
Identification of TF binding profiles from ChIP-seq and
Dnase-seq using SeqGL

Manu Setty1, Christina Leslie

Computational Biology Program, MSKCC,
New York

1manu@cbio.mskcc.org

April 26, 2015

Abstract

SeqGL is a new group lasso-based algorithm to extract multiple transcription factor (TF) binding signals
from ChIP- and DNase-seq profiles. Benchmarked on over 100 ChIP-seq experiments, SeqGL outperformed
traditional motif discovery tools in discriminative accuracy and cofactor detection. SeqGL successfully scales
to DNase-seq data, identifying a large multiplicity of TF signals confirmed by ChIP, and can be used with
multitask training to learn genomic-context and cell-type specific TF signals.

Contents

1 Installation 1
1.1 Dependencies . 1

2 Inputs 2

3 SeqGL wrapper 2

4 SeqGL details 4
4.1 Getting data ready for SeqGL . 5
4.2 Identification of groups . 6
4.3 Group lasso . 6

1 Installation

The R package can be downloaded from https://bitbucket.org/leslielab/seqgl.

1.1 Dependencies

• The following bioconductor packages: Biostrings, GenomicRanges, BSgenome, WGCNA, fastcluster, gtools,
sfsmisc, kernlab. These packages can be installed using the command

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("Biostrings", "GenomicRanges", "BSgenome", "WGCNA", "fastcluster", "gtools", "sfsmisc", "kernlab"))

• ChIPKernels package for wildcard kernel. This package can be downloaded from https://bitbucket.org/

leslielab/chipkernels.

1

https://bitbucket.org/leslielab/seqgl
https://bitbucket.org/leslielab/chipkernels
https://bitbucket.org/leslielab/chipkernels

• spams toolbox for running group lasso. Download and install the R package from http://spams-devel.

gforge.inria.fr/downloads.html. Please refer to http://www.thecoatlessprofessor.com/programming/

rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error for issues with installing
spams on OS X Yosemite.

• HOMER motif finding tool for associating groups with motifs. http://homer.salk.edu/homer/.

• BSgenome package for the organisms of your choice from Bioconductor. Example if the peaks are from hg19,
install BSgenome.Hsapiens.UCSC.hg19 from http://bioconductor.org/packages/release/data/annotation/

html/BSgenome.Hsapiens.UCSC.hg19.html. The example detailed in this vignette assumes this package
has been installed. Install the HOMER genome as well for the organism of your choice using perl /path-

to-homer/configureHomer.pl -install hg19.

After all the dependencies are installed, SeqGL can be installed from source using R CMD INSTALL <path to

package>.

2 Inputs

Chip-seq or DNase-seq peaks are the inputs to SeqGL. The peaks should be provided in bed format and should
contain the following columns.

• chrom: Chromosome

• start: Genomic start

• end: Genomic end

• strand: Strand

• score: Score to rank the peaks. Can be −log(p − value).

• summit: Summit position in the peak

• name: Unique identifier for each peak

An example peaks file can be found in the package. This bed file contains the top peaks for IRF4 ChIP-seq in
GM12878, a lymphoblastoid cell line.

> peaks.file <- system.file("extdata/gm12878_top_irf4_peaks.bed", package="SeqGL")

> peaks <- read.table (peaks.file, header=TRUE)

> head (peaks)

chrom chromStart chromEnd strand score summit name

1 chr1 37754504 37754786 * 2089.17 149 Peak1

2 chr1 181068642 181068903 * 916.04 136 Peak2

3 chr1 45965797 45966083 * 1573.60 162 Peak3

4 chr1 163291458 163291723 * 1876.17 107 Peak4

5 chr1 235114142 235114503 * 1753.84 127 Peak5

6 chr1 28526489 28526779 * 1525.03 160 Peak6

3 SeqGL wrapper

SeqGL has a wrapper function run.seqGL which takes the peaks, organism as inputs and run through the complete
pipeline.

> peaks.file <- system.file("extdata/gm12878_top_irf4_peaks.bed", package="SeqGL")

> run.seqGL (peaks.file, out.dir="seqGL.Test/", data.type="ChIP", org="hg19")

2

http://spams-devel.gforge.inria.fr/downloads.html
http://spams-devel.gforge.inria.fr/downloads.html
http://www.thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error
http://www.thecoatlessprofessor.com/programming/rcpp-rcpparmadillo-and-os-x-mavericks-lgfortran-and-lquadmath-error
http://homer.salk.edu/homer/
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Test auROC: 0.8601

Figure 1: Test auROC for IRF4 peaks

The results of the will be present in the seqGL.Test folder and contains the following objects. The test
performance is shown in the file seqGL.Test/test_auc.pdf which shows the ROC plot. See Figure 1 for an
example.

