Source

python-clinic / Modules / _decimal / docstrings.h

Full commit
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/*
 * Copyright (c) 2001-2012 Python Software Foundation. All Rights Reserved.
 * Modified and extended by Stefan Krah.
 */


#ifndef DOCSTRINGS_H
#define DOCSTRINGS_H


#include "pymacro.h"


/******************************************************************************/
/*                                Module                                      */
/******************************************************************************/


PyDoc_STRVAR(doc__decimal,
"C decimal arithmetic module");

PyDoc_STRVAR(doc_getcontext,"\n\
getcontext() - Get the current default context.\n\
\n");

PyDoc_STRVAR(doc_setcontext,"\n\
setcontext(c) - Set a new default context.\n\
\n");

PyDoc_STRVAR(doc_localcontext,"\n\
localcontext(ctx=None) - Return a context manager that will set the default\n\
context to a copy of ctx on entry to the with-statement and restore the\n\
previous default context when exiting the with-statement. If no context is\n\
specified, a copy of the current default context is used.\n\
\n");

#ifdef EXTRA_FUNCTIONALITY
PyDoc_STRVAR(doc_ieee_context,"\n\
IEEEContext(bits) - Return a context object initialized to the proper values for\n\
one of the IEEE interchange formats. The argument must be a multiple of 32 and\n\
less than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\
DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\
\n");
#endif


/******************************************************************************/
/*                       Decimal Object and Methods                           */
/******************************************************************************/

PyDoc_STRVAR(doc_decimal,"\n\
Decimal(value=\"0\", context=None): Construct a new Decimal object.\n\
value can be an integer, string, tuple, or another Decimal object.\n\
If no value is given, return Decimal('0'). The context does not affect\n\
the conversion and is only passed to determine if the InvalidOperation\n\
trap is active.\n\
\n");

PyDoc_STRVAR(doc_adjusted,"\n\
adjusted() - Return the adjusted exponent of the number.\n\
\n\
Defined as exp + digits - 1.\n\
\n");

PyDoc_STRVAR(doc_as_tuple,"\n\
as_tuple() - Return a tuple representation of the number.\n\
\n");

PyDoc_STRVAR(doc_canonical,"\n\
canonical() - Return the canonical encoding of the argument. Currently,\n\
the encoding of a Decimal instance is always canonical, so this operation\n\
returns its argument unchanged.\n\
\n");

PyDoc_STRVAR(doc_compare,"\n\
compare(other, context=None) - Compare self to other. Return a decimal value:\n\
\n\
    a or b is a NaN ==> Decimal('NaN')\n\
    a < b           ==> Decimal('-1')\n\
    a == b          ==> Decimal('0')\n\
    a > b           ==> Decimal('1')\n\
\n");

PyDoc_STRVAR(doc_compare_signal,"\n\
compare_signal(other, context=None) - Identical to compare, except that\n\
all NaNs signal.\n\
\n");

PyDoc_STRVAR(doc_compare_total,"\n\
compare_total(other, context=None) - Compare two operands using their\n\
abstract representation rather than their numerical value. Similar to the\n\
compare() method, but the result gives a total ordering on Decimal instances.\n\
Two Decimal instances with the same numeric value but different representations\n\
compare unequal in this ordering:\n\
\n\
    >>> Decimal('12.0').compare_total(Decimal('12'))\n\
    Decimal('-1')\n\
\n\
Quiet and signaling NaNs are also included in the total ordering. The result\n\
of this function is Decimal('0') if both operands have the same representation,\n\
Decimal('-1') if the first operand is lower in the total order than the second,\n\
and Decimal('1') if the first operand is higher in the total order than the\n\
second operand. See the specification for details of the total order.\n\
\n\
This operation is unaffected by context and is quiet: no flags are changed\n\
and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");

PyDoc_STRVAR(doc_compare_total_mag,"\n\
compare_total_mag(other, context=None) - Compare two operands using their\n\
abstract representation rather than their value as in compare_total(), but\n\
ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to\n\
x.copy_abs().compare_total(y.copy_abs()).\n\
\n\
This operation is unaffected by context and is quiet: no flags are changed\n\
and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");

