

LINQ
Pocket Reference

LINQ
Pocket Reference

Joseph Albahari and Ben Albahari

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

LINQ Pocket Reference
by Joseph Albahari and Ben Albahari

Copyright © 2008 Joseph Albahari and Ben Albahari. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Laurel R.T. Ruma
Production Editor: Loranah Dimant
Proofreader: Loranah Dimant
Indexer: Julie Hawks

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, LINQ Pocket Reference, the image of the horned screamer, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

.NET is a registered trademark of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN: 978-0-596-51924-7
[TM]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Contents

Getting Started 1

Lambda Queries 4
Chaining Query Operators 4
Composing Lambda Expressions 6
Natural Ordering 9
Other Operators 9

Comprehension Queries 10
Iteration Variables 12
Query Syntax Versus SQL Syntax 13
Query Syntax Versus Lambda Syntax 13
Mixed Syntax Queries 14

Deferred Execution 15
Reevaluation 16
Outer Variables 17
How Deferred Execution Works 17
Chaining Decorators 19
How Queries Are Executed 20

Subqueries 22
Subqueries and Deferred Execution 25

vi | Contents

Composition Strategies 25
Progressive Query Building 25
The into Keyword 27
Wrapping Queries 28

Projection Strategies 30
Object Initializers 30
Anonymous Types 30
The let Keyword 32

Interpreted Queries 33
How Interpreted Queries Work 35
AsEnumerable 38

LINQ to SQL 40
LINQ to SQL Entity Classes 40
DataContext 42
Automatic Entity Generation 45
Associations 45
Deferred Execution with LINQ to SQL 47
DataLoadOptions 48
Updates 50

Building Query Expressions 52
Delegates Versus Expression Trees 53
Expression Trees 55

Query Operator Overview 59

Filtering 62
Where 63
Take and Skip 65
TakeWhile and SkipWhile 65
Distinct 66

Contents | vii

Projecting 66
Select 67
SelectMany 72

Joining 82
Join and GroupJoin 83

Ordering 92
OrderBy, OrderByDescending, ThenBy, ThenByDescending 92

Grouping 95
GroupBy 96

Set Operators 100
Concat and Union 100
Intersect and Except 100

Conversion Methods 101
OfType and Cast 101
ToArray, ToList, ToDictionary, ToLookup 103
AsEnumerable and AsQueryable 104

Element Operators 104
First, Last, Single 105
ElementAt 106
DefaultIfEmpty 107

Aggregation Methods 107
Count and LongCount 107
Min and Max 108
Sum and Average 109
Aggregate 110

Quantifiers 111
Contains and Any 111
All and SequenceEqual 112

viii | Contents

Generation Methods 112
Empty 112
Range and Repeat 113

LINQ to XML 113
Architectural Overview 114

X-DOM Overview 115
Loading and Parsing 117
Saving and Serializing 118

Instantiating an X-DOM 118
Functional Construction 119
Specifying Content 120
Automatic Deep Cloning 121

Navigating/Querying an X-DOM 122
Child Node Navigation 122
Parent Navigation 126
Peer Node Navigation 127
Attribute Navigation 128

Updating an X-DOM 128
Simple Value Updates 128
Updating Child Nodes and Attributes 129
Updating Through the Parent 130

Working with Values 133
Setting Values 133
Getting Values 133
Values and Mixed Content Nodes 135
Automatic XText Concatenation 136

Contents | ix

Documents and Declarations 136
XDocument 136
XML Declarations 139

Names and Namespaces 140
Specifying Namespaces in the X-DOM 142
The X-DOM and Default Namespaces 143
Prefixes 145

Projecting into an X-DOM 147
Eliminating Empty Elements 149
Streaming a Projection 150
Transforming an X-DOM 151

Index 153

1

LINQ Pocket Reference

LINQ, or Language Integrated Query, allows you to write
structured type-safe queries over local object collections and
remote data sources. It is a new feature of C# 3.0 and .NET
Framework 3.5.

LINQ lets you query any collection implementing
IEnumerable<>, whether an array, list, XML DOM, or remote
data source (such as a table in SQL Server). LINQ offers the
benefits of both compile-time type checking and dynamic
query composition.

The core types that support LINQ are defined in the System.
Linq and System.Linq.Expressions namespaces in the System.
Core assembly.

NOTE

The examples in this book mirror the examples in Chap-
ters 8–10 of C# 3.0 in a Nutshell (O’Reilly) and are pre-
loaded into an interactive querying tool called LINQPad.
You can download LINQPad from http://www.linqpad.net/.

Getting Started
The basic units of data in LINQ are sequences and elements.
A sequence is any object that implements the generic
IEnumerable interface, and an element is each item in the
sequence. In the following example, names is a sequence, and
Tom, Dick, and Harry are elements:

http://www.linqpad.net/

2 | LINQ Pocket Reference

string[] names = { "Tom", "Dick", "Harry" };

We call such a sequence a local sequence because it repre-
sents a local collection of objects in memory.

A query operator is a method that transforms a sequence. A
typical query operator accepts an input sequence and emits a
transformed output sequence. In the Enumerable class in
System.Linq, there are around 40 query operators, all imple-
mented as static extension methods, called standard query
operators.

NOTE

LINQ also supports sequences that can be dynamically fed
from a remote data source such as a SQL Server. These se-
quences additionally implement the IQueryable<> inter-
face and are supported through a matching set of standard
query operators in the Queryable class. For more informa-
tion, see the upcoming “Interpreted Queries” section.

A query is an expression that transforms sequences with
query operators. The simplest query comprises one input
sequence and one operator. For instance, we can apply the
Where operator on a simple array to extract those whose
length is at least four characters as follows:

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> filteredNames =
 System.Linq.Enumerable.Where (
 names, n => n.Length >= 4);

foreach (string n in filteredNames)
 Console.Write (n + "|"); // Dick|Harry|

Because the standard query operators are implemented as
extension methods, we can call Where directly on names—as
though it were an instance method:

IEnumerable<string> filteredNames =
names.Where (n => n.Length >= 4);

Getting Started | 3

For this to compile, you must import the System.Linq
namespace. Here’s a complete example:

using System;
using System.Linq;

class LinqDemo
{
 static void Main()
 {
 string[] names = { "Tom", "Dick", "Harry" };
 IEnumerable<string> filteredNames =
 names.Where (n => n.Length >= 4);
 foreach (string name in filteredNames)
 Console.Write (name + "|");
 }
}

// RESULT: Dick|Harry|

NOTE

If you are unfamiliar with C#’s lambda expressions, ex-
tension methods, or implicit typing, visit www.albahari.
com/cs3primer.

We can further shorten our query by implicitly typing
filteredNames:

var filteredNames = names.Where (n => n.Length >= 4);

Most query operators accept a lambda expression as an argu-
ment. The lambda expression helps guide and shape the
query. In our example, the lambda expression is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this
case, the input argument n represents each name in the array
and is of type string. The Where operator requires that the
lambda expression return a bool value, which if true, indi-
cates that the element should be included in the output
sequence.

4 | LINQ Pocket Reference

In this book, we describe such queries as lambda queries. C#
also defines a special syntax for writing queries, called query
comprehension syntax. Here’s the preceding query expressed
in comprehension syntax:

IEnumerable<string> filteredNames =
 from n in names
 where n.Contains ("a")
 select n;

Lambda syntax and comprehension syntax are complemen-
tary. In the following sections, we explore each in more
detail.

Lambda Queries
Lambda queries are the most flexible and fundamental. In
this section, we describe how to chain operators to form
more complex queries and introduce several new query
operators.

Chaining Query Operators
To build more complex queries, you add additional query
operators, creating a chain. For example, the following query
extracts all strings containing the letter a, sorts them by
length, and then converts the results to uppercase:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

foreach (string name in query)
 Console.Write (name + "|");

// RESULT: JAY|MARY|HARRY|

Where, OrderBy, and Select are all standard query operators
that resolve to extension methods in the Enumerable class.

Lambda Queries | 5

We already introduced the Where operator, which emits a fil-
tered version of the input sequence. The OrderBy operator
emits a sorted version of its input sequence; the Select method
emits a sequence where each input element is transformed or
projected with a given lambda expression (n.ToUpper(), in this
case). Data flows from left to right through the chain of opera-
tors, so the data is first filtered, then sorted, then projected.

NOTE

A query operator never alters the input sequence; in-
stead, it returns a new sequence. This is consistent with
the functional programming paradigm, from which LINQ
was inspired.

Here are the signatures of each of these extension methods
(with the OrderBy signature simplified slightly):

static IEnumerable<TSource> Where<TSource> (
 this IEnumerable<TSource> source,
 Func<TSource,bool> predicate)

static IEnumerable<TSource> OrderBy<TSource,TKey> (
 this IEnumerable<TSource> source,
 Func<TSource,TKey> keySelector)

static IEnumerable<TResult> Select<TSource,TResult> (
 this IEnumerable<TSource> source,
 Func<TSource,TResult> selector)

When query operators are chained as in this example, the
output sequence of one operator is the input sequence of the
next. The end result resembles a production line of conveyor
belts, as illustrated in Figure 1.

We can construct the identical query progressively as follows:

var filtered = names.Where (n => n.Contains ("a"));
var sorted = filtered.OrderBy (n => n.Length);
var finalQuery = sorted.Select (n => n.ToUpper());

6 | LINQ Pocket Reference

finalQuery is compositionally identical to the query we had
constructed previously. Further, each intermediate step also
comprises a valid query that we can execute:

foreach (string name in filtered)
 Console.Write (name + "|"); // Harry|Mary|Jay|

Console.WriteLine();
foreach (string name in sorted)
 Console.Write (name + "|"); // Jay|Mary|Harry|

Console.WriteLine();
foreach (string name in finalQuery)
 Console.Write (name + "|"); // JAY|MARY|HARRY|

Composing Lambda Expressions
In previous examples, we fed the following lambda expres-
sion to the Where operator:

n => n.Contains ("a") // Input Type = string
 // Return Type = bool

NOTE

An expression returning a bool value is called a predicate.

The purpose of the lambda expression depends on the partic-
ular query operator. With the Where operator, it indicates
whether an element should be included in the output

Figure 1. Chaining query operators

Filter Sorter Projector

Tom
Dick

Harry
M

ary
Jay

JAY
M

ARY
HARRY

n =>
n.Contains ("a")

n =>
n.Length

n =>
n.toUpper()

.Where() .OrderBy .Select

Lambda Queries | 7

sequence. In the case of the OrderBy operator, the lambda
expression maps each element in the input sequence to its
sorting key. With the Select operator, the lambda expres-
sion determines how each element in the input sequence is
transformed before being fed to the output sequence.

NOTE

A lambda expression in a query operator always works on
individual elements in the input sequence—not the se-
quence as a whole.

The lambda expression you supply acts as a callback. The
query operator evaluates your lambda expression upon
demand—typically once per element in the input sequence.
Lambda expressions allow you to feed your own logic into
the query operators. This makes the query operators versa-
tile—as well as simple under the hood. Here’s the complete
implementation of Enumerable.Where, exception handling
aside:

public static IEnumerable<TSource> Where<TSource> (
 this IEnumerable<TSource> source,
 Func<TSource,bool> predicate)
{
 foreach (TSource element in source)
 if (predicate (element))
 yield return element;
}

Lambda expressions and Func signatures

The standard query operators utilize generic Func delegates.
Func is a family of general-purpose generic delegates in
System.Linq, defined with the following intent:

The type arguments in Func appear in the same order they
do in lambda expressions.

8 | LINQ Pocket Reference

Hence, Func<TSource,bool> matches a TSource=>bool lambda
expression—one that accepts a TSource argument and
returns a bool value.

Similarly, Func<TSource,TResult> matches a TSource=>
TResult lambda expression.

Here are all the Func delegate definitions (notice that the
return type is always the last generic argument):

delegate TResult Func <T> ();

delegate TResult Func <T, TResult>
 (T arg1);

delegate TResult Func <T1, T2, TResult>
 (T1 arg1, T2 arg2);

delegate TResult Func <T1, T2, T3, TResult>
 (T1 arg1, T2 arg2, T3 arg3);

delegate TResult Func <T1, T2, T3, T4, TResult>
 (T1 arg1, T2 arg2, T3 arg3, T4 arg4);

Lambda expressions and element typing

The standard query operators use the following generic type
names.

TSource is determined by the input sequence. TResult and
TKey are inferred from your lambda expression. For example,
consider the signature of the Select query operator:

static IEnumerable<TResult> Select<TSource,TResult> (
 this IEnumerable<TSource> source,
Func<TSource,TResult> selector)

Generic type letter Meaning

TSource Element type for the input sequence

TResult Element type for the output sequence—if different from
TSource

TKey Element type for the key used in sorting, grouping, or joining

Lambda Queries | 9

Func<TSource,TResult> matches a TSource=>TResult lambda
expression—one that maps an input element to an output ele-
ment. TSource and TResult are different types, so the lambda
expression can change the type of each element. Further, the
lambda expression determines the output sequence type. The
following query uses Select to transform string type ele-
ments to integer type elements:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };
IEnumerable<int> query = names.Select (n => n.Length);

foreach (int length in query)
 Console.Write (length); // 34543

The compiler infers the type of TResult from the return value
of the lambda expression. In this case, TResult is inferred to
be of type int.

Natural Ordering
The original ordering of elements within an input sequence is
significant in LINQ. Some query operators, such as Take,
Skip, and Reverse, rely on this behavior. The Take operator
outputs the first x elements, discarding the rest; the Skip
operator ignores the first x elements, and outputs the rest;
the Reverse operator reverses the order of elements in the
sequence.

Operators such as Where and Select preserve the original
ordering of the input sequence. LINQ preserves the ordering
of elements in the input sequence wherever possible.

Other Operators
Not all query operators return a sequence. The element oper-
ators extract one element from the input sequence; examples
are First, Last, Single, and ElementAt:

int[] numbers = { 10, 9, 8, 7, 6 };
int firstNumber = numbers.First(); // 10
int lastNumber = numbers.Last(); // 6
int secondNumber = numbers.ElementAt (1); // 9

10 | LINQ Pocket Reference

The aggregation operators return a scalar value, usually of
numeric type:

int count = numbers.Count(); // 5;
int min = numbers.Min(); // 6;

The quantifiers return a bool value:

bool hasTheNumberNine = numbers.Contains (9); // true
bool hasMoreThanZeroElements = numbers.Any(); // true
bool hasAnOddElement = numbers.Any
 (n => n % 2 == 1); // true

Because these operators don’t return a collection, you can’t
call further operators on their results. In other words, they
must appear as the last operator in a query (or subquery).

Some query operators accept two input sequences. Exam-
ples are Concat, which appends one sequence to another, and
Union, which does the same but with duplicates removed.
The joining operators also fall into this category.

Comprehension Queries
C# provides a syntactic shortcut for writing LINQ queries,
called query comprehension syntax, or simply query syntax.

In the preceding section, we wrote a query to extract strings
containing the letter a, sorted by length, and converted to
uppercase. Here’s the same query in comprehension syntax:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
 from n in names
 where n.Contains ("a") // Filter elements
 orderby n.Length // Sort elements
 select n.ToUpper(); // Project each element

 foreach (string name in query)
 Console.Write (name + "/");

// RESULT: JAY/MARY/HARRY/

Comprehension Queries | 11

A comprehension query always starts with a from clause and
ends with either a select or group clause. The from clause
declares an iteration variable (in this case, n), which you can
think of as traversing the input collection—rather like
foreach. Figure 2 illustrates the complete syntax.

The compiler processes comprehension queries by translat-
ing them to lambda syntax. It does this in a fairly mechani-
cal fashion—much like it translates foreach statements into
calls to GetEnumerator and MoveNext. This means that any-
thing you can write in comprehension syntax you can also
write in lambda syntax. The compiler translates our example
query into the following:

Figure 2. Query comprehension syntax

inner
identifier

join in inner
expr

on outer
key

equals inner
key

identifierinto

orderby expr
ascending

descending

,

type-name
from identifier enumerable-exprin

query
continuation

select
expr

from-
clause

group-
clause

id
en

tif
ier

in
toSe

le
ct

M
an

y

join-
clause

let identifier
= expr

where
boolean-expr

orderby-
clause

group expr by expr

12 | LINQ Pocket Reference

IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

The Where, OrderBy, and Select operators then resolve using
the same rules that would apply if the query were written in
lambda syntax. In this case, they bind to extension methods
in the Enumerable class because the System.Linq namespace is
imported and names implements IEnumerable<string>. The
compiler doesn’t specifically favor the Enumerable class, how-
ever, when translating comprehension queries. You can think
of the compiler as mechanically injecting the words “Where,”
“OrderBy,” and “Select” into the statement, and then compil-
ing it as though you’d typed the method names yourself. This
offers flexibility in how they resolve. The operators in the
LINQ to SQL queries that we’ll write in later sections, for
instance, will bind instead to extension methods in Queryable.

WARNING

Without the using System.Linq directive, this query will
not compile because the Where, OrderBy, and Select meth-
ods will have nowhere to bind. Comprehension queries
cannot compile unless you import a namespace (or write
an instance method for every query operator!).

Iteration Variables
The identifier immediately following the from keyword syn-
tax is called the iteration variable. In our examples, the itera-
tion variable n appears in every clause in the query. And yet,
the variable actually enumerates over a different sequence
with each clause:

from n in names // n is our iteration variable
where n.Contains ("a") // n = directly from the array
orderby n.Length // n = after being filtered
select n.ToUpper() // n = after being sorted

Comprehension Queries | 13

This becomes clear when we examine the compiler’s mechan-
ical translation to lambda syntax:

names.Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper())

Each instance of n is privately scoped to each lambda
expression.

Query Syntax Versus SQL Syntax
LINQ comprehension syntax looks superficially like SQL
syntax, yet the two are very different. A LINQ query boils
down to a C# expression, and so it follows standard C#
rules. For example, with LINQ you cannot use a variable
before you declare it. In SQL, you reference a table alias in
the SELECT clause before defining it in a FROM clause.

A subquery in LINQ is just another C# expression and so
requires no special syntax. Subqueries in SQL are subject to
special rules.

With LINQ, data logically flows from left to right through
the query. With SQL, the order is more random.

A LINQ query comprises a conveyor belt, or pipeline, of
operators that accept and emit ordered sequences. An SQL
query comprises a network of clauses that work mostly with
unordered sets.

Query Syntax Versus Lambda Syntax
Comprehension and lambda syntax each have advantages.

Comprehension syntax is much simpler for queries that
involve any of the following:

• A let clause for introducing a new variable alongside the
iteration variable

• SelectMany, Join, or GroupJoin followed by an outer itera-
tion variable reference

14 | LINQ Pocket Reference

(We describe the let clause in the upcoming “Composition
Strategies” section and SelectMany, Join, and GroupJoin in the
upcoming “Projecting” and “Joining” sections.)

The middle ground is queries that involve the simple use of
Where, OrderBy, and Select. Either syntax works well; the
choice here is largely personal.

For queries that comprise a single operator, lambda syntax is
shorter and less cluttered.

Finally, there are many operators that have no query compre-
hension keyword. These require that you use lambda syn-
tax—at least in part, meaning any operator outside of the
following:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
Group, Join, GroupJoin

Mixed Syntax Queries
If a query operator has no comprehension support, you can
mix comprehension and lambda syntax. The only restriction is
that each comprehension component must be complete (i.e.,
start with a from clause and end with a select or group clause).

For example:

int count = (from name in names
 where n.Contains ("a")
 select name
).Count();

There are times when mixed syntax queries offer the highest
“bang for the buck” by far in terms of function and simplic-
ity. It’s important not to unilaterally favor either comprehen-
sion or lambda syntax; otherwise, you’ll be unable to write
mixed syntax queries without feeling a sense of failure!

Deferred Execution | 15

Deferred Execution
An important feature of most query operators is that they
execute not when constructed, but when enumerated (in
other words, when MoveNext is called on its enumerator).
Consider the following query:

var numbers = new List<int>();
numbers.Add (1);

// Build query
IEnumerable<int> query = numbers.Select (n => n * 10);
numbers.Add (2); // Sneak in an extra element

foreach (int n in query)
 Console.Write (n + "|"); // 10|20|

The extra number that we sneaked into the list after con-
structing the query is included in the result because it’s not
until the foreach statement runs that any filtering or sorting
takes place. This is called deferred or lazy evaluation. All
standard query operators provide deferred execution, with
the following exceptions:

• Operators that return a single element or scalar value,
such as First or Count

• The following conversion operators:
ToArray, ToList, ToDictionary, ToLookup

These operators cause immediate query execution because
their result types have no mechanism for providing deferred
execution. The Count method, for instance, returns a simple
integer, which doesn’t then get enumerated. The following
query is executed immediately:

int matches = numbers.Where (n => n < 2).Count(); // 1

Deferred execution is important because it decouples query
construction from query execution. This allows you to con-
struct a query in several steps, and it makes LINQ to SQL
queries possible.

16 | LINQ Pocket Reference

NOTE

Subqueries provide another level of indirection. Every-
thing in a subquery is subject to deferred execution—in-
cluding aggregation and conversion methods (see the
upcoming “Subqueries” section.)

Reevaluation
Deferred execution has another consequence: a deferred exe-
cution query is reevaluated when you reenumerate:

var numbers = new List<int>() { 1, 2 };

IEnumerable<int> query = numbers.Select (n => n * 10);
foreach (int n in query)
 Console.Write (n + "|"); // 10|20|

numbers.Clear();
foreach (int n in query)
 Console.Write (n + "|"); // <nothing>

There are a couple of reasons why reevaluation is sometimes
disadvantageous:

• Sometimes you want to “freeze” or cache the results at a
certain point in time.

• Some queries are computationally intensive (or rely on
querying a remote database), so you don’t want to
unnecessarily repeat them.

You can defeat reevaluation by calling a conversion opera-
tor, such as ToArray or ToList. ToArray copies the output of a
query to an array; ToList copies to a generic List<>:

var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
 .Select (n => n * 10)
 .ToList(); // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count); // Still 2

Deferred Execution | 17

Outer Variables
If your query’s lambda expressions reference local variables,
these variables are captured and thus are subject to outer
variable semantics. This means that what matters is the
variable’s value at the time the query is executed—not at the
time the variable is captured:

int[] numbers = { 1, 2 };

int factor = 10; // We capture this variable below:
var query = numbers.Select (n => n * factor);

factor = 20; // Change captured variable's value
foreach (int n in query)
 Console.Write (n + "|"); // 20|40|

This can be a trap when building up a query within a foreach
loop. The following code, for instance, requires the use of a
temporary variable to successfully strip all vowels from a
string:

IEnumerable<char> query = "Not what you might expect";
foreach (char vowel in "aeiou")
{
 char temp = vowel;
 query = query.Where (c => c != temp);
}

Without the temporary variable, the query will use the most
recent value of vowel (“u”) on each successive filter, so only
the “u” characters will be removed.

How Deferred Execution Works
Query operators provide deferred execution by returning
decorator sequences.

Unlike a traditional collection class, such as an array or linked
list, a decorator sequence has no backing structure of its own
to store elements. Instead, it wraps another sequence that you
supply at runtime, to which it maintains a permanent

18 | LINQ Pocket Reference

dependency. Whenever you request data from a decorator, it
in turn must request data from the wrapped input sequence.

NOTE

The query operator’s transformation constitutes the “dec-
oration.” If the output sequence performed no transfor-
mation, it would be a proxy rather than a decorator.

Calling Where merely constructs the decorator wrapper
sequence, holding a reference to the input sequence, the
lambda expression, and any other arguments supplied. The
input sequence is enumerated only when the decorator is
enumerated.

Figure 3 illustrates the composition of the following query:

IEnumerable<int> lessThanTen =
 new int[] { 5, 12, 3 }.Where (n => n < 10);

When you enumerate lessThanTen, you’re, in effect, query-
ing the array through the Where decorator.

The good news—if you ever want to write your own query
operator—is that implementing a decorator sequence is easy
with a C# iterator. Here’s how you can write your own
Select method:

Figure 3. Decorator sequence

Where
Decorator

predicate

lessThanTen

Array

5
12
3

n =>
n < 10

Deferred Execution | 19

static IEnumerable<TResult> Select<TSource,TResult> (
 this IEnumerable<TSource> source,
 Func<TSource,TResult> selector)
{
 foreach (TSource element in source)
 yield return selector (element);
}

This method is an iterator by virtue of the yield return state-
ment. Functionally, it’s a shortcut for the following:

static IEnumerable<TResult> Select<TSource,TResult> (
 this IEnumerable<TSource> source,
 Func<TSource,TResult> selector)
{
 return new SeLectSequence (source, selector);
}

where SeLectSequence is a (compiler-written) class whose
enumerator encapsulates the logic in the iterator method.

Hence, when you call an operator such as Select or Where,
you’re doing nothing more than instantiating an enumerable
class that decorates the input sequence.

