
survHD
package vignette

Christoph Bernau ∗

Levi Waldron †

Markus Riester‡

2012

1 SurvHD - Survival Analysis for High-Dimensional
Data (Gene Expression Data)

Survival analysis on high-dimensional data is a complex and computationally inten-
sive task. Many standard algorithms for survival data are not applicable in the
”p >> n”-case, e.g. with several thousands of variables and only hundreds of sam-
ples. Many adaptions of the Cox-Model and other standard approaches for high-
dimensional data have been developed in the last years. Furthermore, methods for
tuning and evaluation of models are distinct from classification problems. Our R-
package survHD provides a framework for the application, optimization, and evalua-
tion of high-dimensional survival models. In this vignette, we will introduce the basic
work flow of the package using a well-known cancer microarray data set. Additionally,
we will explain the built-in interface for including user-defined custom survival model
functions into the survHD framework.

1.1 Input Data

The package accepts three different formats for predictor data X: data-frame, matrix,
or the Bioconductor-defined ExpressionSet class. The corresponding survival out-
come can be either a Surv object from the package survival or in the case of the
ExpressionSet-format a character vector specifying the name of this surv object
in the phenoData-slot of the ExpressionSet object. In our example, we use the
matrix format for analyzing the gene expressions of 86 lung adenocarcinoma patients
published by Beer et al. (2002), which can be found in the data folder of the package
(here we just use the first 500 probe sets for illustration purposes):

> set.seed(321)

> data(beer.exprs)

> data(beer.survival)

> X <- t(as.matrix(beer.exprs))

> y <- Surv(beer.survival$os, beer.survival$status)

∗bernau@ibe.med.uni-muenchen.de
†lwaldron.research@gmail.com
‡markus@jimmy.harvard.edu

1

bernau@ibe.med.uni-muenchen.de
lwaldron.research@gmail.com
markus@jimmy.harvard.edu

1.2 Fitting Models

The most important function in survHD is called learnSurvival. It is used to
fit the survival model and store its essential information for later evaluation on test
data. Apart from the input data mentioned in the last section, the only additional
required argument is the name of survival method that shall be performed: in this
example we will use coxBoostSurv, a wrapper to the CoxBoost package. As a first
example of training on a full dataset followed by independent evaluation on a pre-
defined dataset, we exclusively use the first 60 observations for model fitting because
we want to evaluate our model on the last 26 observations of our data. The parameter
stepno is a method specific tuning parameter (the number of Boosting steps) which
is simply passed to the CoxBoost function.

> ytrain <- y[1:60,]

> Xtrain <- X[1:60,]

> coxboostmodel <- learnSurvival(y=ytrain,

+ X=Xtrain,

+ survmethod='coxBoostSurv',

+ stepno=20)

> str(coxboostmodel, max.level=2)

Formal class 'LearnOut' [package "survHD"] with 7 slots

..@ ModelLearnedlist:List of 1

..@ X :'data.frame': 60 obs. of 500 variables:

.. .. [list output truncated]

..@ y : Surv [1:60, 1:2] 84.1 91.8+ 93.7+ 108.2+ 34.6 68.1+ 34.2+ 47.0+ 39.1+ 45.8 ...

.. ..- attr(*, "dimnames")=List of 2

.. ..- attr(*, "type")= chr "right"

..@ GeneSel :Formal class 'GeneSel' [package "survHD"] with 4 slots

..@ nbgene : int 500

..@ LearningSets :Formal class 'LearningSets' [package "survHD"] with 4 slots

..@ threshold : num -1

The call to str() shows the slot of the output object which stores all the information
necessary to perform predictions for new data and evaluate the model.

1.3 Evaluation on independent Data

Evaluation of survival models is a complicated task for which no gold standard exists.
One of the biggest problems is the time-dependency of the model fit which is difficult
to include or weight appropriately. Many reasonable measures for evaluating survival
models have been proposed in the literature. Currently, three of these measures
are implemented in the function evaluate: Harrell’s C-Index, Uno’s C-Index, and
Prediction Error Curves. Prediction error curves compare the model-based estimated
survival curves with the actual survival indicator function of the test observations.
For evaluating our model with regard to this measure (“PErrC”) we have to pass the
output of learnSurvival (coxboostmodel) and the validation data to the function
evaluate. Additionally, we must define a grid of time points for which the comparison
of estimated and observed survival shall be performed:

> ytest <- y[61:86,]

> Xtest <- X[61:86,]

