## Hidden semi-Markov Model:

## Lilian Besson \& Valentin Brunck

## Introduction

- Weakness of HMM: Geometric durations

$$
\mathbb{P}(d \mid j)=\left(1-A_{j, j}\right) A_{j, j}^{d}
$$

- HSMM: models the time spent on a hidden state (sequence duration).
- Practical application: music sheet matching \& alignment.


## The Model

HSMM $\equiv \mathbf{H M M}$ without the Markov property. Hidden state $q_{t}$ :

- HMM: $q_{t} \rightarrow u_{t}$
- HSMM: $q_{t} \rightarrow\left(u_{1: d_{t}}\right)_{t} \quad$ (sequence)
$\mathbb{P}\left(\left(q_{n},\left(u_{1: d_{n}}\right)_{n}\right), n=1 . . N\right)=\mathbb{P}\left(q_{1}\right) \mathbb{P}\left(\left(u_{1: d_{1}}\right)_{1} \mid q_{1}\right)$ $\prod_{n=2 . . N}\left(\mathbb{P}\left(q_{n} \mid q_{n-1}\right) \mathbb{P}\left(\left(u_{1: d_{n}}\right)_{n} \mid q_{n}\right)\right)$


## Filtering $(\alpha, \beta)$

Forward $\alpha$-recursion:

$$
\alpha_{t, j} \equiv \sum_{d=1}^{d_{\text {max }}^{(j)}} B_{t, j, d} \mathbf{D}_{\mathbf{j}, \mathrm{d}}\left(\sum_{i=1}^{K} A_{i, j} \alpha_{t-d, i}\right)
$$

backward $\beta$-recursion:

$$
\beta_{t, i} \equiv \sum_{j=1}^{K} A_{i, j}\left(\sum_{d=1}^{d_{\max }^{(j)}} \mathbf{D}_{\mathbf{j}, \mathrm{d}} B_{t+d, j, d} \beta_{t+d, j}\right)
$$

In practice: logs (and logsumexp) to avoid underflow errors. Complexity: $O\left(T D_{\max } K^{2}\right)$.


Figure 1: $N$ sequence of observations of a HSMM (hidden state: $q_{k} \in\{1 . . K\}$, observed variables: $u_{t}$, duration of $i^{t h}$ sequence: $d_{i}$ ).

## Assumptions

$A_{i, j}=\mathbb{P}(j \mid i) \quad$ (Markovian transition $\left.i \hookrightarrow j\right)$
$\left\{\begin{array}{l}A_{j, d}=\mathbb{P}(d \mid j) \quad\left(\equiv\left(1-A_{j, j}\right) A_{j, j}^{d} \text { for HMM }\right)\end{array}\right.$
$B_{t, j, d}=\mathbb{P}\left(u_{t-d+1: t} \mid j, d\right)=\prod_{t^{\prime}=t-d+1}^{t} \mathcal{N}\left(y_{t} \mid j, d\right)$

## CONCLUSION

Thanks for reading!

- HMM are a special case of HSMM, and our HSMM implementation can emulate a HMM,
- For both HMM and HSMM, $\alpha-\beta$ is tractable and efficient for truncated $D_{\max }$,
- For Geometric durations, E-M for HSMM is very similar to E-M for HMM (cf. HMK3),
- But for other durations distribution, E-M is more complicated, but works in practice (cf. plots)


## Poisson




## forget (half of) Markov hypothesis ?!

PGM course for the MVA master at ENS CACHAN (2015-16)

Figure 2: HSMM with Geometric $d$ distribution


## POISSON (WORKS!)



Figure 4: $2 D$ data drawn from a 4 -state HMM
Note: No transition between state/cluster 1 and 3 , but almost the same Gaussian $\left(\mu_{i}, \Sigma_{i}\right)$.