Chaining Decorators
Chaining query operators creates a layering of decorators.
Consider the following query:

IEnumerable<int> query = new int[] { 5, 12, 3 }
 .Where (n => n < 10)
 .OrderBy (n => n)
 .Select (n => n * 10);

Each query operator instantiates a new decorator that wraps
the previous sequence—rather like a Russian doll. The object
model of this query is illustrated in Figure 4. Note that this
object model is fully constructed prior to any enumeration.

20 | LINQ Pocket Reference

When you enumerate query, you’re querying the original
array, transformed through a layering or chain of decorators.

NOTE

Adding ToList onto the end of this query would cause the
preceding operators to execute right away, collapsing the
whole object model into a single list.

A feature of deferred execution is that you build the identical
object model if you compose the query progressively:

IEnumerable<int>
 source = new int[] { 5, 12, 3 },
 filtered = source .Where (n => n < 10),
 sorted = filtered .OrderBy (n => n),
 query = sorted .Select (n => n * 10);

How Queries Are Executed
Here are the results of enumerating the preceding query:

foreach (int n in query)
 Console.Write (n + "/"); // 30/50/

Behind the scenes, the foreach calls GetEnumerator on Select’s
decorator (the last or outermost operator), which kicks

Figure 4. Layered decorator sequences

Where
Decorator

predicate

Array

5
12
3

n =>
n < 10

OrderBy
Decorator

keySelector

n => n

Select
Decorator

selector

n =>
n * 10

requests for data

data

Lambda
expressions
compiled to

delegates

Deferred Execution | 21

everything off. The result is a chain of enumerators that struc-
turally mirrors the chain of decorator sequences. Figure 5 illus-
trates the flow of execution as enumeration proceeds.

Recall that a query is like a production line of conveyor belts.
Extending this analogy, we can say a LINQ query is a lazy
production line, where the conveyor belts and lambda work-
ers roll elements only upon demand. Constructing a query
creates a production line—with everything in place—but
with nothing rolling. Then when the consumer requests an
element (enumerates over the query), the rightmost con-
veyor belt activates; this in turn triggers the others to roll—as
and when input sequence elements are needed. LINQ fol-
lows a demand-driven pull model, rather than a supply-
driven push model. This is important—as we’ll see later—in
allowing LINQ to scale to querying SQL databases.

Figure 5. Execution of a local query

W
he

re
 En

um
er

at
or

next

Or
de

rB
y E

nu
m

er
at

or

Se
le

ct
 En

um
er

at
or

next

next

Ar
ra

y E
nu

m
er

at
or

5
5

next
next
12

next
3

3
3

Co
ns

um
er

next

30
next

5
50

requests for datadata

ex
ec

ut
io

n

next

22 | LINQ Pocket Reference

Subqueries
A subquery is a query contained within another query’s
lambda expression. The following example uses a subquery
to sort musicians by their last name:

string[] musos =
 { "David Gilmour", "Roger Waters", "Rick Wright" };

IEnumerable<string> query =
 musos.OrderBy (m => m.Split().Last());

m.Split converts each string into a collection of words, upon
which we then call the Last query operator. Last is the sub-
query; query references the outer query.

Subqueries are permitted because you can put any valid C#
expression on the right side of a lambda. A subquery is simply
another C# expression, meaning that the rules for subqueries
are a consequence of the rules for lambda expressions (and the
behavior of query operators in general).

A subquery is privately scoped to the enclosing expression
and is able to reference the outer lambda argument (or itera-
tion variable in comprehension syntax).

Last is a very simple subquery. The next query retrieves all
strings in an array whose length matches that of the shortest
string:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> outerQuery = names
 .Where (n => n.Length ==

names.OrderBy (n2 => n2.Length)
 .Select (n2 => n2.Length).First()
);

// RESULT: Tom, Jay

Here’s the same thing in comprehension syntax:

Subqueries | 23

IEnumerable<string> comprehension =
 from n in names
 where n.Length ==
 (from n2 in names
 orderby n2.Length
 select n2.Length).First()
 select n;

Because the outer iteration variable (n) is in scope for a sub-
query, we cannot reuse n as the subquery’s iteration variable.

A subquery is executed whenever the enclosing lambda
expression is evaluated. This means a subquery is executed
upon demand, at the discretion of the outer query. You could
say that execution proceeds from the outside in. Local que-
ries follow this model literally; interpreted queries (e.g.,
LINQ to SQL queries) follow this model conceptually.

The subquery executes as and when required to feed the
outer query. In our example, the subquery (the top conveyor
belt in Figure 6) executes once for every outer loop iteration.

Figure 6. Subquery composition

Sorter Projector

Tom
Dick

Harry
M

ary
Jay

n2 =>
n2.Length

n2 =>
n2.Length

.OrderBy .Select

.First()

n => n
n =>
n.Length==

Filter Projector

Tom
Dick

Harry
M

ary
Jay

.Select.Where()

TomJay

Subquery

Outer
Query

3

24 | LINQ Pocket Reference

The preceding subquery can be expressed more succinctly as
follows:

IEnumerable<string> query =
 from n in names
 where n.Length ==
 names.OrderBy (n2 => n2.Length).First().Length
 select n;

With the Min aggregation function, it can be simplified further:

IEnumerable<string> query =
 from n in names
 where n.Length == names.Min (n2 => n2.Length)
 select n;

In the upcoming “Interpreted Queries” section, we describe
how remote sources such as SQL tables can be queried. Our
example makes an ideal LINQ to SQL query because it
would be processed as a unit, requiring only one round trip
to the database server. This query, however, is inefficient for
a local collection because the subquery is recalculated on
each outer loop iteration. We can avoid this inefficiency by
running the subquery separately (so that it’s no longer a
subquery):

int shortest = names.Min (n => n.Length);

IEnumerable<string> query = from n in names
 where n.Length == shortest
 select n;

NOTE

Factoring out subqueries in this manner is nearly always
desirable when querying local collections. An exception is
when the subquery is correlated, meaning that it referenc-
es the outer iteration variable. We explore correlated sub-
queries later in the “Projecting” section.

Composition Strategies | 25

Subqueries and Deferred Execution
An element or aggregation operator such as First or Count in
a subquery doesn’t force the outer query into immediate exe-
cution—deferred execution still holds for the outer query.
This is because subqueries are called indirectly—through a
delegate in the case of a local query, or through an expres-
sion tree in the case of an interpreted query.

An interesting case arises when you include a subquery
within a Select expression. In the case of a local query,
you’re actually projecting a sequence of queries—each itself
subject to deferred execution. The effect is generally trans-
parent, and it serves to further improve efficiency.

Composition Strategies
In this section, we describe three strategies for building more
complex queries:

• Progressive query construction

• Using the into keyword

• Wrapping queries

All are chaining strategies and produce identical runtime
queries.

Progressive Query Building
At the start of the chapter, we demonstrated how you could
build a lambda query progressively:

var filtered = names.Where (n => n.Contains ("a"));
var sorted = filtered.OrderBy (n => n);
var query = sorted.Select (n => n.ToUpper());

Because each of the participating query operators returns a
decorator sequence, the resultant query is the same chain or
layering of decorators that you would get from a single-
expression query. There are a couple of potential benefits,
however, to building queries progressively:

26 | LINQ Pocket Reference

• It can make queries easier to write.

• You can add query operators conditionally.

A progressive approach is often useful in comprehension
queries. To illustrate, imagine we wanted to use Regex to
remove all vowels from a list of names, and then present in
alphabetical order those whose length is still more than two
characters. In lambda syntax, we could write this query as a
single expression—by projecting before we filter:

IEnumerable<string> query = names
 .Select (n => Regex.Replace (n, "[aeiou]", ""))
 .Where (n => n.Length > 2)
 .OrderBy (n => n);

RESULT: { "Dck", "Hrry", "Mry" }

Translating this directly to comprehension syntax is trouble-
some because comprehension clauses must appear in where-
orderby-select order to be recognized by the compiler. And
if we rearranged the query to project last, the result would be
different:

IEnumerable<string> query =
 from n in names
 where n.Length > 2
 orderby n
 select Regex.Replace (n, "[aeiou]", "");

RESULT: { "Dck", "Hrry", "Jy", "Mry", "Tm" }

Fortunately, there are a number of ways to get the original
result in comprehension syntax. The first is by querying
progressively:

IEnumerable<string> query =
 from n in names
 select Regex.Replace (n, "[aeiou]", "");

query = from n in query
 where n.Length > 2
 orderby n
 select n;

RESULT: { "Dck", "Hrry", "Mry" }

Composition Strategies | 27

The into Keyword
The into keyword lets you “continue” a query after a projec-
tion, and is a shortcut for progressively querying. With into,
we can rewrite the preceding query as:

IEnumerable<string> query =
 from n in names
 select Regex.Replace (n, "[aeiou]", "")
 into noVowel
 where noVowel.Length > 2
 orderby noVowel
 select noVowel;

NOTE

The into keyword is interpreted in two very different
ways in comprehension syntax, depending on context.
The meaning we’re describing now is for signaling query
continuation (the other is for signaling a GroupJoin).

The only place you can use into is after a select or group
clause. into “restarts” a query, allowing you to introduce
fresh where, orderby, and select clauses.

NOTE

Although it’s easiest to think of into as restarting a query
from the perspective of comprehension syntax, it’s all one
query when translated to its final lambda form. Hence,
there’s no intrinsic performance hit with into. Nor do
you lose any points for its use!

The equivalent of into in lambda syntax is simply a longer
chain of operators.

28 | LINQ Pocket Reference

Scoping rules

All query variables are out of scope following an into key-
word. The following will not compile:

var query =
 from n1 in names
 select n1.ToUpper()
 into n2
 where n1.Contains ("x") // Illegal: n1 out of scope.
 select n2;

To see why, consider how this maps to lambda syntax:

var query = names
 .Select (n1 => n1.ToUpper())
 .Where (n2 => n1.Contains ("x"));

The original name (n1) is lost by the time the Where filter
runs. Where’s input sequence contains only uppercase names,
so it cannot filter based on n1.

Wrapping Queries
A query built progressively can be formulated into a single
statement by wrapping one query around another. In gen-
eral terms:

var tempQuery = tempQueryExpr
var finalQuery = from ... in tempQuery ...

can be reformulated as:

var finalQuery = from ... in (tempQueryExpr)

Wrapping is semantically identical to progressive query
building or using the into keyword (without the intermedi-
ate variable). The end result in all cases is a linear chain of
query operators. For example, consider the following query:

IEnumerable<string> query =
 from n in names
 select Regex.Replace (n, "[aeiou]", "");

Composition Strategies | 29

query = from n in query
 where n.Length > 2
 orderby n
 select n;

Reformulated in wrapped form, it’s this:

IEnumerable<string> query =
 from n1 in
 (
 from n2 in names
 select Regex.Replace (n2, "[aeiou]", "")
)
 where n1.Length > 2 orderby n1 select n1;

When converted to lambda syntax, the result is the same lin-
ear chain of operators as in previous examples:

IEnumerable<string> query = names
 .Select (n => Regex.Replace (n, "[aeiou]", ""))
 .Where (n => n.Length > 2)
 .OrderBy (n => n);

(The compiler does not emit the final .Select (n => n)
because it’s redundant.)

Wrapped queries can be confusing because they resemble the
subqueries we wrote earlier: both have the concept of an
inner and outer query. When converted to lambda syntax,
however, you can see that wrapping is simply a strategy for
sequentially chaining operators. The end result bears no
resemblance to a subquery, which embeds an inner query
within the lambda expression of another.

Returning to a previous analogy, when wrapping, the “inner”
query amounts to the preceding conveyor belts. In contrast, a
subquery rides above a conveyor belt and is activated upon
demand through the conveyor belt’s lambda worker (as illus-
trated earlier in Figure 6).

30 | LINQ Pocket Reference

Projection Strategies

Object Initializers
So far, all our select clauses have projected scalar element
types. With C# object initializers, you can project into more
complex types. For example, suppose, as a first step in a
query, we want to strip vowels from a list of names while still
retaining the original versions alongside for the benefit of
subsequent queries. We can write the following class to
assist:

class TempProjectionItem
{
 public string Original; // Original name
 public string Vowelless; // Vowel-stripped name
}

and then project into it with object initializers:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<TempProjectionItem> temp =
 from n in names
 select new TempProjectionItem
 {
 Original = n,
 Vowelless = Regex.Replace (n, "[aeiou]", "")
 };

The result is of type IEnumerable<TempProjectionItem>,
which we can subsequently query:

IEnumerable<string> query =
 from item in temp
 where item.Vowelless.Length > 2
 select item.Original;

// RESULT: Dick, Harry, Mary

Anonymous Types
Anonymous types allow you to structure your intermediate
results without writing special classes. We can eliminate the

Projection Strategies | 31

TempProjectionItem class in our previous example with anon-
ymous types:

var intermediate = from n in names
 select new
 {
 Original = n,
 Vowelless = Regex.Replace (n, "[aeiou]", "")
 };

IEnumerable<string> query =
 from item in intermediate
 where item.Vowelless.Length > 2
 select item.Original;

This gives the same result as the previous example, but with-
out needing to write a one-off class. The compiler does the
job instead, writing a temporary class with fields that match
the structure of our projection. This means, however, that
the intermediate query has the following type:

IEnumerable <random-compiler-produced-name>

The only way we can declare a variable of this type is with
the var keyword. In this case, var is more than just a clutter
reduction device; it’s a necessity.

We can write the whole query more succinctly with the into
keyword:

var query = from n in names
 select new
 {
 Original = n,
 Vowelless = Regex.Replace (n, "[aeiou]", "")
 }
 into temp
 where temp.Vowelless.Length > 2
 select temp.Original;

Query comprehension syntax provides a shortcut for writing
this kind of query: the let keyword.

32 | LINQ Pocket Reference

The let Keyword
The let keyword introduces a new variable alongside the
iteration variable.

With let, we can write a query extracting strings whose
length excluding vowels exceeds two characters as follows:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
 from n in names
 let vowelless = Regex.Replace (n, "[aeiou]", "")
 where vowelless.Length > 2
 orderby vowelless
 select n; // Thanks to let, n is still in scope.

The compiler resolves a let clause by projecting into a tem-
porary anonymous type that contains both the iteration vari-
able and the new expression variable. In other words, the
compiler translates this query into the preceding example.

let accomplishes two things:

• It projects new elements alongside existing elements.

• It allows an expression to be used repeatedly in a query
without being rewritten.

The let approach is particularly advantageous in this exam-
ple because it allows the select clause to project either the
original name (n) or its vowel-removed version (v).

You can have any number of let statements before or after a
where statement (see Figure 2, earlier). A let statement can
reference variables introduced in earlier let statements (sub-
ject to the boundaries imposed by an into clause). let
reprojects all existing variables transparently.

A let expression need not evaluate a scalar type: sometimes
it’s useful to have it evaluate to a subsequence, for instance.

Interpreted Queries | 33

Interpreted Queries
LINQ provides two parallel architectures: local queries for
local object collections, and interpreted queries for remote
data sources. So far, we’ve examined the architecture of local
queries, which operate over collections implementing
IEnumerable<>. Local queries resolve to query operators in
the Enumerable class, which in turn resolve to chains of deco-
rator sequences. The delegates that they accept—whether
expressed in comprehension syntax, lambda syntax, or tradi-
tional delegates—are fully local to Intermediate Language
(IL) code just as any other C# method.

By contrast, interpreted queries are descriptive. They operate
over sequences that implement IQueryable<>, and they
resolve to the query operators in the Queryable class, which
emit expression trees that are interpreted at runtime.

NOTE

The query operators in Enumerable can actually work with
IQueryable<> sequences. The difficulty is that the result-
ant queries always execute locally on the client—this is
why a second set of query operators is provided in the
Queryable class.

There are two IQueryable implementations in the .NET
Framework:

• LINQ to SQL

• LINQ to Entities

In addition, the AsQueryable extension method generates an
IQueryable wrapper around an ordinary enumerable collec-
tion. We describe AsQueryable in the upcoming “Building
Query Expressions” section.

34 | LINQ Pocket Reference

In this section, we’ll use LINQ to SQL to illustrate inter-
preted query architecture.

NOTE

IQueryable<> is an extension of IEnumerable<> with addi-
tional methods for constructing expression trees. Most of
the time, you can ignore the details of these methods;
they’re called indirectly by the Framework. The upcoming
“Building Query Expressions” section covers IQueryable<>
in more detail.

Suppose we create a simple customer table in SQL Server and
populate it with a few names using the following SQL script:

create table Customer
(
 ID int not null primary key,
 Name varchar(30)
)
insert Customer values (1, 'Tom')
insert Customer values (2, 'Dick')
insert Customer values (3, 'Harry')
insert Customer values (4, 'Mary')
insert Customer values (5, 'Jay')

With this table in place, we can write an interpreted LINQ
query in C# to retrieve customers whose names contain the
letter a, as follows:

using System;
using System.Linq;
using System.Data.Linq;
using System.Data.Linq.Mapping;

[Table] public class Customer
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public string Name;
}

class Test
{

Interpreted Queries | 35

 static void Main()
 {
 var dataContext = new DataContext ("cx string...");

 Table<Customer> customers =
 dataContext.GetTable <Customer>();

 IQueryable<string> query = from c in customers
 where c.Name.Contains ("a")
 orderby c.Name.Length
 select c.Name.ToUpper();

 foreach (string name in query)
 Console.WriteLine (name);
 }
}

LINQ to SQL translates this query into the following SQL:

SELECT UPPER([t0].[Name]) AS [value]
FROM [Customer] AS [t0]
WHERE [t0].[Name] LIKE '%a%'
ORDER BY LEN([t0].[Name])

with the following end result:

JAY
MARY
HARRY

How Interpreted Queries Work
Let’s examine how the preceding query is processed.

First, the compiler converts the query from comprehension to
lambda syntax. This is done exactly as it is with local queries:

IQueryable<string> query = customers
 .Where (n => n.Name.Contains ("a"))
 .OrderBy (n => n.Name.Length)
 .Select (n => n.Name.ToUpper());

Next, the compiler resolves the query operator methods.
Here’s where local and interpreted queries differ—inter-
preted queries resolve to query operators in the Queryable
class instead of the Enumerable class.

36 | LINQ Pocket Reference

To see why, we need to look at the customers variable, the
source upon which the whole query builds. customers is of
type Table<>, which implements IQueryable<> (a subtype of
IEnumerable<>). This means the compiler has a choice in
resolving Where: it could call the extension method in
Enumerable, or the following extension method in Queryable:

public static IQueryable<TSource> Where<TSource> (
 this IQueryable<TSource> source,
 Expression <Func<TSource,bool>> predicate)

The compiler chooses Queryable.Where because its signature
is a more specific match.

Note that Queryable.Where accepts a predicate wrapped in an
Expression<TDelegate> type. This instructs the compiler to
translate the supplied lambda expression—in other words,
n=>n.Name.Contains("a")—to an expression tree rather than a
compiled delegate. An expression tree is an object model
based on the types in System.Linq.Expressions that can be
inspected at runtime (so that LINQ to SQL can later trans-
late it to an SQL statement).

Because Queryable.Where also returns IQueryable<>, the same
process follows with the OrderBy and Select operators. The
end result is illustrated in Figure 7. In the shaded box is an
expression tree describing the entire query, which can be tra-
versed at runtime.

Execution

Interpreted queries follow a deferred execution model—just
like local queries. This means that the SQL statement is not
generated until you start enumerating the query. Further,
enumerating the same query twice results in the database
being queried twice.

Under the cover, interpreted queries differ from local queries
in how they execute. When you enumerate over an inter-
preted query, the outermost sequence runs a program that
traverses the entire expression tree, processing it as a unit. In
our example, LINQ to SQL translates the expression tree to a

Interpreted Queries | 37

SQL statement, which it then executes, yielding the results as
a sequence.

NOTE

To work, LINQ to SQL needs some clues as to the sche-
ma of the database. The Table and Column attributes that
we applied to the Customer class serve just this function.
The upcoming “LINQ to SQL” section describes these at-
tributes in more detail.

We said previously that a LINQ query is like a production
line. When you enumerate an IQueryable conveyor belt,
though, it doesn’t start up the whole production line, as it
does with a local query. Instead, just the IQueryable belt
starts up, with a special enumerator that calls upon a produc-
tion manager. The manager reviews the entire production
line—which consists not of compiled code, but of dummies
(method call expressions) with instructions pasted to their
foreheads (lambda expression trees). The manager then

Figure 7. Interpreted query composition

DataQuery<string>

Expression

IQueryable<string>

“Select” expression

“OrderBy” expression

“Where” expression

empty
shells

Query Expressions

Table<Customer>

IQueryable<Customer>

Database

Method call expressions

Expression

(Customer c) =>
c.Name.ToUpper()

Expression

(Customer c) =>
c.Name.Length

Expression

(Customer c) =>
c.Name.Contains
("A")

Lambda expressions

38 | LINQ Pocket Reference

traverses all the expressions, in this case transcribing them to
a single piece of paper (an SQL statement)—which it then
executes—feeding the results back to the consumer. Only
one belt turns; the rest of the production line is a network of
empty shells, existing just to describe what has to be done.

This has some practical implications. For instance, with local
queries, you can write your own query methods (fairly easily
with iterators) and then use them to supplement the pre-
defined set. With remote queries, this is difficult, even unde-
sirable. If you wrote a MyWhere extension method accepting
IQueryable<>, it would be like putting your own dummy into
the production line. The production manager wouldn’t know
what to do with your dummy. Even if you intervened at this
stage, your solution would be hard wired to a particular pro-
vider, such as LINQ to SQL, and would not work with other
IQueryable implementations. Part of the benefit of having a
standard set of methods in Queryable is that they define a
standard vocabulary for querying any remote collection. As
soon as you try to extend the vocabulary, you’re no longer
interoperable.

Another consequence of this model is that an IQueryable
provider may be unable to cope with some queries—even if
you stick to the standard methods. LINQ to SQL, for
instance, is limited by the capabilities of the database server;
some LINQ queries have no SQL translation. If you’re famil-
iar with SQL, you’ll have a good intuition for what these are,
although at times, you will have to experiment to see what
causes a runtime error; it can be surprising what does work!
Your chances with LINQ to SQL are best with the latest ver-
sion of Microsoft SQL Server.

AsEnumerable
Enumerable.AsEnumerable is the simplest of all query opera-
tors. Here’s its complete definition:

Interpreted Queries | 39

public static IEnumerable<TSource> AsEnumerable<TSource>
 (this IEnumerable<TSource> source)
{
 return source;
}

Its purpose is to cast an IQueryable<T> sequence to
IEnumerable<T>, forcing subsequent query operators to bind
to Enumerable operators instead of Queryable operators. This
causes the remainder of the query to execute locally.

To illustrate, suppose we had a MedicalArticles table in SQL
Server and wanted to use LINQ to SQL to retrieve all articles
on influenza whose abstract contained fewer than 100 words.
For the latter predicate, we need a regular expression:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

var query = dataContext.MedicalArticles
 .Where (article => article.Topic == "influenza" &&

wordCounter.Matches (article.Abstract).Count < 100);

The problem is that SQL Server doesn’t support regular
expressions, so LINQ to SQL throws an exception,
complaining that the query cannot be translated to SQL. We
can solve this by querying in two steps: first retrieve all arti-
cles on influenza through a LINQ to SQL query, and then fil-
ter locally for abstracts fewer than 100 words:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

IEnumerable<MedicalArticle> sqlQuery =
 dataContext.MedicalArticles
 .Where (article => article.Topic == "influenza");

IEnumerable<MedicalArticle> localQuery = sqlQuery
 .Where (article =>
 wordCounter.Matches (article.Abstract).Count < 100);

Because sqlQuery is of type IEnumerable<MedicalArticle>, the
second query binds to the local query operators, forcing that
part of the filtering to run on the client.

40 | LINQ Pocket Reference

With AsEnumerable, we can do the same in a single query:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

var query = dataContext.MedicalArticles
 .Where (article => article.Topic == "influenza")
 .AsEnumerable()
 .Where (article =>
 wordCounter.Matches (article.Abstract).Count < 100);

An alternative to calling AsEnumerable is to call ToArray or
ToList. The advantage of AsEnumerable is that it doesn’t force
immediate query execution, nor does it create any storage
structure.

NOTE

Moving query processing from the database server to the
client can hurt performance, especially if it means retriev-
ing more rows. A more efficient (though more complex)
way to solve our example would be to use SQL CLR inte-
gration to expose a function on the database that imple-
mented the regular expression.

LINQ to SQL
Throughout this book, we rely on LINQ to SQL to demon-
strate interpreted queries. This section examines the key fea-
tures of this technology.

LINQ to SQL Entity Classes
LINQ to SQL allows you to use any class to represent data,
as long as you decorate it with appropriate attributes. Here’s
a simple example:

[Table]
public class Customer
{
 [Column(IsPrimaryKey=true)]
 public int ID;

LINQ to SQL | 41

 [Column]
 public string Name;
}

The [Table] attribute, in the System.Data.Linq.Mapping
namespace, tells LINQ to SQL that an object of this type rep-
resents a row in a database table. By default, it assumes the
table name matches the class name; if this is not the case,
you can specify the table name as follows:

[Table (Name="Customers")]

A class decorated with the [Table] attribute is called an entity
in LINQ to SQL. To be useful, its structure must closely—or
exactly—match that of a database table, making it a low-
level construct.

