Source

python-clinic / Modules / _ctypes / libffi / src / ia64 / ffi.c

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/* -----------------------------------------------------------------------
   ffi.c - Copyright (c) 1998, 2007, 2008, 2012 Red Hat, Inc.
	   Copyright (c) 2000 Hewlett Packard Company
	   Copyright (c) 2011 Anthony Green
   
   IA64 Foreign Function Interface 

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   DEALINGS IN THE SOFTWARE.
   ----------------------------------------------------------------------- */

#include <ffi.h>
#include <ffi_common.h>

#include <stdlib.h>
#include <stdbool.h>
#include <float.h>

#include "ia64_flags.h"

/* A 64-bit pointer value.  In LP64 mode, this is effectively a plain
   pointer.  In ILP32 mode, it's a pointer that's been extended to 
   64 bits by "addp4".  */
typedef void *PTR64 __attribute__((mode(DI)));

/* Memory image of fp register contents.  This is the implementation
   specific format used by ldf.fill/stf.spill.  All we care about is
   that it wants a 16 byte aligned slot.  */
typedef struct
{
  UINT64 x[2] __attribute__((aligned(16)));
} fpreg;


/* The stack layout given to ffi_call_unix and ffi_closure_unix_inner.  */

struct ia64_args
{
  fpreg fp_regs[8];	/* Contents of 8 fp arg registers.  */
  UINT64 gp_regs[8];	/* Contents of 8 gp arg registers.  */
  UINT64 other_args[];	/* Arguments passed on stack, variable size.  */
};


/* Adjust ADDR, a pointer to an 8 byte slot, to point to the low LEN bytes.  */

static inline void *
endian_adjust (void *addr, size_t len)
{
#ifdef __BIG_ENDIAN__
  return addr + (8 - len);
#else
  return addr;
#endif
}

/* Store VALUE to ADDR in the current cpu implementation's fp spill format.
   This is a macro instead of a function, so that it works for all 3 floating
   point types without type conversions.  Type conversion to long double breaks
   the denorm support.  */

#define stf_spill(addr, value)	\
  asm ("stf.spill %0 = %1%P0" : "=m" (*addr) : "f"(value));

/* Load a value from ADDR, which is in the current cpu implementation's
   fp spill format.  As above, this must also be a macro.  */

#define ldf_fill(result, addr)	\
  asm ("ldf.fill %0 = %1%P1" : "=f"(result) : "m"(*addr));

/* Return the size of the C type associated with with TYPE.  Which will
   be one of the FFI_IA64_TYPE_HFA_* values.  */

static size_t
hfa_type_size (int type)
{
  switch (type)
    {
    case FFI_IA64_TYPE_HFA_FLOAT:
      return sizeof(float);
    case FFI_IA64_TYPE_HFA_DOUBLE:
      return sizeof(double);
    case FFI_IA64_TYPE_HFA_LDOUBLE:
      return sizeof(__float80);
    default:
      abort ();
    }
}

/* Load from ADDR a value indicated by TYPE.  Which will be one of
   the FFI_IA64_TYPE_HFA_* values.  */

static void
hfa_type_load (fpreg *fpaddr, int type, void *addr)
{
  switch (type)
    {
    case FFI_IA64_TYPE_HFA_FLOAT:
      stf_spill (fpaddr, *(float *) addr);
      return;
    case FFI_IA64_TYPE_HFA_DOUBLE:
      stf_spill (fpaddr, *(double *) addr);
      return;
    case FFI_IA64_TYPE_HFA_LDOUBLE:
      stf_spill (fpaddr, *(__float80 *) addr);
      return;
    default:
      abort ();
    }
}

/* Load VALUE into ADDR as indicated by TYPE.  Which will be one of
   the FFI_IA64_TYPE_HFA_* values.  */

static void
hfa_type_store (int type, void *addr, fpreg *fpaddr)
{
  switch (type)
    {
    case FFI_IA64_TYPE_HFA_FLOAT:
      {
	float result;
	ldf_fill (result, fpaddr);
	*(float *) addr = result;
	break;
      }
    case FFI_IA64_TYPE_HFA_DOUBLE:
      {
	double result;
	ldf_fill (result, fpaddr);
	*(double *) addr = result;
	break;
      }
    case FFI_IA64_TYPE_HFA_LDOUBLE:
      {
	__float80 result;
	ldf_fill (result, fpaddr);
	*(__float80 *) addr = result;
	break;
      }
    default:
      abort ();
    }
}