PyDoc_STRVAR(doc_conjugate,"\n\
conjugate() - Return self.\n\
\n");

PyDoc_STRVAR(doc_copy_abs,"\n\
copy_abs() - Return the absolute value of the argument. This operation\n\
is unaffected by context and is quiet: no flags are changed and no rounding\n\
is performed.\n\
\n");

PyDoc_STRVAR(doc_copy_negate,"\n\
copy_negate() - Return the negation of the argument. This operation is\n\
unaffected by context and is quiet: no flags are changed and no rounding\n\
is performed.\n\
\n");

PyDoc_STRVAR(doc_copy_sign,"\n\
copy_sign(other, context=None) - Return a copy of the first operand with\n\
the sign set to be the same as the sign of the second operand. For example:\n\
\n\
    >>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\
    Decimal('-2.3')\n\
\n\
This operation is unaffected by context and is quiet: no flags are changed\n\
and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");

PyDoc_STRVAR(doc_exp,"\n\
exp(context=None) - Return the value of the (natural) exponential function\n\
e**x at the given number. The function always uses the ROUND_HALF_EVEN mode\n\
and the result is correctly rounded.\n\
\n");

PyDoc_STRVAR(doc_from_float,"\n\
from_float(f) - Class method that converts a float to a decimal number, exactly.\n\
Since 0.1 is not exactly representable in binary floating point,\n\
Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\
\n\
    >>> Decimal.from_float(0.1)\n\
    Decimal('0.1000000000000000055511151231257827021181583404541015625')\n\
    >>> Decimal.from_float(float('nan'))\n\
    Decimal('NaN')\n\
    >>> Decimal.from_float(float('inf'))\n\
    Decimal('Infinity')\n\
    >>> Decimal.from_float(float('-inf'))\n\
    Decimal('-Infinity')\n\
\n\
\n");

PyDoc_STRVAR(doc_fma,"\n\
fma(other, third, context=None) - Fused multiply-add. Return self*other+third\n\
with no rounding of the intermediate product self*other.\n\
\n\
    >>> Decimal(2).fma(3, 5)\n\
    Decimal('11')\n\
\n\
\n");

PyDoc_STRVAR(doc_is_canonical,"\n\
is_canonical() - Return True if the argument is canonical and False otherwise.\n\
Currently, a Decimal instance is always canonical, so this operation always\n\
returns True.\n\
\n");

PyDoc_STRVAR(doc_is_finite,"\n\
is_finite() - Return True if the argument is a finite number, and False if the\n\
argument is infinite or a NaN.\n\
\n");

PyDoc_STRVAR(doc_is_infinite,"\n\
is_infinite() - Return True if the argument is either positive or negative\n\
infinity and False otherwise.\n\
\n");

PyDoc_STRVAR(doc_is_nan,"\n\
is_nan() - Return True if the argument is a (quiet or signaling) NaN and\n\
False otherwise.\n\
\n");

PyDoc_STRVAR(doc_is_normal,"\n\
is_normal(context=None) - Return True if the argument is a normal finite\n\
non-zero number with an adjusted exponent greater than or equal to Emin.\n\
Return False if the argument is zero, subnormal, infinite or a NaN.\n\
\n");

PyDoc_STRVAR(doc_is_qnan,"\n\
is_qnan() - Return True if the argument is a quiet NaN, and False otherwise.\n\
\n");

PyDoc_STRVAR(doc_is_signed,"\n\
is_signed() - Return True if the argument has a negative sign and\n\
False otherwise. Note that both zeros and NaNs can carry signs.\n\
\n");

PyDoc_STRVAR(doc_is_snan,"\n\
is_snan() - Return True if the argument is a signaling NaN and False otherwise.\n\
\n");

PyDoc_STRVAR(doc_is_subnormal,"\n\
is_subnormal(context=None) - Return True if the argument is subnormal, and\n\
False otherwise. A number is subnormal if it is non-zero, finite, and has an\n\
adjusted exponent less than Emin.\n\
\n");

