Using Pyrex to Speed up SAGE and to Interface
C/C++ Libraries

Martin Albrecht (malb@informatik.uni-bremen.de)

January 1, 2007

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 1/23

What is Pyrex Perform:

. Outline

What is Pyrex

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 2/23

What is Pyrex Performance and Pyrex Pyrex and C ToDo

. BaS|c Facts about Pyrex

Pyrex lets you write code that mixes Python and C data
types any way you want, and compiles it into a C
extension for Python.

(http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/)

m Written by Greg Ewing of New Zealand.

m http://www.cosc.canterbury.ac.nz/greg.ewing/
python/Pyrex/

m Python-like code converted to C code that is compiled by a C
compiler. All non-C memory management done automatically.

m Easy way to implement C extension modules for Python and
to interface Python to C and C++ libraries.

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

What is Pyrex Performance and Pyrex Pyrex and C

. Pyrex and SAGE I

Time-critical SAGE code gets implemented in Pyrex,
which is (as fast as) C code, but easier to read (e.g.,
since all variables and scopes are explicit).

(http://modular.math.washington.edu/talks/2006-07-09-cnta/2006-07-09-cnta.pdf)

s (as fast as) C"

This is not necessarily true, you need to write almost C for this

Lots of code in SAGE like library interfaces and basic arithmetic
types already implemented in Pyrex:

$: cat x/x.pyx */*/%x.pyx x/x/*x.pyx | wc —I
63706

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries

4/23

http://modular.math.washington.edu/talks/2006-07-09-cnta/2006-07-09-cnta.pdf

What is Pyrex Performance and Pyrex Pyrex and C ToDo

Pyrex and SAGE Il

The version of Pyrex shipped with SAGE is patched:

m two patches to allow cimports across directories by William
Stein and me.
m probably will never be accepted upstream as Greg Ewing
doesn't like them.
m He doesn't consider the bug we reported a bug.

m Several patches so that Pyrex works with Python 2.5

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 5/23

What is Pyrex Performance and Pyrex Pyrex and C ToDo

Getting Started with Pyrex in SAGE

You may start writing Pyrex code by
m writing an .spyx file and loading/attaching it,

m put %pyrex on top of a notebook cell, it will get compiled and
executed, or

® write a .pyx file and add it to setup.py.

Now write your almost Python code, besides some exceptions:

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 6/23

What is Pyrex Performance and Pyrex Pyrex and C ToDo

Pyrex and Python Differences |

m No list comprehension:

sage: [f(i) for i in range(xyz)] # no valid Pyrex code!
sage: map(f,range(xyz))
sage: [i for i in range(xyz) if f(i)] #no valid Pyrex code!

sage: filter (f,range(xyz))

m Noi+=1etc,usei=1i+1
m No _le , _eq_, —ne__ etc. but __cmp__ and __richcmp__

m In Class.__add__(left,right) left doesn't need to be of
type Class; no __radd__ etc.

m Pickling (saving and loading objects) doesn't “just works",
implement __reduce__

m no yield: Write an iterator class and implement __next__
there.

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 7/23

What is Pyrex Perforr and Pyrex Pyrex and C ToDo

Pyrex and Python Differences Il

m cdef you class to allow access from C but that invalids
AttributeError programming like this:

try:
return self.__cached_result
except AttributeError
self. __cached_result = self._calculate_result() #won’'t work
return self.__cached_result

m Instead all members must be known at compile time:

cdef class MyClass
cdef object __cached_result

def calculate_result(MyClass self):
if self.__cached_result != None:
return self.__cached_result
else:
self.__cached_result = self._calculate_result()
return self.__cached_result

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 8/23

rex Performance and Pyrex Pyrex and C

s P
. Outllne

Performance and Pyrex

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 9/23

it is Pyrex Performance and Pyrex Pyre

. ‘Premature PyreX|f|cat|on is the Root of all Evil”

Before you port your class to Pyrex profile and test it!
m Profiling/debugging Python code is much more convenient
than profiling Pyrex code to spot algorithmic bottle-necks.
m the iPython profiler frontend

sage: R.<a,b> = PolynomialRing(GF(2),2)

sage: %prun for i in range(10000): _ = a+b
m hotshot
sage: R.<s,a,g,e> = PolynomialRing(GF(2),64)
sage: | = sage.rings.ideal.Cyclic(R)
sage: import hotshot
sage: filename = "pythongrind.prof”
sage: prof = hotshot.Profile(filename , lineevents=1)

sage: prof.run(’'l.groebner_basis()"')
sage: prof.close()

m Python profilers don’t really pick up extension code.

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 10/23

Performance and Pyrex P

. Hotshot

You may convert the output of hotshot using hotshot2calltree
and view the result in kcachegrind.

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 11/23

Pyrex Performance and Pyrex Pyrex and C

. Proflllng and Debugglng Pyrex

Use the tools you would use to profile C/C++ applications. You
profile the Python application then.

gdb and all it’s frontends like DDD

valgrind Excellent memory debugger (--leak-check=full)
and profiler (-—tool=callgrind).

gprof Standard GNU profiler, needs recompilation of
C/C++ code, haven't tested it.