/* Is TYPE a struct containing floats, doubles, or extended doubles,
   all of the same fp type?  If so, return the element type.  Return
   FFI_TYPE_VOID if not.  */

static int
hfa_element_type (ffi_type *type, int nested)
{
  int element = FFI_TYPE_VOID;

  switch (type->type)
    {
    case FFI_TYPE_FLOAT:
      /* We want to return VOID for raw floating-point types, but the
	 synthetic HFA type if we're nested within an aggregate.  */
      if (nested)
	element = FFI_IA64_TYPE_HFA_FLOAT;
      break;

    case FFI_TYPE_DOUBLE:
      /* Similarly.  */
      if (nested)
	element = FFI_IA64_TYPE_HFA_DOUBLE;
      break;

    case FFI_TYPE_LONGDOUBLE:
      /* Similarly, except that that HFA is true for double extended,
	 but not quad precision.  Both have sizeof == 16, so tell the
	 difference based on the precision.  */
      if (LDBL_MANT_DIG == 64 && nested)
	element = FFI_IA64_TYPE_HFA_LDOUBLE;
      break;

    case FFI_TYPE_STRUCT:
      {
	ffi_type **ptr = &type->elements[0];

	for (ptr = &type->elements[0]; *ptr ; ptr++)
	  {
	    int sub_element = hfa_element_type (*ptr, 1);
	    if (sub_element == FFI_TYPE_VOID)
	      return FFI_TYPE_VOID;

	    if (element == FFI_TYPE_VOID)
	      element = sub_element;
	    else if (element != sub_element)
	      return FFI_TYPE_VOID;
	  }
      }
      break;

    default:
      return FFI_TYPE_VOID;
    }

  return element;
}


/* Perform machine dependent cif processing. */

ffi_status
ffi_prep_cif_machdep(ffi_cif *cif)
{
  int flags;

  /* Adjust cif->bytes to include space for the bits of the ia64_args frame
     that precedes the integer register portion.  The estimate that the
     generic bits did for the argument space required is good enough for the
     integer component.  */
  cif->bytes += offsetof(struct ia64_args, gp_regs[0]);
  if (cif->bytes < sizeof(struct ia64_args))
    cif->bytes = sizeof(struct ia64_args);

  /* Set the return type flag. */
  flags = cif->rtype->type;
  switch (cif->rtype->type)
    {
    case FFI_TYPE_LONGDOUBLE:
      /* Leave FFI_TYPE_LONGDOUBLE as meaning double extended precision,
	 and encode quad precision as a two-word integer structure.  */
      if (LDBL_MANT_DIG != 64)
	flags = FFI_IA64_TYPE_SMALL_STRUCT | (16 << 8);
      break;

    case FFI_TYPE_STRUCT:
      {
        size_t size = cif->rtype->size;
  	int hfa_type = hfa_element_type (cif->rtype, 0);

	if (hfa_type != FFI_TYPE_VOID)
	  {
	    size_t nelts = size / hfa_type_size (hfa_type);
	    if (nelts <= 8)
	      flags = hfa_type | (size << 8);
	  }
	else
	  {
	    if (size <= 32)
	      flags = FFI_IA64_TYPE_SMALL_STRUCT | (size << 8);
	  }
      }
      break;

    default:
      break;
    }
  cif->flags = flags;

  return FFI_OK;
}

extern int ffi_call_unix (struct ia64_args *, PTR64, void (*)(void), UINT64);

void
ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
  struct ia64_args *stack;
  long i, avn, gpcount, fpcount;
  ffi_type **p_arg;

  FFI_ASSERT (cif->abi == FFI_UNIX);

  /* If we have no spot for a return value, make one.  */
  if (rvalue == NULL && cif->rtype->type != FFI_TYPE_VOID)
    rvalue = alloca (cif->rtype->size);
    
  /* Allocate the stack frame.  */
  stack = alloca (cif->bytes);

  gpcount = fpcount = 0;
  avn = cif->nargs;
  for (i = 0, p_arg = cif->arg_types; i < avn; i++, p_arg++)
    {
      switch ((*p_arg)->type)
	{
	case FFI_TYPE_SINT8:
	  stack->gp_regs[gpcount++] = *(SINT8 *)avalue[i];
	  break;
	case FFI_TYPE_UINT8:
	  stack->gp_regs[gpcount++] = *(UINT8 *)avalue[i];
	  break;
	case FFI_TYPE_SINT16:
	  stack->gp_regs[gpcount++] = *(SINT16 *)avalue[i];
	  break;
	case FFI_TYPE_UINT16:
	  stack->gp_regs[gpcount++] = *(UINT16 *)avalue[i];
	  break;
	case FFI_TYPE_SINT32:
	  stack->gp_regs[gpcount++] = *(SINT32 *)avalue[i];
	  break;
	case FFI_TYPE_UINT32:
	  stack->gp_regs[gpcount++] = *(UINT32 *)avalue[i];
	  break;
	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	  stack->gp_regs[gpcount++] = *(UINT64 *)avalue[i];
	  break;