PyDoc_STRVAR(doc_is_zero,"\n\
is_zero() - Return True if the argument is a (positive or negative) zero and\n\
False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ln,"\n\
ln(context=None) - Return the natural (base e) logarithm of the operand.\n\
The function always uses the ROUND_HALF_EVEN mode and the result is\n\
correctly rounded.\n\
\n");

PyDoc_STRVAR(doc_log10,"\n\
log10(context=None) - Return the base ten logarithm of the operand.\n\
The function always uses the ROUND_HALF_EVEN mode and the result is\n\
correctly rounded.\n\
\n");

PyDoc_STRVAR(doc_logb,"\n\
logb(context=None) - For a non-zero number, return the adjusted exponent\n\
of the operand as a Decimal instance. If the operand is a zero, then\n\
Decimal('-Infinity') is returned and the DivisionByZero condition is\n\
raised. If the operand is an infinity then Decimal('Infinity') is returned.\n\
\n");

PyDoc_STRVAR(doc_logical_and,"\n\
logical_and(other, context=None) - Return the digit-wise and of the two\n\
(logical) operands.\n\
\n");

PyDoc_STRVAR(doc_logical_invert,"\n\
logical_invert(context=None) - Return the digit-wise inversion of the\n\
(logical) operand.\n\
\n");

PyDoc_STRVAR(doc_logical_or,"\n\
logical_or(other, context=None) - Return the digit-wise or of the two\n\
(logical) operands.\n\
\n");

PyDoc_STRVAR(doc_logical_xor,"\n\
logical_xor(other, context=None) - Return the digit-wise exclusive or of the\n\
two (logical) operands.\n\
\n");

PyDoc_STRVAR(doc_max,"\n\
max(other, context=None) - Maximum of self and other. If one operand is a\n\
quiet NaN and the other is numeric, the numeric operand is returned.\n\
\n");

PyDoc_STRVAR(doc_max_mag,"\n\
max_mag(other, context=None) - Similar to the max() method, but the\n\
comparison is done using the absolute values of the operands.\n\
\n");

PyDoc_STRVAR(doc_min,"\n\
min(other, context=None) - Minimum of self and other. If one operand is a\n\
quiet NaN and the other is numeric, the numeric operand is returned.\n\
\n");

PyDoc_STRVAR(doc_min_mag,"\n\
min_mag(other, context=None) - Similar to the min() method, but the\n\
comparison is done using the absolute values of the operands.\n\
\n");

PyDoc_STRVAR(doc_next_minus,"\n\
next_minus(context=None) - Return the largest number representable in the\n\
given context (or in the current default context if no context is given) that\n\
is smaller than the given operand.\n\
\n");

PyDoc_STRVAR(doc_next_plus,"\n\
next_plus(context=None) - Return the smallest number representable in the\n\
given context (or in the current default context if no context is given) that\n\
is larger than the given operand.\n\
\n");

PyDoc_STRVAR(doc_next_toward,"\n\
next_toward(other, context=None) - If the two operands are unequal, return\n\
the number closest to the first operand in the direction of the second operand.\n\
If both operands are numerically equal, return a copy of the first operand\n\
with the sign set to be the same as the sign of the second operand.\n\
\n");

PyDoc_STRVAR(doc_normalize,"\n\
normalize(context=None) - Normalize the number by stripping the rightmost\n\
trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0').\n\
Used for producing canonical values for members of an equivalence class. For\n\
example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the\n\
equivalent value Decimal('32.1').\n\
\n");

PyDoc_STRVAR(doc_number_class,"\n\
number_class(context=None) - Return a string describing the class of the\n\
operand. The returned value is one of the following ten strings:\n\
\n\
    * '-Infinity', indicating that the operand is negative infinity.\n\
    * '-Normal', indicating that the operand is a negative normal number.\n\
    * '-Subnormal', indicating that the operand is negative and subnormal.\n\
    * '-Zero', indicating that the operand is a negative zero.\n\
    * '+Zero', indicating that the operand is a positive zero.\n\
    * '+Subnormal', indicating that the operand is positive and subnormal.\n\
    * '+Normal', indicating that the operand is a positive normal number.\n\
    * '+Infinity', indicating that the operand is positive infinity.\n\
    * 'NaN', indicating that the operand is a quiet NaN (Not a Number).\n\
    * 'sNaN', indicating that the operand is a signaling NaN.\n\
\n\
\n");

