, it is
necessary to implement a trial run or a rehearsal of all the elements of the deployment prior
to the actual deployment.

216 UNIX Custom Application Migration Guide: Volume 4

After you collect and evaluate the pilot data, a corresponding strategy should be selected based
on the findings from the analysis of pilot data. The next strategy could be one of the following:
• Stagger forward. Deploy a new release to the pilot group.
• Roll back. Execute the rollback plan and revert the pilot group to the stable state they had

before the pilot started.
• Suspend. Suspend the entire pilot.
• Fix and continue. If you find an issue during the pilot, fix the issue and continue with the

next steps.
• Proceed. Advance to the Deploying Phase.
After the pilot has been completed, the pilot team must prepare a report detailing each lesson
learned and how new information was incorporated and issues were resolved.

Interim Milestone: Pilot Complete
This milestone signifies that the pilot has been successfully completed and that the team is ready
to proceed to the Deploying Phase.

Closing the Stabilizing Phase: Release
Readiness Approved
The Stabilizing Phase culminates with the Release Readiness Approved Milestone. The team
builds a release candidate (with all the major defects fixed) that satisfies the necessary quality
policy of the organization. All rounds of testing must be completed, meaning that all test plans
have been executed and test cases satisfied before the migrated component can be moved into
the production environment. Then the release is approved with a formal sign-off marking that the
Release Readiness Approved Milestone has been reached.
Key stakeholders, typically representatives of each team role and any important customer
representatives who are not on the project team, signal their approval of the milestone by signing
or initialing a document stating that the solution is complete and approved for release. The sign-
off document becomes a project deliverable and is archived for future reference.
The performance of the application following deployment in the production environment is a key
criterion in indicating a successful application migration. The following sections will help you to
optimize the performance of the application and the tools following deployment.

Tuning
This section discusses tuning of the solution in detail, including how to performance-tune the
migrated application, and scaling up and scaling out of the application. In addition, the section
discusses multiprocessor considerations for applications and network utilizations. You can use
this information to identify the parameters that affect application performances and steps to
consider in the scalability of applications.

Performance Tuning
Performance management starts with the gathering of a data baseline that indicates what system
performance should look like. After establishing a baseline, it is used to evaluate the performance
of the application. Performance problems typically do not become apparent until the application is
placed under an increased load.
Measuring the performance of an application when placed under ever increasing loads
determines the scalability of that application. When the performance begins to fall below the
stated minimum performance requirements, you have reached the limit of scalability of the

 Chapter 10: Stabilizing Phase 217

application. For more information about scaling, refer to the "Scaling Up and Scaling Out" section
later in this chapter.
Performance tuning can be done in the following ways:
• Tuning the computer hardware by adding more memory, updating CPUs, adding disk

controllers, or upgrading network controllers. This is the most efficient way and helps
performance-tune the application as well.

• Application rearchitecture to remove bottlenecks such as poor threading and looping and
checking for other loops that use too much CPU time. This step also helps considerably in
performance tuning.

• Operating system parameter tuning, which involves adjusting the amount of page store and
tweaking network stack parameters.

• Tuning the configurations on a database server, application server, or Web server.
In UNIX, performance is monitored using a type of kernel-level instrumentation, along with
rudimentary tools for monitoring the CPU, disk, and memory usage. Windows Server™ 2003 is
designed such that it exposes a great deal of performance data. Tools like Windows Performance
Monitor (PerfMon) can be used to export detailed information about the processor, memory, disk,
and network usage. Performance Monitor support is integrated throughout Windows.
Administrators can gather a variety of performance data from many computers simultaneously.
UNIX kernels tend to have many configurable parameters that can be fine-tuned for specific
applications. By contrast, the Windows kernel is largely self-tuned. The virtual memory, thread
scheduling, and I/O subsystems all dynamically adjust their resource usage and priority to
maximize throughput. The difference between these two approaches is that the UNIX approach is
to tweak kernel parameters for maximum advantage in the benchmark, even if those tweaks
affect the real-world performance, whereas the Windows approach is to let the kernel tune itself
for whatever load is placed on it.
Notes

More information on improving performance is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp.

More information on writing high-performance managed applications is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/highperfmanagedapps.asp.