	case FFI_TYPE_POINTER:
	  stack->gp_regs[gpcount++] = (UINT64)(PTR64) *(void **)avalue[i];
	  break;

	case FFI_TYPE_FLOAT:
	  if (gpcount < 8 && fpcount < 8)
	    stf_spill (&stack->fp_regs[fpcount++], *(float *)avalue[i]);
	  {
	    UINT32 tmp;
	    memcpy (&tmp, avalue[i], sizeof (UINT32));
	    stack->gp_regs[gpcount++] = tmp;
	  }
	  break;

	case FFI_TYPE_DOUBLE:
	  if (gpcount < 8 && fpcount < 8)
	    stf_spill (&stack->fp_regs[fpcount++], *(double *)avalue[i]);
	  memcpy (&stack->gp_regs[gpcount++], avalue[i], sizeof (UINT64));
	  break;

	case FFI_TYPE_LONGDOUBLE:
	  if (gpcount & 1)
	    gpcount++;
	  if (LDBL_MANT_DIG == 64 && gpcount < 8 && fpcount < 8)
	    stf_spill (&stack->fp_regs[fpcount++], *(__float80 *)avalue[i]);
	  memcpy (&stack->gp_regs[gpcount], avalue[i], 16);
	  gpcount += 2;
	  break;

	case FFI_TYPE_STRUCT:
	  {
	    size_t size = (*p_arg)->size;
	    size_t align = (*p_arg)->alignment;
	    int hfa_type = hfa_element_type (*p_arg, 0);

	    FFI_ASSERT (align <= 16);
	    if (align == 16 && (gpcount & 1))
	      gpcount++;

	    if (hfa_type != FFI_TYPE_VOID)
	      {
		size_t hfa_size = hfa_type_size (hfa_type);
		size_t offset = 0;
		size_t gp_offset = gpcount * 8;

		while (fpcount < 8
		       && offset < size
		       && gp_offset < 8 * 8)
		  {
		    hfa_type_load (&stack->fp_regs[fpcount], hfa_type,
				   avalue[i] + offset);
		    offset += hfa_size;
		    gp_offset += hfa_size;
		    fpcount += 1;
		  }
	      }

	    memcpy (&stack->gp_regs[gpcount], avalue[i], size);
	    gpcount += (size + 7) / 8;
	  }
	  break;

	default:
	  abort ();
	}
    }

  ffi_call_unix (stack, rvalue, fn, cif->flags);
}

/* Closures represent a pair consisting of a function pointer, and
   some user data.  A closure is invoked by reinterpreting the closure
   as a function pointer, and branching to it.  Thus we can make an
   interpreted function callable as a C function: We turn the
   interpreter itself, together with a pointer specifying the
   interpreted procedure, into a closure.

   For IA64, function pointer are already pairs consisting of a code
   pointer, and a gp pointer.  The latter is needed to access global
   variables.  Here we set up such a pair as the first two words of
   the closure (in the "trampoline" area), but we replace the gp
   pointer with a pointer to the closure itself.  We also add the real
   gp pointer to the closure.  This allows the function entry code to
   both retrieve the user data, and to restire the correct gp pointer.  */

extern void ffi_closure_unix ();

ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
		      ffi_cif* cif,
		      void (*fun)(ffi_cif*,void*,void**,void*),
		      void *user_data,
		      void *codeloc)
{
  /* The layout of a function descriptor.  A C function pointer really 
     points to one of these.  */
  struct ia64_fd
  {
    UINT64 code_pointer;
    UINT64 gp;
  };

  struct ffi_ia64_trampoline_struct
  {
    UINT64 code_pointer;	/* Pointer to ffi_closure_unix.  */
    UINT64 fake_gp;		/* Pointer to closure, installed as gp.  */
    UINT64 real_gp;		/* Real gp value.  */
  };

  struct ffi_ia64_trampoline_struct *tramp;
  struct ia64_fd *fd;

  if (cif->abi != FFI_UNIX)
    return FFI_BAD_ABI;