2

> timegrid <- 3:80

> ev1 <- evaluate(coxboostmodel, measure='PErrC', newy=ytest, newdata=Xtest,

+ timegrid=timegrid, addtrain=F)

> plot(timegrid, ev1@result[[1]], type='l', lwd=2, col='black', xlim=c(0, 82),

+ ylim=c(0, 0.3), xlab='time', ylab='mean difference between estimated

+ and observed survival', main='Mean Prediction Error Curve')

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Mean Prediction Error Curve

time

m
ea

n
di

ffe
re

nc
e

be
tw

ee
n

es
tim

at
ed

an

d
ob

se
rv

ed
 s

ur
vi

va
l

We can see that the prediction performance for the validation set is worse in the time
interval between 20 and 55 months. For a more detailed evaluation of the model fit we
can compare the observed and estimated survival for each patient separately. For that
purpose we can use the predict function on the LearnOut object in order to obtain
observationwise predictions and compare them to the survival indicator function.

> probs <- predict(coxboostmodel, newdata=Xtest, type='SurvivalProbs', timegrid=3:80)

> par(mfrow=c(4, 2))

> for(i in 6:13){

+ followup <- xlim2 <- 80

+ col1 <- 'red'

+ col2 <- 'red'

+ if(ytest[i, 2]==0){followup <- min(80, ytest[i, 1]);col1 <- 'green';col2 <- 'white'}

+ plot(timegrid, probs[[1]]@SurvivalProbs@curves[i,], col='black', lwd=2,

+ main=paste('Patient L', i+70, sep=' '), xlab='time', ylab='survival',

+ type='l', ylim=c(0, 1), xlim=c(3, xlim2))

+ segments(c(3, ytest[i, 1]), c(1, 0), c(min(followup, ytest[i, 1]), followup),

+ c(1, 0), col=c(col1, col2))

+ if(ytest[i, 2]==0)

+ abline(v=followup, lty=3)

+ }

3

0 20 40 60 80

0.
0

1.
0

Patient L 76

time

su
rv

iv
al

0 20 40 60 80

0.
0

1.
0

Patient L 77

time

su
rv

iv
al

0 20 40 60 80

0.
0

1.
0

Patient L 78

time

su
rv

iv
al

0 20 40 60 80
0.

0
1.

0

Patient L 79

time

su
rv

iv
al

0 20 40 60 80

0.
0

1.
0

Patient L 80

time

su
rv

iv
al

0 20 40 60 80

0.
0

1.
0

Patient L 81

time

su
rv

iv
al

0 20 40 60 80

0.
0

1.
0

Patient L 82

time

su
rv

iv
al

0 20 40 60 80

0.
0

1.
0

Patient L 83

time

su
rv

iv
al

This plot illustrates a moderate prediction accuracy on this patient selection. For the
two patients with events, the survival curves are indeed lower than e.g. in the first
graph representing the survival curve of a patient who was still alive after 80 months
when he was censored.

Using predict (type =’lp’), we can also see that the linear predictors are indeed higher
for the two patients with events. Please note the (maybe unexpected) structure of
the output object. Since survHD is actually designed to fit several models at a time
– e.g. in a cross-validation – the output object is a list containing a single object of
class LinearPrediction whose slot lp contains the linear predictor which we wanted
to obtain:

List of 1

$:Formal class 'LinearPrediction' [package "survHD"] with 1 slots

.. ..@ lp: Named num [1:26] 0.6036 -0.0743 0.8752 -0.3733 -0.1395 ...

..- attr(*, "names")= chr [1:26] "L59" "L61" "L62" "L64" ...

L76 L78 L79 L80

0.001252846 -0.425616282 -0.126311315 -0.452779637

L81 L82 L83 L84

-0.806717017 -0.438309036 -0.757825924 -0.632640920

Based on the linear predictor one can compute other evaluation metrics like Harrell’s
C-Statistic. In survHD, it can be computed by specifying measure=”HarrellC”
in the call to evaluate:

> ev2 <- evaluate(coxboostmodel, measure='HarrellC', newy=ytest,

+ newdata=Xtest)

> ev2@result

4

[[1]]

C Index

0.6451613

> ev3 <- evaluate(coxboostmodel, measure='HarrellC', newy=ytrain,

+ newdata=Xtrain)

> ev3@result

[[1]]

C Index

0.8595166

Similarly to the prediction error curves this measure suggests a moderate prediction
performance on the independent validation set. As we can see from the second call to
evaluate, the performance on the independent test data is clearly worse than on the
training data, indicating overfitting on the training data. Consequently, evaluation
should always be performed using independent test observations.