Scaling Up and Scaling Out
Scalability is a measure of how easy it is to modify the application infrastructure and architecture
to meet variances in utilization. As with other application capabilities, the decisions you make
during the design and early coding phases largely dictate the scalability of your application.
Application scalability requires a balanced partnership between two distinct domains: software
and hardware. Because scalability is not a design concern of stand-alone applications, the
applications discussed here are distributed applications.
Scaling up involves achieving scalability with the use of better, faster, and more expensive
hardware to move the processing capacity limit from one part of the computer to another. Scaling
up includes adding more memory, adding more or faster processors, or just migrating the
application to a more powerful, single computer. Typically, this method allows for an increase in
capacity without requiring changes to source code. However, adding CPUs does not add
performance in a linear fashion. Instead, the performance gain curve slowly tapers off as each
additional processor is added.
Scaling out distributes the processing load across more than one server by dedicating several
computers to a common task. In this, the fault tolerance of the application is increased. Scaling
out also presents a greater management challenge because of the increased number of
computers.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/fastmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp

218 UNIX Custom Application Migration Guide: Volume 4

Developers and administrators use a variety of load-balancing techniques to scale out with the
Windows platform. Load balancing allows an application site to scale out across a cluster of
servers, making it easy to add capacity by adding replicated servers. It provides redundancy,
giving the site failover capabilities so that it remains available to users even if one or more
servers fail or are taken down.
Scaling out provides a method of scalability that is not hampered by hardware limitations. Each
additional server provides a near linear increase in scalability.
The key to successfully scaling out an application is location transparency. If any of the
application code depends on knowing which server is running the code, location transparency
has not been achieved and scaling out will be difficult. This situation requires code changes to
scale out an application from one server to many, which is seldom an economical option. If you
design the application with location transparency in mind, scaling out becomes an easier task.
Notes

More information on scaling is available at

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vxconmanageabilityoverview.asp.

Microsoft Application Center 2000 reduces the complexity and the cost of scaling out. More information on
"Application Center 2000" is available at

http://www.microsoft.com/applicationcenter/default.mspx.

More information on scaling network-aware applications is available at
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp.

Multiprocessor Considerations
Application performance improves by having multiple processors perform the same task. You can
distribute the processing load across several processors.
Computationally intensive tasks are characterized by intensive processor usage with relatively
few I/O operations. The ongoing challenge with these applications is to improve the performance.
You can do this with a faster computer, a more efficient algorithm, and by improving the
implementation or using more processors. You can improve the performance with the help of
tuning techniques as well.
Using more processors can mean taking advantage of an SMP computer or by using distributed
computing with multiple networked computers. However, adding CPUs does not add performance
in a linear fashion. Instead, the performance gain curve slowly tapers off as each additional
processor is added. For computers with SMP configurations, each additional processor incurs
system overhead. After you have upgraded each hardware component to its maximum capacity,
you will eventually reach the real limit of the processing capacity of the computer. At that point,
the next step is to move to another computer.
Multiprocessor optimization can be achieved by making use of threads.
Note More information on multiprocessor optimizations is available at

http://msdn.microsoft.com/msdnmag/issues/01/08/Concur/.

Network Utilizations
Network resources, such as available bandwidth and latency, must be predicted and managed on
computers and devices throughout the network.
Optimal network utilization is achieved with cooperation among end nodes, switches, routers, and
wide area network (WAN) links through which data must pass. Preferential treatment must be
given for certain data as it traverses through the network in order to better service certain
components during congestion. Tools are available that help analyze network traffic, provide
network statistics and packet information, and thereby better use the network by analyzing areas
of congestion.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconmanageabilityoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconmanageabilityoverview.asp
http://www.microsoft.com/applicationcenter/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/1000/Winsock/toc.asp
http://msdn.microsoft.com/msdnmag/issues/01/08/Concur/

 Chapter 10: Stabilizing Phase 219

Quality of Service (QoS), an industry-wide initiative, achieves a more efficient use of network
resources by differentiating between data subsets. Windows 2000 implements QoS by including a
number of components that can cooperate with one another.
Note More information on QOS on Windows is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/qos/qos/qos_start_page.asp.

Note Network Monitor captures network traffic for display and analysis. More information on Network
Monitor is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netmon/netmon/network_monitor.asp.

Note Network Probe is another tool for traffic-level network monitoring and for analysis and
visualization. More information on Network Probe is available at http://www.objectplanet.com/probe/.

Testing and Optimization Tools
This section lists some of the useful tools that can be used for testing and monitoring your
applications.