The [Column] attribute flags a field or property that maps to a
column in a table. If the column name differs from the field or
property name, you can specify the column name as follows:

[Column (Name="FullName")]
public string Name;

The IsPrimaryKey property in the [Column] attribute indi-
cates that the column partakes in the table’s primary key. It
is required for maintaining object identity, as well as for
allowing updates to be written back to the database.

Instead of defining public fields, you can define public prop-
erties in conjunction with private fields. This allows you to
write validation logic into the property accessors. If you take
this route, you can optionally instruct LINQ to SQL to
bypass your property accessors and write to the field directly
when populating from the database:

string _name;

[Column (Storage="_name")]
public string Name
{ get { return _name; } set { _name = value; } }

42 | LINQ Pocket Reference

Column(Storage="_name") tells LINQ to SQL to write directly
to the _name field (rather than the Name property) when popu-
lating the entity. LINQ to SQL’s use of reflection allows the
field to be private—as in this example.

DataContext
Once you’ve defined entity classes, you start querying by
instantiating a DataContext object and then calling GetTable
on it. The following example uses the Customer class defined
originally:

var dataContext = new DataContext ("cx string...");
Table<Customer> customers =
 dataContext.GetTable <Customer>();

// Print number of rows in table
Console.WriteLine (customers.Count());

// Retrieves Customer with ID of 2
Customer cust = customers.Single (c => c.ID == 2);

NOTE

The Single operator is ideal for retrieving a row by prima-
ry key. Unlike First, it throws an exception if more than
one element is returned.

A DataContext object does two things. First, it acts as a fac-
tory for generating tables that you can query. Second, it
keeps track of any changes that you make to your entities so
that you can write them back:

var dataContext = new DataContext ("cx string...");
Table<Customer> customers =
 dataContext.GetTable <Customer>();
Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
dataContext.SubmitChanges();

LINQ to SQL | 43

A DataContext object keeps track of all the entities it instanti-
ates, so it can feed the same ones back to you whenever you
request the same rows in a table. In other words, in its life-
time a DataContext object will never emit two separate enti-
ties that refer to the same row in a table (where a row is
identified by primary key).

NOTE

Set ObjectTrackingEnabled to false on the DataContext ob-
ject to disable this behavior. (Disabling object tracking also
prevents you from submitting updates to the data.)

To illustrate object tracking, suppose the customer whose
name is alphabetically first also has the lowest ID. In the fol-
lowing example, a and b will reference the same object:

var dataContext = new DataContext ("cx string...");
Table<Customer> customers =
 dataContext.GetTable <Customer>();

Customer a = customers.OrderBy (c => c.Name).First();
Customer b = customers.OrderBy (c => c.ID).First();

This has a couple of interesting consequences. First, con-
sider what happens when LINQ to SQL encounters the sec-
ond query. It starts by querying the database and obtaining a
single row. It then reads the primary key of this row and per-
forms a lookup in the DataContext’s entity cache. Seeing a
match, it returns the existing object, without updating any
values. So, if another user had just updated that customer’s
Name in the database, the new value would be ignored. This is
essential for avoiding unexpected side effects (the Customer
object could be in use elsewhere) and also for managing con-
currency. If you had altered properties on the Customer object
and not yet called SubmitChanges, you wouldn’t want your
properties automatically overwritten.

44 | LINQ Pocket Reference

NOTE

To get fresh information from the database, you must ei-
ther instantiate a new DataContext or call the DataContext’s
Refresh method, passing in the entity or entities that you
want refreshed.

The second consequence is that you cannot explicitly project
into an entity type—to select a subset of the row’s col-
umns—without causing trouble. For example, if you wanted
to retrieve only a customer’s name, any of the following
approaches is valid:

customers.Select (c => c.Name);
customers.Select (c => new { Name = c.Name });
customers.Select (c => new
 MyCustomType { Name = c.Name });

The following, however, is not:

customers.Select (c => new Customer { Name = c.Name });

This is because the Customer entities will end up partially
populated. So, the next time you perform a query that
requests all customer columns, you get the same cached
Customer objects with only the Name property populated.

NOTE

In a multitier application, you cannot use a single static in-
stance of a DataContext object in the middle tier to handle
all requests because DataContext is not thread-safe. In-
stead, middle-tier methods must create a fresh DataContext
object per client request. This is actually beneficial be-
cause it shifts the burden in handling simultaneous up-
dates to the database server, which is properly equipped
for the job. A database server, for instance, will apply
transaction isolation level semantics.

LINQ to SQL | 45

Automatic Entity Generation
Because LINQ to SQL entity classes need to follow the struc-
ture of their underlying tables, it’s likely that you’ll want to
generate them automatically from an existing database
schema. You can do this either via the SqlMetal command-
line tool or the LINQ to SQL designer in Visual Studio.
These tools generate entities as partial classes so that you can
incorporate additional logic in separate files.

As a bonus, you also get a strongly typed DataContext class,
which is simply a subclassed DataContext with properties that
return tables of each entity type. It saves you calling GetTable:

var dataContext = new MyTypedDataContext ("...");
Table<Customer> customers = dataContext.Customers;
Console.WriteLine (customers.Count());

or simply:

Console.WriteLine (dataContext.Customers.Count());

The LINQ to SQL designer automatically pluralizes identifi-
ers where appropriate. In this example, it’s dataContext.
Customers and not dataContext.Customer—even though the
SQL table and entity class are both called Customer.

Associations
The entity generation tools perform another useful job. For
each relationship defined in your database, properties are
automatically generated on each side that query that relation-
ship. For example, suppose we define a customer and pur-
chase table in a one-to-many relationship:

create table Customer
(
 ID int not null primary key,
 Name varchar(30) not null
)

46 | LINQ Pocket Reference

create table Purchase
(
 ID int not null primary key,
 CustomerID int references Customer (ID),
 Description varchar(30) not null,
 Price decimal not null
)

If we use automatically generated entity classes, we can write
these queries as follows:

var dataContext = new MyTypedDataContext ("...");

// Retrieve all purchases made by the first
// customer (alphabetically):

Customer cust1 = dataContext.Customers
 .OrderBy (c => c.Name).First();

foreach (Purchase p in cust1.Purchases)
 Console.WriteLine (p.Price);

// Retrieve customer who made the lowest value purchase:

Purchase cheapest = dataContext.Purchases
 .OrderBy (p => p.Price).First();

Customer cust2 = cheapest.Customer;

Further, if cust1 and cust2 happened to refer to the same cus-
tomer, c1 and c2 would refer to the same object: cust1==cust2
would return true.

Let’s examine the signature of the automatically generated
Purchases property on the Customer entity:

[Association (Storage="_Purchases",
 OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases
{ get {...} set {...} }

An EntitySet is like a predefined query with a built-in Where
clause that extracts related entities. The [Association]
attribute gives LINQ to SQL the information it needs to
write the query. As with any other type of query, you get
deferred execution. This means that with an EntitySet, the

LINQ to SQL | 47

query doesn’t execute until you enumerate over the related
collection.

Here’s the Purchases.Customer property on the other side of
the relationship:

[Association (Storage="_Customer",
 ThisKey="CustomerID",
 IsForeignKey=true)]
public Customer Customer { get {...} set {...} }

Although the property is of type Customer, its underlying field
(_Customer) is of type EntityRef. The EntityRef type imple-
ments deferred loading, so the related Customer is not
retrieved from the database until you actually ask for it.

Deferred Execution with LINQ to SQL
LINQ to SQL queries are subject to deferred execution, just
like local queries, allowing you to build queries progres-
sively. There is one aspect, however, in which LINQ to SQL
has special deferred execution semantics, and that is when a
subquery appears inside a Select expression:

• With local queries, you get double deferred execution
because from a functional perspective, you’re selecting a
sequence of queries. So, if you enumerate the outer result
sequence, but never enumerate the inner sequences, the
subquery will never execute.

• With LINQ to SQL, the subquery is executed at the same
time as the main outer query. This avoids excessive
round-tripping.

For example, the following query executes in a single round
trip upon reaching the first foreach statement:

var dataContext = new MyTypedDataContext ("...");

var query = from c in dataContext.Customers
 select
 from p in c.Purchases
 select new { c.Name, p.Price };

48 | LINQ Pocket Reference

foreach (var customerPurchaseResults in query)
 foreach (var namePrice in customerPurchaseResults)
 Console.WriteLine (namePrice.Name + " spent " +
 namePrice.Price);

Any EntitySets that you explicitly project are fully popu-
lated in a single round trip:

var query = from c in dataContext.Customers
 select new { c.Name, c.Purchases };

foreach (var row in query)
 foreach (Purchase p in row.Purchases)
 Console.WriteLine (row.Name + " spent " + p.Price);

But if we enumerate EntitySet properties without first hav-
ing projected, deferred execution rules apply. In the follow-
ing example, LINQ to SQL executes another Purchases query
on each loop iteration:

foreach (Customer c in dataContext.Customers)
 foreach (Purchase p in c.Purchases) // + Round-trip
 Console.WriteLine (c.Name + " spent " + p.Price);

This model is advantageous when you want to selectively
execute the inner loop, based on a test that can be per-
formed only on the client:

foreach (Customer c in dataContext.Customers)
 if (myWebService.HasBadCreditHistory (c.ID))
 foreach (Purchase p in c.Purchases) // + Round trip
 Console.WriteLine (...);

We explore Select subqueries in more detail in the upcom-
ing “Projecting” section.

DataLoadOptions
The DataLoadOptions class has two distinct uses:

• It lets you specify, in advance, a filter for EntitySet asso-
ciations (AssociateWith).

• It lets you request that certain EntitySets be eagerly
loaded to lessen round-tripping (LoadWith).

LINQ to SQL | 49

Specifying a filter in advance

Here’s how to use DataLoadOptions’s AssociateWith method:

DataLoadOptions options = new DataLoadOptions();
options.AssociateWith <Customer>
 (c => c.Purchases.Where (p => p.Price > 1000));
dataContext.LoadOptions = options;

This instructs the DataContext instance to always filter a
Customer’s Purchases using the given predicate.

AssociateWith doesn’t change deferred execution semantics.
It simply instructs to implicitly add a particular filter to the
equation when a particular relationship is used.

Eager loading

The second use for a DataLoadOptions is to request that cer-
tain EntitySets be eagerly loaded with their parents. For
instance, suppose you wanted to load all customers and their
purchases in a single SQL round trip. The following does
exactly this:

DataLoadOptions options = new DataLoadOptions();
options.LoadWith <Customer> (c => c.Purchases);
dataContext.LoadOptions = options;

foreach (Customer c in dataContext.Customers)
 foreach (Purchase p in c.Purchases)
 Console.WriteLine (c.Name + " bought a " +
 p.Description);

This instructs that whenever a Customer is retrieved, its
Purchases should be too at the same time. You can also
request that grandchildren be included:

options.LoadWith <Customer> (c => c.Purchases);
options.LoadWith <Purchase> (p => p.PurchaseItems);

You can combine LoadWith with AssociateWith. The follow-
ing instructs that whenever a customer is retrieved, its high-
value purchases should be retrieved in the same round trip:

options.LoadWith <Customer> (c => c.Purchases);
options.AssociateWith <Customer>
 (c => c.Purchases.Where (p => p.Price > 1000));

50 | LINQ Pocket Reference

Updates
LINQ to SQL also keeps track of changes you make to your
entities and allows you to write them back to the database by
calling SubmitChanges on the DataContext object. The Table<>
class provides InsertOnSubmit and DeleteOnSubmit methods
for inserting and deleting rows in a table; here’s how to add a
row to a table:

var dataContext = new MyTypedDataContext ("cx string");

Customer cust = new Customer { ID=1000, Name="Bloggs" };
dataContext.Customers.InsertOnSubmit (cust);
dataContext.SubmitChanges();

We can later retrieve that row, update it, and then delete it:

var dataContext = new MyTypedDataContext ("...");

Customer cust = dataContext.Customers.Single
 (c => c.ID == 1000);
cust.Name = "Bloggs2";
dataContext.SubmitChanges(); // Updates the customer

dataContext.Customers.DeleteOnSubmit (cust);
dataContext.SubmitChanges(); // Deletes the customer

DataContext.SubmitChanges gathers all the changes that were
made to its entities since the DataContext’s creation (or the
last SubmitChanges), and then executes an SQL statement to
write them to the database. Any TransactionScope is hon-
ored; if none is present, it wraps all statements in a new
transaction.

You can also add new or existing rows to an EntitySet by
calling Add. LINQ to SQL automatically populates the for-
eign keys when you do this:

var p1 = new Purchase { ID=100, Description="Bike",
 Price=500 };
var p2 = new Purchase { ID=101, Description="Tools",
 Price=100 };

Customer cust = dataContext.Customers.Single
 (c => c.ID == 1);

LINQ to SQL | 51

cust.Purchases.Add (p1);
cust.Purchases.Remove (p2);

dataContext.SubmitChanges(); // Inserts the purchases

NOTE

If you don’t want the burden of allocating unique keys,
you can use either an auto-incrementing field (IDENTI-
TY in SQL Server) or a Guid for the primary key.

In this example, LINQ to SQL automatically writes 100 into
the CustomerID column of each of the new purchases. (It
knows to do this because of the association that we defined
on the Purchases property):

[Association (Storage="_Purchases",
OtherKey="CustomerID")]

public EntitySet <Purchase> Purchases
{ get {...} set {...} }

If the Customer and Purchase entities were generated by the
Visual Studio designer or SqlMetal, the generated classes
would include further code to keep the two sides of each
relationship in sync. In other words, assigning the Purchase.
Customer property would automatically add the new cus-
tomer to the Customer.Purchases entity set—and vice versa.
We can illustrate this by rewriting the preceding example as
follows:

var dataContext = new MyTypedDataContext ("...");

Customer cust = dataContext.Customers.Single
 (c => c.ID == 1);
new Purchase { ID=100, Description="Bike", Price=500,

Customer=cust };
new Purchase { ID=101, Description="Tools", Price=100,

Customer=cust };

dataContext.SubmitChanges(); // Inserts the purchases

When you remove a row from an EntitySet, its foreign key
field is automatically set to null. The following disassociates
our two recently added purchases from their customer:

52 | LINQ Pocket Reference

var dataContext = new MyTypedDataContext ("...");

Customer cust = dataContext.Customers.Single
 (c => c.ID == 1);

cust.Purchases.Remove
 (cust.Purchases.Single (p => p.ID == 100));
cust.Purchases.Remove
 (cust.Purchases.Single (p => p.ID == 101));

dataContext.SubmitChanges(); // Submit SQL to server

Because this tries to set each purchase’s CustomerID field to
null, Purchase.CustomerID must be nullable in the database—
otherwise, an exception is thrown. (Further, the CustomerID
field or property in the entity class must be a nullable type.)

To delete child entities entirely, remove them from the
Table<> instead:

Customer cust = dataContext.Customers.Single
 (c => c.ID == 1);

var dc = dataContext;
dc.Purchases.DeleteOnSubmit
 (dc.Purchases.Single (p => p.ID == 100));
dc.Purchases.DeleteOnSubmit
 (dc.Purchases.Single (p => p.ID == 101));

dataContext.SubmitChanges(); // Submit SQL to server

Building Query Expressions
So far, when we’ve needed to dynamically compose queries,
we’ve done so by conditionally chaining query operators.
Although this is adequate in many scenarios, sometimes you
need to work at a more granular level and dynamically com-
pose the lambda expressions that feed the operators.

In this section, we’ll assume the following Product class:

[Table] public partial class Product
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public string Description;

Building Query Expressions | 53

 [Column] public bool Discontinued;
 [Column] public DateTime LastSale;
}

Delegates Versus Expression Trees
Recall that:

• Local queries, which use Enumerable operators, take
delegates.

• Interpreted queries, which use Queryable operators, take
expression trees.

We can see this by comparing the signature of the Where
operator in Enumerable and Queryable:

public static IEnumerable<TSource> Where<TSource> (this
IEnumerable<TSource> source,

 Func<TSource,bool> predicate)

public static IQueryable<TSource> Where<TSource> (this
IQueryable<TSource> source,
Expression<Func<TSource,bool>> predicate)

When embedded within a query, a lambda expression looks
identical whether it binds to Enumerable’s operators or
Queryable’s operators:

IEnumerable<Product> q1 = localProducts.Where
 (p => !p.Discontinued);
IQueryable<Product> q2 = sqlProducts.Where
 (p => !p.Discontinued);

When you assign a lambda expression to an intermediate
variable, however, you must be explicit about whether to
resolve to a delegate (i.e., Func<>) or an expression tree (i.e.,
Expression<Func<>>).

Compiling expression trees

You can convert an expression tree to a delegate by calling
Compile. This is of particular value when writing methods
that return reusable expressions. To illustrate, we’ll add a
static method to the Product class that returns a predicate

54 | LINQ Pocket Reference

evaluating to true if a product is not discontinued, and has
sold in the past 30 days:

public partial class Product
{
 public static Expression<Func<Product, bool>>
 IsSelling()
 {
 return p => !p.Discontinued &&
 p.LastSale > DateTime.Now.AddDays (-30);
 }
}

(We’ve defined this in a separate partial class to avoid being
overwritten by an automatic DataContext generator such as
Visual Studio’s LINQ to SQL designer.)

The method just written can be used both in interpreted and
in local queries as follows:

void Test()
{
 var dataContext = new MyTypedDataContext ("...");
 Product[] localProducts =
 dataContext.Products.ToArray();

 IQueryable<Product> sqlQuery =
 dataContext.Products.Where (Product.IsSelling());

 IEnumerable<Product> localQuery =
 localProducts.Where (Product.IsSelling.Compile());
}

NOTE

You cannot convert in the reverse direction, from a dele-
gate to an expression tree. This makes expression trees
more versatile.

AsQueryable

The AsQueryable operator lets you write whole queries that
can run over either local or remote sequences:

Building Query Expressions | 55

IQueryable<Product> FilterSortProducts
 (IQueryable<Product> input)
{
 return from p in input
 where ...
 order by ...
 select p;
}

void Test()
{
 var dataContext = new MyTypedDataContext ("...");
 Product[] localProducts =
 dataContext.Products.ToArray();

 var sqlQuery =
 FilterSortProducts (dataContext.Products);
 var localQuery =
 FilterSortProducts (localProducts.AsQueryable());
 ...
}

AsQueryable wraps IQueryable<> clothing around a local
sequence so that subsequent query operators resolve to
expression trees. When you later enumerate over the result,
the expression trees are implicitly compiled, and the local
sequence enumerates as it would ordinarily.

Expression Trees
We said previously that assigning a lambda expression to a
variable of type Expression<TDelegate> causes the C# com-
piler to emit an expression tree. With some programming
effort, you can do the same thing manually at runtime—in
other words, dynamically build an expression tree from
scratch. The result can be cast to an Expression<TDelegate>
and used in LINQ to SQL queries—or compiled into an ordi-
nary delegate by calling Compile.

56 | LINQ Pocket Reference

The Expression DOM

An expression tree is a miniature code DOM. Each node in
the tree is represented by a type in the System.Linq.
Expressions namespace; these types are illustrated in Figure 8.

The base class for all nodes is the (nongeneric) Expression
class. The generic Expression<TDelegate> class actually means
“typed lambda expression” and might have been named
LambdaExpression<TDelegate> if it weren’t for the clumsiness of
this:

LambdaExpression<Func<Customer,bool>> f = ...

Expression<>’s base type is the (nongeneric) LambdaExpression
class. LamdbaExpression provides type unification for lambda
expression trees: any typed Expression<> can be cast to a
LambdaExpression.

The fact that LambdaExpressions have parameters distin-
guishes them from ordinary Expressions. To create an
expression tree, you don’t instantiate node types directly;
rather, you call static methods provided on the Expression
class. Here are all the methods:

Figure 8. Expression types

Expression

MemberInit
Expression

ListInit
Expression

Invocation
Expression

Constant
Expression

NewArray
Expression

Parameter
Expression

Unary
Expression

Binary
Expression

MethodCall
Expression

Member
Expression

Lambda
Expression

New
Expression

TypeBinary
Expression

Conditional
Expression

Expression<TDelegate>

Building Query Expressions | 57

Figure 9 shows the expression tree that the following assign-
ment creates:

Expression<Func<string, bool>> f = s => s.Length < 5;

We can demonstrate this as follows:

Console.WriteLine (f.Body.NodeType); // LessThan
Console.WriteLine
 (((BinaryExpression) f.Body).Right); // 5

Let’s now build this expression from scratch. The principle is
that you start from the bottom of the tree and work your way
up. The bottommost thing in our tree is a
ParameterExpression, the lambda expression parameter called
"s" of type string:

ParameterExpression p = Expression.Parameter
 (typeof (string), "s");

Add
AddChecked
And
AndAlso
ArrayIndex
ArrayLength
Bind
Call
Coalesce
Condition
Constant
Convert
ConvertChecked
Divide
ElementInit
Equal
ExclusiveOr
Field
GreaterThan
GreaterThanOrEqual
Invoke
Lambda
LeftShift
LessThan
LessThanOrEqual
ListBind
ListInit
MakeBinary

MakeMemberAccess
MakeUnary
MemberBind
MemberInit
Modulo
Multiply
MultiplyChecked
Negate
NegateChecked
New
NewArrayBounds
NewArrayInit
Not
NotEqual
Or
OrElse
Parameter
Power
Property
PropertyOrField
Quote
RightShift
Subtract
SubtractChecked
TypeAs
TypeIs
UnaryPlus

58 | LINQ Pocket Reference

The next step is to build the MemberExpression and
ConstantExpression. In the former case, we need to access
the Length property of our parameter, "s":

MemberExpression stringLength =
 Expression.Property (p, "Length");
ConstantExpression five = Expression.Constant (5);

Next is the LessThan comparison:

BinaryExpression comparison =
 Expression.LessThan (stringLength, five);

The final step is to construct the lambda expression, which
links an expression Body to a collection of parameters:

Expression<Func<string, bool>> lambda =
 Expression.Lambda<Func<string, bool>> (comparison, p);

A convenient way to test our lambda is to compile it to a
delegate:

Func<string, bool> runnable = lambda.Compile();

Console.WriteLine (runnable ("kangaroo")); // False
Console.WriteLine (runnable ("dog")); // True

Figure 9. Expression tree

LambdaExpression
Type = Func<string, bool>

BinaryExpression
NodeType = LessThan

ConstantExpression
Value = 5

MemberExpression
Member.Name = “Length”

Type = System.Int32

ParameterExpression
Name = “s”

Type = System.String

ParameterCollection

Parameters[0]

BodyParameters

RightLeft

Expression

Query Operator Overview | 59

NOTE

The easiest way to figure out which expression type to
use is to examine an existing lambda expression in the Vi-
sual Studio debugger.

A discussion on dynamically building expression predicates
is available online at www.albahari.com/expressions/.

Query Operator Overview
The sections that follow describe each of the LINQ query
operators, as summarized in Table 1.

Table 1. LINQ query operators

Category Operators

Filtering Where, Distinct,
Take, TakeWhile,
Skip, SkipWhile

Projecting Select, SelectMany

Joining Join, GroupJoin

Ordering OrderBy, OrderByDescending,
ThenBy, ThenByDescending, Reverse

Grouping GroupBy

Set Concat, Union, Intersect, Except

Conversion
(import)

OfType, Cast

Conversion
(export)

ToArray, ToList,
ToDictionary, ToLookup,
AsEnumerable, AsQueryable

Element First, FirstOrDefault, Last, LastOrDefault,
Single, SingleOrDefault,
ElementAt, ElementAtOrDefault, DefaultIfEmpty

http://www.albahari.com/expressions/

60 | LINQ Pocket Reference

The examples assume that a names array is defined as follows:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

Examples that use LINQ to SQL assume a typed DataContext
variable called dataContext:

var dataContext = new DemoDataContext();

...

public class DemoDataContext : DataContext
{
 public DemoDataContext (string cxString)
 : base (cxString) { }

 public Table<Customer> Customers
 { get { return GetTable<Customer>(); } }

 public Table<Purchase> Purchases
 { get { return GetTable<Purchase>(); } }
}

[Table] public class Customer
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public string Name;

 [Association (OtherKey="CustomerID")]
public EntitySet<Purchase> Purchases

 = new EntitySet<Purchase>();
}

Aggregation Aggregate, Average,
Count, LongCount,
Sum, Max, Min

Quantifiers All, Any, Contains, SequenceEqual

Generation Empty, Range, Repeat

Table 1. LINQ query operators (continued)

Category Operators

Query Operator Overview | 61

[Table] public class Purchase
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public int? CustomerID;
 [Column] public string Description;
 [Column] public decimal Price;
 [Column] public DateTime Date;

 EntityRef<Customer> custRef;

 [Association (Storage="custRef",
 ThisKey="CustomerID",
 IsForeignKey=true)]
public Customer Customer

 {
 get { return custRef.Entity; }
 set { custRef.Entity = value; }
 }
}

NOTE

The LINQ to SQL entity classes shown are a simplified
version of what automated tools typically produce, and
they do not include code to update the opposing side in a
relationship when their entities have been reassigned.