Two other standard evaluation measure is available in survHD - Uno’s C-Statistic
(measure=’UnoC’), which models the censoring distribution in the validation set.
Cross-validated partial log likelihood (measure=’CvPLogL’) is also available, and
normally used during cross-validation rather than independent validation. Cross-
validation will be covered in the next section on “resampling based evaluation.”

> ev4 <- evaluate(coxboostmodel, measure='UnoC', newy=ytest,

+ newdata=Xtest, tau=9)

> ev4@result

[[1]]

[1] 0.6826321

> ev5 <- evaluate(coxboostmodel, measure='CvPLogL', newy=ytrain,

+ newdata=Xtrain)

> ev5@result

[[1]]

[1] -73.59193

1.4 Resampling based evaluation

Often, there are not enough data to set aside an independent validation set, and
in examples such as above, evaluation estimates using a single validation fold are
sensitive to the selection of that fold. Cross-validation or the bootstrap are better
alternatives where data for all samples are available.

The work flow for resampling is almost the same as for evaluation on independent data.
However, one first has to create an object of class LearningSets using the function
generateLearningsets, which defines the validation scheme. In our example we will
use 10 fold cross-validation:

> ls <- generateLearningsets(y=y, method='CV', fold=10, strat=TRUE)

> str(ls, max.level=2)

5

Formal class 'LearningSets' [package "survHD"] with 4 slots

..@ learnmatrix: num [1:10, 1:78] 2 2 2 0 3 2 2 2 2 0 ...

..@ method : chr "stratified CV"

..@ ntrain : int 78

..@ iter : int 10

By setting the argument strat to TRUE, we cause survHD to create folds with
similar proportions of censored to uncensored observations. The most important slot
of the returned object (ls) is called learnmatrix which contains the indices of the
training folds in it rows.

The actual model fitting is again performed by the function learnSurvival by passing
the return-object of generateLearningsets (ls) as argument LearningSets:

> outcv <- learnSurvival(y=y, X=X, survmethod='coxBoostSurv', LearningSets=ls,

+ stepno=20)

This call automatically fits a CoxBoost model on each training fold. Its return object
is of class LearnOut. The fitted models can be found in the slot ModelLearnedlist
and will be by survHD used lateron for model evaluation.

> str(outcv, max.level=2)

Formal class 'LearnOut' [package "survHD"] with 7 slots

..@ ModelLearnedlist:List of 10

..@ X :'data.frame': 86 obs. of 500 variables:

.. .. [list output truncated]

..@ y : Surv [1:86, 1:2] 84.1 91.8+ 93.7+ 108.2+ 34.6 68.1+ 34.2+ 47.0+ 39.1+ 45.8 ...

.. ..- attr(*, "dimnames")=List of 2

.. ..- attr(*, "type")= chr "right"

..@ GeneSel :Formal class 'GeneSel' [package "survHD"] with 4 slots

..@ nbgene : int 500

..@ LearningSets :Formal class 'LearningSets' [package "survHD"] with 4 slots

..@ threshold : num -1

The call to evaluate is exactly the same as for independent evaluation. The only
difference is that the slot result of the output object is now a list of the foldwise
evaluation statistics as here for measure HarrellC:

> evcv <- evaluate(outcv, measure='HarrellC')

> unlist(evcv@result)

C Index C Index C Index C Index C Index C Index

0.7647059 0.5384615 0.9333333 0.5000000 0.7777778 0.9090909

C Index C Index C Index C Index

0.6363636 0.6250000 0.6111111 0.5000000

> mean(unlist(evcv@result))

[1] 0.6795844

The average C-Index again indicates moderate prediction ability of the model. As
can be seen from the vector of fold statistics it variance is small, i.e. the performance
on was similar in each different fold.

6

> evcv2 <- evaluate(outcv, measure='PErrC', timegrid=3:80)

> plot(0, 0, col='white', xlim=c(0, 82), ylim=c(0, 0.4), xlab='time',

+ ylab='mean difference between estimated and observed survival',

+ main='Mean Prediction Error Curves')

> for(i in 1:10){

+ lines(3:80, evcv2@result[[i]], col=i+1)

+ }

>

●

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

Mean Prediction Error Curves

time

m
ea

n
di

ffe
re

nc
e

be
tw

ee
n

es
tim

at
ed

 a
nd

 o
bs

er
ve

d
su

rv
iv

al

Also here, one can observe that the prediction performance of the models on the
different training folds decreases after 20 months.

