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INTRODUCTION

• Weakness of HMM: Geometric durations

P(d|j) = (1−Aj,j)A
d
j,j .

• HSMM: models the time spent on a hid-
den state (sequence duration).

• Practical application: music sheet match-
ing & alignment.

THE MODEL

HSMM≡HMM without the Markov property.
Hidden state qt:

• HMM: qt → ut

• HSMM: qt → (u1:dt
)t (sequence)

P

(
(qn, (u1:dn

)n), n = 1..N
)
= P(q1)P((u1:d1

)1|q1)

· · ·
∏

n=2..N

(
P(qn|qn−1)P((u1:dn

)n|qn)
)

ILLUSTRATION

Figure 1: N sequence of observations of a HSMM
(hidden state: qk ∈ {1..K}, observed variables: ut,
duration of ith sequence: di).

ASSUMPTIONS





Ai,j = P(j|i) (Markovian transition i ֌ j)

Dj,d = P(d|j) ( ≡ (1−Aj,j)A
d
j,j for HMM)

Bt,j,d = P(ut−d+1:t|j, d) =
t∏

t′=t−d+1

N (yt′ |j, d)

FILTERING (α, β)
Forward α−recursion:

αt,j ≡

d(j)
max∑

d=1

Bt,j,dDj,d

(
K∑

i=1

Ai,jαt−d,i

)

backward β−recursion:

βt,i ≡
K∑

j=1

Ai,j




d(j)
max∑

d=1

Dj,dBt+d,j,dβt+d,j




In practice: logs (and logsumexp) to avoid un-
derflow errors. Complexity: O(TDmaxK

2).

INFERENCE (E-M)





π̂i
new ← P(q0 = i|u0, . . . , uT )

Ânew
i,j ←

∑
t ξt(i, j)/

(∑
i 6=j

∑
t ξt(i, j)

)

D̂new
j,d ← η(j, d)/ (

∑
d η(j, d))

ξt(i, j) = P(qt = i, qt+1 = j|u0..uT )

η(j, d) =P(qd−v = j, v = 1..d, qd 6= j|u1..uT )+
∑

t=1..T

P(qt 6= j, qd−v = j, v = 1..d, qt+u+1 6= j|u1..uT )

This methods complexity is: m× O(TK2D2
max)

(for m steps).

CONCLUSION Thanks for reading!

• HMM are a special case of HSMM, and our HSMM implementation can emulate a HMM,

• For both HMM and HSMM, α− β is tractable and efficient for truncated Dmax,

• For Geometric durations, E-M for HSMM is very similar to E-M for HMM (cf. HMK3),

• But for other durations distribution, E-M is more complicated, but works in practice (cf. plots).

GEOMETRIC

Figure 2: HSMM with Geometric d distribution

POISSON

Figure 3: HSMM with Poisson d distribution

POISSON (WORKS!)

Figure 4: 2D data drawn from a 4-state HMM

Note: No transition between state/cluster 1 and
3, but almost the same Gaussian (µi,Σi).

POISSON (FAILS!)

Figure 5: Same data, but shuffled