The motifs associated with each group can be found in seqGL.Test/group_motifs.html. A screenshot is
shown in Figure 2.

3

Figure 2: Group scores and motifs for IRF peaks

The contents of the results folder:

• group motifs.html: Html file containing the group scores and motif associated with each group.

• test auc.pdf: ROC plot showing the performance of the method. auROC varies from 0.5 − 1 with being
perfect classification.

• group members: Folder containing peaks associated with each group.

• group motifs: Folder containing all the HOMER results.

• train test data.Rds: R object containing the train and test data.

• clustering results.Rds: R object containing clustering results.

• group lasso results.Rdata: R object containing all the group lasso results.

• seqgl results.Rdata: R object containing group scores, group membership and peak scores for all peaks.

4 SeqGL details

This section describes the different steps underlying SeqGL using the IRF4 peaks as an example. The following
command will load the library.

> library (SeqGL)

==

*

* Package WGCNA 1.46 loaded.

*

* Important note: It appears that your system supports multi-threading,

* but it is not enabled within WGCNA in R.

* To allow multi-threading within WGCNA with all available cores, use

*

* allowWGCNAThreads()

*

* within R. Use disableWGCNAThreads() to disable threading if necessary.

* Alternatively, set the following environment variable on your system:

*

* ALLOW_WGCNA_THREADS=<number_of_processors>

4

*

* for example

*

* ALLOW_WGCNA_THREADS=8

*

* To set the environment variable in linux bash shell, type

*

* export ALLOW_WGCNA_THREADS=8

*

* before running R. Other operating systems or shells will

* have a similar command to achieve the same aim.

*

==

4.1 Getting data ready for SeqGL

The first step is to normalize the spans of different peaks and ensure they are all of the same width. We recommed
a span of 150 bases around the peak summit for optimal performance.

> peaks.gr <- GRanges (peaks$chrom, IRanges (peaks$chromStart, peaks$chromEnd),

+ summit=peaks$summit, name=peaks$name)

> span <- 150

> pos.regions <- peaks.gr

> start (pos.regions) <- start (pos.regions) + pos.regions$summit - 1

> end (pos.regions) <- start (pos.regions)

> pos.regions <- resize (pos.regions, span, fix='center')

Then create positive and negative regions. Negative regions are created by shifting the positive regions up-
stream.

> neg.regions <- shift (pos.regions, span*2)

After creating the regions or examples, we build the feature matriices for group lasso. The build.features.kernels
function from ChIPKernels package is used for constructing the feature matrices. Wildcard string kernels are
used for determining feature matrices. The build.train.test.data function splits the examples into train and
test sets, determines sequences for all the examples and then builds the feature matrices. BSgenome package
corresponding to the organims should be installed for determining sequences. Specifically, the peaks are for hg19
genome and BSgenome.Hsapiens.UCSC.hg19 has to be installed in this example.

> res.dir <- '/tmp/SeqGLTest'; dir.create (res.dir)

> dictionary.file <- system.file("extdata/wildcard_dict_kmer8_mismatches2_alpha5_consecutive_mis.Rdata", package="SeqGL")

> train.test.data <- build.train.test.data (pos.regions, neg.regions, dictionary.file, org='hg19')

[1] "Extract sequences for all training and test examples..."

[1] "Time for extracting sequences: 0.77 minutes"

[1] "Building features from dictionary..."

[1] "Position 1 of 143"

[1] "Position 21 of 143"

[1] "Position 41 of 143"

[1] "Position 61 of 143"

[1] "Position 81 of 143"

[1] "Position 101 of 143"

[1] "Position 121 of 143"

[1] "Position 141 of 143"

[1] "Time for determining features : 1.07"

[1] "Selecting top features..."

5

[1] "Time for selecting features: 0.18 minutes"

[1] "Package and return..."

[1] "Total time for constructing data: 2.05 minutes"

> saveRDS (train.test.data, file=sprintf ("%s/train_test_data.Rds", res.dir))

train.test.data is a list containing all the training and test data

> show (labels (train.test.data))

[1] "train.features" "test.features" "train.inds" "test.inds"

[5] "feature.inds" "train.labels" "test.labels" "train.regions"

[9] "test.regions" "dictionary.file" "train.seqs" "test.seqs"

4.2 Identification of groups

The groups are identified by hierarchical clustering of features. run.clustering function to used for hierarchical
clustering.