1.5 Univariate feature selection

survHD allows the incorporation of a univariate pre-filter with any of the learning
algorithms. This can help interpretability of models generated from algorithms which
otherwise do not perform feature selection, as well as dramatically reducing computa-
tion times. survHD also provides a fast version of coxph rowCoxTests, for fitting
the univariate Cox models to many features.

In survHD, variable selection is implemented in the function geneSelection. Paral-
lel to learnSurvival, this function performs a variable selection for each resampling
step if the argument LearningSets is passed. In our example, we use the method
fastCox, i.e. univariate Cox models for each gene expression in X:

> gsel <- geneSelection(X=X, y=y, LearningSets=ls, method='fastCox',

+ crit='coefficient')

If the argument crit is set to pvalue survHD will store the p-values instead of the

7

coefficients in the return-object. This might be useful if one wants to set a certain
threshold for the p-value of the variables included in a model lateron.

> str(gsel, max.level=2)

Formal class 'GeneSel' [package "survHD"] with 4 slots

..@ rankings :List of 1

..@ importance:List of 1

..@ method : chr "fastCox"

..@ criterion : chr "coefficient"

As can be seen from the previous code, geneSelection returns an object of class
GeneSel which contains the rankings of the different gene expressions as well as
their importance. Using the slot rankings we can easily see that there is only a
single gene which belongs to the Top 10 in each fold.

> ranks <- c()

> for(i in 1:10)

+ ranks <- c(ranks, gsel@rankings[[1]][i, 1:10])

> genetab <- sort(table(ranks), decreasing=T)

> bp <- barplot(genetab[genetab>=3], col='blue', xlab='gene',

+ ylab='frequency', cex.names=0.8)

> abs(gsel@importance[[1]][1, 1:10])

gene472 gene256 gene255 gene238 gene492 gene402

4.869502 4.451491 3.707571 3.624200 3.449433 3.435399

gene452 gene295 gene173 gene289

3.423935 3.393521 3.193918 3.104868

>

256 472 93 295 255 492 289 402 452 267 238

gene

fr
eq

ue
nc

y

0
2

4
6

8
10

8

The last line of code illustrates the absolute coefficients for the top 10 genes in the
first cross-validation fold.

1.6 Hyperparameter Tuning

Survival models for high-dimensional data usually incorporate a hyperparameter in
order to adjust model complexity to the requirements of the data at hand. For
most of these hyperparameters no good rule of thumb exists, and one has to resort to
resampling approaches to optimize or tune the hyperparameter(s). As well as variable
selection, the hyperparameter optimization has to be performed on each training set,
resulting in a nested cross-validation or comparable resampling schemes (an inner or
nested layer for tuning, and an outer layer for evaluation).

The function tune performs hyperparameter optimization for each training set of an
(outer) resampling procedure by conducting an internal cross-validation loop. The
hyperparameter grid is passed as a list of vectors containing the candidate values.
Since we solely tune the number of boosting steps here the arguments grids is a one-
element list with the vector of candidate numbers for the boosting steps. Please note,
that the name of the vector has to exactly match the argument name of the tuned
hyperparameter (here stepno as in the corresponding CoxBoost-function).

> tunecoxboost <- tune(y=y, X=X, survmethod='coxBoostSurv', LearningSets=ls,

+ GeneSel=gsel, nbgene=30, grids=list(stepno=(1:5)*20))

By additionally specifying the GeneSel argument and nbgene=100, survHD will
tune the models based on the top 100 genes in each fold.

The best parameter of each fold (res.ind) as well as its index in the tuning grid can be
obtained using the function getBestParameters. Parallel to the function evaluate,
one can choose between several measures according to which the best parameter shall
be determined. Here we use the cross-validated partial log likelihood.