Here are their corresponding SQL table definitions:

create table Customer
(
 ID int not null primary key,
 Name varchar(30) not null
)
create table Purchase
(
 ID int not null primary key,
 CustomerID int references Customer (ID),
 Description varchar(30) not null,
 Price decimal not null
)

62 | LINQ Pocket Reference

Filtering

NOTE

The “SQL equivalents” column in the reference tables
does not necessarily correspond to what an IQueryable
implementation such as LINQ to SQL will produce.
Rather, it indicates what you’d typically use to do the
same job if you were writing the SQL query yourself.
Where there is no simple translation, the column is left
blank. Where there is no translation at all, the column
reads “Exception thrown.”

Enumerable implementation code, when shown, excludes
checking for null arguments, and indexing predicates.

With each of the filtering methods, you always end up with
either the same number or fewer elements than you started
with. You can never get more! The elements are also identi-
cal when they come out; they are not transformed in any way.

Method Description SQL equivalents

Where Returns a subset of elements
that satisfy a given condition

WHERE

Take Returns the first count
elements, and discards the rest

WHERE ROW_NUMBER()…
or TOP n subquery

Skip Ignores the first count
elements, and returns the rest

WHERE ROW_NUMBER()…
or NOT IN (SELECT TOP n...)

TakeWhile Emits elements from the input
sequence until the predicate is
true

Exception thrown

SkipWhile Ignores elements from the
input sequence until the
predicate is true, and then
emits the rest

Exception thrown

Distinct Returns a collection that
excludes duplicates

SELECT DISTINCT...

Filtering | 63

Where

*Prohibited with LINQ to SQL

Comprehension syntax
where bool-expression

Overview

Where returns the elements from the input sequence that sat-
isfy the given predicate.

For instance:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };
IEnumerable<string> query =
 names.Where (name => name.EndsWith ("y"));

// Result: { "Harry", "Mary", "Jay" }

In comprehension syntax:

IEnumerable<string> query = from n in names
 where n.EndsWith ("y")
 select n;

A where clause can appear more than once in a query, and it
can be interspersed with let clauses:

from n in names
where n.Length > 3
let u = n.ToUpper()
where u.EndsWith ("Y")
select u; // Result: { "HARRY", "MARY" }

Standard C# scoping rules apply to such queries. In other
words, you cannot refer to a variable prior to declaring it
with an iteration variable or a let clause.

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => bool*

64 | LINQ Pocket Reference

Indexed filtering

Where’s predicate optionally accepts a second argument of
type int. This is fed with the position of each element within
the input sequence, allowing the predicate to use this infor-
mation in its filtering decision. For example, the following
skips every second element:

IEnumerable<string> query =
 names.Where ((n, i) => i % 2 == 0);

// Result: { "Tom", "Harry", "Jay" }

An exception is thrown if you use indexed filtering in LINQ
to SQL.

Where in LINQ to SQL

The following methods on string translate to SQL’s LIKE
operator:

Contains, StartsWith, EndsWith

For instance, c.Name.Contains ("abc") translates to customer.
Name LIKE '%abc%' (or more accurately, a parameterized ver-
sion of this). You can perform more complex comparisons by
calling SqlMethods.Like; this method maps directly to SQL’s
LIKE operator. You can also perform order comparison on
strings with string’s CompareTo method; this maps to SQL’s <
and > operators:

dataContext.Purchases.Where (p => p.Description.CompareTo
("C") < 0)

LINQ to SQL also allows you to apply the Contains operator
to a local collection within a filter predicate. For instance:

string[] chosenOnes = { "Tom", "Jay" };

from c in dataContext.Customers
where chosenOnes.Contains (c.Name)
...

This maps to SQL’s IN operator—in other words:

WHERE customer.Name IN ("Tom", "Jay")

Filtering | 65

If the local collection is an array of entities or nonscalar
types, LINQ to SQL may instead emit an EXISTS clause.

Take and Skip

Take emits the first n elements and discards the rest; Skip dis-
cards the first n elements and emits the rest. The two meth-
ods are useful together when implementing a web page,
allowing a user to navigate through a large set of matching
records. For instance, suppose a user searches a book data-
base for the term “mercury” and there are 100 matches. The
following returns the first 20:

IQueryable<Book> query = dataContext.Books
 .Where (b => b.Title.Contains ("mercury"))
 .OrderBy (b => b.Title)
 .Take (20);

The next query returns books 21 to 40:

IQueryable<Book> query = dataContext.Books
 .Where (b => b.Title.Contains ("mercury"))
 .OrderBy (b => b.Title)
 .Skip (20).Take (20);

LINQ to SQL translates Take and Skip to the ROW_NUMBER
function in SQL Server 2005, or a TOP n subquery in earlier
versions of SQL Server.

TakeWhile and SkipWhile

Argument Type

Source sequence IEnumerable<TSource>

Number of elements to take or skip int

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or
(TSource,int) => bool

66 | LINQ Pocket Reference

TakeWhile enumerates the input sequence, emitting each item
until the given predicate is true. It then ignores the remain-
ing elements:

int[] numbers = { 3, 5, 2, 234, 4, 1 };
var takeWhileSmall = numbers.TakeWhile (n => n < 100);

// RESULT: { 3, 5, 2 }

SkipWhile enumerates the input sequence, ignoring each item
until the given predicate is true. It then emits the remaining
elements:

int[] numbers = { 3, 5, 2, 234, 4, 1 };
var skipWhileSmall = numbers.SkipWhile (n => n < 100);

// RESULT: { 234, 4, 1 }

TakeWhile and SkipWhile have no translation to SQL, and
they cause a runtime error if used in a LINQ to SQL query.

Distinct
Distinct returns the input sequence stripped of duplicates.
Only the default equality comparer can be used for equality
comparison. The following returns distinct letters in a string:

char[] distinctLetters =
 "HelloWorld".Distinct().ToArray();
string s = new string (distinctLetters); // HeloWrd

We can call LINQ methods directly on a string because
string implements IEnumerable<char>.

Projecting

Method Description SQL equivalents

Select Transforms each input element with
the given lambda expression

SELECT

SelectMany Transforms each input element, then
flattens and concatenates the
resultant subsequences

INNER JOIN,
LEFT OUTER JOIN,
CROSS JOIN

Projecting | 67

NOTE

For LINQ to SQL queries, Select and SelectMany are the
most versatile joining constructs; for local queries, Join
and GroupJoin are the most efficient joining constructs.

Select

*Comprehension syntax
select projection-expression

Overview

With Select, you always get the same number of elements
that you started with. Each element, however, can be trans-
formed in any manner by the lambda function.

The following selects the names of all fonts installed on the
computer (from System.Drawing):

IEnumerable<string> query =
 from f in FontFamily.Families
 select f.Name;

foreach (string name in query) Console.WriteLine (name);

In this example, the select clause converts a FontFamily
object to its name. Here’s the lambda equivalent:

IEnumerable<string> query =
 FontFamily.Families.Select (f => f.Name);

Select statements are often used to project into anonymous
types:

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => TResult or (TSource,int) => TResulta

a Prohibited with LINQ to SQL

68 | LINQ Pocket Reference

var query =
 from f in FontFamily.Families
 select new
 {
 f.Name,
 LineSpacing = f.GetLineSpacing (FontStyle.Bold)
 };

A projection with no transformation is sometimes used in
comprehension queries to satisfy the requirement that the
query end in a select or group clause. The following selects
fonts supporting strikeout:

IEnumerable<FontFamily> query =
 from f in FontFamily.Families
 where f.IsStyleAvailable (FontStyle.Strikeout)
 select f;

foreach (FontFamily ff in query)
 Console.WriteLine (ff.Name);

In such cases, the compiler omits the projection when trans-
lating to lambda syntax.

Indexed projection

The selector expression can optionally accept an integer
argument, which acts as an indexer, providing the expres-
sion with the position of each input in the input sequence.
This works only with local queries:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = names
 .Select ((s,i) => i + "=" + s);

// RESULT: { "0=Tom", "1=Dick", "2=Harry", ... }

Select subqueries and object hierarchies

You can nest a subquery in a select clause to build an object
hierarchy. The following example returns a collection
describing each directory under D:\source, with a subcollec-
tion of files under each directory:

Projecting | 69

DirectoryInfo[] dirs =
 new DirectoryInfo (@"d:\source").GetDirectories();

var query =
 from d in dirs
 where (d.Attributes & FileAttributes.System) == 0
 select new
 {
 DirectoryName = d.FullName,
 Created = d.CreationTime,
 Files =
 from f in d.GetFiles()
 where (f.Attributes & FileAttributes.Hidden) == 0
 select new { FileName = f.Name, f.Length, }
 };

The inner portion of this query can be called a correlated
subquery. A subquery is correlated if it references an object in
the outer query—in this case, it references d, the directory
being enumerated.

NOTE

A subquery inside a Select allows you to map one object
hierarchy to another or map a relational object model to a
hierarchical object model.

With local queries, a subquery within a Select causes double-
deferred execution. In our example, the files don’t get filtered
or projected until the inner foreach statement enumerates.

Subqueries and joins in LINQ to SQL

Subquery projections work well in LINQ to SQL, and they
can be used to do the work of SQL-style joins. Here’s how
we retrieve each customer’s name along with his high-value
purchases:

var query =
 from c in dataContext.Customers
 select new
 {

70 | LINQ Pocket Reference

 c.Name,
 Purchases =
 from p in dataContext.Purchases
 where p.CustomerID == c.ID && p.Price > 1000
 select new { p.Description, p.Price }
 };

NOTE

This style of query is ideally suited to interpreted queries.
LINQ to SQL processes the outer query and subquery as
a unit, avoiding unnecessary round-tripping. With local
queries, however, it’s inefficient because every combina-
tion of outer and inner element must be enumerated to
get the few matching combinations. A better choice for
local queries is Join or GroupJoin, described in the follow-
ing sections.

This query matches up objects from two disparate collec-
tions, and can be thought of as a “join.” The difference
between this and a conventional database join (or subquery)
is that we’re not flattening the output into a single two-
dimensional result set. We’re mapping the relational data to
hierarchical data rather than to flat data.

Here’s the same query simplified using the Purchases associa-
tion property on the Customer entity:

from c in dataContext.Customers
select new
{
 c.Name,
 Purchases = from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
};

Both queries are analogous to a left outer join in SQL in the
sense that we get all customers in the outer enumeration,
regardless of whether they have any purchases. To emulate
an inner join—where customers without high-value pur-
chases are excluded—we would need to add a filter condi-
tion on the purchases collection:

Projecting | 71

from c in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select new {
 c.Name,
 Purchases =
 from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
 };

This is slightly untidy, however, in that we’ve written the
same predicate (Price > 1000) twice. We can avoid this dupli-
cation with a let clause:

from c in dataContext.Customers
let highValueP = from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
where highValueP.Any()
select new { c.Name, Purchases = highValueP };

This style of query is flexible. By changing Any to Count, for
instance, we can modify the query to retrieve only customers
with at least two high-value purchases:

...
where highValueP.Count() >= 2
select new { c.Name, Purchases = highValueP };

Projecting into concrete types

Projecting into anonymous types is useful in obtaining inter-
mediate results, but not so useful if you want to send a result
set back to a client, for instance, because anonymous types can
exist only as local variables within a method. An alternative is
to use concrete types for projections, such as DataSets or cus-
tom business entity classes. A custom business entity is simply
a class that you write with some properties, similar to a LINQ
to SQL [Table] annotated class, but designed to hide lower-
level (database-related) details. You might exclude foreign key
fields from business entity classes, for instance. Assuming we
wrote custom entity classes called CustomerEntity and
PurchaseEntity, here’s how we could project into them:

72 | LINQ Pocket Reference

IQueryable<CustomerEntity> query =
 from c in dataContext.Customers
 select new CustomerEntity
 {
 Name = c.Name,
 Purchases = (
 from p in c.Purchases
 where p.Price > 1000
 select new PurchaseEntity
 {
 Description = p.Description,
 Value = p.Price
 }
).ToList()
 };

// Force query execution, converting output to a
// more convenient List:
List<CustomerEntity> result = query.ToList();

Notice that so far, we’ve not had to use a Join or SelectMany
statement. This is because we’re maintaining the hierarchi-
cal shape of the data, as illustrated in Figure 10. With LINQ,
you can often avoid the traditional SQL approach of flatten-
ing tables into a two-dimensional result set.

SelectMany

Figure 10. Projecting an object hierarchy

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => IEnumerable<TResult> or
(TSource,int) => IEnumerable<TResult>a

a Prohibited with LINQ to SQL

Flat

Relational HierarchicalSelect-subquery or GroupJoin

Select-subquery or GroupSelectMany or Jo
in

SelectMany

Select-subquery

Projecting | 73

Comprehension syntax
from identifier1 in enumerable-expression1
from identifier2 in enumerable-expression2

Overview

SelectMany concatenates subsequences into a single flat out-
put sequence.

Recall that for each input element, Select yields exactly one
output element. In contrast, SelectMany yields 0..n output
elements. The 0..n elements come from a subsequence or
child sequence that the lambda expression must emit.

SelectMany can be used to expand child sequences, flatten
nested collections, and join two collections into a flat output
sequence. Using the conveyer belt analogy, SelectMany fun-
nels fresh material onto a conveyer belt. With SelectMany,
each input element is the trigger for the introduction of fresh
material. The fresh material is emitted by the selector
lambda expression, and it must be a sequence. In other
words, the lambda expression must emit a child sequence per
input element. The final result is a concatenation of the child
sequences emitted for each input element.

Let’s start with a simple example. Suppose we have an array
of names as follows:

string[] fullNames =
 { "Anne Williams", "John Fred Smith", "Sue Green" };

that we wish to convert to a single flat collection of words—
in other words:

"Anne","Williams","John","Fred","Smith","Sue",Green"

SelectMany is ideal for this task because we’re mapping each
input element to a variable number of output elements. All
we must do is come up with a selector expression that con-
verts each input element to a child sequence. string.Split
does the job nicely: it takes a string and splits it into words,
emitting the result as an array:

74 | LINQ Pocket Reference

string testInputElement = "Anne Williams";
string[] childSequence = testInputElement.Split();

// childSequence is { "Anne", "Williams" };

So, here’s our SelectMany query and the result:

IEnumerable<string> query =
 fullNames.SelectMany (name => name.Split());

foreach (string name in query)
 Console.Write (name + "|");

// RESULT: Anne|Williams|John|Fred|Smith|Sue|Green|

NOTE

If you replace SelectMany with Select, you get the same
results in hierarchical form. The following emits a se-
quence of string arrays, requiring nested foreach state-
ments to enumerate:

IEnumerable<string[]> query =

 fullNames.Select (

 name => name.Split());

foreach (string[] stringArray in query)

 foreach (string name in stringArray)

 Console.Write (name + "/");

The benefit of SelectMany is that it yields a single flat re-
sult sequence.

SelectMany is supported in query comprehension syntax and
is invoked by having an additional generator—in other
words, an extra from clause in the query. The from keyword
has two meanings in comprehension syntax. At the start of a
query, it introduces the original iteration variable and input
sequence. Anywhere else in the query, it translates to
SelectMany. Here’s our query in comprehension syntax:

IEnumerable<string> query =
 from fullName in fullNames
 from name in fullName.Split()
 select name;

Projecting | 75

Note that the additional generator introduces a new query
variable—in this case, name. The new query variable becomes
the iteration variable from then on, and the old iteration vari-
able is demoted to an outer iteration variable.

Outer iteration variables

In the preceding example, fullName becomes an outer itera-
tion variable after the SelectMany. Outer iteration variables
remain in scope until the query either ends or reaches an into
clause. The extended scope of these variables is the killer sce-
nario for comprehension syntax over lambda syntax.

To illustrate, we can take the preceding query and include
fullName in the final projection:

IEnumerable<string> query =
 from fullName in fullNames // outer variable
 from name in fullName.Split() // iteration variable
 select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith
...

Behind the scenes, the compiler must pull some tricks to
resolve outer references. A good way to appreciate this is to
try writing the same query in lambda syntax. It’s tricky! It
gets harder still if you insert a where or orderby clause
before projecting:

from fullName in fullNames
from name in fullName.Split()
orderby fullName, name
select name + " came from " + fullName;

The problem is that SelectMany emits a flat sequence of
child elements—in our case, a flat collection of words. The
original outer element from which it came (fullName) is lost.
The solution is to “carry” the outer element with each child
in a temporary anonymous type:

76 | LINQ Pocket Reference

from fullName in fullNames
from x in
 fullName.Split()

.Select (name => new { name, fullName })
orderby x.fullName, x.name
select x.name + " came from " + x.fullName;

The only change here is that we’re wrapping each child ele-
ment (name) in an anonymous type that also contains its
fullName. This is similar to how a let clause is resolved.
Here’s the final conversion to lambda syntax:

IEnumerable<string> query = fullNames
 .SelectMany (fName =>
 fName.Split()
 .Select (name => new { name, fName }))
 .OrderBy (x => x.fName)
 .ThenBy (x => x.name)
 .Select (x => x.name + " came from " + x.fName);

NOTE

SelectMany provides an overload that performs a
SelectMany and Select in one step. We could use this to
(slightly) simplify the preceding example, replacing the
code in boldface with this:

.SelectMany (

 fName => fName.Split(),

 (fName, name) => new { name, fName }

)

Thinking in comprehension syntax

As we just demonstrated, there are good reasons to use com-
prehension syntax if you need the outer iteration variable. In
such cases, it helps not only to use comprehension syntax,
but also to think directly in its terms.

There are two basic patterns when writing additional genera-
tors. The first is expanding and flattening subsequences. To do
this, call a property or method on an existing query variable in
your additional generator. We did this in the previous example:

Projecting | 77

from fullName in fullNames
from name in fullName.Split()

Here, we’ve expanded from enumerating full names to enu-
merating words. An analogous query in LINQ to SQL is
when you expand child association properties. The follow-
ing query lists all customers along with their purchases:

IEnumerable<string> query =
 from c in dataContext.Customers
 from p in c.Purchases
 select c.Name + " bought a " + p.Description;

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car
...

Here, we’ve expanded each customer into a subsequence of
purchases.

The second pattern is performing a cross product or cross
join—where every element of one sequence is matched with
every element of another. To do this, you introduce a genera-
tor whose selector expression returns a sequence unrelated
to an iteration variable:

int[] numbers = { 1, 2, 3 };
string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
 from l in letters
 select n.ToString() + l;

RESULT: { "1a", "1b", "2a", "2b", "3a", "3b" }

This style of query is the basis of SelectMany-style joins.

Joining with SelectMany

You can use SelectMany to join two sequences simply by filter-
ing the results of a cross product. For instance, suppose we
wanted to match players for a game. We could start as follows:

78 | LINQ Pocket Reference

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query =
 from name1 in players
 from name2 in players
 select name1 + " vs " + name2;

RESULT: {"Tom vs Tom", "Tom vs Jay", "Tom vs Mary",
 "Jay vs Tom", "Jay vs Jay", "Jay vs Mary",
 "Mary vs Tom", "Mary vs "Jay", "Mary vs Mary"}

The query reads: “For every player, reiterate every player,
selecting player 1 versus player 2.” Although we got what we
asked for (a cross join), the results are not useful until we
add a filter:

IEnumerable<string> query =
 from name1 in players
 from name2 in players
 where name1.CompareTo (name2) < 0
 orderby name1, name2
 select name1 + " vs " + name2;

RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The filter predicate constitutes the join condition. Our query
can be called a non-equi join because the join condition
doesn’t use an equality operator. We’ll demonstrate the
remaining types of joins with LINQ to SQL.

SelectMany in LINQ to SQL

SelectMany in LINQ to SQL can perform cross joins, non-
equi joins, inner joins, and left outer joins. You can use
SelectMany with both predefined associations and ad hoc
relationships—just as with Select. The difference is that
SelectMany returns a flat rather than a hierarchical result set.

A cross join in LINQ to SQL is written just as in the preced-
ing section. The following query matches every customer to
every purchase (a cross join):

var query =
 from c in dataContext.Customers
 from p in dataContext.Purchases
 select c.Name + " might have bought " + p.Description;

Projecting | 79

More typically, though, you’d want to match customers to
their own purchases only. You achieve this by adding a where
clause with a joining predicate. This results in a standard
SQL-style equi-join:

var query =
 from c in dataContext.Customers
 from p in dataContext.Purchases
 where c.ID == p.CustomerID
 select c.Name + " bought a " + p.Description;

NOTE

This translates well to SQL. In the next section, we’ll see
how it extends to support outer joins. Reformulating such
queries with LINQ’s Join operator actually makes them
less extensible—LINQ is opposite to SQL in this sense.

If you have association properties for relationships in your
LINQ to SQL entities, you can express the same query by
expanding the subcollection instead of filtering the cross
product:

from c in dataContext.Customers
from p in c.Purchases
select new { c.Name, p.Description };

The advantage is that we’ve eliminated the joining predicate.
We’ve gone from filtering a cross product to expanding and
flattening it. Both queries, however, will result in the same
SQL.

You can add where clauses to such a query for additional fil-
tering. For instance, if we wanted only customers whose
names started with J, we could filter as follows:

from c in dataContext.Customers
where c.Name.StartsWith ("J")
from p in c.Purchases
select new { c.Name, p.Description };

This LINQ to SQL query would work equally well if the
where clause was moved one line down. If it were a local
query, however, moving the where clause down would make

80 | LINQ Pocket Reference

it less efficient. With local queries, you should filter before
joining.

You can introduce new tables into the mix with additional
from clauses. For instance, if each purchase had purchase
item child rows, you could produce a flat result set of cus-
tomers with their purchases, each with their purchase detail
lines as follows:

from c in dataContext.Customers
from p in c.Purchases
from pi in p.PurchaseItems
select new { c.Name, p.Description, pi.DetailLine };

Each from clause introduces a new child table. To include
data from a parent table (via an association property), you
don’t add a from clause; you simply navigate to the property.
For example, if each customer had a salesperson whose name
you wanted to query, you’d just do this:

from c in dataContext.Customers
select new {
 Name = c.Name,
 SalesPerson = c.SalesPerson.Name
 };

You don’t use SelectMany in this case because there’s no sub-
collection to flatten. Parent association properties return a
single item.

Outer joins with SelectMany

We saw previously that a Select-subquery yields a result
analogous to a left outer join:

from c in dataContext.Customers
select new {
 c.Name,
 Purchases =
 from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
 };

Projecting | 81

In this example, every outer element (customer) is included,
regardless of whether the customer has any purchases. But
suppose we rewrite this query with SelectMany, so we can
obtain a single flat collection rather than a hierarchical result
set:

from c in dataContext.Customers
from p in c.Purchases
where p.Price > 1000
select new { c.Name, p.Description, p.Price };

In the process of flattening the query, we’ve switched to an
inner join; customers are now included only for whom one
or more high-value purchases exists. To get a left outer join
with a flat result set, we must apply the DefaultIfEmpty query
operator on the inner sequence. This method returns null if
its input sequence has no elements. Here’s such a query,
price predicate aside:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new {
 c.Name,
 p.Description,
 Price = (decimal?) p.Price
 };

This works perfectly with LINQ to SQL, returning all cus-
tomers even if they have no purchases. But if we were to run
this as a local query, it would crash because when p is null,
p.Description and p.Price throw a NullReferenceException.
We can make our query robust in either scenario as follows:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new
{
 c.Name,
 Descript = p == null ? null : p.Description,
 Price = p == null ? (decimal?) null : p.Price
};

82 | LINQ Pocket Reference

Let’s now reintroduce the price filter. We cannot use a where
clause as we did before because it would execute after
DefaultIfEmpty:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
where p.Price > 1000...

The correct solution is to splice the Where clause before
DefaultIfEmpty with a subquery:

from c in dataContext.Customers
from p in c.Purchases.Where (p => p.Price > 1000)
 .DefaultIfEmpty()
select new
{
 c.Name,
 Descript = p == null ? null : p.Description,
 Price = p == null ? (decimal?) null : p.Price
};

This translates to a left outer join in LINQ to SQL, and it is
an effective pattern for writing this type of query.

NOTE

If you’re used to writing outer joins in SQL, you might be
tempted to overlook the simpler option of a Select-
subquery in favor of the awkward but familiar SQL-
centric flat approach. The hierarchical result set from a
Select-subquery is often better suited to outer join-style
queries because there are no additional nulls to deal with.

Joining

Method Description SQL equivalents

Join Applies a lookup strategy to match
elements from two collections,
emitting a flat result set

INNER JOIN

GroupJoin As above, but emits a hierarchical
result set

INNER JOIN,
LEFT OUTER JOIN

Joining | 83

Join and GroupJoin

Join arguments

GroupJoin arguments

Return type = IEnumerable<TResult>

Comprehension syntax
from outer-var in outer-enumerable
join inner-var in inner-enumerable
 on outer-key-expr equals inner-key-expr
[into identifier]

Overview

Join and GroupJoin mesh two input sequences into a single
output sequence. Join emits flat output; GroupJoin emits
hierarchical output.