  tramp = (struct ffi_ia64_trampoline_struct *)closure->tramp;
  fd = (struct ia64_fd *)(void *)ffi_closure_unix;

  tramp->code_pointer = fd->code_pointer;
  tramp->real_gp = fd->gp;
  tramp->fake_gp = (UINT64)(PTR64)codeloc;
  closure->cif = cif;
  closure->user_data = user_data;
  closure->fun = fun;

  return FFI_OK;
}


UINT64
ffi_closure_unix_inner (ffi_closure *closure, struct ia64_args *stack,
			void *rvalue, void *r8)
{
  ffi_cif *cif;
  void **avalue;
  ffi_type **p_arg;
  long i, avn, gpcount, fpcount;

  cif = closure->cif;
  avn = cif->nargs;
  avalue = alloca (avn * sizeof (void *));

  /* If the structure return value is passed in memory get that location
     from r8 so as to pass the value directly back to the caller.  */
  if (cif->flags == FFI_TYPE_STRUCT)
    rvalue = r8;

  gpcount = fpcount = 0;
  for (i = 0, p_arg = cif->arg_types; i < avn; i++, p_arg++)
    {
      switch ((*p_arg)->type)
	{
	case FFI_TYPE_SINT8:
	case FFI_TYPE_UINT8:
	  avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], 1);
	  break;
	case FFI_TYPE_SINT16:
	case FFI_TYPE_UINT16:
	  avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], 2);
	  break;
	case FFI_TYPE_SINT32:
	case FFI_TYPE_UINT32:
	  avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], 4);
	  break;
	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	  avalue[i] = &stack->gp_regs[gpcount++];
	  break;
	case FFI_TYPE_POINTER:
	  avalue[i] = endian_adjust(&stack->gp_regs[gpcount++], sizeof(void*));
	  break;

	case FFI_TYPE_FLOAT:
	  if (gpcount < 8 && fpcount < 8)
	    {
	      fpreg *addr = &stack->fp_regs[fpcount++];
	      float result;
	      avalue[i] = addr;
	      ldf_fill (result, addr);
	      *(float *)addr = result;
	    }
	  else
	    avalue[i] = endian_adjust(&stack->gp_regs[gpcount], 4);
	  gpcount++;
	  break;

	case FFI_TYPE_DOUBLE:
	  if (gpcount < 8 && fpcount < 8)
	    {
	      fpreg *addr = &stack->fp_regs[fpcount++];
	      double result;
	      avalue[i] = addr;
	      ldf_fill (result, addr);
	      *(double *)addr = result;
	    }
	  else
	    avalue[i] = &stack->gp_regs[gpcount];
	  gpcount++;
	  break;

	case FFI_TYPE_LONGDOUBLE:
	  if (gpcount & 1)
	    gpcount++;
	  if (LDBL_MANT_DIG == 64 && gpcount < 8 && fpcount < 8)
	    {
	      fpreg *addr = &stack->fp_regs[fpcount++];
	      __float80 result;
	      avalue[i] = addr;
	      ldf_fill (result, addr);
	      *(__float80 *)addr = result;
	    }
	  else
	    avalue[i] = &stack->gp_regs[gpcount];
	  gpcount += 2;
	  break;

	case FFI_TYPE_STRUCT:
	  {
	    size_t size = (*p_arg)->size;
	    size_t align = (*p_arg)->alignment;
	    int hfa_type = hfa_element_type (*p_arg, 0);

	    FFI_ASSERT (align <= 16);
	    if (align == 16 && (gpcount & 1))
	      gpcount++;

	    if (hfa_type != FFI_TYPE_VOID)
	      {
		size_t hfa_size = hfa_type_size (hfa_type);
		size_t offset = 0;
		size_t gp_offset = gpcount * 8;
		void *addr = alloca (size);

		avalue[i] = addr;

		while (fpcount < 8
		       && offset < size
		       && gp_offset < 8 * 8)
		  {
		    hfa_type_store (hfa_type, addr + offset,
				    &stack->fp_regs[fpcount]);
		    offset += hfa_size;
		    gp_offset += hfa_size;
		    fpcount += 1;
		  }

		if (offset < size)
		  memcpy (addr + offset, (char *)stack->gp_regs + gp_offset,
			  size - offset);
	      }
	    else
	      avalue[i] = &stack->gp_regs[gpcount];

	    gpcount += (size + 7) / 8;
	  }
	  break;

	default:
	  abort ();
	}
    }

  closure->fun (cif, rvalue, avalue, closure->user_data);

  return cif->flags;
}