Visual Studio .NET 2003 Tools
Microsoft Visual Studio® .NET 2003 includes tools for analyzing the performance of applications.
These include:
• Process Viewer (Pview). The PView process viewer uses dialog boxes to view and modify

running processes and their threads. PView can monitor:
• Memory usage of process, threads, and individual DLLs.
• CPU time used by processes and threads.
• How an application or the system runs with different system priorities.
PView features provide powerful tools with which you can monitor processes of an
application and threads at different priorities. More information about the Process Viewer is
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcsample98/html/vcsmppviewer.asp.

• Spy++. Spy++ shows a graphical view of the processes of the system, threads, windows, and
window messages. More information about Spy++ is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcug98/html/_asug_overview.3a_.spy.2b2b.asp.

• DDESpy. DDESpy monitors dynamic data exchange (DDE) activity in the operating
system. More information about DDESpy is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcsample98/html/vcsmppviewer.asp.

• Visual Studio Team System (VSTS). Microsoft Visual Studio .NET 2005 provides Visual
Studio Team System, which supports a huge suite of integrated tools for code development,
enforcement of good coding practices and conventions, static code analysis tools, integrated
test tools, and code coverage tools. More information about VSTS is available at
http://msdn.microsoft.com/vstudio/teamsystem/default.aspx.

• FxCop: FxCop is a tool that enables development teams to check code compliance with best
practices. More information about FxCop is available at
http://msdn.microsoft.com/netframework/programming/classlibraries/fxcop/.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/qos/qos/qos_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netmon/netmon/network_monitor.asp
http://www.objectplanet.com/probe/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcug98/html/_asug_overview.3a_.spy.2b2b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcug98/html/_asug_overview.3a_.spy.2b2b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/vcsmppviewer.asp
http://msdn.microsoft.com/vstudio/teamsystem/default.aspx
http://msdn.microsoft.com/netframework/programming/classlibraries/fxcop/

220 UNIX Custom Application Migration Guide: Volume 4

Platform SDK Tools
Platform SDK tools includes debugging tools, file management tools, performance tools, and
testing tools. These tools are available with the latest Platform SDK.

Debugging Tools
Platform SDK includes the following debugging tools:
• Debug Monitor (DBMon). Debug Monitor runs in its own console window and displays

messages sent by your application. More information about Debug Monitor is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/debug_monitor.asp.

• Symbolic Debugger (NTSD). NTSD is a symbolic debugger that enables you to debug user-
mode applications. You can display and execute program code, set breakpoints, and
examine and change values in memory. More information about Symbolic Debugger is
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/symbolic_debuggers.asp.

• Windows Debugger (WinDbg). The WinDbg debugger is a powerful graphical tool that
allows you to debug applications on Microsoft Windows. You can use the integrated text
editor to edit your source code. WinDbg can also be used to debug service applications and
kernel-mode drivers. More information about Windows Debugger is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/windbg_debugger.asp.

File Management Tools
• WinDiff. WinDiff is used to compare files and display the results graphically. More

information about WinDiff is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windiff.asp.

Performance Tools
Performance tools can be used to measure application performance and resolve some
performance issues. Platform SDK includes the following performance tools:
• Bind. Bind minimizes application load time by binding your executable with all of your DLLs,

plus the system DLLs. More information about Bind is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/bind.asp.

• Extensible Performance Counter List (ExCtrLst). The extensible counter list tool is used to
obtain information about the extensible performance counter dynamic-link libraries on a
computer. More information about ExCtrLst is available at http://www.microsoft.com/downloads
/details.aspx?FamilyID=7ff99683-b7ec-4da6-92ab-793193604ba4&DisplayLang=en.

• Performance Meter (PerfMtr). PerfMtr can display a variety of system performance
information. More information about PerfMtr is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp.

• Performance Monitor (PerfMon). Windows Performance Monitor can simultaneously collect
performance data from any number of network computers, then display it as a graph, format it
as a tabular report, or log it for later analysis. Performance Monitor support is integrated
throughout Windows. More information about PerfMon is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp.

• PStat. PStat lists statistics for each process. More information about PStat is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pstat.asp.