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,TInner) => TResult

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,IEnumerable<TInner>) => Tresult

84 | LINQ Pocket Reference

Join and GroupJoin provide an alternative strategy to Select
and SelectMany. The advantage of Join and GroupJoin is that
they execute efficiently over local in-memory collections
because they first load the inner sequence into a keyed
lookup, avoiding the need to repeatedly enumerate over
every inner element. Their disadvantage is that they offer the
equivalent of inner and left outer joins only; cross joins and
non-equi joins must still be done with Select/SelectMany.
With LINQ to SQL queries, Join and GroupJoin offer no real
benefits over Select and SelectMany.

The differences between each of the joining strategies can be
summarized as follows.

Join

The Join operator performs an inner join, emitting a flat out-
put sequence.

The simplest way to demonstrate Join is with LINQ to SQL.
The following query lists all customers alongside their pur-
chases without using an association property:

IQueryable<string> query =
 from c in dataContext.Customers
 join p in dataContext.Purchases
 on c.ID equals p.CustomerID
 select c.Name + " bought a " + p.Description;

Strategy
Result
shape

Local
query
speed

Inner
joins

Left
outer
joins

Cross
joins

Non-
equi
joins

SelectMany Flat Slow Yes Yes Yes Yes

Select +
Select

Nested Slow Yes Yes Yes Yes

Join Flat Fast Yes - - -

GroupJoin Nested Fast Yes Yes - -

GroupJoin +
SelectMany

Flat Fast Yes Yes - -

Joining | 85

The results match what we would get from a SelectMany-style
query:

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car

To see the benefit of Join over SelectMany, we must convert
this to a local query. We can demonstrate this by first copy-
ing all customers and purchases to arrays, and then querying
the arrays:

Customer[] customers = dataContext.Customers.ToArray();
Purchase[] purchases = dataContext.Purchases.ToArray();

var slowQuery =
 from c in customers
 from p in purchases where c.ID == p.CustomerID
 select c.Name + " bought a " + p.Description;

var fastQuery =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select c.Name + " bought a " + p.Description;

Although both queries yield the same results, the Join query is
considerably faster because its implementation in Enumerable
preloads the inner collection (purchases) into a keyed lookup.

The comprehension syntax for join can be written in general
terms as follows:

join inner-var in inner-sequence
on outer-key-expr equals inner-key-expr

Join operators in LINQ differentiate between the outer
sequence and inner sequence. Syntactically:

• The outer sequence is the input sequence (in this case,
customers).

• The inner sequence is the new collection you introduce
(in this case, purchases).

86 | LINQ Pocket Reference

Join performs inner joins, meaning customers without pur-
chases are excluded from the output. With inner joins, you
can swap the inner and outer sequences in the query and still
get the same results:

from p in purchases
join c in customers on p.CustomerID equals c.ID
...

You can add further join clauses to the same query. If each
purchase, for instance, had one or more purchase items, you
could join them as follows:

from c in customers
join p in purchases on c.ID equals p.CustomerID
join pi in purchaseItems on p.ID equals pi.PurchaseID
...

purchases acts as the inner sequence in the first join, and the
outer sequence in the second join. You could obtain the
same results (inefficiently) using nested foreach statements as
follows:

foreach (Customer c in customers)
 foreach (Purchase p in purchases)
 if (c.ID == p.CustomerID)
 foreach (PurchaseItem pi in purchaseItems)
 if (p.ID == pi.PurchaseID)
 Console.WriteLine (c.Name + "," + p.Price +
 "," + pi.Detail);

In query comprehension syntax, variables from earlier joins
remain in scope—just as outer iteration variables do with
SelectMany-style queries. You’re also permitted to insert
where and let clauses in between join clauses.

Joining on multiple keys

You can join on multiple keys with anonymous types as
follows:

from x in seqX
join y in seqY on new { K1 = x.Prop1, K2 = x.Prop2 }
 equals new { K1 = y.Prop3, K2 = y.Prop4 }
...

Joining | 87

For this to work, the two anonymous types must be struc-
tured identically. The compiler then implements each with
the same internal type, making the joining keys compatible.

Joining in lambda syntax

The following comprehension syntax join:

 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select new { c.Name, p.Description, p.Price };

in lambda syntax is as follows:

customers.Join (// outer collection
purchases, // inner collection

 c => c.ID, // outer key selector
 p => p.CustomerID, // inner key selector
 (c, p) => new // result selector
 { c.Name, p.Description, p.Price }
);

The result selector expression at the end creates each ele-
ment in the output sequence. If you have additional clauses
prior to projecting, such as orderby in this example:

from c in customers
join p in purchases on c.ID equals p.CustomerID
orderby p.Price
select c.Name + " bought a " + p.Description;

you must manufacture a temporary anonymous type in the
result selector in lambda syntax. This keeps both c and p in
scope following the join:

customers.Join (// outer collection
 purchases, // inner collection
 c => c.ID, // outer key selector
 p => p.CustomerID, // inner key selector
 (c, p) => new { c, p }) // result selector
 .OrderBy (x => x.p.Price)
 .Select (x => x.c.Name + " bought a "
 + x.p.Description);

Comprehension syntax is usually preferable when joining;
it’s less fiddly.

88 | LINQ Pocket Reference

GroupJoin

GroupJoin does the same work as Join, but instead of yield-
ing a flat result, it yields a hierarchical result, grouped by
each outer element. It also allows left outer joins.

The comprehension syntax for GroupJoin is the same for
Join, but it is followed by the into keyword.

Here’s the most basic example:

IEnumerable<IEnumerable<Purchase>> query =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 into custPurchases
 select custPurchases; // custPurchases is a sequence

NOTE

An into clause translates to GroupJoin only when it ap-
pears directly after a join clause. After a select or group
clause, it means query continuation. The two uses of the
into keyword are quite different, although they have one
feature in common: they both introduce a new query
variable.

The result is a sequence of sequences, which we could enu-
merate as follows:

foreach (IEnumerable<Purchase> purchaseSequence in query)
 foreach (Purchase p in purchaseSequence)
 Console.WriteLine (p.Description);

This isn’t very useful, however, because outerSeq has no ref-
erence to the outer customer. More commonly, you’d refer-
ence the outer iteration variable in the projection:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

This gives the same results as the following (inefficient)
Select-subquery:

Joining | 89

from c in customers
select new
{
 CustName = c.Name,
 custPurchases =
 purchases.Where (p => c.ID == p.CustomerID)
};

By default, GroupJoin does the equivalent of a left outer join.
To get an inner join—where customers without purchases
are excluded—you need to filter on custPurchases:

from c in customers join p in purchases
 on c.ID equals p.CustomerID
into custPurchases
where custPurchases.Any()
select ...

Clauses after a group-join into operate on subsequences of
inner child elements, not individual child elements. This
means that to filter individual purchases, you’d have to call
Where before joining:

from c in customers
join p in purchases.Where (p2 => p2.Price > 1000)
on c.ID equals p.CustomerID

into custPurchases ...

You can construct lambda queries with GroupJoin as you
would with Join.

Flat outer joins

You run into a dilemma if you want both an outer join and a
flat result set. GroupJoin gives you the outer join; Join gives
you the flat result set. The solution is to first call GroupJoin,
and then DefaultIfEmpty on each child sequence, and then
finally SelectMany on the result:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
from cp in custPurchases.DefaultIfEmpty()
select new

90 | LINQ Pocket Reference

{
 CustName = c.Name,
 Price = cp == null ? (decimal?) null : cp.Price
};

DefaultIfEmpty emits a null value if a subsequence of pur-
chases is empty. The second from clause translates to
SelectMany. In this role, it expands and flattens all the pur-
chase subsequences, concatenating them into a single
sequence of purchase elements.

Joining with lookups

The Join and GroupJoin methods in Enumerable work in two
steps. First, they load the inner sequence into a lookup. Sec-
ond, they query the outer sequence in combination with the
lookup.

A lookup is a sequence of groupings that can be accessed
directly by key. Another way to think of it is as a dictionary
of sequences—a dictionary that can accept many elements
under each key. Lookups are read-only and defined by the
following interface:

public interface ILookup<TKey,TElement> :
 IEnumerable<IGrouping<TKey,TElement>>, IEnumerable
{
 int Count { get; }
 bool Contains (TKey key);
 IEnumerable<TElement> this [TKey key] { get; }
}

NOTE

The joining operators—like other sequence-emitting op-
erators—honor deferred or lazy execution semantics.
This means the lookup is not built until you begin enu-
merating the output sequence.

You can create and query lookups manually as an alternative
strategy to using the joining operators when dealing with
local collections. This allows you to reuse the same lookup
over multiple queries.

Joining | 91

The ToLookupTT extension method creates a lookup. The fol-
lowing loads all purchases into a lookup—keyed by their
CustomerID:

ILookup<int?,Purchase> purchLookup =
 purchases.ToLookup (p => p.CustomerID, p => p);

The first argument selects the key; the second argument selects
the objects that are to be loaded as values into the lookup.

Reading a lookup is rather like reading a dictionary, except
that the indexer returns a sequence of matching items, rather
than a single matching item. The following enumerates all
purchases made by the customer whose ID is 1:

foreach (Purchase p in purchLookup [1])
 Console.WriteLine (p.Description);

With a lookup in place, you can write SelectMany/Select
queries that execute as efficiently as Join/GroupJoin queries.
Join is equivalent to using SelectMany on a lookup:

from c in customers
from p in purchLookup [c.ID]
select new { c.Name, p.Description, p.Price };

Tom Bike 500
Tom Holiday 2000
Dick Bike 600
Dick Phone 300
...

Adding a call to DefaultIfEmpty makes this into an outer join:

from c in customers
from p in purchLookup [c.ID].DefaultIfEmpty()
select new
{
 c.Name,
 Descript = p == null ? null : p.Description,
 Price = p == null ? (decimal?) null : p.Price
};

GroupJoin is equivalent to a reading the lookup inside a
projection:

92 | LINQ Pocket Reference

from c in customers
select new {
 CustName = c.Name,
 CustPurchases = purchLookup [c.ID]
 };

Ordering

Ordering operators return the same elements in a different
order.

OrderBy, OrderByDescending, ThenBy,
ThenByDescending

OrderBy, OrderByDescending arguments

Return type = IOrderedEnumerable<TSource>

ThenBy, ThenByDescending arguments

Method Description SQL equivalents

OrderBy, ThenBy Sorts a sequence in
ascending order

ORDER BY …

OrderByDescending,
ThenByDescending

Sorts a sequence in
descending order

ORDER BY … DESC

Reverse Returns a sequence in
reverse order

Exception thrown

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => Tkey

Argument Type

Input sequence IOrderedEnumerable<TSource>

Key selector TSource => TKey

Ordering | 93

Comprehension syntax
orderby expression1 [descending]
[, expression2 [descending] ...]

Overview

OrderBy returns a sorted version of the input sequence, using
the keySelector expression to make comparisons. The fol-
lowing query emits a sequence of names in alphabetical
order:

IEnumerable<string> query = names.OrderBy (s => s);

The following sorts names by length:

IEnumerable<string> query =
 names.OrderBy (s => s.Length);

// Result: { "Jay", "Tom", "Mary", "Dick", "Harry" };

The relative order of elements with the same sorting key (in
this case, Jay/Tom and Mary/Dick) is indeterminate—unless
you append a ThenBy operator:

IEnumerable<string> query = names.OrderBy (s => s.Length)
.ThenBy (s => s);

// Result: { "Jay", "Tom", "Dick", "Mary", "Harry" };

ThenBy reorders only elements that had the same sorting key
in the preceding sort. You can chain any number of ThenBy
operators. The following sorts first by length, then by the
second character, and finally by the first character:

names.OrderBy (s => s.Length)
 .ThenBy (s => s[1]).ThenBy (s => s[0]);

The equivalent in comprehension syntax is this:

from s in names
orderby s.Length, s[1], s[0]
select s;

LINQ also provides OrderByDescending and ThenByDescending
operators that do the same things, emitting the results in
reverse order. The following LINQ to SQL query retrieves

94 | LINQ Pocket Reference

purchases in descending order of price, with those of the
same price listed alphabetically:

dataContext.Purchases.OrderByDescending (p => p.Price)
 .ThenBy (p => p.Description);

In comprehension syntax:

from p in dataContext.Purchases
orderby p.Price descending, p.Description
select p;

Comparers and collations

In a local query, the key selector objects themselves deter-
mine the ordering algorithm via their default IComparable
implementation. You can override the sorting algorithm by
passing in an IComparer object. The following performs a
case-insensitive sort:

names.OrderBy (n => n,
 StringComparer.CurrentCultureIgnoreCase);

Passing in a comparer is not supported in comprehension
syntax, nor in any way by LINQ to SQL. In LINQ to SQL,
the comparison algorithm is determined by the participating
column’s collation. If the collation is case-sensitive, you can
request a case-insensitive sort by calling ToUpper in the key
selector:

from p in dataContext.Purchases
orderby p.Description.ToUpper()
select p;

IOrderedEnumerable and IOrderedQueryable

The ordering operators return special subtypes of
IEnumerable<T>; those in Enumerable return
IOrderedEnumerable; and those in Queryable return
IOrderedQueryable. These subtypes allow a subsequent ThenBy
operator to refine rather than replace the existing ordering.

The additional members that these subtypes define are not
publicly exposed, so they present like ordinary sequences.

Grouping | 95

The fact that they are different types comes into play when
building queries progressively:

IOrderedEnumerable<string> query1 =
 names.OrderBy (s => s.Length);

IOrderedEnumerable<string> query2 =
 query1.ThenBy (s => s);

If we instead declared query1 of type IEnumerable<string>,
the second line would not compile—ThenBy requires an input
of type IOrderedEnumerable<string>. You can avoid worry-
ing about this by implicitly typing query variables:

var query1 = names.OrderBy (s => s.Length);
var query2 = query1.ThenBy (s => s);

Implicit typing can create problems of its own, though. The
following will not compile:

var query = names.OrderBy (s => s.Length);
query = query.Where (n => n.Length > 3); // Error

Based on OrderBy’s output sequence type, the compiler infers
query to be of type IOrderedEnumerable<string>. However, the
Where on the next line returns an ordinary IEnumerable<string>
that cannot be assigned back to query. You can work around
this either with explicit typing or by calling AsEnumerable()
after OrderBy:

var query = names.OrderBy (s => s.Length).AsEnumerable();
query = query.Where (n => n.Length > 3); // OK

The equivalent in interpreted queries is to call AsQueryable.

Grouping

Method Description SQL equivalents

GroupBy Groups a sequence into subsequences GROUP BY

96 | LINQ Pocket Reference

GroupBy

Return type = IEnumerable<IGrouping<TSource,TElement>>

Comprehension syntax
group element-expression by key-expression

Overview

GroupBy organizes a flat input sequence into sequences of
groups. For example, the following organizes all the files in c:
\temp by extension:

string[] files = Directory.GetFiles ("c:\\temp");

IEnumerable<IGrouping<string,string>> query =
 files.GroupBy (file => Path.GetExtension (file));

or if you’re comfortable with implicit typing:

var query = files.GroupBy
 (file => Path.GetExtension (file));

Here’s how to enumerate the result:

foreach (IGrouping<string,string> grouping in query)
{
 Console.WriteLine ("Extension: " + grouping.Key);

 foreach (string filename in grouping)
 Console.WriteLine (" - " + filename);
}

Extension: .pdf
 -- chapter03.pdf
 -- chapter04.pdf

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

Grouping | 97

Extension: .doc
 -- todo.doc
 -- menu.doc
 -- Copy of menu.doc
...

Enumerable.GroupBy works by reading the input elements into
a temporary dictionary of lists so that all elements with the
same key end up in the same sublist. It then emits a sequence
of groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement>
 : IEnumerable<TElement>, IEnumerable
{
 // Key applies to the subsequence as a whole
 TKey Key { get; }
}

By default, the elements in each grouping are untransformed
input elements, unless you specify an elementSelector argu-
ment. The following projects each input element to uppercase:

files.GroupBy (file =>
 Path.GetExtension (file), file => file.ToUpper());

An elementSelector is independent of the keySelector. In
our case, this means that the Key on each grouping is still in
its original case:

Extension: .pdf
 -- CHAPTER03.PDF
 -- CHAPTER04.PDF
Extension: .doc
 -- TODO.DOC

Note that the subcollections are not emitted in alphabetical
order of key. GroupBy only groups; it does not do any sort-
ing—in fact, it preserves the original ordering. To sort, you
must add an OrderBy operator:

files
 .GroupBy (file =>
 Path.GetExtension (file), file => file.ToUpper())
 .OrderBy (grouping => grouping.Key);

98 | LINQ Pocket Reference

GroupBy has a simple and direct translation in comprehen-
sion syntax:

group element-expr by key-expr

Here’s our example in comprehension syntax:

from file in files
group file.ToUpper() by Path.GetExtension (file);

As with select, group “ends” a query—unless you add a
query continuation clause:

from file in files
group file.ToUpper() by Path.GetExtension (file)
into grouping
orderby grouping.Key
select grouping;

Query continuations are often useful in a group by query. The
next query filters out groups that have fewer than five files in
them:

from file in files
group file.ToUpper() by Path.GetExtension (file)
into grouping
where grouping.Count() < 5
select grouping;

NOTE

A where after a group by is equivalent to HAVING in SQL. It
applies to each subsequence or grouping as a whole, rath-
er than the individual elements.

Sometimes you’re interested purely in the result of an aggre-
gation on a grouping, and so can abandon the subsequences:

string[] votes = { "Bush","Gore","Gore","Bush","Bush" };

IEnumerable<string> query = from vote in votes
 group vote by vote into g
 orderby g.Count() descending
 select g.Key;

string winner = query.First(); // Bush

Grouping | 99

GroupBy in LINQ to SQL

Grouping works in the same way with interpreted queries. If
you have association properties set up in LINQ to SQL,
you’ll find, however, that the need to group arises less fre-
quently than with standard SQL. For instance, to select cus-
tomers with at least two purchases, you don’t need to group;
the following query does the job nicely:

from c in dataContext.Customers
where c.Purchases.Count >= 2
select c.Name + " has made " + c.Purchases.Count
 + " purchases";

An example of when you might use grouping is to list total
sales by year:

from p in dataContext.Purchases
group p.Price by p.Date.Year into salesByYear
select new {
 Year = salesByYear.Key,
 TotalValue = salesByYear.Sum()
 };

LINQ’s grouping operators expose a superset of SQL’s
“GROUP BY” functionality. Another departure from
traditional SQL is there is no obligation to project the vari-
ables or expressions used in grouping or sorting.

Grouping by multiple keys

You can group by a composite key using an anonymous type:

from n in names
group n by new { FirstLetter = n[0], Length = n.Length };

Custom equality comparers

You can pass a custom equality comparer into GroupBy, in a
local query, to change the algorithm for key comparison.
Rarely is this required, though, because changing the key
selector expression is usually sufficient. For instance, the fol-
lowing creates a case-insensitive grouping:

group name by name.ToUpper()

100 | LINQ Pocket Reference

Set Operators

Concat and Union
Contact returns all the elements of the first sequence, fol-
lowed by all the elements of the second. Union does the same,
but removes any duplicates:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
 concat = seq1.Concat (seq2), // { 1, 2, 3, 3, 4, 5 }
 union = seq1.Union (seq2); // { 1, 2, 3, 4, 5 }

Intersect and Except
Intersect returns the elements that two sequences have in
common. Except returns the elements in the first input
sequence that are not present in the second:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
 commonality = seq1.Intersect (seq2), // { 3 }
 difference1 = seq1.Except (seq2), // { 1, 2 }
 difference2 = seq2.Except (seq1); // { 4, 5 }

Enumerable.Except works internally by loading all of the ele-
ments in the first collection into a dictionary, then removing
from the dictionary all elements present in the second

Method Description SQL equivalents

Concat Returns a concatenation of elements
in each of the two sequences

UNION ALL

Union Returns a concatenation of elements
in each of the two sequences,
excluding duplicates

UNION

Intersect Returns elements present in both
sequences

WHERE … IN …

Except Returns elements present in the first,
but not the second sequence

EXCEPT or
WHERE … NOT IN …

Conversion Methods | 101

sequence. The equivalent in SQL is a NOT EXISTS or NOT IN
subquery:

SELECT number FROM numbers1Table
WHERE number NOT IN (SELECT number FROM numbers2Table)

Conversion Methods
LINQ deals primarily in sequences; in other words, collec-
tions of type IEnumerable<T>. The conversion methods con-
vert to and from, other types of collections:

OfType and Cast
OfType and Cast accept a nongeneric IEnumerable collection
and emit a generic IEnumerable<T> sequence that you can
subsequently query:

// ArrayList is defined in System.Collections
ArrayList classicList = new ArrayList();
classicList.AddRange (new int[] { 3, 4, 5 });
IEnumerable<int> sequence1 = classicList.Cast<int>();

Cast and OfType differ in their behavior when encountering
an input element that’s of an incompatible type. Cast throws

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding
wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an
exception if there are any wrongly typed elements

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to
Dictionary<TKey,TValue>

ToLookup Converts IEnumerable<T> to
ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

102 | LINQ Pocket Reference

an exception; OfType ignores the incompatible element. Con-
tinuing the preceding example:

DateTime offender = DateTime.Now;
classicList.Add (offender);

IEnumerable<int> sequence2 = classicList
 .OfType<int>(); // OK - Ignores offending DateTime

IEnumerable<int> sequence3 = classicList
 .Cast<int>(); // Throws exception

The rules for element compatibility exactly follow those of
C#’s is operator. We can see this by examining the internal
implementation of OfType:

public static IEnumerable<TSource> OfType <TSource>
 (IEnumerable source)
{
 foreach (object element in source)
 if (element is TSource)
 yield return (TSource)element;
}

Cast has an identical implementation, except that it omits the
type compatibility test:

public static IEnumerable<TSource> Cast <TSource>
 (IEnumerable source)
{
 foreach (object element in source)
 yield return (TSource)element;
}

A consequence of these implementations is that you cannot
use Cast to convert elements from one value type to another
(for this, you must perform a Select operation instead). In
other words, Cast is not as flexible as C#’s cast operator,
which also allows static type conversions such as the
following:

int i = 3;
long l = i; // Static conversion int->long
int i2 = (int) l; // Static conversion long->int

Conversion Methods | 103

We can demonstrate this by attempting to use OfType or Cast
to convert a sequence of ints to a sequence of longs:

int[] integers = { 1, 2, 3 };

IEnumerable<long> test1 = integers.OfType<long>();
IEnumerable<long> test2 = integers.Cast<long>();

When enumerated, test1 emits zero elements and test2
throws an exception. Examining OfType’s implementation,
it’s fairly clear why. After substituting TSource, we get the fol-
lowing expression:

(element is long)

which returns false for an int element, due to the lack of an
inheritance relationship.

As we suggested previously, the solution is to use an ordi-
nary Select:

IEnumerable<long> castLong =
 integers.Select (s => (long) s);

OfType and Cast are also useful in downcasting elements in a
generic input sequence. For instance, if you had an input
sequence of type IEnumerable<Fruit>, OfType<Apple> would
return just the apples. This is particularly useful in LINQ to
XML.

ToArray, ToList, ToDictionary, ToLookup
ToArray and ToList emit the results into an array or generic
list. These operators force the immediate enumeration of the
input sequence (unless indirected via a subquery or expres-
sion tree). For examples, refer to the earlier “Deferred Execu-
tion” section.

ToDictionary and ToLookup accept the following arguments:

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

104 | LINQ Pocket Reference

ToDictionary also forces immediate execution of a sequence,
writing the results to a generic Dictionary. The keySelector
expression you provide must evaluate to a unique value for
each element in the input sequence; otherwise, an exception
is thrown. In contrast, ToLookup allows many elements of the
same key. We described lookups earlier in the “Joining with
lookups” section.

AsEnumerable and AsQueryable
AsEnumerable upcasts a sequence to IEnumerable<T>, forcing
the compiler to bind subsequent query operators to methods
in Enumerable, instead of Queryable. For an example, see the
the earlier “Interpreted Queries” section.

AsQueryable downcasts a sequence to IQueryable<T> if it
implements that interface. Otherwise, it instantiates an
IQueryable<T> wrapper over the local query.

Element Operators

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

Method Description SQL equivalents

First,
FirstOrDefault

Returns the first element in
the sequence, optionally
satisfying a predicate

SELECT TOP 1 …
ORDER BY …

Last,
LastOrDefault

Returns the last element in
the sequence, optionally
satisfying a predicate

SELECT TOP 1 …
ORDER BY … DESC

Single,
SingleOrDefault

Equivalent to First/
FirstOrDefault, but
throws an exception if there is
more than one match

Argument Type

Element Operators | 105

Methods ending in “OrDefault” return default(TSource)
rather than throw an exception if the input sequence is
empty, or if no elements match the supplied predicate.

default(TSource) = null for reference type elements, or
“blank” (usually zero) for value type elements.