> gb <- getBestParameters(tunecoxboost, res.ind=1, measure='CvPLogL')

> gb@par

$stepno

[1] 20

> gb@bestind

[1] 1

> str(gb, max.level=2)

Formal class 'BestParameters' [package "survHD"] with 4 slots

..@ par :List of 1

..@ bestind: int 1

..@ perf : num [1:5] -68.9 -112.5 -149.5 -194.9 -227.2

..@ measure:Formal class 'CvPLogL' [package "survHD"] with 2 slots

We can also check how stable and distinct the tuning process has been, since getBest-
Parameters returns the performance of all hyperparameter values:

9

> par(mfrow=c(2, 3))

> for(i in 1:6){

+ gbi <- getBestParameters(tunecoxboost, res.ind=i, measure='CvPLogL')

+ plot((1:5)*20, gbi@perf, type='l', col='black',

+ ylim=range(gbi@perf)*c(1.1, 0.9), main=paste('Fold ', i, sep=' '))

+ points((1:5)*20, gbi@perf, col='red', pch=15)

+ points(((1:5)*20)[gbi@bestind], gbi@perf[gbi@bestind],

+ col='blue', pch=17, cex=2)

+ }

20 40 60 80 100

−
25

0
−

20
0

−
15

0
−

10
0

Fold 1

(1:5) * 20

gb
i@

pe
rf

20 40 60 80 100

−
10

0
−

80
−

70
−

60
−

50

Fold 2

(1:5) * 20

gb
i@

pe
rf

20 40 60 80 100

−
16

0
−

12
0

−
80

−
60

Fold 3

(1:5) * 20

gb
i@

pe
rf

20 40 60 80 100

−
16

0
−

12
0

−
80

−
60

Fold 4

(1:5) * 20

gb
i@

pe
rf

20 40 60 80 100

−
75

−
65

−
55

−
45

Fold 5

(1:5) * 20

gb
i@

pe
rf

20 40 60 80 100

−
25

0
−

20
0

−
15

0
−

10
0

−
50

Fold 6

(1:5) * 20

gb
i@

pe
rf

In our case, the lowest number of boost-steps achieves the best result in all of the first
6 folds.

1.7 Complete Workflow

So, let us summarize the steps needed for a complete work flow. After loading the data,
we have to choose the resampling scheme and create the corresponding LearningSets:

> ls <- generateLearningsets(y=y, method='CV', fold=10, strat=TRUE)

If necessary, the next step is variable selection using a filter method like fastCox.
The generated resampling folds are passed via the argument LearningSets:

> gsel <- geneSelection(X=X, y=y, LearningSets=ls, method='fastCox',

+ crit='coefficient')

Subsequently, for each training set a suitable hyperparameter has to be determined. If
a filter method has been applied, the corresponding GeneSel object must be passed
as well as the LearningSets:

10

> tunecoxboost <- tune(y=y, X=X, survmethod='coxBoostSurv', LearningSets=ls,

+ GeneSel=gsel, nbgene=100, grids=list(stepno=(1:5)*20))

Finally, all three previously obtained outputs can be combined in a call to learn-
Survival, which will fit the requested survival model on each learningset using the
variables selected in GeneSel and tune the hyperparameters according to their per-
formance in tuneres. Regarding the incorporation of a tuneres argument, one must
additionally specify by which measure to evaluate the tuning results. This measure
is specified in the argument addtune which is a list of arguments which is internally
passed to function evaluate. Cross-validated partial log-likelihood is standard, but
any available evaluation metrics may be used.

> cv10 <- learnSurvival(y=y, X=X, tuneres=tunecoxboost,

+ survmethod='coxBoostSurv', LearningSets=ls, GeneSel=gsel,

+ nbgene=30, addtune=list(measure='CvPLogL'))

The function evaluate can be used to assess the performance of the survival method.
The performance is returned separately for each fold, and here we combine these using
a simple average:

> mean(unlist(evaluate(cv10, measure='CvPLogL')@result))

[1] -12.30361

> mean(unlist(evaluate(cv10, measure='HarrellC')@result))

[1] 0.501919

We also illustrate the performance of the models computed in the learnSurvival-step.
Using the predict function on an object of class LearnOut (with type=’cp’)
causes survHD to use the linear predictors –obtained for all test observations– to
categorize samples into two risk classes.

> preds <- predict(cv10, type='cp', voting_scheme='first')

> table(preds)

preds

High Risk Low Risk

35 51

Subsequently, one can plot the corresponding Kaplan Meier curves. In survHD this
can be achieved by simply using the function plot on the previous LearnOut-object.