> clustering.results <- run.clustering (train.test.data$train.features, no.groups=20)

[1] "Running clustering..."

[1] "Time for running clustering: 1.60 minutes"

> saveRDS (clustering.results, file=sprintf ("%s/clustering_results.Rds", res.dir))

4.3 Group lasso

The groups of kmers are used in a group lasso learning framework. We use the spams toolbox ro run group lasso.
We first identify the optimal regularization parameters for group lasso and learn the model using these parameters.
The functions group.lasso.eval.parameters and run.group.lasso are used for parameter evaulation and
running group lasso respectively.

> lambdas=c(1e-2, 5e-3, 1e-3, 5e-4, 1e-4)

> param.eval <- group.lasso.eval.parameters (train.test.data$train.features,

+ train.test.data$train.labels, train.test.data$test.features,

+ train.test.data$test.labels, clustering.results$groups,

+ lambdas=lambdas)

[1] "Running crossvalidation ..."

[1] "i: 1 of 5, j: 1 of 5"

[1] "i: 1 of 5, j: 2 of 5"

[1] "i: 1 of 5, j: 3 of 5"

[1] "i: 1 of 5, j: 4 of 5"

[1] "i: 1 of 5, j: 5 of 5"

[1] "i: 2 of 5, j: 1 of 5"

[1] "i: 2 of 5, j: 2 of 5"

[1] "i: 2 of 5, j: 3 of 5"

[1] "i: 2 of 5, j: 4 of 5"

[1] "i: 2 of 5, j: 5 of 5"

[1] "i: 3 of 5, j: 1 of 5"

[1] "i: 3 of 5, j: 2 of 5"

[1] "i: 3 of 5, j: 3 of 5"

[1] "i: 3 of 5, j: 4 of 5"

[1] "i: 3 of 5, j: 5 of 5"

[1] "i: 4 of 5, j: 1 of 5"

[1] "i: 4 of 5, j: 2 of 5"

6

[1] "i: 4 of 5, j: 3 of 5"

[1] "i: 4 of 5, j: 4 of 5"

[1] "i: 4 of 5, j: 5 of 5"

[1] "i: 5 of 5, j: 1 of 5"

[1] "i: 5 of 5, j: 2 of 5"

[1] "i: 5 of 5, j: 3 of 5"

[1] "i: 5 of 5, j: 4 of 5"

[1] "i: 5 of 5, j: 5 of 5"

[1] "Time for running crossvalidation: 0.65 minutes"

> saveRDS (param.eval, file=sprintf ("%s/param_eval.Rds", res.dir))

> inds <- which (param.eval$aucs.matrix == max (param.eval$aucs.matrix), arr.ind=TRUE)

> group.lasso.results <- run.group.lasso (train.test.data$train.features, train.test.data$train.labels,

+ train.test.data$test.features, train.test.data$test.labels, clustering.results$groups,

+ param.eval$lambdas[inds[1]], param.eval$lambdas[inds[2]])

[1] "Running group lasso..."

[1] "Time for running group lasso: 0.03 minutes"

>

Group rankings and peaks associated with group can be determined using

> peak.scores <- determine.peak.scores (train.test.data$train.features,

+ train.test.data$train.labels, group.lasso.results$w, clustering.results$groups)

> group.scores <- determine.group.scores (train.test.data$train.features,

+ train.test.data$train.labels, group.lasso.results$w, clustering.results$groups)

[1] "Time for determining group scores: 0.00"

> group.members <- determine.group.members (train.test.data$train.labels,

+ group.scores, peak.scores,

+ test.classes=1)$group.members

[1] "Time for determining group members: 0.00"

> save (group.lasso.results, peak.scores, group.scores, group.members,

+ file=sprintf ("%s/group_lasso_results.Rdata", res.dir))

Finally, motifs can be generated using HOMER by invoking the function group.motifs

> group.motifs (res.dir, dictionary.file,

+ no.cores=1, org="hg19", test.classes=1)

7

	1 Installation
	1.1 Dependencies

	2 Inputs
	3 SeqGL wrapper
	4 SeqGL details
	4.1 Getting data ready for SeqGL
	4.2 Identification of groups
	4.3 Group lasso