PyDoc_STRVAR(doc_quantize,"\n\
quantize(exp, rounding=None, context=None) - Return a value equal to the\n\
first operand after rounding and having the exponent of the second operand.\n\
\n\
    >>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\
    Decimal('1.414')\n\
\n\
Unlike other operations, if the length of the coefficient after the quantize\n\
operation would be greater than precision, then an InvalidOperation is signaled.\n\
This guarantees that, unless there is an error condition, the quantized exponent\n\
is always equal to that of the right-hand operand.\n\
\n\
Also unlike other operations, quantize never signals Underflow, even if the\n\
result is subnormal and inexact.\n\
\n\
If the exponent of the second operand is larger than that of the first, then\n\
rounding may be necessary. In this case, the rounding mode is determined by the\n\
rounding argument if given, else by the given context argument; if neither\n\
argument is given, the rounding mode of the current thread's context is used.\n\
\n");

PyDoc_STRVAR(doc_radix,"\n\
radix() - Return Decimal(10), the radix (base) in which the Decimal class does\n\
all its arithmetic. Included for compatibility with the specification.\n\
\n");

PyDoc_STRVAR(doc_remainder_near,"\n\
remainder_near(other, context=None) - Return the remainder from dividing\n\
self by other. This differs from self % other in that the sign of the\n\
remainder is chosen so as to minimize its absolute value. More precisely, the\n\
return value is self - n * other where n is the integer nearest to the exact\n\
value of self / other, and if two integers are equally near then the even one\n\
is chosen.\n\
\n\
If the result is zero then its sign will be the sign of self.\n\
\n");

PyDoc_STRVAR(doc_rotate,"\n\
rotate(other, context=None) - Return the result of rotating the digits of the\n\
first operand by an amount specified by the second operand. The second operand\n\
must be an integer in the range -precision through precision. The absolute\n\
value of the second operand gives the number of places to rotate. If the second\n\
operand is positive then rotation is to the left; otherwise rotation is to the\n\
right. The coefficient of the first operand is padded on the left with zeros to\n\
length precision if necessary. The sign and exponent of the first operand are\n\
unchanged.\n\
\n");

PyDoc_STRVAR(doc_same_quantum,"\n\
same_quantum(other, context=None) - Test whether self and other have the\n\
same exponent or whether both are NaN.\n\
\n\
This operation is unaffected by context and is quiet: no flags are changed\n\
and no rounding is performed. As an exception, the C version may raise\n\
InvalidOperation if the second operand cannot be converted exactly.\n\
\n");

PyDoc_STRVAR(doc_scaleb,"\n\
scaleb(other, context=None) - Return the first operand with the exponent\n\
adjusted the second. Equivalently, return the first operand multiplied by\n\
10**other. The second operand must be an integer.\n\
\n");

PyDoc_STRVAR(doc_shift,"\n\
shift(other, context=None) - Return the result of shifting the digits of\n\
the first operand by an amount specified by the second operand. The second\n\
operand must be an integer in the range -precision through precision. The\n\
absolute value of the second operand gives the number of places to shift.\n\
If the second operand is positive, then the shift is to the left; otherwise\n\
the shift is to the right. Digits shifted into the coefficient are zeros.\n\
The sign and exponent of the first operand are unchanged.\n\
\n");

PyDoc_STRVAR(doc_sqrt,"\n\
sqrt(context=None) - Return the square root of the argument to full precision.\n\
The result is correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\
\n");

PyDoc_STRVAR(doc_to_eng_string,"\n\
to_eng_string(context=None) - Convert to an engineering-type string.\n\
Engineering notation has an exponent which is a multiple of 3, so there\n\
are up to 3 digits left of the decimal place. For example, Decimal('123E+1')\n\
is converted to Decimal('1.23E+3').\n\
\n\
The value of context.capitals determines whether the exponent sign is lower\n\
or upper case. Otherwise, the context does not affect the operation.\n\
\n");