> plot(cv10)

11

0

20

40

60

80

100

S
ur

vi
va

l (
%

)

High Risk
Low Risk

HR 0.754; 95% CI, 0.329 to 1.73; P = 0.502

0 20 40 60 80 100
Time (Months)

No. At Risk
High Risk 35 25 16 10 5 2
Low Risk 51 30 16 11 7 1

1.8 Comparison of two models

In survHD two models can also be compared in a more direct way than only eval-
uating them according to a certain measure. The function IDI.INF from the pack-
age survIDINRI –among other measures– computes the median improvement in
riskscore of a model in comparison with a null model. This feature is implemented in
the function compare. We first have to fit two models using learnSurvival. The
first one is the CoxBoost model described above whereas the second one is constructed
using the plusMinus-algorithm:

> Xtrain <- Xtrain[1:60,]

> ytrain <- y[1:60,]

> coxboostmodel1 <- learnSurvival(y=ytrain, X=Xtrain,

+ survmethod='coxBoostSurv', stepno=20)

> coxboostmodel2 <- learnSurvival(y=ytrain, X=Xtrain,

+ survmethod='coxBoostSurv', stepno=40)

After fitting the models, they can be compared with regard to certain test data. Here
we use the Integrated Discrimination Improvement Index (IDI):

> ytest <- y[61:86,]

> Xtest <- X[61:86,]

> comp1<-compare(coxboostmodel1, coxboostmodel2, measure='IDI',newdata=Xtest,

+ newy=ytest, t0=50)

> comp1[[1]]@estimate

-0.003147978

12

> comp2<-compare(coxboostmodel2, coxboostmodel1,measure='IDI',

+ newdata=Xtest, newy=ytest, t0=50)

> comp2[[1]]@estimate

0.003147978

> str(comp2[[1]],max.level=2)

Formal class 'IDI' [package "survHD"] with 2 slots

..@ estimate: Named num 0.00315

.. ..- attr(*, "names")= chr ""

..@ conf.int: Named num [1:2] -0.0229 0.0414

.. ..- attr(*, "names")= chr [1:2] "2.5%" "97.5%"

The class bf MeasureOut also contains a confidence interval for the computed measure
as can be seen from the output. Other measures for comparison of two survival models
in survHD are:

� NRI Category-less Net Reclassification Index

� MIRS Median Improvement in Risk Score

� CDelta Difference in C-Statstic

2 Custom Survival Models

The survHD package provides an interface for incorporating user defined survival
methods into its framework. For that purpose, two functionalities are needed:

� model fitting

� prediction from previously fitted models

Both features are implemented by defining a single function. In our example we
ill add the method rsf from the package randomSurvivalForest to survHD as a
custom function customRSF. The user-defined function has to accept at least three
predefined inputs:

� Xlearn: A data.frame of gene expressions for the current training data(columns
are genes)

� Ylearn: the survival response for the current training data

� learnind: the indices of the current training observations inside the complete
data set X which is usually passed to functions like learnSurvival. Using this
argument, one can e.g. extract the relevant observations from additional clinical
covariates which can be passed using the . . . argument.

customRSF <- function(Xlearn, Ylearn, learnind, ...){

###load required packages

require(randomSurvivalForest)

###handle inputs

ll <- list(...)

datarsf <- data.frame(Xlearn, time=Ylearn[, 1], status=Ylearn[, 2])

13

ll$data <- datarsf

ll$formula <- as.formula('Surv(time, status)~.')

##call actual model function rsf from randomSurvivalForest

output.rsf <- do.call("rsf", args = ll)

...}

First, one typically has to load or source a function or package which performs the
actual model fitting. The next step is the processing of the inputs. In our case we
do not use any additional covariates, so we only have to convert Xlearn and Ylearn
into the input format of the function rsf. As can be seen from the code, this function
accepts a formula and a data.frame containing all necessary variables. Moreover, we
pass all the arguments represented by . . . argument and eventually call the function
rsf using do.call. After this the model fitting is complete.

In order to provide outputs which can be evaluated and processed by survHD we
also need a predict function. This function should either provide an object of class
LinearPrediction or SurvivalProbs whose slots can be found below:

> LinearPrediction <- predict(coxboostmodel, newdata=Xtest, type='lp')[[1]]

> str(LinearPrediction, max.level=2)

Formal class 'LinearPrediction' [package "survHD"] with 1 slots

..@ lp: Named num [1:26] 1.952 -0.1976 -0.0529 -0.1154 -0.5334 ...

.. ..- attr(*, "names")= chr [1:26] "L59" "L61" "L62" "L64" ...

> SurvivalProbs <- predict(coxboostmodel, newdata=Xtest, type='SurvivalProbs',

+ timegrid=3:80)[[1]]

> str(SurvivalProbs, max.level=2)

The prediction function has to accept four arguments:

� object: an object of class ModelCustom which contain is created by the
survHD automatically and contains the fitted model (here: output.rsf) in its
slot mod.

