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forget (halt of) Markov hypothesis?!
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INTRODUCTION

e Weakness of HMM: Geometric durations

P(dlj) = (1

e HSMM: models the time spent on a hid-
den state (sequence duration).

e Practical application: music sheet match-
ing & alighment.
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THE MODEL

HSMM = HMM without the Markov property.
Hidden state ¢;:

e HMM: ¢; — uy

e HSMM: ¢; — (uq.4, )t (sequence)
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In practice: logs (and 1ogsumexp) to avoid un-
derflow errors. Complexity: O(T Dy, K?).

CONCLUSION

ILLUSTRATION

Figure 1: N sequence of observations of a HSMM
(hidden state: ¢ € {1..K}, observed variables: uy,
duration of i*" sequence: d.).

ASSUMPTIONS
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(Markovian transition ¢ — j)
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This methods complexity is: m x O(T K*D
(for m steps).

Thanks for reading!

HMM are a special case of HSMM, and our HSMM implementation can emulate a HMM,
For both HMM and HSMM, « —  is tractable and efficient for truncated D, ..,
For Geometric durations, E-M for HSMM is very similar to E-M for HMM (cf. HMK3),

But for other durations distribution, E-M is more complicated, but works in practice (ctf. plots).

GEOMETRIC

Geometric HSMM sampled after 200 iterations (HMK3 data)
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Figure 2: HSMM with Geometric d distribution

POISSON (WORKS!)

Poisson HSMM sampled after 200 iterations
(X from a 4-state HMM)

Figure 4: 2D data drawn from a 4-state HMM

Note: No transition between state/cluster 1 and
3, but almost the same Gaussian (p;, 23;).

POISSON

Poisson HSMM sampled after 200 iterations (HMK3 data)

Figure 3: HSMM with Poisson d distribution

POISSON (FAILS!)

Poisson HSMM sampled after 200 iterations
(X shuffled from a 4-state HMM)

Figure 5: Same data, but shuffled