PyDoc_STRVAR(doc_to_integral,"\n\
to_integral(rounding=None, context=None) - Identical to the\n\
to_integral_value() method. The to_integral() name has been kept\n\
for compatibility with older versions.\n\
\n");

PyDoc_STRVAR(doc_to_integral_exact,"\n\
to_integral_exact(rounding=None, context=None) - Round to the nearest\n\
integer, signaling Inexact or Rounded as appropriate if rounding occurs.\n\
The rounding mode is determined by the rounding parameter if given, else\n\
by the given context. If neither parameter is given, then the rounding mode\n\
of the current default context is used.\n\
\n");

PyDoc_STRVAR(doc_to_integral_value,"\n\
to_integral_value(rounding=None, context=None) - Round to the nearest\n\
integer without signaling Inexact or Rounded. The rounding mode is determined\n\
by the rounding parameter if given, else by the given context. If neither\n\
parameter is given, then the rounding mode of the current default context is\n\
used.\n\
\n");


/******************************************************************************/
/*                       Context Object and Methods                           */
/******************************************************************************/

PyDoc_STRVAR(doc_context,"\n\
The context affects almost all operations and controls rounding,\n\
Over/Underflow, raising of exceptions and much more. A new context\n\
can be constructed as follows:\n\
\n\
    >>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\
    ...             rounding=ROUND_HALF_EVEN, capitals=1, clamp=1,\n\
    ...             traps=[InvalidOperation, DivisionByZero, Overflow],\n\
    ...             flags=[])\n\
    >>>\n\
\n\
\n");

#ifdef EXTRA_FUNCTIONALITY
PyDoc_STRVAR(doc_ctx_apply,"\n\
apply(x) - Apply self to Decimal x.\n\
\n");
#endif

PyDoc_STRVAR(doc_ctx_clear_flags,"\n\
clear_flags() - Reset all flags to False.\n\
\n");

PyDoc_STRVAR(doc_ctx_clear_traps,"\n\
clear_traps() - Set all traps to False.\n\
\n");

PyDoc_STRVAR(doc_ctx_copy,"\n\
copy() - Return a duplicate of the context with all flags cleared.\n\
\n");

PyDoc_STRVAR(doc_ctx_copy_decimal,"\n\
copy_decimal(x) - Return a copy of Decimal x.\n\
\n");

PyDoc_STRVAR(doc_ctx_create_decimal,"\n\
create_decimal(x) - Create a new Decimal instance from x, using self as the\n\
context. Unlike the Decimal constructor, this function observes the context\n\
limits.\n\
\n");

PyDoc_STRVAR(doc_ctx_create_decimal_from_float,"\n\
create_decimal_from_float(f) - Create a new Decimal instance from float f.\n\
Unlike the Decimal.from_float() class method, this function observes the\n\
context limits.\n\
\n");

PyDoc_STRVAR(doc_ctx_Etiny,"\n\
Etiny() - Return a value equal to Emin - prec + 1, which is the minimum\n\
exponent value for subnormal results. When underflow occurs, the exponent\n\
is set to Etiny.\n\
\n");

PyDoc_STRVAR(doc_ctx_Etop,"\n\
Etop() - Return a value equal to Emax - prec + 1. This is the maximum exponent\n\
if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must\n\
not be negative.\n\
\n");

PyDoc_STRVAR(doc_ctx_abs,"\n\
abs(x) - Return the absolute value of x.\n\
\n");

PyDoc_STRVAR(doc_ctx_add,"\n\
add(x, y) - Return the sum of x and y.\n\
\n");

PyDoc_STRVAR(doc_ctx_canonical,"\n\
canonical(x) - Return a new instance of x.\n\
\n");

PyDoc_STRVAR(doc_ctx_compare,"\n\
compare(x, y) - Compare x and y numerically.\n\
\n");

PyDoc_STRVAR(doc_ctx_compare_signal,"\n\
compare_signal(x, y) - Compare x and y numerically. All NaNs signal.\n\
\n");

PyDoc_STRVAR(doc_ctx_compare_total,"\n\
compare_total(x, y) - Compare x and y using their abstract representation.\n\
\n");