• Virtual Address Dump (VADump). Virtual Address Dump creates a listing that contains
information about the memory usage of a specified process. More information about VADump
is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tools/tools/vadump.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/debug_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/debug_monitor.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/symbolic_debuggers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/symbolic_debuggers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windbg_debugger.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windbg_debugger.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/windiff.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/bind.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=7ff99683-b7ec-4da6-92ab-793193604ba4&DisplayLang=en
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/perfmtr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pstat.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/vadump.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/vadump.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=7ff99683-b7ec-4da6-92ab-793193604ba4&DisplayLang=en

 Chapter 10: Stabilizing Phase 221

Testing Tools
• Process Fault Monitor (PfMon). The Process Fault Monitor displays the faults that occur

while executing a process. PFMon can start the application for you or attach to a running
process. More information about PfMon is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pfmon.asp.

Other Commonly Used Tools
This section lists other commonly used tools that are useful in testing and monitoring applications.

Monitoring Tools
• Diskmon. This tool captures all hard disk activity or acts as a software disk activity light in

your system tray. This tool is available for download at
http://www.sysinternals.com/ntw2k/freeware/diskmon.shtml.

• Filemon. This monitoring tool allows you to view all file system activity in real-time. This tool
works on all versions of Windows NT, Windows 2000, Windows Server 2003, and
Windows XP. It also works with the Windows XP 64-bit edition. This tool is available for
download at http://www.sysinternals.com/ntw2k/source/filemon.shtml.

• PMon. This is a Windows NT GUI/device driver program that monitors process and thread
creation and deletion, as well as context swaps if it is running on a multiprocessing or
checked kernel. This tool is available for download at
http://www.sysinternals.com/ntw2k/freeware/pmon.shtml.

• Portmon. You can monitor serial and parallel port activity with this advanced monitoring tool.
It knows about all standard serial and parallel IOCTLs and even shows you a portion of the
data being sent and received. This tool is available for download at
http://www.sysinternals.com/ntw2k/freeware/portmon.shtml.

• Regmon. This monitoring tool allows you to view all registry activity in real-time. This tool is
available for download at http://www.sysinternals.com/ntw2k/source/regmon.shtml.

• TCPView. You can view all the open TCP and UDP endpoints. TCPView even displays the
name of the process that owns each endpoint. This tool is available for download at
http://www.sysinternals.com/ntw2k/source/tcpview.shtml.

• Task Manager. Task Manager provides run-time information on processes. The Task
Manager tool is available as part of Windows.

Testing Tools
• WinRunner. WinRunner helps in GUI capture and playback testing for Windows applications.

More information on WinRunner is available at http://www.mercury.com/us/products/quality-
center/functional-testing/winrunner/.

• Silktest. Silktest is an object-oriented software testing tool for Windows applications. More
information on Silktest is available at http://www.segue.com/products/functional-regressional-
testing/silktest.asp.

• LoadRunner. LoadRunner is an automated client/server system testing tool that provides
performance testing, load testing, and system tuning for multiuser applications. More
information on LoadRunner is available at http://www.mercury.com/us/products/performance-
center/loadrunner/.

• Rational Robot Automated Test. Rational Robot Automated Test provides automated
functional, regression, and smoke tests for e-applications. More information on Rational
Robot is available at http://www-306.ibm.com/software/rational.

• Microsoft Application Center Test. Designed to stress test Web servers and analyze
performance and scalability problems with Web applications, including Active Server Pages
(ASP) and the components they use. It simulates a large group of users by opening multiple
connections to the server and rapidly sending HTTP requests. More information on Microsoft
Application Center Test is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tools/tools/pfmon.asp
http://www.sysinternals.com/ntw2k/freeware/diskmon.shtml
http://www.sysinternals.com/ntw2k/source/filemon.shtml
http://www.sysinternals.com/ntw2k/freeware/pmon.shtml
http://www.sysinternals.com/ntw2k/freeware/portmon.shtml
http://www.sysinternals.com/ntw2k/source/regmon.shtml
http://www.sysinternals.com/ntw2k/source/tcpview.shtml
http://www.mercury.com/us/products/quality-center/functional-testing/winrunner/
http://www.mercury.com/us/products/quality-center/functional-testing/winrunner/
http://www.segue.com/products/functional-regressional-testing/silktest.asp
http://www.segue.com/products/functional-regressional-testing/silktest.asp
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www-306.ibm.com/software/rational/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/act/htm/actml_main.asp

222 UNIX Custom Application Migration Guide: Volume 4

Source Test Tools
• Purify. Purify is a run-time error and memory leak detector. More information on Purify is

available at http://www-306.ibm.com/software/sw-bycategory.
Tools for win64:
• VTune Performance Analyzer. Intel VTune Performance Analyzer helps locate and remove

software performance bottlenecks by collecting, analyzing, and displaying performance data
from the system-wide level down to the source level. More information about VTune
Performance Analyzer is available at http://www.intel.com/software/products/vtune/.