First, Last, Single

The following example demonstrates First and Last:

int[] numbers = { 1, 2, 3, 4, 5 };
int first = numbers.First(); // 1
int last = numbers.Last(); // 5
int firstEven = numbers.First (n => n % 2 == 0); // 2
int lastEven = numbers.Last (n => n % 2 == 0); // 4

The following demonstrates First versus FirstOrDefault:

// Throws an exception:
int firstBigError = numbers.First (n => n > 10);

// Evaluates to 0:
int firstBigNumber = numbers.FirstOrDefault(n => n > 10);

To avoid an exception, Single requires exactly one matching
element; SingleOrDefault requires one or zero matching
elements:

ElementAt,
ElementAtOrDefault

Returns the element at the
specified position

Exception thrown

DefaultIfEmpty Returns null or
default(TSource) if the
sequence has no elements

OUTER JOIN

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

Method Description SQL equivalents

106 | LINQ Pocket Reference

int divisibleBy3 =
 numbers.Single (n => n % 3 == 0); // 3

int divisibleBy2Error =
 numbers.Single (n => n % 2 == 0); // Error: 2 matches

int singleError =
 numbers.Single (n => n > 10); // Error: no matches

int noMatches =
 numbers.SingleOrDefault (n => n > 10); // 0

int divisibleBy2Error =
 numbers.SingleOrDefault (n => n % 2 == 0); // Error

Single is the “fussiest” in this family of element operators;
FirstOrDefault and LastOrDefault are the most tolerant.

In LINQ to SQL, Single is often used to retrieve a row from a
table by primary key:

Customer cust =
 dataContext.Customers.Single (c => c.ID == 3);

ElementAt

ElementAt picks the nth element from the sequence:

int[] numbers = { 1, 2, 3, 4, 5 };
int third = numbers.ElementAt (2); // 3
int tenthError = numbers.ElementAt (9); // Error
int tenth = numbers.ElementAtOrDefault (9); // 0

Enumerable.ElementAt is written such that if the input
sequence happens to implement IList<T>, it calls IList<T>’s
indexer. Otherwise, it enumerates n times, and then returns
the next element. ElementAt is not supported in LINQ to SQL.

Argument Type

Source sequence IEnumerable<TSource>

Index of element to return int

Aggregation Methods | 107

DefaultIfEmpty
DefaultIfEmpty converts empty sequences to null/default().
This is used when writing flat outer joins; see the earlier
“Outer joins with SelectMany” and “Flat outer joins” sections.

Aggregation Methods

Count and LongCount

Count simply enumerates over a sequence, returning the
number of items:

int fullCount = new int[] { 5, 6, 7 }.Count(); // 3

The internal implementation of Enumerable.Count tests the
input sequence to see whether it happens to implement
ICollection<T>. If it does, it simply calls ICollection<T>.
Count. Otherwise, it enumerates over every item, increment-
ing a counter.

You can optionally supply a predicate:

Method Description SQL equivalents

Count,
LongCount

Returns the number of elements in the
input sequence, optionally satisfying a
predicate

COUNT()

Min, Max Returns the smallest or largest element
in the sequence

MIN(), MAX()

Sum, Average Calculates a numeric sum or average
over elements in the sequence

SUM(), AVG ()

Aggregate Performs a custom aggregation Exception thrown

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

108 | LINQ Pocket Reference

int digitCount =
 "pa55w0rd".Count (c => char.IsDigit (c)); // 3

LongCount does the same job as Count, but returns a 64-bit
integer, allowing for sequences of greater than 2 billion
elements.

Min and Max

Min and Max return the smallest or largest element from a
sequence:

int[] numbers = { 28, 32, 14 };
int smallest = numbers.Min(); // 14;
int largest = numbers.Max(); // 32;

If you include a selector expression, each element is first
projected:

int smallest = numbers.Max (n => n % 10); // 8;

A selector expression is mandatory if the items themselves
are not intrinsically comparable—in other words, if they do
not implement IComparable<T>:

Purchase runtimeError =
 dataContext.Purchases.Min(); // Runtime error

decimal? lowestPrice =
 dataContext.Purchases.Min (p => p.Price); // OK

A selector expression determines not only how elements are
compared, but also the final result. In the preceding exam-
ple, the final result is a decimal value, not a purchase object.
To get the cheapest purchase, you need a subquery:

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Aggregation Methods | 109

Purchase cheapest = dataContext.Purchases
 .Where (p => p.Price ==
 dataContext.Purchases.Min (p2 => p2.Price))
 .FirstOrDefault();

In this case, you could also formulate the query without an
aggregation—using an OrderBy followed by FirstOrDefault.

Sum and Average

Sum and Average are aggregation operators that are used in
similar manner to Min and Max:

decimal[] numbers = { 3, 4, 8 };
decimal sumTotal = numbers.Sum(); // 15
decimal average = numbers.Average(); // 5 (mean)

The following returns the total length of each of the strings in
the names array:

int combinedLength = names.Sum (s => s.Length); // 19

Sum and Average are fairly restrictive in their typing. Their
definitions are hard wired to each of the numeric types (int,
long, float, double, decimal, and their nullable versions). In
contrast, Min and Max can operate directly on anything that
implements IComparable<T>—such as a string, for instance.

Further, Average always returns either decimal or double,
according to the following table.

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Selector type Result type

decimal decimal

int, long, float, double double

110 | LINQ Pocket Reference

This means the following does not compile (“cannot convert
double to int”):

int avg = new int[] { 3, 4 }.Average();

But this will compile:

double avg = new int[] { 3, 4 }.Average(); // 3.5

Average implicitly upscales the input values to avoid loss of
precision. In this example, we averaged integers and got 3.5,
without needing to resort to an input element cast:

double avg = numbers.Average (n => (double) n);

In LINQ to SQL, Sum and Average translate to the standard
SQL aggregations. The following query returns customers
whose average purchase was more than $500:

from c in dataContext.Customers
where c.Purchases.Average (p => p.Price) > 500
select c.Name;

Aggregate
Aggregate allows you to plug a custom accumulation algo-
rithm for implementing unusual aggregations. Aggregate is
not supported in LINQ to SQL and is somewhat specialized
in its use cases. The following demonstrates how Aggregate
can do the work of Sum:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate (0, (seed, n) => seed + n);

The first argument to Aggregate is the seed, from which accu-
mulation starts. The second argument is an expression to
update the accumulated value, given a fresh element. You
can optionally supply a third argument to project the final
result value from the accumulated value.

The difficulty with Aggregate is that a simple scalar type
rarely serves the job as a useful accumulator. To calculate an
average, for instance, you need to keep a running tally of the
number of the elements—as well as the sum. Writing a
custom accumulator type solves the problem, but it is

Quantifiers | 111

uneconomical compared to the conventional approach of
using a simple foreach loop to calculate the aggregation.

Quantifiers

Contains and Any
The Contains method accepts an argument of type TSource;
Any accepts an optional predicate.

Contains returns true if the given element is present:

bool isTrue = new int[] { 2, 3, 4 }.Contains (3);

Any returns true if the given expression is true for at least one
element. We can rewrite the preceding query with Any as
follows:

bool isTrue = new int[] { 2, 3, 4 }.Any (n => n == 3);

Any can do everything that Contains can do, and more:

bool isFalse = new int[] { 2, 3, 4 }.Any (n => n > 10);

Calling Any without a predicate returns true if the sequence
has one or more elements. Here’s another way to write the
preceding query:

bool isFalse = new int[] { 2, 3, 4 }
 .Where (n => n > 10).Any();

Any is particularly useful in subqueries.

Method Description SQL equivalents

Contains Returns true if the input sequence
contains the given element

WHERE … IN (…)

Any Returns true if any elements satisfy
the given predicate

WHERE … IN (…)

All Returns true if all elements satisfy
the given predicate

WHERE (…)

SequenceEqual Returnstrue if the second sequence
has identical elements to the input
sequence

112 | LINQ Pocket Reference

All and SequenceEqual
All returns true if all elements satisfy a predicate. The follow-
ing returns customers whose purchases are less than $100:

dataContext.Customers.Where
 (c => c.Purchases.All (p => p.Price < 100));

SequenceEqual compares two sequences. To return true, each
sequence must have identical elements, in the identical order.

Generation Methods

Empty, Repeat, and Range are static (nonextension) methods
that manufacture simple local sequences.

Empty
Empty manufactures an empty sequence and requires just a
type argument:

foreach (string s in Enumerable.Empty<string>())
 Console.Write (s); // <nothing>

In conjunction with the ?? operator, Empty does the reverse of
DefaultIfEmpty. For example, suppose we have a jagged
array of integers, and we want to get all the integers into a
single flat list. The following SelectMany query fails if any of
the inner arrays is null:

int[][] numbers =
{
 new int[] { 1, 2, 3 },
 new int[] { 4, 5, 6 },
 null // this null makes the query below fail.
};

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

LINQ to XML | 113

IEnumerable<int> flat =
 numbers.SelectMany (innerArray => innerArray);

Empty in conjunction with ?? fixes the problem:

IEnumerable<int> flat = numbers
 .SelectMany (innerArray =>

innerArray ?? Enumerable.Empty <int>());

foreach (int i in flat)
 Console.Write (i + " "); // 1 2 3 4 5 6

Range and Repeat
Range and Repeat work only with integers. Range accepts a
starting index and count:

foreach (int i in Enumerable.Range (5, 5))
 Console.Write (i + " "); // 5 6 7 8 9

Repeat accepts the number to repeat and the number of
iterations:

foreach (int i in Enumerable.Repeat (5, 3))
 Console.Write (i + " "); // 5 5 5

LINQ to XML
The .NET Framework provides a number of APIs for work-
ing with XML data. From Framework 3.5, the primary choice
for general-purpose XML document processing is LINQ to
XML. LINQ to XML comprises a lightweight LINQ-friendly
XML document object model, and a set of supplementary
query operators. In most scenarios, it can be considered a
complete replacement for the preceding W3C-compliant
DOM, a.k.a. XmlDocument.

NOTE

The LINQ to XML DOM is extremely well designed and
highly performant. Even without LINQ, the LINQ to
XML DOM is valuable as a lightweight facade over the
low-level XmlReader and XmlWriter classes.

114 | LINQ Pocket Reference

All LINQ to XML types are defined in the System.Xml.Linq
namespace.

Architectural Overview
Consider the following XML file:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
 <firstname>Joe</firstname>
 <lastname>Bloggs</lastname>
</customer>

As with all XML files, we start with a declaration, and then a
root element, whose name is customer. The customer element
has two attributes, each with a name (id and status) and
value ("123" and "archived"). Within customer, there are two
child elements, firstname and lastname, each having simple
text content ("Joe" and "Bloggs").

Each of these constructs—declaration, element, attribute,
value, and text content—can be represented with a class.
And if such classes have collection properties for storing
child content, we can assemble a tree of objects to fully
describe a document. This is called a document object model,
or DOM.

LINQ to XML comprises two things:

• An XML DOM, which we call the X-DOM

• A set of about 10 supplementary query operators

As you might expect, the X-DOM consists of types such as
XDocument, XElement, and XAttribute. Interestingly, the X-
DOM types are not tied to LINQ—you can load, instantiate,
update, and save an X-DOM without ever writing a LINQ
query.

Conversely, you could use LINQ to query a DOM created of
the older W3C-compliant types. However, this would be
frustrating and limiting. The distinguishing feature of the X-
DOM is that it’s LINQ-friendly, meaning:

X-DOM Overview | 115

• It has methods that emit useful IEnumerable sequences,
upon which you can query.

• Its constructors are designed such that you can build an
X-DOM tree through a LINQ projection.

X-DOM Overview
Figure 11 shows the core X-DOM types. XElement is the most
frequently used of these. XObject is the root of the inheritance
hierarchy; XElement and XDocument are roots of the container-
ship hierarchy.

Figure 12 shows the X-DOM tree created from the following
code:

string xml =
@"<customer id='123' status='archived'>
 <firstname>Joe</firstname>
 <lastname>Bloggs<!--nice name--></lastname>
</customer>";

XElement customer = XElement.Parse (xml);

Figure 11. Core X-DOM types

XContainer

XNodeXAttribute

XText XDocument
Type

XProcessing
Instruction

XComment

XCData

XDocument
XDeclaration

XObject

Parent Document

Nodes

XElement

Attributes Root Declaration
IEnumerable<XAttribute>

*

*
IEnumerable<XNode>

116 | LINQ Pocket Reference

XObject is the abstract base class for all XML content. It
defines a link to the Parent element in the containership tree
as well as an optional XDocument.

XNode is the base class for most XML content, excluding
attributes. The distinguishing feature of XNode is that it can
sit in an ordered collection of mixed-type XNodes. For
instance, consider the following XML:

<data>
 Hello world
 <subelement1/>
 <!--comment-->
 <subelement2/>
</data>

Within the parent element <data>, there’s first an XText node
(Hello world), then an XElement node, then an XComment node,
and then a second XElement node. In contrast, an XAttribute
will tolerate only other XAttributes as peers.

Although an XNode can access its parent XElement, it has no
concept of child nodes; this is the job of its subclass
XContainer. XContainer defines members for dealing with chil-
dren and is the abstract base class for XElement and XDocument.

Figure 12. A simple X-DOM tree

XElement
Name =“customer”

Attributes Nodes

XAttribute
Name =“id”

Value =“123”

XAttribute
Name =“status”

Value =“archived”

IEnumerable<XAttribute>

XElement
Name =“firstname”

IEnumerable<XNode>

Nodes

XElement
Name =“lastname”

Nodes

XText Value =“Joe”

IEnumerable<XNode>

XText Value =“Bloggs”

IEnumerable<XNode>

XComment
Value =“nice name”

X-DOM Overview | 117

XElement introduces members for managing attributes—as
well as a Name and Value. In the (fairly common) case of an
element having a single XText child node, the Value prop-
erty on XElement encapsulates this child’s content for both
get and set operations, cutting unnecessary navigation.
Thanks to Value, you can mostly avoid working directly
with XText nodes.

XDocument represents the root of an XML tree. More pre-
cisely, it wraps the root XElement, adding an XDeclaration,
processing instructions, and other root-level “fluff.” Unlike
with the W3C DOM, its use is optional: you can load,
manipulate, and save an X-DOM without ever creating an
XDocument! The non-reliance on XDocument also means you
can efficiently and easily move a node subtree to another X-
DOM hierarchy.

Loading and Parsing
Both XElement and XDocument provide static Load and Parse
methods to build an X-DOM tree from an existing source:

• Load builds an X-DOM from a file, URI, TextReader, or
XmlReader.

• Parse builds an X-DOM from a string.

NOTE

XNode also provides a static ReadFrom method, which in-
stantiates and populates any type of node from an
XmlReader. Unlike Load, it stops after reading one (com-
plete) node, so you can continue to read manually from
the XmlReader afterward.

You can also do the reverse, and use an XmlReader or
XmlWriter to read or write an XNode, via its CreateReader
and CreateWriter methods.

118 | LINQ Pocket Reference

For example:

XDocument fromWeb = XDocument.Load
 ("http://albahari.com/sample.xml");

XElement fromFile = XElement.Load
 (@"e:\media\somefile.xml");

XElement config = XElement.Parse (
@"<configuration>
 <client enabled='true'>
 <timeout>30</timeout>
 </client>
 </configuration>");

Saving and Serializing
Calling ToString on any node converts its content to an XML
string—formatted with line breaks and indentation as we just
saw. (You can disable the line breaks and indentation by speci-
fying SaveOptions.DisableFormatting when calling ToString.)

XElement and XDocument also provide a Save method that
writes an X-DOM to a file, TextWriter, or XmlWriter. If you
specify a file, an XML declaration is automatically written.
There is also a WriteTo method defined in the XNode class,
which accepts just an XmlWriter.

We describe the handling of XML declarations when saving
in more detail in the upcoming “Documents and Declara-
tions” section.

Instantiating an X-DOM
Rather than use the Load or Parse methods, you can build an
X-DOM tree by manually instantiating objects and adding
them to a parent via XContainer’s Add method.

To construct an XElement and XAttribute, you simply pro-
vide a name and value:

Instantiating an X-DOM | 119

XElement lastName = new XElement ("lastname", "Bloggs");
lastName.Add (new XComment ("nice name"));

XElement customer = new XElement ("customer");
customer.Add (new XAttribute ("id", 123));
customer.Add (new XElement ("firstname", "Joe"));
customer.Add (lastName);

Console.WriteLine (customer.ToString());

The result:

<customer id="123">
 <firstname>Joe</firstname>
 <lastname>Bloggs<!--nice name--></lastname>
</customer>

A value is optional when constructing an XElement—you can
provide just the element name and add content later. Notice
that when we did provide a value, a simple string sufficed—
we didn’t need to explicitly create and add an XText child
node. The X-DOM does this work automatically, so you can
deal simply with “values.”

Functional Construction
In our preceding example, it’s hard to glean the XML struc-
ture from the code. X-DOM supports another mode of
instantiation called functional construction (from functional
programming). With functional construction, you build an
entire tree in a single expression:

XElement customer =
 new XElement ("customer", new XAttribute ("id", 123),
 new XElement ("firstname", "joe"),
 new XElement ("lastname", "bloggs",
 new XComment ("nice name")
)
);

This has two benefits. First, the code resembles the shape of
the XML. Second, it can be incorporated into the select
clause of a LINQ query. For example, the following LINQ to
SQL query projects directly into an X-DOM:

120 | LINQ Pocket Reference

XElement query =
 new XElement ("customers",
 from c in dataContext.Customers
 select
 new XElement ("customer",
 new XAttribute ("id", c.ID),
 new XElement ("firstname", c.FirstName),
 new XElement ("lastname", c.LastName,
 new XComment ("nice name")
)
)
);

More on this in the upcoming “Projecting into an X-DOM”
section.

Specifying Content
Functional construction is possible because the constructors
for XElement (and XDocument) are overloaded to accept a
params object array:

public XElement (XName name, params object[] content)

The same holds true for the Add method in XContainer:

public void Add (params object[] content)

Hence you can specify any number of child objects of any
type when building or appending an X-DOM. This works
because anything counts as legal content. To see how, we
need to examine how each content object is processed inter-
nally. Here are the decisions made by XContainer, in order:

1. If the object is null, it’s ignored.

2. If the object is based on XNode or XStreamingElement, it’s
added as is to the Nodes collection.

3. If the object is an XAttribute, it’s added to the Attributes
collection.

4. If the object is a string, it gets wrapped in an XText node
and added to Nodes.

Instantiating an X-DOM | 121

5. If the object implements IEnumerable, it’s enumerated
and the same rules are applied to each element.

6. Otherwise, the object is converted to a string, wrapped in
an XText node, and then added to Nodes.*

Everything ends up in one of two buckets: Nodes or
Attributes. Furthermore, any object is valid content because
it can always ultimately call ToString on it and treat it as an
XText node.

NOTE

Before calling ToString on an arbitrary type, XContainer
first tests whether it is one of the following types:

float, double, decimal, bool,
DateTime, DateTimeOffset, TimeSpan

If so, it calls an appropriate typed ToString method on
the XmlConvert helper class instead of calling ToString on
the object itself. This ensures that the data is round-
trippable and compliant with standard XML-formatting
rules.

Automatic Deep Cloning
When a node or attribute is added to an element (whether
via functional construction or an Add method), the node or
attribute’s Parent property is set to that element. A node can
have only one parent element: if you add an already parented
node to a second parent, the node is automatically deep-
cloned. This automatic duplication keeps X-DOM object
instantiation free of side effects—another hallmark of func-
tional programming.

* The X-DOM actually optimizes this step internally by storing simple text
content in a string. The XText node is not actually created until you call
Nodes() on the XContainer.

122 | LINQ Pocket Reference

Navigating/Querying an X-DOM
As you might expect, the XNode and XContainer classes define
methods and properties for traversing the X-DOM tree.
Unlike a conventional DOM, however, these functions don’t
return a collection that implements IList<T>. Instead, they
return either a single value or a sequence that implements
IEnumerable<T>—upon which you are then expected to exe-
cute a LINQ query (or enumerate with a foreach). This
allows for advanced queries as well as simple navigation
tasks—using familiar LINQ query syntax.

NOTE

Element and attribute names are case-sensitive in the X-
DOM—just as they are in XML.

Child Node Navigation

Return type Members Works on

XNode FirstNode
LastNode

XContainer
XContainer

IEnumerable
<XNode>

Nodes()
DescendantNodes()
DescendantNodesAndSelf()

XContainer*
XContainer*
XElement*

XElement Element (XName) XContainer

IEnumerable
<XElement>

Elements()
Elements(XName)
Descendants()
Descendants(XName)
DescendantsAndSelf()
DescendantsAndSelf(XName)

XContainer*
XContainer*
XContainer*
XContainer*
XElement*
XElement*

bool HasElements XElement

Navigating/Querying an X-DOM | 123

NOTE

Functions marked with an asterisk in the third column of
this table (and others following) also operate on sequenc-
es of the same type. For instance, you can call Nodes on ei-
ther an XContainer or a sequence of XContainer objects.
This is possible because of extension methods defined in
System.Xml.Linq—the supplementary query operators we
talked about in the overview.

FirstNode, LastNode, and Nodes

FirstNode and LastNode give you direct access to the first or
last child node; Nodes returns all children as a sequence. All
three functions consider only direct descendants.

Retrieving elements

The Elements method returns just the child nodes of type
XElement. For example:

var bench = new XElement ("bench",
 new XElement ("toolbox",
 new XElement ("handtool", "Hammer"),
 new XElement ("handtool", "Rasp")
),
 new XElement ("toolbox",
 new XElement ("handtool", "Saw"),
 new XElement ("powertool", "Nailgun")
),
 new XComment ("Careful with the nailgun")
);

foreach (XElement e in bench.Elements())
 Console.WriteLine (e.Name + "=" + e.Value);

// RESULT: toolbox=HammerRasp
 toolbox=SawNailgun

124 | LINQ Pocket Reference

The following LINQ query finds the toolbox with the nail
gun:

IEnumerable<string> query =
 from toolbox in bench.Elements()
 where toolbox.Elements().Any
 (tool => tool.Value == "Nailgun")
 select toolbox.Value;

RESULT: { "SawNailgun" }

NOTE

Elements itself is equivalent to a LINQ query on Nodes.
Our preceding query could be started as follows:

from toolbox in bench.Nodes().OfType<XElement>()
where ...

The next example uses a SelectMany query to retrieve the
hand tools in all toolboxes:

IEnumerable<string> query =
 from toolbox in bench.Elements()
 from tool in toolbox.Elements()
 where tool.Name == "handtool"
 select tool.Value;

RESULT: { "Hammer", "Rasp", "Saw" }

Elements can also return just the elements of a given name.
For example:

int x = bench.Elements ("toolbox").Count(); // 2

This is equivalent to:

int x = bench.Elements()
 .Where (e => e.Name == "toolbox")

.Count(); // 2

Elements is also defined as an extension method accepting
IEnumerable<XContainer>. More precisely, it accepts an argu-
ment of this type:

IEnumerable<T> where T : XContainer

Navigating/Querying an X-DOM | 125

This allows it to work with sequences of elements too. Using
this method, we can rewrite the query that finds the hand
tools in all toolboxes as follows:

from tool in bench.Elements ("toolbox")
 .Elements ("handtool")
select tool.Value.ToUpper();

The first call to Elements binds to XContainer’s instance
method; the second call to it binds to the extension method.

Retrieving a single element

The method Element (singular) returns the first matching ele-
ment of the given name. Element is useful for simple naviga-
tion, as follows:

var settings = XElement.Load ("databaseSettings.xml");

string cx = settings.Element ("database")
 .Element ("connectString")
 .Value;

Element is equivalent to calling Elements() and then apply-
ing LINQ’s FirstOrDefault query operator with a name
matching predicate. Element returns null if the requested ele-
ment doesn’t exist.

NOTE

Element("xyz").Value will throw a NullReferenceException
if element xyz does not exist. If you’d prefer a null rather
than an exception, cast the XElement to a string instead of
querying its Value property. In other words:

string xyz =

 (string) settings.Element ("xyz");

This works because XElement defines an explicit string
conversion—just for this purpose!

126 | LINQ Pocket Reference

Recursive functions

XContainer also provides Descendants and DescendantNodes
methods, which return child elements or nodes, recursively.
Descendants accepts an optional element name. Returning to
our earlier example, we can use Descendants to find all the
hand tools as follows:

Console.WriteLine
 (bench.Descendants ("handtool").Count()); // 3

Both parent and leaf nodes are included in a depth-first tra-
versal. The following query extracts all comments anywhere
within the X-DOM that contain the word “careful”:

IEnumerable<string> query =
 from c in bench.DescendantNodes().OfType<XComment>()
 where c.Value.Contains ("careful")
 orderby c.Value
 select c.Value;

Parent Navigation
All XNodes have a Parent property and AncestorXXX methods
for parent navigation. A parent is always an XElement:

If x is an XElement, the following always prints true:

foreach (XNode child in x.Nodes())
 Console.WriteLine (child.Parent == x);

It is not the same case, however, if x is an XDocument. XDocument
is peculiar: it can have children, but can never be anyone’s par-
ent! To access the XDocument, you instead use the Document
property—this works on any object in the X-DOM tree.