PyDoc_STRVAR(doc_ctx_compare_total_mag,"\n\
compare_total_mag(x, y) - Compare x and y using their abstract representation,\n\
ignoring sign.\n\
\n");

PyDoc_STRVAR(doc_ctx_copy_abs,"\n\
copy_abs(x) - Return a copy of x with the sign set to 0.\n\
\n");

PyDoc_STRVAR(doc_ctx_copy_negate,"\n\
copy_negate(x) - Return a copy of x with the sign inverted.\n\
\n");

PyDoc_STRVAR(doc_ctx_copy_sign,"\n\
copy_sign(x, y) - Copy the sign from y to x.\n\
\n");

PyDoc_STRVAR(doc_ctx_divide,"\n\
divide(x, y) - Return x divided by y.\n\
\n");

PyDoc_STRVAR(doc_ctx_divide_int,"\n\
divide_int(x, y) - Return x divided by y, truncated to an integer.\n\
\n");

PyDoc_STRVAR(doc_ctx_divmod,"\n\
divmod(x, y) - Return quotient and remainder of the division x / y.\n\
\n");

PyDoc_STRVAR(doc_ctx_exp,"\n\
exp(x) - Return e ** x.\n\
\n");

PyDoc_STRVAR(doc_ctx_fma,"\n\
fma(x, y, z) - Return x multiplied by y, plus z.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_canonical,"\n\
is_canonical(x) - Return True if x is canonical, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_finite,"\n\
is_finite(x) - Return True if x is finite, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_infinite,"\n\
is_infinite(x) - Return True if x is infinite, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_nan,"\n\
is_nan(x) - Return True if x is a qNaN or sNaN, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_normal,"\n\
is_normal(x) - Return True if x is a normal number, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_qnan,"\n\
is_qnan(x) - Return True if x is a quiet NaN, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_signed,"\n\
is_signed(x) - Return True if x is negative, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_snan,"\n\
is_snan() - Return True if x is a signaling NaN, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_subnormal,"\n\
is_subnormal(x) - Return True if x is subnormal, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_is_zero,"\n\
is_zero(x) - Return True if x is a zero, False otherwise.\n\
\n");

PyDoc_STRVAR(doc_ctx_ln,"\n\
ln(x) - Return the natural (base e) logarithm of x.\n\
\n");

PyDoc_STRVAR(doc_ctx_log10,"\n\
log10(x) - Return the base 10 logarithm of x.\n\
\n");

PyDoc_STRVAR(doc_ctx_logb,"\n\
logb(x) - Return the exponent of the magnitude of the operand's MSD.\n\
\n");

PyDoc_STRVAR(doc_ctx_logical_and,"\n\
logical_and(x, y) - Digit-wise and of x and y.\n\
\n");

PyDoc_STRVAR(doc_ctx_logical_invert,"\n\
logical_invert(x) - Invert all digits of x.\n\
\n");

PyDoc_STRVAR(doc_ctx_logical_or,"\n\
logical_or(x, y) - Digit-wise or of x and y.\n\
\n");

PyDoc_STRVAR(doc_ctx_logical_xor,"\n\
logical_xor(x, y) - Digit-wise xor of x and y.\n\
\n");

PyDoc_STRVAR(doc_ctx_max,"\n\
max(x, y) - Compare the values numerically and return the maximum.\n\
\n");

PyDoc_STRVAR(doc_ctx_max_mag,"\n\
max_mag(x, y) - Compare the values numerically with their sign ignored.\n\
\n");

PyDoc_STRVAR(doc_ctx_min,"\n\
min(x, y) - Compare the values numerically and return the minimum.\n\
\n");

PyDoc_STRVAR(doc_ctx_min_mag,"\n\
min_mag(x, y) - Compare the values numerically with their sign ignored.\n\
\n");

PyDoc_STRVAR(doc_ctx_minus,"\n\
minus(x) - Minus corresponds to the unary prefix minus operator in Python,\n\
but applies the context to the result.\n\
\n");

PyDoc_STRVAR(doc_ctx_multiply,"\n\
multiply(x, y) - Return the product of x and y.\n\
\n");