Further Reading
• More information on testing software patterns is available at

http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-
us/dnpag/html/tsp.asp.

• Tools are also available in .NET for creating components, which can be used to monitor
system resources. More information on using event logs, performance counters, and services
is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vborisystemmonitoringwalkthroughs.asp.

http://www-306.ibm.com/software/sw-bycategory
http://www.intel.com/software/products/vtune/
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpag/html/tsp.asp
http://msdn.microsoft.com/architecture/patterns/default.aspx?pull=/library/en-us/dnpag/html/tsp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vborisystemmonitoringwalkthroughs.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vborisystemmonitoringwalkthroughs.asp

Index

.

.NET
advantages, 9
class library, 12
framework, 10–12
interoperate,with, 24–27, 24
overview, 7–9, 7

.NET framework
redevelopment, 22–24, 22

A
ADO.NET

connections, 29
dataadapter, 31
datareaders, 29
introduction, 29–31, 29

application domains
advantages, 54
comparison, UNIX process, 53
comparison,threads, 54
introduction, 16, 53–55, 53
programming, 54–55
programming,example, 55

application security
role based, 15

Application Window, 136
applications

rich client,controls, 28
rich client,events, 28
rich client,introduction, 28
web,introduction, 28–29, 28

assemblies, 18, 199–200, 199, 200
assembly

introduction, 199
private, 200
shared, 200

auditing, 208
authentication, 208
authorization, 208

C
C++ interoperability (IJW)

advantages, 26

224 UNIX Custom Application Migration Guide: Volume 4

calling Win32 API, example, 47
disadvantages, 26
introduction, 26
marshalling, 48,
performance consideration, 27

client window, 172
CLR

advantages, 11
cluster configuration, 209
code component testing, 206
color

management, 164
COM interop services

introduction, 26
COM Interop services

advantages, 27
Command Window, 172
computer information, 193–94, 193
configuration file, 173, 200–201, 200

application, 201
machine, 201
security, 201

Console Mode, 172
control

communicating,with, 146–47, 146
creating, 143–46, 143
identifying, 146

D
daemons, 4, 16, 18, 20, 107, 128–29, 128
data protection, 208
database

connectivity, 129
database testing, 207
deploying application, 199–204, 199
deployment, 7, 9, 11, 18, 20
Desktop Window, 136, 174
developing phase

end, 210
milestone, 210
proof of concept, 35
risk, 34–35

dialog boxes, 219
Dialog Boxes, 136
directory

access.UNIX, 101–3
working,UNIX, 100–105

display
management, 164

DLLs, 11, 12, 25, 45, 202
DPI, 172
drawing

shapes, 164–68, 167–68, 167

Index 225

two-dimensional lines, 165–66, 165

E
enterprise services, 187
environment variables, 191–93, 191
events

introduction, 107–8
keyboard, 149–51, 149
model, 108–10
mouse, 148
raise, 109

evolving application
migration strategies, 21–22, 22

exception
handling,model, 116–19, 116

exception class, 17, 116
exceptions

.NET, 116–19, 116

F
fifo

UNIX,example, 124–27, 124
file, 1

access mode, 98–99
open mode, 98

file management, 4, 16, 83, 93–105
File management, 1
fonts

creating, 156
example, 157
using, 155–58, 155

G
Garbage Collector (GC), 84–85, 84, 85, 87
GDI+, 132, 152
Graphics Class object, 173
Graphics Context, 164, 173
Graphics Device Interface (GDI), 152