Return type Members Works on

XElement Parent { get; } XNode*

Enumerable
<XElement>

Ancestors()
Ancestors (XName)
AncestorsAndSelf()
AncestorsAndSelf(XName)

XNode*
XNode*
XElement*
XElement*

Navigating/Querying an X-DOM | 127

Ancestors returns a sequence whose first element is Parent,
and whose next element is Parent.Parent, and so on until the
root element.

NOTE

You can navigate to the root element with the LINQ que-
ry AncestorsAndSelf().Last().

Another way to achieve the same thing is to call
Document.Root—although this works only if an XDocument
is present.

Peer Node Navigation

With PreviousNode and NextNode (and FirstNode/LastNode),
you can traverse nodes with the feel of a linked list. This is
noncoincidental: internally, nodes are stored in a linked list.

WARNING

XNode internally uses a singly linked list, so PreviousNode
is nonperformant.

Return type Members Defined in

bool IsBefore (XNode)
IsAfter (XNode)

XNode
XNode

XNode PreviousNode
NextNode

XNode
XNode

IEnumerable
<XNode>

NodesBeforeSelf()
NodesAfterSelf()

XNode
XNode

IEnumerable
<XElement>

ElementsBeforeSelf()
ElementsBeforeSelf(XName)
ElementsAfterSelf()
ElementsAfterSelf(XName)

XNode
XNode
XNode
XNode

128 | LINQ Pocket Reference

Attribute Navigation

In addition, XAttribute defines PreviousAttribute and
NextAttribute properties, as well as Parent.

The Attributes method that accepts a name returns a
sequence with either zero or one element; an element cannot
have duplicate attribute names in XML.

Updating an X-DOM
You can update elements and attributes in the following
ways:

• Call SetValue or reassign the Value property.

• Call SetElementValue or SetAttributeValue.

• Call one of the RemoveXXX methods.

• Call one the of the AddXXX or ReplaceXXX methods, speci-
fying fresh content.

You can also reassign the Name property on XElement objects.

Simple Value Updates

Return type Members Defined in

bool HasAttributes XElement

XAttribute Attribute(XName)
FirstAttribute
LastAttribute

XElement
XElement
XElement

IEnumerable
<XAttribute>

Attributes()
Attributes(XName)

XElement
XElement

Members Works on

SetValue (object) XElement, XAttribute

Value XElement, XAttribute

Updating an X-DOM | 129

The SetValue method replaces an element or attribute’s con-
tent with a simple value. Setting the Value property does the
same, but accepts string data only. We describe both of these
functions in detail later (see the upcoming “Working with
Values” section).

An effect of calling SetValue (or reassigning Value) is that it
replaces all child nodes:

XElement settings = new XElement ("settings",
 new XElement ("timeout", 30)
);
settings.SetValue ("blah");
Console.WriteLine (settings.ToString());

// RESULT: <settings>blah</settings>

Updating Child Nodes and Attributes

Category Members Works on

Add Add (params object[]) XContainer

AddFirst
 (params object[])

XContainer

Remove RemoveNodes() XContainer

RemoveAttributes() XElement

RemoveAll() XElement

Update ReplaceNodes
 (params object[])

XContainer

ReplaceAttributes
 (params object[])

XElement

ReplaceAll
 (params object[])

XElement

SetElementValue
 (XName, object)

XElement

SetAttributeValue
 (XName, object)

XElement

130 | LINQ Pocket Reference

The most convenient methods in this group are the last two:
SetElementValue and SetAttributeValue. They serve as short-
cuts for instantiating an XElement or XAttribute and then
Adding it to a parent, replacing any existing element or
attribute of that name:

XElement settings = new XElement ("settings");
settings.SetElementValue ("timeout", 30); // Adds child
settings.SetElementValue ("timeout", 60); // Updates it

Add appends a child node to an element or document.
AddFirst does the same thing, but it inserts at the beginning
of the collection rather than at the end.

You can remove all child nodes or attributes in one hit with
RemoveNodes or RemoveAttributes. RemoveAll is equivalent to
calling both of these methods.

The ReplaceXXX methods are equivalent to Removing and then
Adding. They take a snapshot of the input, so e.
ReplaceNodes(e.Nodes()) works as expected.

Updating Through the Parent

The methods AddBeforeSelf, AddAfterSelf, Remove, and
ReplaceWith don’t operate on the node’s children. Instead,
they operate on the collection the node itself is in. This
requires that the node have a parent element—otherwise, an
exception is thrown. AddBeforeSelf and AddAfterSelf are
useful for inserting a node into an arbitrary position:

Members Works on

AddBeforeSelf
 (params object[])

XNode

AddAfterSelf
 (params object[])

XNode

Remove() XNode*, XAttribute*

ReplaceWith
 (params object[])

XNode

Updating an X-DOM | 131

XElement items = new XElement ("items",
 new XElement ("one"),
 new XElement ("three")
);
items.FirstNode.AddAfterSelf (new XElement ("two"));

Here’s the result:

<items><one /><two /><three /></items>

Inserting into an arbitrary position within a long sequence of
elements is actually quite efficient because nodes are stored
internally in a linked list.

The Remove method removes the current node from its par-
ent. ReplaceWith does the same and then inserts some other
content at the same position. For instance:

XElement items = XElement.Parse
 ("<items><one/><two/><three/></items>");
items.FirstNode.ReplaceWith
 (new XComment ("One was here"));

Here’s the result:

<items><!--one was here--><two /><three /></items>

Removing a sequence of nodes or attributes

Thanks to extension methods in System.Xml.Linq, you can
also call Remove on a sequence of nodes or attributes. Con-
sider this X-DOM:

XElement contacts = XElement.Parse (
@"<contacts>
 <customer name='Mary'/>
 <customer name='Chris' archived='true'/>
 <supplier name='Susan'>
 <phone archived='true'>
 012345678
 <!--confidential-->
 </phone>
 </supplier>
 </contacts>");

The following removes all customers:

contacts.Elements ("customer").Remove();

132 | LINQ Pocket Reference

The next statement removes all archived contacts (so “Chris”
disappears):

contacts.Elements()
 .Where (e => (bool?) e.Attribute ("archived") == true)
 .Remove();

NOTE

Internally, the Remove methods first read all matching ele-
ments into a temporary list, and then enumerate over the
temporary list to perform the deletions. This avoids er-
rors that could otherwise result from deleting and query-
ing at the same time.

If we replaced Elements() with Descendants(), all archived
elements throughout the DOM would disappear, with this
result:

<contacts>
 <customer name="Mary" />
 <supplier name="Susan" />
</contacts>

The next example removes all contacts that feature the com-
ment “confidential” anywhere in their tree:

contacts.Elements()
 .Where (
 e => e.DescendantNodes()
 .OfType<XComment>()
 .Any (c => c.Value == "confidential")
).Remove();

This is the result:

<contacts>
 <customer name="Mary" />
 <customer name="Chris" archived="true" />
</contacts>

Contrast this with the following simpler query, which strips
all comment nodes from the tree:

contacts.DescendantNodes().OfType<XComment>().Remove();

Working with Values | 133

Working with Values
XElement and XAttribute both have a Value property of type
string. If an element has a single XText child node,
XElement’s Value property acts as a convenient shortcut to the
content of that node. With XAttribute, the Value property is
simply the attribute’s value.

Despite the storage differences, the X-DOM provides a con-
sistent set of operations for working with element and
attribute values.

Setting Values
There are two ways to assign a value: call SetValue or assign
the Value property. SetValue is more flexible because it
accepts not just strings, but other simple data types too:

var e = new XElement ("date", DateTime.Now);
e.SetValue (DateTime.Now.AddDays(1));
Console.Write (e.Value);

// RESULT: 2007-12-19T16:39:10.734375+09:00

We could have instead just set the element’s Value property,
but this would mean manually converting the DateTime to a
string. This is more complicated than calling ToString—it
requires the use of XmlConvert for an XML-compliant result.

When you pass a value into XElement or XAttribute’s con-
structor, the same automatic conversion takes place for non-
string types. This ensures that DateTimes is correctly
formatted; true is written in lowercase, and double.
NegativeInfinity is written as “-INF.”

Getting Values
To go the other way around and parse a Value back to a base
type, you simply cast the XElement or XAttribute to the
desired type. It sounds like it shouldn’t work—but it does!
For instance:

134 | LINQ Pocket Reference

XElement e = new XElement ("now", DateTime.Now);
DateTime dt = (DateTime) e;

XAttribute a = new XAttribute ("resolution", 1.234);
double res = (double) a;

An element or attribute doesn’t store DateTimes or numbers
natively—they’re always stored as text, and then parsed as
needed. It also doesn’t “remember” the original type, so you
must cast it correctly to avoid a runtime error. To make your
code robust, you can put the cast in a try/catch block, catch-
ing a FormatException.

Explicit casts on XElement and XAttribute can parse to the
following types:

• All standard numeric types

• string, bool, DateTime, DateTimeOffset, TimeSpan, and
Guid

• Nullable<> versions of the aforementioned value types

Casting to a nullable type is useful in conjunction with the
Element and Attribute methods because if the requested
name doesn’t exist, the cast still works. For instance, if x has
no timeout element, the first line generates a runtime error
and the second line does not:

int timeout = (int) x.Element ("timeout"); // Error
int? timeout = (int?) x.Element ("timeout"); // OK

You can factor away the nullable type in the final result with
the ?? operator. The following evaluates to 1.0 if the
resolution attribute doesn’t exist:

double resolution =
 (double?) x.Attribute ("resolution") ?? 1.0;

Casting to a nullable type won’t get you out of trouble,
though, if the element or attribute exists and has an empty
(or improperly formatted) value. For this, you must catch a
FormatException.

You can also use casts in LINQ queries. The following
returns “John”:

Working with Values | 135

var data = XElement.Parse (
 @"<data>
 <customer id='1' name='Mary' credit='100' />
 <customer id='2' name='John' credit='150' />
 <customer id='3' name='Anne' />
 </data>");

IEnumerable<string> query =
 from cust in data.Elements()
 where (int?) cust.Attribute ("credit") > 100
 select cust.Attribute ("name").Value;

Casting to a nullable int avoids a NullReferenceException in
the case of Anne, who has no credit attribute. Another solu-
tion would be to add a predicate to the where clause:

where cust.Attributes ("credit").Any()
&& (int) cust.Attribute...

The same principles apply when querying element values.

Values and Mixed Content Nodes
Given the value of Value, you might wonder when you’d ever
need to deal directly with XText nodes. The answer: when
you have mixed content. For example:

<summary>
 An XAttribute is <bold>not</bold> an XNode
</summary>

A simple Value property is not enough to capture summary’s
content. The summary element contains three children: an
XText node, followed by an XElement, followed by another
XText node. Here’s how to construct it:

XElement summary = new XElement ("summary",
 new XText ("An XAttribute is "),
 new XElement ("bold", "not"),
 new XText (" an XNode")
);

Interestingly, we can still query summary’s Value—without
getting an exception. Instead, we get a concatenation of each
child’s value:

An XAttribute is not an XNode

136 | LINQ Pocket Reference

It’s also legal to reassign summary’s Value, at the cost of
replacing all previous children with a single new XText node.

Automatic XText Concatenation
When you add simple content to an XElement, the X-DOM
appends to the existing XText child rather than creating a
new one. In the following examples, e1 and e2 end up with
just one child XText element whose value is HelloWorld:

var e1 = new XElement ("test", "Hello");
e1.Add ("World");

var e2 = new XElement ("test", "Hello", "World");

If you specifically create XText nodes, however, you end up
with multiple children:

var e = new XElement ("test",
 new XText ("Hello"),
 new XText ("World"));
Console.WriteLine (e.Value); // HelloWorld
Console.WriteLine (e.Nodes().Count()); // 2

XElement doesn’t concatenate the two XText nodes so the
nodes’ object identities are preserved.

Documents and Declarations

XDocument
An XDocument wraps a root XElement and allows you to add an
XDeclaration, processing instructions, a document type, and
root-level comments. An XDocument is optional and can be
ignored or omitted: unlike with the W3C DOM, it does not
serve as glue to keep everything together.

An XDocument provides the same functional constructors as
XElement. And as it’s based on XContainer, it also supports the
AddXXX, RemoveXXX, and ReplaceXXX methods. Unlike XElement,
however, an XDocument can accept only limited content:

Documents and Declarations | 137

• A single XElement object (the “root”)

• A single XDeclaration object

• A single XDocumentType object (to reference a DTD)

• Any number of XProcessingInstruction objects

• Any number of XComment objects

NOTE

Of these, only the root XElement is mandatory to have a
valid XDocument. The XDeclaration is optional—if omit-
ted, default settings are applied during serialization.

The simplest valid XDocument has just a root element:

var doc = new XDocument (
 new XElement ("test", "data")
);

Notice that we didn’t include an XDeclaration object. The
file generated by calling doc.Save would still contain an XML
declaration, however, because one is generated by default.

The next example produces a simple but correct XHTML file,
illustrating all the constructs that an XDocument can accept:

var styleInstruction = new XProcessingInstruction (
 "xml-stylesheet", "href='styles.css' type='text/css'");

var docType = new XDocumentType ("html",
 "-//W3C//DTD XHTML 1.0 Strict//EN",
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd",
 null);

XNamespace ns = "http://www.w3.org/1999/xhtml";
var root =
 new XElement (ns + "html",
 new XElement (ns + "head",
 new XElement (ns + "title", "An XHTML page")),
 new XElement (ns + "body",
 new XElement (ns + "p", "This is the content"))
);

138 | LINQ Pocket Reference

var doc =
 new XDocument (

new XDeclaration ("1.0", "utf-8", "no"),
 new XComment ("Reference a stylesheet"),
 styleInstruction,
 docType,
 root);

doc.Save ("test.html");

The resultant test.html reads as follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!--Reference a stylesheet-->
<?xml-stylesheet href='styles.css' type='text/css'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An XHTML page</title>
 </head>
 <body>
 <p>This is the content</p>
 </body>
</html>

XDocument has a Root property that serves as a shortcut for
accessing a document’s single XElement. The reverse link is
provided by XObject’s Document property, which works for all
objects in the tree:

Console.WriteLine (doc.Root.Name.LocalName); // html
XElement bodyNode = doc.Root.Element (ns + "body");
Console.WriteLine (bodyNode.Document == doc); // True

NOTE

An XDeclaration is not an XNode and does not appear in
the document’s Nodes collection—unlike comments, pro-
cessing instructions, and the root element. Instead, it gets
assigned to a dedicated property called Declaration. This
is why “True” is repeated four and not five times in the
last example.

Documents and Declarations | 139

Recall that a document’s children have no Parent:

Console.WriteLine (doc.Root.Parent == null); // True
foreach (XNode node in doc.Nodes())
 Console.Write
 (node.Parent == null); // TrueTrueTrueTrue

XML Declarations
A standard XML file starts with a declaration such as the
following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

An XML declaration ensures that the file will be correctly
parsed and understood by a reader. XElement and XDocument
follow these rules in emitting XML declarations:

• Calling Save with a filename always writes a declaration.

• Calling Save with an XmlWriter writes a declaration
unless the XmlWriter is instructed otherwise.

• The ToString method never emits an XML declaration.

NOTE

You can instruct an XmlWriter not to produce a declara-
tion by setting the OmitXmlDeclaration and
ConformanceLevel properties of an XmlWriterSettings ob-
ject when constructing the XmlWriter.

The presence or absence of an XDeclaration object has no
effect on whether an XML declaration gets written. The pur-
pose of an XDeclaration is instead to hint the XML serializa-
tion process—in two ways:

• What text encoding to use

• What to put in the XML declaration’s encoding and
standalone attributes (should a declaration be written)

140 | LINQ Pocket Reference

XDeclaration’s constructor accepts three arguments, which
correspond to the version, encoding, and standalone attributes.
In the following example, test.xml is encoded in UTF-16:

var doc = new XDocument (
 new XDeclaration ("1.0", "utf-16", "yes"),
 new XElement ("test", "data")
);
doc.Save ("test.xml");

NOTE

Whatever you specify for the XML version is ignored by
the XML writer: it always writes "1.0".

The encoding must use an IETF code such as "utf-16"—just
as it would appear in the XML declaration.

Names and Namespaces
Just as .NET types can have namespaces, so too can XML
elements and attributes.

XML namespaces achieve two things. First, rather like
namespaces in C#, they help avoid naming collisions. This
can become an issue when you merge data from one XML
file into another. Second, namespaces assign absolute mean-
ing to a name. The name “nil,” for instance, could mean any-
thing. Within the http://www.w3.org/2001/XMLSchema-
instance namespace, however, “nil” means something equiva-
lent to null in C# and comes with specific rules on how it
can be applied.

A namespace in XML is defined with the xmlns attribute:

<customer xmlns="OReilly.Nutshell.CSharp"/>

xmlns is a special reserved attribute. When used in this man-
ner, it performs two functions:

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Names and Namespaces | 141

• It specifies a namespace for the element in question.

• It specifies a default namespace for all descendant
elements.

You can also specify a namespace with a prefix—an alias that
you assign to a namespace to avoid repetition. There are two
steps—defining the prefix and using the prefix. You can do
both together as follows:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp"/>

Two distinct things are happening here. On the right, xmlns:
nut="..." defines a prefix called nut and makes it available to
this element and all its descendants. On the left, nut:customer
assigns the newly allocated prefix to the customer element.

A prefixed element does not define a default namespace for
descendants. In the following XML, firstname has an empty
namespace:

<nut:customer nut:xmlns="OReilly.Nutshell.CSharp">
 <firstname>Joe</firstname>
</customer>

To give firstname the OReilly.Nutshell.CSharp prefix, we
must do this:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
 <nut:firstname>Joe</firstname>
</customer>

XML lets you define prefixes purely for the convenience of
your descendants, without assigning any of them to the par-
ent element itself. The following defines two prefixes, i and
z, while leaving the customer element itself with an empty
namespace:

<customer
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:z="http://schemas.microsoft.com/Serialization/">
 ...
</customer>

142 | LINQ Pocket Reference

(Both namespaces in this example are URIs. It is standard
practice to use URIs [that you own]; it ensures namespace
uniqueness.)

You can also assign namespaces to attributes; the main dif-
ference is that it always requires a prefix. For instance:

<customer
 xmlns:nut="OReilly.Nutshell.CSharp" nut:id="123" />

Another difference is that an unqualified attribute always has
an empty namespace: it never inherits a default namespace
from a parent element.

Specifying Namespaces in the X-DOM
So far in this book, we’ve used just simple strings for XElement
and XAttribute names. A simple string corresponds to an
XML name with an empty namespace—rather like a .NET
type defined in the global namespace.

There are a couple of ways to specify an XML namespace.
The first is to enclose it in braces before the local name. For
example:

var e = new XElement
 ("{http://domain.com/xmlspace}customer", "Bloggs");
Console.WriteLine (e.ToString());

Here’s the resultant XML:

<customer xmlns="http://domain.com/xmlspace">
 Bloggs
</customer>

The second (and more performant) approach is to use the
XNamespace and XName types. Here are their definitions:

public sealed class XNamespace
{
 public string NamespaceName { get; }
}

Names and Namespaces | 143

public sealed class XName
{
 public string LocalName { get; }
 public XNamespace Namespace { get; } // Optional
}

Both types define implicit casts from string, so the follow-
ing is legal:

XNamespace ns = "http://domain.com/xmlspace";
XName localName = "customer";
XName fullName = "{http://domain.com/xmlspace}customer";

XName also overloads the + operator, allowing you to com-
bine a namespace and name without using braces:

XNamespace ns = "http://domain.com/xmlspace";
XName fullName = ns + "customer";
Console.WriteLine (fullName);

// RESULT: {http://domain.com/xmlspace}customer

All constructors and methods in the X-DOM that accept an
element or attribute name actually accept an XName object
rather than a string. The reason you can substitute a
string—as in all our examples to date—is because of the
implicit cast.

Specifying a namespace is the same whether for an element
or an attribute:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XAttribute (ns + "id", 123)
);

The X-DOM and Default Namespaces
The X-DOM ignores the concept of default namespaces until
it comes time to actually output XML. This means that when
you construct a child XElement, you must explicitly give it a
namespace if needed: it will not inherit from the parent:

144 | LINQ Pocket Reference

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XElement (ns + "customer", "Bloggs"),
 new XElement (ns + "purchase", "Bicycle")
);

The X-DOM does, however, apply default namespaces when
reading and outputting XML:

Console.WriteLine (data.ToString());

OUTPUT:
 <data xmlns="http://domain.com/xmlspace">
 <customer>Bloggs</customer>
 <purchase>Bicycle</purchase>
 </data>

Console.WriteLine
 (data.Element (ns + "customer").ToString());

OUTPUT:
 <customer xmlns="http://domain.com/xmlspace">Bloggs
 </customer>

If you construct XElement children without specifying
namespaces—in other words:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XElement ("customer", "Bloggs"),
 new XElement ("purchase", "Bicycle")
);
Console.WriteLine (data.ToString());

you get this result instead:

<data xmlns="http://domain.com/xmlspace">
 <customer xmlns="">Bloggs</customer>
 <purchase xmlns="">Bicycle</purchase>
</data>

Another trap is failing to include a namespace when navigat-
ing an X-DOM:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XElement (ns + "customer", "Bloggs"),
 new XElement (ns + "purchase", "Bicycle")
);

Names and Namespaces | 145

XElement x = data.Element (ns + "customer"); // ok
XElement y = data.Element ("customer"); // null

If you build an X-DOM tree without specifying namespaces,
you can subsequently assign every element to a single
namespace as follows:

foreach (XElement e in data.DescendantsAndSelf())
 if (e.Name.Namespace == "")
 e.Name = ns + e.Name.LocalName;

Prefixes
The X-DOM treats prefixes just as it treats namespaces:
purely as a serialization function. This means you can choose
to completely ignore the issue of prefixes—and get by! The
only reason you might want to do otherwise is for efficiency
when outputting to an XML file. For example, consider this:

XNamespace ns1 = "http://test.com/space1";
XNamespace ns2 = "http://test.com/space2";

var mix = new XElement (ns1 + "data",
 new XElement (ns2 + "element", "value"),
 new XElement (ns2 + "element", "value"),
 new XElement (ns2 + "element", "value")
);

By default, XElement will serialize this as follows:

<data xmlns="http://test.com/space1">
 <element xmlns="http://test.com/space2">value</element>
 <element xmlns="http://test.com/space2">value</element>
 <element xmlns="http://test.com/space2">value</element>
</data>

As you can see, there’s a bit of unnecessary duplication. The
solution is not to change the way you construct the X-DOM,
but to hint the serializer prior to writing the XML. You do
this by adding attributes defining prefixes that you want to
see applied. This is typically done on the root element:

mix.SetAttributeValue (XNamespace.Xmlns + "ns1", ns1);
mix.SetAttributeValue (XNamespace.Xmlns + "ns2", ns2);

146 | LINQ Pocket Reference

This assigns the prefix “ns1” to our XNamespace variable ns1,
and “ns2” to ns2. The X-DOM automatically picks up these
attributes when serializing and uses them to condense the
resulting XML. Here’s the result now of calling ToString on
mix:

<ns1:data xmlns:ns1="http://test.com/space1"
 xmlns:ns2="http://test.com/space2">
 <ns2:element>value</ns2:element>
 <ns2:element>value</ns2:element>
 <ns2:element>value</ns2:element>
</ns1:data>

Prefixes don’t change the way you construct, query, or
update the X-DOM—for these activities you ignore the pres-
ence of prefixes and continue to use full names. Prefixes
come into play only when converting to and from XML files
or streams.

Prefixes are also honored in serializing attributes. In the fol-
lowing example, we record a customer’s date of birth and
credit as “nil” using the W3C-standard attribute. The high-
lighted line ensures that the prefix is serialized without
unnecessary namespace repetition:

XNamespace xsi =
 "http://www.w3.org/2001/XMLSchema-instance";

var nil = new XAttribute (xsi + "nil", true);

var cust =
 new XElement ("customers",
 new XAttribute (XNamespace.Xmlns + "xsi", xsi),
 new XElement ("customer",
 new XElement ("lastname", "Bloggs"),
 new XElement ("dob", nil),
 new XElement ("credit", nil)
)
);

This is its XML:

Projecting into an X-DOM | 147

<customers
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <customer>
 <lastname>Bloggs</lastname>
 <dob xsi:nil="true" />
 <credit xsi:nil="true" />
 </customer>
</customers>

For brevity, we predeclared the nil XAttribute so that we
could use it twice in building the DOM. You’re allowed to
reference the same attribute twice because it’s automatically
duplicated as required.