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 12/23

Performance and Pyrex Pyrex and C

m Pyrex tries to make things easy for you which may interfear
with speed.

m cdef all integers as int if possible

m Use int for-loops:
cdef int i #this is important!

for i from 0 <= i < n:
do something

m Pyrex knows cdef f() functions/methods and def £()
functions/methods. The later are callable from Python but

calling them is much more expensive than calling a cdef
function/method.

m Avoid Python! If you basically call heaps of Python code
things won't be faster

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 13/23

it is Pyrex Performance and Pyrex Pyre

. T|ps to Gain Speed II

m isinstance is expensive (discovery due to David Harvey),
use PyObject_TypeCheck

m Pyrex plays safe when it comes to list, tuple, dict access:

def test ():
t = tuple([1,2])
t[0]

t [0] gets translated to:

--pyx-1 = PylInt_FromLong (0);

it (1oopyx-1) {
_-pyx-filename = __pyx_f[0];
__pyx-lineno = 10;
goto __pyx-L1;

_-pyx-3 = PyObject_Getltem (_-_pyx_v_t, __pyx_-1);
if (1__pyx.3) {
__pyx-filename = __pyx_f[0];

_-pyx-lineno = 10;
goto __pyx_-L1;

}
Py_DECREF(-_pyx-1); __pyx-1 = 0;

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 14/23

rex Performance and Pyrex Pyrex and C

. T|ps to Gain Speed III

Py_DECREF(--pyx-3); --pyx-3 = 0;

This is faster:

cdef extern from " Python.h":
voids PyTuple_.GET_ITEM(object p, int pos)

def test2():
cdef object w
t = tuple([1,2])
w = <object> PyTuple_.GET_ITEM(t,0)
return 0

As it gets translated to:

-4 = (PyObject *)PyTuple_.GET_ITEM(t,0);
Py_INCREF(_4);

Py_DECREF (w);

w = _4;

4 = 0;

m So use Python C API directly, but be carefull with refcounting

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 15/23

rex Perform: nd Pyrex Pyrex and C++ To

s P
. Outllne

Pyrex and C++

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 16/23

and Pyrex Pyrex and C++ ToDo

Pyrex knows no classes but it knows structs and function pointers.
Those “look” like methods in classes when feed to a C4++

compiler.
cdef extern from "linbox/field /givaro—gfq.h":

ctypedef struct GivaroGfq "LinBox:: GivaroGfq":
#attributes
int one
int zero

methods
int (x mul)(int r, int a, int b)

unsigned int (% characteristic)()

GivaroGfq =gfq_-factorypk "new LinBox:: GivaroGfq” (int p, int k)

GivaroGfq xgfq_-factorypkp "new LinBox:: GivaroGfq” (int p, int k, intvec poly)
GivaroGfq gfq-deref """ (GivaroGfq *orig)

void delete "delete "(void =*o0)

int gfg_element_factory "LinBox:: GivaroGfqg:: Element” ()

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 17/23

rex Performance and Pyrex Pyrex and C++ ToDo

. C++ I

This class may now be used like this:

def some_function ():
cdef GivaroGfq =k
cdef int e

k gfq_-factorypk(2,8)
e = k.mul(e,k.one k.zero)
delete (k)

To ensure that the resulting C++ code is feed to a C++ compiler
specify language=’c++’ in setup.py:

linbox_gfq = Extension('sage.libs.linbox.finite_field_givaro ',
sources = ["sage/libs/linbox/finite_field_givaro.pyx"],
libraries = ['gmp’', 'gmpxx', 'm’, 'stdct++', 'givaro', 'linbox '],

language="c++'
)

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 18/23

s Pyrex Performance and Pyrex Pyrex and C++ ToDo

C+-+ 1l

m [emplates are not supported but "C name specifiers” allow to
deal with templates:
cdef extern from ”linbox/integer.h":
ctypedef struct intvec "std::vector<LinBox::integer>":
void (* push_back)(int elem)

intvec intvec_factory "std::vector<LinBox::integer>"(int len)

m Overloading of functions/methods is not supported. Create a
C alias for every combination.

m If everything else fails: You can always wrap the C++ code in
a C function and call this from Pyrex. However this
introduces a function call as overhead.

m pyrexembed (shipped with SAGE) is a nice tool to do this:
You write the C wrapper functions and the Pyrex code in one
file and pyrexembed splits them up for you. (Slightly
annoying when debugging etc.)

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 19/23

Performance and Pyrex

. Outline

ToDo

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 20/23

rex Performance and Pyrex Pyrex and C

. IncIu5|on of a C Data Structure Library

| propose libcprops
m http://cprops.sourceforge.net/

m pro: ANSI-C (which both Pyrex and | understand much
better than C++)

m pro: data structures: linked_list, heap, priority_list,
hashtable, hashlist, avitree. red-black tree ...

m pro: thread safe
m pro: easy to read, | could adapt it

m con: recursive implementation which is supposed to be less
performant than a iterative implementation but that is
probably negligible

.but | haven't really evaluated it.

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 21/23

http://cprops.sourceforge.net/

Make this work:

sage: o = SomePyrexClass()
sage: o.._.add__?7?
<source code of SomePyrexClass.__add_._>

Make inspect work with extension modules as they are easily
debugable and profilable.

Incredibly useful documentation: William is writing a Pyrex
chapter for the reference manual, David Harvey started a Wiki
page for speed wisdom.

m What else?

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 22/23

rex Performz nd Pyre yrex and C

F
. Questlons7

Thank You!

Martin Albrecht (malb@informatik.uni-bremen.de) — Using Pyrex to Speed up SAGE and to Interface C/C++ Libraries 23/23

	What is Pyrex
	Performance and Pyrex
	Pyrex and C++
	ToDo