H
heap, 83

I
infrastructure services, 1
integration testing, 207
intended audience, 2
Interix

development environment, 38

226 UNIX Custom Application Migration Guide: Volume 4

environment, 38
Interoperability mechanisms

wrapping unmanaged C++ classes, 25
wrapping unmanaged C++ classes,example, 41–44, 42

interprocess communication, 4, 16, 17, 20, 57, 107, 122–28, 122, 127
sockets, 19, 119

interprocess communication (IPC), 122
Isolated Storage, 185

K
keyboard focus, 151–52, 151

M
managed heap, 83
management

device, 148–54, 148
management testing, 209
Marshaling data, 44
memory

allocation, 83–84, 83
management, 83–92, 83
release, 84–90, 84

memory management, 1
memory mapped files, 127
Message Box, 137
Message Queues, 128
Microsoft Solutions Framework, 38
migration strategies

evolving application, 21–22, 22
static application, 21–22, 22

Modeless Dialog Box, 137
MSF, 38
multiprocessor considerations, 218

N
named pipes, 124–27
network

security testing, 208
network security testing, 208
network utilization, 218
networking, 119–22, 119

O
OpenGL, 171

P
P/Invoke

advantages, 26

Index 227

disadvantages, 26
introduction, 45–46, 45
Win32 API,example, 47

performance tuning, 216
Platform SDK

debugging tools, 220
file management tools, 220
performance tools, 220
testing tools, 221
tools, 220

process
create, 51–53, 51
create,example, 52

process management, 1
process pipes

introduction, 122–24, 122
UNIX,example, 122

process resource limits
managing, 56–57

process versus threads, 51, 55–56

R
redevelopment

advantages, 22
resource files, 173
Root Window, 174

S
scaling, 217
screen resolution, 172
secure code, 208
security

application,code access, 15, 201
security testing, 208
serialization, 185
services, 128–29, 128
shared memory, 127
shared objects, 20
SIGINT, 110–14, 110, 111
signals

.NET, 114–15
sockets, 119–22, 119
stabilizing

goals, 211–22, 211
multiprocessor considerations, 218
network utilization, 218
scaling, 217
testing, 205
tuning, 216

stabilizing phase, 4, 211
static application

228 UNIX Custom Application Migration Guide: Volume 4

introduction, 21
migration strategies, 21–22, 22

system messages
log, 195–98, 195

T
test data, 205
test environment, 205
test network load balancing, 209
test plan, 205, 211
test report, 205
test specification, 205
testing, 4, 205, 211

code component, 206
code review, 37–38, 37–38
database, 207
integration, 207
management, 209
network load balancing, 209
security, 208
tools, 219
unit, 206

text
calculating metrics, 161
display, 154–58, 154
drawing, 159–62

Text Widgets, 162–64, 162
Thread Local Storage (TLS), 90–92, 90, 91
thread management, 1
threads

create, 58–60, 58
create,UNIX example, 58
management, 57–82, 57
multiple, 79–82, 79
multiple,non-synchronized,UNIX, 64
scheduling,priorities, 76–79, 76
scheduling,priorities,example, 77
synchronization,techniques, 63–76, 66
synchronize, 63
synchronize,using Interlocked Compare Exchange, 66–68
synchronize,using mutexes, 73–76, 73
synchronize,using semaphores, 68–73, 68
terminate, 60–63, 60
terminate,.NET example, 62

threads versus process, 51, 55–56
Timeouts, 168–71, 168
Timers, 168–71, 168
tools, 219–22

monitoring, 221
packaging, 202–4, 202
Platform SDK, 220
source test, 222
testing, 219, 221

Index 229

Visual Studio tools, 219
win64, 222

tuning, 216–19, 216
performance, 216

type-safe code, 53

U
unit testing, 206

V
Visual Studio tools, 219

W
win64

tools, 222
Window

creating, 141–42, 141
types, 136

Windows forms
advantages, 17

Windows Forms, 131–32, 131
Windows Forms versus X Windows

Look and Feel, 134–36, 134
User Interface, 28, 132, 133–34
Window Types, 136–37, 136

Windows service, 20, 128–29, 129

X
X Server, 34, 133
X windows, 22, 28, 131, 132, 133, 134, 136, 137, 138, 139, 141, 142, 143, 145, 146, 152, 153, 155, 159, 160, 162, 164,

165, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 181
X Windows versus Windows Forms

Look and Feel, 134–36, 134
User Interface, 28, 132, 133–34
Window Types, 136–37, 136

XML
framework,introduction, 13–15, 13

XML Web Services, 187

	UNIX Custom Application Migration Guide
	Contents
	About This Volume
	Introduction to Volume 4
	Intended Audience
	Knowledge Prerequisites

	Layout of the Guide: Volume 4
	Organization of Content
	Resources
	Acronyms
	Document Conventions
	Code Samples