PyDoc_STRVAR(doc_ctx_next_minus,"\n\
next_minus(x) - Return the largest representable number smaller than x.\n\
\n");

PyDoc_STRVAR(doc_ctx_next_plus,"\n\
next_plus(x) - Return the smallest representable number larger than x.\n\
\n");

PyDoc_STRVAR(doc_ctx_next_toward,"\n\
next_toward(x) - Return the number closest to x, in the direction towards y.\n\
\n");

PyDoc_STRVAR(doc_ctx_normalize,"\n\
normalize(x) - Reduce x to its simplest form. Alias for reduce(x).\n\
\n");

PyDoc_STRVAR(doc_ctx_number_class,"\n\
number_class(x) - Return an indication of the class of x.\n\
\n");

PyDoc_STRVAR(doc_ctx_plus,"\n\
plus(x) - Plus corresponds to the unary prefix plus operator in Python,\n\
but applies the context to the result.\n\
\n");

PyDoc_STRVAR(doc_ctx_power,"\n\
power(x, y) - Compute x**y. If x is negative, then y must be integral.\n\
The result will be inexact unless y is integral and the result is finite\n\
and can be expressed exactly in 'precision' digits. In the Python version\n\
the result is always correctly rounded, in the C version the result is\n\
almost always correctly rounded.\n\
\n\
power(x, y, m) - Compute (x**y) % m. The following restrictions hold:\n\
\n\
    * all three arguments must be integral\n\
    * y must be nonnegative\n\
    * at least one of x or y must be nonzero\n\
    * m must be nonzero and less than 10**prec in absolute value\n\
\n\
\n");

PyDoc_STRVAR(doc_ctx_quantize,"\n\
quantize(x, y) - Return a value equal to x (rounded), having the exponent of y.\n\
\n");

PyDoc_STRVAR(doc_ctx_radix,"\n\
radix() - Return 10.\n\
\n");

PyDoc_STRVAR(doc_ctx_remainder,"\n\
remainder(x, y) - Return the remainder from integer division. The sign of\n\
the result, if non-zero, is the same as that of the original dividend.\n\
\n");

PyDoc_STRVAR(doc_ctx_remainder_near,"\n\
remainder_near(x, y) - Return x - y * n, where n is the integer nearest the\n\
exact value of x / y (if the result is 0 then its sign will be the sign of x).\n\
\n");

PyDoc_STRVAR(doc_ctx_rotate,"\n\
rotate(x, y) - Return a copy of x, rotated by y places.\n\
\n");

PyDoc_STRVAR(doc_ctx_same_quantum,"\n\
same_quantum(x, y) - Return True if the two operands have the same exponent.\n\
\n");

PyDoc_STRVAR(doc_ctx_scaleb,"\n\
scaleb(x, y) - Return the first operand after adding the second value\n\
to its exp.\n\
\n");

PyDoc_STRVAR(doc_ctx_shift,"\n\
shift(x, y) - Return a copy of x, shifted by y places.\n\
\n");

PyDoc_STRVAR(doc_ctx_sqrt,"\n\
sqrt(x) - Square root of a non-negative number to context precision.\n\
\n");

PyDoc_STRVAR(doc_ctx_subtract,"\n\
subtract(x, y) - Return the difference between x and y.\n\
\n");

PyDoc_STRVAR(doc_ctx_to_eng_string,"\n\
to_eng_string(x) - Convert a number to a string, using engineering notation.\n\
\n");

PyDoc_STRVAR(doc_ctx_to_integral,"\n\
to_integral(x) - Identical to to_integral_value(x).\n\
\n");

PyDoc_STRVAR(doc_ctx_to_integral_exact,"\n\
to_integral_exact(x) - Round to an integer. Signal if the result is\n\
rounded or inexact.\n\
\n");

PyDoc_STRVAR(doc_ctx_to_integral_value,"\n\
to_integral_value(x) - Round to an integer.\n\
\n");

PyDoc_STRVAR(doc_ctx_to_sci_string,"\n\
to_sci_string(x) - Convert a number to a string using scientific notation.\n\
\n");


#endif /* DOCSTRINGS_H */