Projecting into an X-DOM
You can also use LINQ queries to project into an X-DOM.
The source can be anything over which LINQ can query,
such as:

• LINQ to SQL Tables

• A local collection

• Another X-DOM

Regardless of the source, the strategy is the same in using
LINQ to emit an X-DOM: you first write a functional con-
struction expression that produces the desired X-DOM
shape, and then build a LINQ query around the expression.

For instance, suppose we wanted to retrieve customers from
a database into the following XML:

<customers>
 <customer id="1">
 <name>Sue</name>
 <buys>3</buys>
 </customer>
 ...
</customers>

148 | LINQ Pocket Reference

We start by writing a functional construction expression for
the X-DOM using simple literals:

var customers =
 new XElement ("customers",
 new XElement ("customer", new XAttribute ("id", 1),
 new XElement ("name", "Sue"),
 new XElement ("buys", 3)
)
);

We then turn this into a projection and build a LINQ query
around it:

var customers =
 new XElement ("customers",
 from c in dataContext.Customers
 select
 new XElement ("customer",
 new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count)
)
);

Here’s the result:

<customers>
 <customer id="1">
 <name>Tom</firstname>
 <buys>3</buys>
 </customer>
 <customer id="2">
 <name>Harry</firstname>
 <buys>2</buys>
 </customer>
 ...
</customers>

The outer query in this case defines the line at which the query
transitions from being a remote LINQ to SQL query to a local
LINQ to enumerable query. XElement’s constructor doesn’t
know about IQueryable<>, so it forces enumeration of the
LINQ to SQL query—and execution of the SQL statement.

Projecting into an X-DOM | 149

Eliminating Empty Elements
Suppose in the preceding example that we also wanted to
include details of the customer’s most recent high-value pur-
chase. We could do this as follows:

var customers =
 new XElement ("customers",
 from c in dataContext.Customers
 let lastBigBuy = (from p in c.Purchases
 where p.Price > 1000
 orderby p.Date descending
 select p).FirstOrDefault()
 select
 new XElement ("customer",
 new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count),
 new XElement ("lastBigBuy",
 new XElement ("description",
 lastBigBuy == null
 ? null : lastBigBuy.Description),
 new XElement ("price",
 lastBigBuy == null
 ? 0m : lastBigBuy.Price)
)
)
);

This emits empty elements, though, for customers with no
high-value purchases. (If it were a local query, not a LINQ to
SQL query, a NullReferenceException would be thrown. In
such cases, it would be better to omit the lastBigBuy node
entirely. We can achieve this by wrapping the constructor for
the lastBigBuy element in a conditional operator:

 select
 new XElement ("customer",
 new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count),
 lastBigBuy == null ? null :
 new XElement ("lastBigBuy",
 new XElement ("description",
 lastBigBuy.Description),
 new XElement ("price", lastBigBuy.Price)

150 | LINQ Pocket Reference

For customers with no lastBigBuy, a null is emitted instead
of an empty XElement. This is what we want because null
content is simply ignored.

Streaming a Projection
If you’re projecting into an X-DOM only to Save it (or call
ToString on it) you can improve memory efficiency through
an XStreamingElement. An XStreamingElement is a cut-down
version of XElement that applies deferred loading semantics to
its child content. To use it, you simply replace the outer
XElements with XStreamingElements:

var customers =
 new XStreamingElement ("customers",
 from c in dataContext.Customers
 select
 new XStreamingElement ("customer",
 new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count)
)
);
customers.Save ("data.xml");

The queries passed into an XStreamingElement’s constructor
are not enumerated until you call Save, ToString, or WriteTo
on the element; this avoids loading the whole X-DOM into
memory at once. The flipside is that the queries are reevalu-
ated should you re-Save. Also, you cannot traverse an
XStreamingElement’s child content—it does not expose meth-
ods such as Elements or Attributes.

XStreamingElement is not based on XObject—nor any other
class—because it has such a limited set of members. The
only members it has, besides Save, ToString, and WriteTo, are
the following:

• An Add method, which accepts content like the constructor

• A Name property

Projecting into an X-DOM | 151

XStreamingElement does not allow you to read content in a
streamed fashion—for this, you must use an XmlReader in
conjunction with the X-DOM.

Transforming an X-DOM
You can transform an X-DOM by reprojecting it. For
instance, suppose we want to transform an msbuild XML file,
used by the C# compiler and Visual Studio to describe a
project, into a simple format suitable for generating a report.
An msbuild file looks like this:

<Project DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/dev...>
 <PropertyGroup>
 <Platform Condition=" '$(Platform)' == '' ">
 AnyCPU
 </Platform>
 <ProductVersion>9.0.11209</ProductVersion>
 ...
 </PropertyGroup>
 <ItemGroup>
 <Compile Include="ObjectGraph.cs" />
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 <Compile Include="Tests\Aggregation.cs" />
 <Compile Include="Tests\Advanced\RecursiveXml.cs" />
 </ItemGroup>
 <ItemGroup>
 ...
 </ItemGroup>
 ...
</Project>

Let’s say we wanted to include only files, as follows:

<ProjectReport>
 <File>ObjectGraph.cs</File>
 <File>Program.cs</File>
 <File>Properties\AssemblyInfo.cs</File>
 <File>Tests\Aggregation.cs</File>
 <File>Tests\Advanced\RecursiveXml.cs</File>
</ProjectReport>

152 | LINQ Pocket Reference

The following query performs this transformation:

XElement project = XElement.Load("myProjectFile.csproj");
XNamespace ns = project.Name.Namespace;
var query =
 new XElement ("ProjectReport",
 from compileItem in
 project.Elements (ns + "ItemGroup")
 .Elements (ns + "Compile")
 let include = compileItem.Attribute ("Include")
 where include != null
 select new XElement ("File", include.Value)
);

The query first extracts all ItemGroup elements, and then uses
the Elements extension method to obtain a flat sequence of
all their Compile subelements. Notice that we had to specify
an XML namespace—everything in the original file inherits
the namespace defined by the Project element—so a local
element name such as ItemGroup won’t work on its own.
Then, we extracted the Include attribute value and projected
its value as an element.

153

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
Add method, 128, 129
AddAfterSelf method, 130
AddBeforeSelf method, 130
AddFirst method, 129
Aggregate method, 107, 110
aggregation methods, 10,

107–111
Aggregate, 107, 110
Average, 107, 109
Count, 107
LongCount, 107
Max, 107, 108
Min, 107, 108
Sum, 107, 109

All method, 111
Ancestors method, 126
AncestorsAndSelf method, 126
anonymous types, 30
Any method, 111
AsEnumerable method, 38–40,

101, 104
advantage of using, 40

AsQueryable method, 33, 54,
95, 101, 104

associations (LINQ to
SQL), 45–47

Attributes method, 128
Average method, 107, 109

B
building query

expressions, 52–59
AsQueryable method, 54
delegates versus expression

trees, 53–55
expression trees, 55–59

methods, 56

C
callbacks, 7
captured variables, 17
Cast method, 101–103
casting to nullable type, 134
chaining query operators, 4–6
Column attribute, 40
compiling expression trees, 53
composition strategies, 25–28
comprehension queries, 10–14

from clause, 11
group clause, 11
iteration variable, 11, 12
mixed syntax queries, 14
OrderBy method, 12
select clause, 11
Select method, 12
using System.Linq

directive, 12
Where method, 12

154 | Index

Concat method, 10, 100
Contains method, 111
continuations (query), 27
conversion methods, 15,

101–104
AsEnumerable, 101, 104
AsQueryable, 101, 104
Cast, 101–103
OfType, 101–103
ToArray, 101, 103
ToDictionary, 101, 103
ToList, 101, 103
ToLookup, 101, 103

correlated subqueries, 24, 69
Count method, 107
cross join, 77

LINQ to SQL, 78
cross product, 77
custom equality comparers, 99

D
database schema, 37
DataContext class, 42–44

multitier applications, 44
ObjectTrackingEnabled, 43
SubmitChanges method, 50

DataLoadOptions class, 48–49
AssociateWith method, 49
eager loading, 49

decorator sequences, 17
DefaultIfEmpty method, 105,

107
deferred execution, 15–21, 36

with LINQ to SQL, 46
deferred loading with XML

(streaming), 150
delegates versus expression

trees, 53–55
Descendants method, 122

DescendantsAndSelf
method, 122

Distinct method, 62, 66
document object model

(DOM), 114

E
eager loading (LINQ to

SQL), 49
Element method, 122
element operators, 104–107

DefaultIfEmpty method, 105,
107

ElementAt method, 105, 106
ElementAtOrDefault

method, 105
First method, 104, 105
FirstOrDefault method, 104,

105
Last method, 104, 105
LastOrDefault method, 104
Single method, 104, 105
SingleOrDefault method, 104,

105
element typing, 8
ElementAt method, 9, 105, 106
ElementAtOrDefault

method, 105
elements, 1

mapping input to output, 9
projected, 5

Elements method, 122
ElementsAfterSelf method, 127
ElementsBeforeSelf method, 127
elementSelector, 97
Empty method, 112
entities (LINQ to SQL), 41

associations, 45–47
automatic entity

generation, 45

Index | 155

EntityRef type, 47
EntitySet, 46
Enumerable class, 2, 4

AsEnumerable
method, 38–40

advantage of using, 40
query operators, 33

Enumerable.Where, 7
equi-join, 79
Except method, 100
expanding and flattening

subsequences, 76
Expression class, 56
expression trees, 33, 36, 55–59

compiling, 53
methods, 56
versus delegates, 53–55

F
filtering, 62–66

Distinct method, 62, 66
indexed, 64
Skip method, 62, 65
SkipWhile method, 62, 66
Take method, 62, 65
TakeWhile method, 62, 66
Where method, 62–65

First method, 9, 104, 105
FirstAttribute method, 128
FirstNode, 123
FirstOrDefault method, 104,

105, 125
foreign keys, 50
from clause, 11, 67

multiple from clauses, 73
Func signatures, 7
functional construction (LINQ

to XML), 119–120

G
generation methods, 112–113

Empty, 112
Range, 113
Repeat, 113

group clause, 97
GroupBy method, 95–99

custom equality
comparers, 99

grouping by multiple keys, 99
LINQ to SQL, 99
overview, 96–98

GroupJoin method, 82, 88–91
flat outer joins, 89
joining with lookups, 90–91

H
HasAttributes method, 128
HasElements method, 122

I
IEnumerable interface, 1
implicit typing, 3, 30
indexed filtering, 64
interpreted queries, 33–40

Enumerable.AsEnumerable, 3
8–40

advantage of using, 40
execution, 36–38
how they work, 35–38
IQueryable, 33

Intersect method, 100
into keyword, 27
IOrderedEnumerable, 94
IOrderedQueryable, 94
IQueryable, 2, 33

implementations, 33
IsAfter method, 127
IsBefore method, 127

156 | Index

IsPrimaryKey property, 41
iteration variable, 11, 12
iterators, 18

J
Join method, 82–87

joining with lookups, 90–91
lambda syntax, 87
multiple keys, 86

joining, 82–92
cross join

LINQ to SQL, 78
equi-join, 79
GroupJoin method, 82, 88–91

flat outer joins, 89
joining with

lookups, 90–91
Join method, 82–87

joining with
lookups, 90–91

lambda syntax, 87
multiple keys, 86

LINQ to SQL, 69–71
multiple keys, 86
outer joins

SelectMany method, 80–82
SelectMany method, 77
with lookups, 90–91

L
lambda expressions, 3

composing, 6–9
element typing, 8
Func signatures, 7

lambda queries, 4–10
chaining query operators, 4–6
composing lambda

expressions, 6–9
natural ordering, 9
syntax

joining in, 87
versus query syntax, 13

LambdaExpression class, 56
Last method, 9, 104, 105
LastAttribute method, 128
LastNode, 123
LastOrDefault method, 104
let keyword, 32
LINQ to SQL, 33, 40–52

associations, 45–47
automatic entity

generation, 45
cross join, 78
DataContext class, 42–44

multitier applications, 44
ObjectTrackingEnabled, 43

DataLoadOptions
class, 48–49

AssociateWith method, 49
eager loading, 49

deferred execution, 47–48
ElementAt method, 106
entity classes, 40–42
foreign keys, 50
GroupBy method, 99
interpreted queries (see

interpreted queries)
SelectMany method, 78–80
SQL Server, 38
subqueries and joins, 69–71
updates, 50–52
Where method, 64

LINQ to XML, 113–115
architectural overview, 114
automatic deep cloning, 121
containership hierarchy, 115
default namespaces, 143–145
documents and

declarations, 136–140
functional

construction, 119–120
expression, 147

inheritance hierarchy, 115
instantiating, 118–121
loading and parsing, 117
namespaces

Index | 157

attributes, 143
elements, 143

navigating and
querying, 122–128

attribute navigation, 128
child node

navigation, 122–126
parent navigation, 126
peer node navigation, 127

overview, 115–118
prefixes, 145–147
projecting into, 147–152

eliminating empty
elements, 149

streaming projection, 150
recursive functions, 126
retrieving elements, 123–125
retrieving single element, 125
saving and serializing, 118
specifying content, 120–121
specifying

namespaces, 142–143
transforming, 151–152
updating, 128–132

child nodes and
attributes, 130

removing sequence of nodes
or attributes, 131

simple value updates, 129
through parent, 130–132

working with values, 133–136
Load method, 117
local queries, 33
local sequence, 2
LongCount method, 107
lookups, joining with, 90–91

M
Max method, 107, 108
Min method, 107, 108
mixed syntax queries, 14
MoveNext, 11

multiple generators, 74
multiple keys, joining, 86

N
namespaces (XML), 141
NextNode method, 127
Nodes method, 123
NodesAfterSelf method, 127
NodesBeforeSelf method, 127
non-equi join, 78
nullable type, casting to, 134
NullReferenceException, 125,

135, 149

O
object hierarchies (projecting

into), 68
object initializers, 30
ObjectTrackingEnabled, 43
OfType method, 101–103
OrderBy method, 4, 92–95, 97

comprehension queries, 12
lambda expressions, 7

OrderByDescending
method, 92, 93

ordering, 92–95
comparers and collations, 94
IOrderedEnumerable, 94
IOrderedQueryable, 94
OrderBy method, 92–95
OrderByDescending

method, 92, 93
Reverse method, 92
ThenBy method, 92
ThenByDescending

method, 92, 93
outer iteration variables, 75–76
outer joins with

GroupJoin, 88–90
outer joins with SelectMany

method, 80–82
outer sequence

158 | Index

join operators, 85
outer variable semantics, 17

P
Parent method, 126
Parse method, 117
predicate, 6
prefixes (XML), 141
PreviousNode method, 127
primary keys (LINQ to SQL), 41
progressively constructing

queries, 5
projecting, 66–82

comprehension syntax, 76–77
concrete types, 71
indexed projection, 68
LINQ to SQL

SelectMany method, 78–80
outer iteration

variables, 75–76
Select (see Select method)
SelectMany (see SelectMany

method)
subqueries and joins in LINQ

to SQL, 69–71
subqueries and object

hierarchies, 68
projection strategies, 30–32

Q
quantifiers, 10, 111–112

All method, 111
Any method, 111
Contains method, 111
SequenceEqual method, 111

queries, 2
building (see building query

expressions)
constructing progressively, 5
interpreted (see interpreted

queries)

local (see local queries)
mixed syntax, 14
operators (see query

operators)
subqueries (see subqueries)
wrapping, 28–29

query comprehension syntax, 4,
10

(see also comprehension
queries)

query continuation, 27, 88, 98
query operators, 2, 59–61

categories, 59
chaining, 4–6
lambda expressions, 3, 7
standard, 4

query processing, moving from
database server to
client, 40

query syntax (see comprehension
queries)

Queryable class, 2, 33
standard set of methods, 38

R
Range method, 113
range variable (see iteration

variable)
refreshing objects (LINQ to

SQL), 43
Remove method, 128, 130

calling on sequence of
nodes, 131

RemoveAll method, 129
RemoveAttributes method, 129
RemoveNodes method, 129
Repeat method, 113
Replace method, 128
ReplaceAll method, 129
ReplaceAttributes method, 129
ReplaceNodes method, 129
ReplaceWith method, 130

Index | 159

Reverse method, 9, 92

S
Save method, 118
Select method, 4, 11, 66, 84

comprehension queries, 12
concrete types, 71
indexed projection, 68
lambda expressions, 7
LINQ to SQL, 69–71
ordering, 9
subqueries and object

hierarchies, 68
SelectMany method, 66, 72–82,

84
comprehension syntax, 76–77
joining, 77
LINQ to SQL, 78–80
outer iteration

variables, 75–76
overview, 73–75
versus Join, 85

SequenceEqual method, 111
sequences, 1
set operators, 100–101

Concat method, 100
Except method, 100
Intersect method, 100
Union method, 100

SetAttributeValue method, 129
SetElementValue method, 128,

129
SetValue method, 128, 133
Single method, 9, 42, 104, 105
SingleOrDefault method, 104,

105
Skip method, 9, 62, 65
SkipWhile method, 62, 66
SQL

AVG (), 107
COUNT(), 107

CROSS JOIN, 66
EXCEPT, 100
GROUP BY, 95
INNER JOIN, 66, 82
LEFT OUTER JOIN, 66, 82
MAX(), 107
MIN(), 107
NOT IN, 62
ORDER BY, 92, 104
ORDER BY … DESC, 104
SELECT, 66
SELECT DISTINCT, 62
SELECT TOP 1, 104
subqueries, 13
SUM(), 107
UNION, 100
UNION ALL, 100
WHERE, 62, 111
WHERE … IN, 100, 111
WHERE ROW_

NUMBER, 62
(see also LINQ to SQL)

SQL Server, 2, 34, 38, 39
auto-incrementing field, 51
ROW_NUMBER function, 65

SQL syntax versus LINQ query
syntax, 13

SqlMetal, 45, 51
standard query operators, 59
subqueries, 22–25

correlated, 24, 69
deferred execution of, 25
LINQ to SQL, 69–71
Select method, 68

subsequences, expanding and
flattening, 76

Sum method, 107, 109
System.Core, 1
System.Linq, 1

standard query operators, 2
System.Linq.Expressions, 56

160 | Index

T
Table attribute, 40
Take method, 9, 62, 65
TakeWhile method, 62, 66
TextWriter, 118
ThenBy method, 92
ThenByDescending method, 92,

93
ToArray method, 40, 101, 103
ToDictionary method, 101, 103
ToList method, 40, 101, 103
ToLookup method, 101, 103
ToString method, 118, 121

U
Union method, 10, 100
updates, LINQ to SQL, 50
using System.Linq directive, 12

V
var keyword, 3, 31
Visual Studio, 45, 51

W
Where method, 2, 3, 4, 62–65

comprehension queries, 12
indexed filtering, 64
lambda expressions, 6
LINQ to SQL, 64
ordering, 9

wrapping queries, 28–29

X
XAttribute, 116

casting to nullable type, 134
constructing, 118
Remove method, 130

SetValue method, 128
Value property, 133–136

getting values, 133–135
setting values, 133

XComment, 116, 120
XContainer, 122

Add method, 129
AddFirst method, 129
child nodes, 116
decisions, 120
Descendants method, 122
Element method, 122
Elements method, 122
RemoveNodes method, 129
ReplaceNodes method, 129
ToString, 121

XDeclaration, 136, 137
absence, 139
XNode, 138

XDocument, 136–138
accepted content, 136
constructs, 137
Root property, 138
XElement, 137

XDocumentType, 137
X-DOM (see LINQ to XML)
XElement

AncestorsAndSelf
method, 126

Attribute method, 128
Attributes method, 128
casting to nullable type, 134
constructing, 118, 143
DescendantsAndSelf

method, 122
FirstAttribute method, 128
HasAttributes method, 128
HasElements method, 122
LastAttribute method, 128

Index | 161

Load method, 117
namespaces, 143
Parse method, 117
RemoveAll method, 129
RemoveAttributes

method, 129
ReplaceAll method, 129
ReplaceAttributes

method, 129
SetAttributeValue

method, 129
SetElementValue method, 129
SetValue method, 128
Value property, 133–136

getting values, 133–135
setting values, 133

XDocument, 137
XML

declarations, 139–140
names and

namespaces, 140–147
default

namespaces, 143–145
prefixes, 145–147
specifying namespaces in X-

DOM, 142–143
serialization, 139
(see also LINQ to XML)

XmlWriter, 118
XName, 142, 143

+ operator, 143
XNamespace, 142
XNode, 116, 122, 138

AddAfterSelf method, 130
AddBeforeSelf method, 130
Ancestors method, 126
child nodes, 116
ElementsAfterSelf

method, 127

ElementsBeforeSelf
method, 127

IsAfter method, 127
IsBefore method, 127
NextNode method, 127
NodesAfterSelf method, 127
NodesBeforeSelf method, 127
Parent method, 126
PreviousNode method, 127
Remove method, 130
ReplaceWith method, 130

XObject, 116
Document property, 138

XProcessingInstruction, 137
XStreamingElement, 151
XText

automatic concatenation, 136
values and mixed content

nodes, 135

Y
yield return, 19

	Contents
	LINQ Pocket Reference
	Getting Started
	Lambda Queries
	Chaining Query Operators
	Composing Lambda Expressions
	Lambda expressions and Func signatures
	Lambda expressions and element typing

	Natural Ordering
	Other Operators

	Comprehension Queries
	Iteration Variables
	Query Syntax Versus SQL Syntax
	Query Syntax Versus Lambda Syntax
	Mixed Syntax Queries

	Deferred Execution
	Reevaluation
	Outer Variables
	How Deferred Execution Works
	Chaining Decorators
	How Queries Are Executed

	Subqueries
	Subqueries and Deferred Execution

	Composition Strategies
	Progressive Query Building
	The into Keyword
	Scoping rules

	Wrapping Queries

	Projection Strategies
	Object Initializers
	Anonymous Types
	The let Keyword

	Interpreted Queries
	How Interpreted Queries Work
	Execution

	AsEnumerable

	LINQ to SQL
	LINQ to SQL Entity Classes
	DataContext
	Automatic Entity Generation
	Associations
	Deferred Execution with LINQ to SQL
	DataLoadOptions
	Specifying a filter in advance
	Eager loading

	Updates

	Building Query Expressions
	Delegates Versus Expression Trees
	Compiling expression trees
	AsQueryable

	Expression Trees
	The Expression DOM

	Query Operator Overview
	Filtering
	Where
	Comprehension syntax
	Overview
	Indexed filtering
	Where in LINQ to SQL

	Take and Skip
	TakeWhile and SkipWhile
	Distinct

	Projecting
	Select
	*Comprehension syntax
	Overview
	Indexed projection
	Select subqueries and object hierarchies
	Subqueries and joins in LINQ to SQL
	Projecting into concrete types

	SelectMany
	Comprehension syntax
	Overview
	Outer iteration variables
	Thinking in comprehension syntax
	Joining with SelectMany
	SelectMany in LINQ to SQL
	Outer joins with SelectMany

	Joining
	Join and GroupJoin
	Join arguments
	GroupJoin arguments
	Comprehension syntax
	Overview
	Join
	Joining on multiple keys
	Joining in lambda syntax
	GroupJoin
	Flat outer joins
	Joining with lookups

	Ordering
	OrderBy, OrderByDescending, ThenBy, ThenByDescending
	OrderBy, OrderByDescending arguments
	ThenBy, ThenByDescending arguments
	Comprehension syntax
	Overview
	Comparers and collations
	IOrderedEnumerable and IOrderedQueryable

	Grouping
	GroupBy
	Comprehension syntax
	Overview
	GroupBy in LINQ to SQL
	Grouping by multiple keys
	Custom equality comparers

	Set Operators
	Concat and Union
	Intersect and Except

	Conversion Methods
	OfType and Cast
	ToArray, ToList, ToDictionary, ToLookup
	AsEnumerable and AsQueryable

	Element Operators
	First, Last, Single
	ElementAt
	DefaultIfEmpty

	Aggregation Methods
	Count and LongCount
	Min and Max
	Sum and Average
	Aggregate

	Quantifiers
	Contains and Any
	All and SequenceEqual

	Generation Methods
	Empty
	Range and Repeat

	LINQ to XML
	Architectural Overview

	X-DOM Overview
	Loading and Parsing
	Saving and Serializing

	Instantiating an X-DOM
	Functional Construction
	Specifying Content
	Automatic Deep Cloning

	Navigating/Querying an X-DOM
	Child Node Navigation
	FirstNode, LastNode, and Nodes
	Retrieving elements
	Retrieving a single element
	Recursive functions

	Parent Navigation
	Peer Node Navigation
	Attribute Navigation

	Updating an X-DOM
	Simple Value Updates
	Updating Child Nodes and Attributes
	Updating Through the Parent
	Removing a sequence of nodes or attributes

	Working with Values
	Setting Values
	Getting Values
	Values and Mixed Content Nodes
	Automatic XText Concatenation

	Documents and Declarations
	XDocument
	XML Declarations

	Names and Namespaces
	Specifying Namespaces in the X-DOM
	The X-DOM and Default Namespaces
	Prefixes

	Projecting into an X-DOM
	Eliminating Empty Elements
	Streaming a Projection
	Transforming an X-DOM

	Index