	Chapter 1: Introduction to .NET
	.NET Overview
	The .NET Platform
	Advantages of .NET
	Features of the .NET Framework
	Common Language Runtime (CLR)
	.NET Framework Base Class Library
	.NET Tools and Technologies

	.NET XML Framework
	New Suite of XML APIs
	.NET XML Namespaces
	XML-based I/O
	.NET DOM Implementation
	Transformations

	.NET Application Security
	Role-based Security
	Code Access Security

	Implementation in .NET
	Processes and Threads
	Memory Management
	File Management
	Signals, Exceptions, and Events
	Networking
	Interprocess Communication
	User Interface
	Daemons vs. Services
	Deployment
	Summary of Platform Differences

	.NET Migration Paths
	Analyzing Application Types
	Static Application
	Evolving Application

	Reengineering Using the .NET Framework
	Interoperating with the Existing Code
	Managed Extensions for C++
	.NET Interoperability Services

	Utilizing .NET Servers

	Migration Scenarios
	Rich Client Applications
	Web Applications
	Database Applications
	DataSet
	DataReader
	DataAdapter

	References

	Chapter 2: Developing Phase: Process Milestones and Technology Considerations
	Goals for the Developing Phase
	Major Tasks and Deliverables

	Starting the Development Cycle
	Building a Proof of Concept
	Interim Milestone: Proof of Concept Complete

	Developing the Solution Components
	Using the Development Environment
	.NET Framework SDK
	Visual Studio .NET 2003

	Developing the Testing Tools and Tests
	Unit Testing

	Building the Solution
	Interim Milestone: Internal Release

	Chapter 3: Developing Phase: .NET Interoperability
	.NET Interoperability Mechanisms
	Wrapping Unmanaged C++ Classes with Managed Extensions for C++
	Wrapping Technique Considerations
	Data Marshaling

	Platform Invocation Services
	P/Invoke with UNIX Code
	P/Invoke with Win32 API

	C++ Interoperability – It Just Works

	Marshaling Arguments

	Chapter 4: Developing Phase: Process and Thread Management
	Process Management
	Creating a Process
	UNIX Processes vs. .NET Application Domains
	Application Domains and Threads
	Programming with Application Domains

	Processes vs. Threads
	Managing Process Resource Limits

	Thread Management
	Creating a Thread
	Terminating a Thread
	Suspend, Resume, and Sleep Methods

	Thread Synchronization
	Multiple Nonsynchronized Threads
	Synchronization Techniques
	Advanced Synchronization Techniques in .NET
	Synchronization Using Semaphores
	Synchronization Using Mutexes

	Thread Scheduling and Priorities
	Managing Thread State and Priorities in .NET
	Example of Converting UNIX Thread Scheduling into .NET
	Managing Multiple Threads

	Chapter 5: Developing Phase: Memory and File Management
	Memory Management
	Allocating Memory
	Releasing Memory
	Releasing Memory for Unmanaged Resources

	Garbage Collection
	Forcing Garbage Collection

	Releasing Unmanaged Resources
	Thread Local Storage

	File Management
	File Access Mechanisms
	UNIX File Access
	.NET File Access

	File Open and Access Modes
	Migrating Using Interoperability Strategies
	Working with Directories
	Accessing the Current Working Directory
	Accessing Directories
	Other Directory Operations

	Chapter 6: Developing Phase: Infrastructure Services
	Signals and Events
	Introduction to Events in .NET
	Delegate
	Event Model in .NET
	Raising Events
	Raising Multiple Events
	Consuming Events

	SIGINT Implementation
	Replacing UNIX Signals Within .NET

	Exception Handling in .NET
	Exception Handling Model

	Sockets and Networking
	Interprocess Communication
	Process Pipes
	Named Pipes
	Shared Memory and Memory-Mapped Files
	Message Queues

	Daemons vs. Services
	Database Connectivity

	Chapter 7: Developing Phase: Migrating the User Interface
	.NET Forms, Drawing, and GDI+
	Windows Forms
	Web Forms
	Drawing and GDI+
	Windows Forms Designer

	Comparing X Windows and Windows Forms
	User Interface Architecture
	Look and Feel
	Window Types
	Desktop Window
	Application Window
	Dialog Boxes
	Modeless Dialog Box
	Modal Dialog Box
	Message Box

	Reference Material

	User Interface Programming in X Windows and Windows Forms
	Programming Principles
	Libraries and Include Files
	Core Libraries
	Motif and Windows Forms Common Dialog Boxes