� newdata: data.frame of geneexpressions for the observations for which pre-
dictions shall be performed.

� type: indicates whether linear predictors (’lp’ or survival probabilities (’Sur-
vivalProbs’) shall be predicted

� timegrid: if type=’SurvivalProbs’ this argument specifies the time points
at which predictions shall be performed

##define prediction function which will be stored in slot predfun

##and called by predictsurvhd (signature(ModelCustom))

###

predfun <- function(object, newdata, type, timegrid=NULL, ...){

require(randomSurvivalForest)

#either type lp or type SurvivalProbs must be implemented

#for typ lp the obligatory return class is LinearPrediction

if (type == "lp") {

stop("Random Forests don't provide linear predictors, sorry.")

}

14

#for typ SurvivalProbs the obligatory return class is Breslow

else if (type == "SurvivalProbs") {

modelobj <- object@mod

if (is.null(timegrid)) {

stop("No timegrid specified.")

}

###create data for which predictions are to be performed

###function checks for response but does not use it (fake response)

predsrsf <- predict.rsf(object = modelobj, test=data.frame(newdata,

time=rexp(n=nrow(newdata)), status=sample(c(0, 1), nrow(newdata), replace=T)))

###predict-function provides predictions for training times only

###->interpolate for timepoints in timegrid

curves <- exp(-t(apply(predsrsf$ensemble, 1, FUN=function(z)

approx(x=predsrsf$timeInterest, y=z, xout=timegrid)$y)))

###create breslow-object

pred <- new("breslow", curves = curves, time = timegrid)

###create SurvivalProbs-object embedding the breslow-object

pred <- new("SurvivalProbs", SurvivalProbs = pred)

}

else stop('Invalid "type" argument.')

return(pred)

}

This function is structured into two sections which correspond to predicting linear
predictors and survival probabilities respectively. Since random survival forests are
not capable of providing linear predictors the first section simply returns an error. In
the survival probability section at first the input data have to be preprocessed for the
function predict.rsf which can perform predictions on the basis of objects of class
randomSurvivalForest created by the function rsf. Subsequently, this predictions
are estimated and eventually an object of class SurvivalProbs is created which is the
predefined class for survival probabilities in survHD. Its only slot SurvivalProbs
is an object of class Breslow which not only stores the survival probabilities in the
slot curves but also the time points in slot time. This survprob object is finally
returned by the custom prediction function.

The definition of this prediction function was the second part of the user-defined sur-
vival function customRSF. In the end, we still have to create the obligatory output
object of class ModelCustom which primarily consist of the fitted model object
output.rsf in slot mod and the user-defined prediction function in slot predfun.
Additional information can be stored in the slot extraData which must be of class
list:

###now create customsurvhd-object (which is the obligatory output-object)

custommod <- new("ModelCustom", mod=output.rsf, predfun=predfun, extraData=list())

return(custommod)

Just for the sake of completeness, the complete user defined survival method looks like
this. It basically consists of three parts: model fitting, prediction function, creating
of the customsurvhd object:

###random survival forest as a custom survival model function

15

##Xlearn and Ylearn are obligatory inputs

customRSF <- function(Xlearn, Ylearn, learnind, ...){

###load required packages

require(randomSurvivalForest)

###handle inputs

ll <- list(...)

datarsf <- data.frame(Xlearn, time=Ylearn[, 1], status=Ylearn[, 2])

ll$data <- datarsf

ll$formula <- as.formula('Surv(time, status)~.')

##call actual model function rsf from randomSurvivalForest

output.rsf <- do.call("rsf", args = ll)

##define prediction function which will be stored in slot predfun

##and called by predictsurvhd (signature(ModelCustom))

predfun <- function(object, newdata, type, timegrid=NULL, ...){

require(randomSurvivalForest)

#either type lp or type SurvivalProbs must be implemented

#for typ lp the obligatory return class is LinearPrediction

if (type == "lp") {

stop("Random Forests don't provide linear predictors, sorry.")

}

#for typ SurvivalProbs the obligatory return class is Breslow

else if (type == "SurvivalProbs") {

modelobj <- object@mod

if (is.null(timegrid)) {

stop("No timegrid specified.")