	Window Management
	Creating Windows
	Creating Controls
	Identifying a Control
	Communicating with a Control

	Event Handling
	Capturing Mouse Events
	Capturing Keyboard Events
	Keyboard Focus

	Graphics Device Interface
	Getting the Graphics Object
	Device Context

	Windows Character Data Types
	Displaying Text
	Using Fonts
	Creating Fonts
	Device vs. Design Units
	Fonts Example

	Text and Drawing Operations
	Drawing Text
	Filling Shapes
	Obtaining the Color of the Display Elements
	Drawing a Gray Text at the Specified Location

	Calculating Text Metrics
	Text Widgets and Controls

	Drawing
	Display and Color Management
	Drawing Two-Dimensional Lines
	Drawing Shapes and Rectangles

	Timers
	X Windows Timer
	.NET Timers

	Migrating Character-based User Interfaces
	Porting OpenGL Applications
	Mapping X Windows Terminology to Windows Forms
	Callback vs. Event Handlers
	Client vs. Client Window
	Console Mode vs. Command Window
	DPI vs. Screen Resolution
	Graphics Context vs. Graphics Class Object
	Resources vs. Properties
	Resource Files vs. Configuration Files
	Root Window vs. Desktop Window
	/bin vs. /System32
	/usr/bin vs. Program Files
	/usr/lib vs. LIB Environment Variable
	/usr/include vs. INCLUDE Environment Variable
	Pixmap or Bitmap vs. Bitmap
	Window Manager vs. Windows Server 2003 and Windows XP
	X Library [Xlib] [X11] vs. Drawing Namespace
	X Toolkit [Intrinsics] [Xt] vs. Windows Forms

	Mapping X Windows Tools to Microsoft Windows
	Bitmap vs. Mspaint.exe
	Manual Pages vs. Help
	xcalc vs. Calc.exe
	xclipboard vs. Clipbrd.exe
	xedit vs. Notepad.exe
	xev vs. Spyxx.exe
	xfd vs. Fontview.exe
	xkill vs. Kill.exe
	xlsclients vs. Pview.exe
	xlsfonts vs. Fonts Control Panel Item
	xmag vs. Magnify.exe or Zoomin.exe
	xon vs. Start.exe or Remote.exe
	xset client vs. Control Panel Items

	User Interface Coding Examples
	X Windows "Hello World" Example
	The xHello.mak File

	.NET "Hello World" Example

	Chapter 8: Developing Phase: Additional Features in .NET
	Securing Applications in .NET
	Code Access Security
	Role-based Security
	Cryptographic Services

	Isolated Storage
	Serialization
	Run-Time Serialization

	.NET Remoting
	XML Web Services in .NET
	Enterprise Services in .NET
	Enterprise Templates

	Chapter 9: Developing Phase: Deployment Considerations and Testing Activities
	Deployment Considerations
	Process Environment
	Environment Variables
	Computer Information
	Logging System Messages

	Building the Application in .NET
	.NET Deployment Activities
	Assemblies
	Configuration Files
	Manifests
	Packaging Tools

	Instrumentation

	Testing Activities
	Integration Testing
	Database Testing
	Security Testing
	Management Testing

	Interim Milestone: Internal Release n
	Closing the Developing Phase
	Key Milestone: Scope Complete

	Chapter 10: Stabilizing Phase
	Goals for the Stabilizing Phase
	Major Tasks and Deliverables

	Testing the Solution
	User Acceptance Testing
	Regression Testing

	Resolving the Solution Defects
	Bug Convergence
	Interim Milestone: Bug Convergence

	Zero Bug Bounce
	Interim Milestone: Zero Bug Bounce

	Release Candidates
	Interim Milestone: Release Candidate
	Interim Milestone: Preproduction Test Complete

	Conducting the Solution Pilot
	Interim Milestone: Pilot Complete

	Closing the Stabilizing Phase: Release Readiness Approved
	Tuning
	Performance Tuning
	Scaling Up and Scaling Out
	Multiprocessor Considerations
	Network Utilizations

	Testing and Optimization Tools
	Visual Studio .NET 2003 Tools
	Platform SDK Tools
	Debugging Tools
	File Management Tools
	Performance Tools
	Testing Tools

	Other Commonly Used Tools
	Monitoring Tools
	Testing Tools
	Source Test Tools

	Further Reading

	Index