}

###create data for which predictions are to be performed

###function checks for response but does not use it (fake response)

predsrsf <- predict.rsf(object = modelobj, test=data.frame(newdata,

time=rexp(n=nrow(newdata)), status=sample(c(0, 1), nrow(newdata), replace=T)))

###predict-function provides predictions for training times only

###->interpolate for timepoints in timegrid

curves <- exp(-t(apply(predsrsf$ensemble, 1, FUN=function(z) approx(

x=predsrsf$timeInterest, y=z, xout=timegrid)$y)))

###create breslow-object

pred <- new("breslow", curves = curves, time = timegrid)

###create SurvivalProbs-object embedding the breslow-object

pred <- new("SurvivalProbs", SurvivalProbs = pred)

}

else stop('Invalid "type" argument.')

return(pred)

}

###now create customsurvhd-object (obligatory output-object)

custommod <- new("ModelCustom", mod=output.rsf,

predfun=predfun, extraData=list())

return(custommod)

16

}

It is practical to make sure that the custom function in the global environment of R
such that it is available for all functions of survHD.

> ###define function in global envir

> assign(x="customRSF", value=customRSF, envir=.GlobalEnv)

Using the custom function customRSF we can easily implement a complete work flow
of generating LearningSets, gene selection, tuning, resampling and a final evaluation.

> ##learningset

> ls <- generateLearningsets(y=y[, 1], method='CV', fold=5)

> #gene selection

> gsel <- geneSelection(X=X, y=y, method='fastCox', LearningSets=ls,

+ criterion='coefficient')

> ###tune

> tuneres <- tune(X=X, y=y, GeneSel=gsel, nbgene=30, survmethod='customSurv',

+ customSurvModel=customRSF, LearningSets=ls, grids = list(ntree = 20*(1:10)))

> ###use tuneres in learnSurvival

> svaggr <- learnSurvival(X=X, y=y, GeneSel=gsel, nbgene=30, survmethod='customSurv',

+ customSurvModel=customRSF, LearningSets=ls, tuneres=tuneres, measure="PErrC",

+ timegrid=4:10, gbm=FALSE, addtune=list(GeneSel=gsel, nbgene=30))

The only essential difference is the argument survmethod which is set to ’custom-
Surv’.

Note that even tuning does not need any additional code apart from defining a rea-
sonable tuning grid (argument grids) for the rsf-specific argument ntree. The last
step is the evaluation where we have to resort to measure=’PErrC’ since it is the
only one which can be computed without a linear predictor:

> ###error expected because rsf does not provide lp

> try(evaluate(svaggr, measure='CvPLogL'))

> ###error expected because rsf does not provide lp

> try(evaluate(svaggr, measure='PErrC', timegrid=3:80, gbm=T))

> ###works without lp

> evcust <- evaluate(svaggr, measure='PErrC', timegrid=3:80, gbm=F)

> perrcs <- c()

> for(i in 1:5){

+ perrcs <- cbind(perrcs, evcust@result[[i]])

+ }

> plot(3:80, rowMeans(perrcs, na.rm=TRUE), , col='blue', lwd=2,

+ main='RSF Mean Prediction Error Curve on Test Folds', xlab='time',

+ ylab='Mean Prediction Error',

+ type='l', ylim=c(0, 0.4), xlim=c(3, xlim2))

17

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

RSF Mean Prediction Error Curve on Test Folds

time

M
ea

n
P

re
di

ct
io

n
E

rr
or

The lower mean prediction error curve suggests a better performance on the data
compared to the previous results for CoxBoostSurv.

18

A Session Info

� R version 2.15.0 (2012-03-30), i486-pc-linux-gnu

� Locale: LC_CTYPE=de_DE.utf8, LC_NUMERIC=C, LC_TIME=de_DE.utf8,
LC_COLLATE=de_DE.utf8, LC_MONETARY=de_DE.utf8,
LC_MESSAGES=de_DE.utf8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=de_DE.utf8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, splines, stats,
utils

� Other packages: Biobase 2.16.0, BiocGenerics 0.2.0, CoxBoost 1.3, gbm 1.6-3.2,
Hmisc 3.9-3, KernSmooth 2.23-8, lattice 0.20-6, Matrix 1.0-6, penalized 0.9-41,
prodlim 1.3.2, randomSurvivalForest 3.6.3, RColorBrewer 1.0-5, survC1 1.0-1,
survcomp 1.6.0, survHD 0.99.0, survIDINRI 1.0-1, survival 2.36-14

� Loaded via a namespace (and not attached): bootstrap 2012.04-0,
cluster 1.14.2, compiler 2.15.0, grid 2.15.0, rmeta 2.16, SuppDists 1.1-8,
survivalROC 1.0.0, tools 2.15.0

19

