
State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Options for Commutative Algebra in SAGE

Martin Albrecht (malb@informatik.uni-bremen.de)

February 12, 2007

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 1/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

1 State of the Art in SAGE

2 Candidate One: Improving the Current Implementation

3 Candidate Two: Make Singular a Library

4 Candidate Three: Use CoCoALib

5 Candidate Four: Specialized Implementations

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 2/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Outline

1 State of the Art in SAGE

2 Candidate One: Improving the Current Implementation

3 Candidate Two: Make Singular a Library

4 Candidate Three: Use CoCoALib

5 Candidate Four: Specialized Implementations

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 3/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Datastructures

Consider for example the ring Q[x , y , z] and f = 5 ∗ x2y3 + z4 − 2.
This boils down to

{ { 0 : 2 , 1 : 3 } : 5 ,{ 2 :4 } : 1 , { }:−2}

in the current implementation. This data structure is called a
PolyDict in SAGE. Every MPolynomial has such a thing (it isn’t
one). The exponent dictionaries are called ETuple. PolyDict and
ETuple are implemented in not-optimized Pyrex/SageX using
Python dictionaries. MPolynomial is implemented in Python.

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 4/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Operations

Simple operations (Addition, Multiplication, etc.) are
implemented natively (and naively btw.) while more complicated
operations (factorization, gcd, division) are performed using
Singular. This adds additional overhead as data has to be passed
back and forth between Singular and SAGE.
Btw.: There is also a tiny wrapper around libCF in SAGE which I
use sometimes for polynomial evaluation and such. It is faster than
the native SAGE implementation but slower than Singular as it
wraps a library meant for factorization.

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 5/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Outline

1 State of the Art in SAGE

2 Candidate One: Improving the Current Implementation

3 Candidate Two: Make Singular a Library

4 Candidate Three: Use CoCoALib

5 Candidate Four: Specialized Implementations

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 6/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Improving the Current Implementation

need to do it anyway: no library allows polynomial rings over
Python objects

need to have fallback implementation
might be okay if it is not optimized well
might even stay in Python for a while

There is lots of room for improvements

don’t use Python dictionaries for the ETuples
improve overall implementation, use Pyrex tricks, use better
algorithms
push multivariate polynomials down to SageX
. . . but is it worth it?

Feature-wise: Many monomial orderings are not implemented,
e.g. block orderings, which are important for crypto.

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 7/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Outline

1 State of the Art in SAGE

2 Candidate One: Improving the Current Implementation

3 Candidate Two: Make Singular a Library

4 Candidate Three: Use CoCoALib

5 Candidate Four: Specialized Implementations

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 8/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

What is Singular I

computer algebra system focused on commutative algebra

developed since 1980s in Kaiserslautern (Greuel) and Berlin
(Pfister).

current version is 3-0-2.

written in C-ish C++. (good, since C is better understood by
me and Pyrex than C++)

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 9/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

What is Singular II

claims to have the fastest multivariate polynomial arithmetic
overall. Claim backed by William’s and my experience.
Actually,

polynomial arithmetic faster than MAGMA
coefficient arithmetic supposed to be slower than MAGMA

#MAGMA 2.13−5 (32−b i t , not op t im i z ed f o r my machine)
> e := Random(1000ˆ400 ,1000ˆ410)/Random(1000ˆ400 ,1000ˆ410) ;
> t := Cputime () ;
> f o r i i n [1 . . 1 0 ˆ 5] do ; f := e∗e ; end f o r ;
> Cputime (t) ;
3 .070

#SAGE (64−b i t , l o c a l b u i l d)
sage : e = ZZ . random element (1000ˆ400 ,1000ˆ410)/\

ZZ . random element (1000ˆ400 ,1000ˆ410)
sage : t ime f o r i i n range (10ˆ5) : f = e∗e
CPU t imes : u s e r 1 .16 s , s y s : 0 .00 s , t o t a l : 1 .16 s

#S i n g u l a r ’ s RR i n SAGE (64−b i t , l o c a l b u i l d)
sage : P.<x , y , z> = MPo lynomia lR ing s i (QQ, 3)
sage : ep = P(e)
sage : t ime f o r i i n range (100000) : f = ep∗ep
CPU t imes : u s e r 1 .11 s , s y s : 0 .00 s , t o t a l : 1 .71 s

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 10/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

What is Singular III

Also, very rich set of features: set related ideal operations,
radicals, closures

term orderings: Matrix ordering, block orderings

higher level algorithms: solving, Gröbner basis algorithms,
Gröbner walks

We use a lot of its functionality via pexpect already

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 11/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Problem: Singular is a stand-alone application

cannot link against Singular (symbols not exported, main)

not designed to play nice with other components (e.g.
memory management)

no bird’s eye view API documentation

pexpect too slow for low level arithmetic

. . . fixed.

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 12/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Wrapping Singular

wrote libsingular.so.3-0-2 prototype + some SAGE bindings

changes to Singular library are minimal so far (just don’t
create main())

Singular team is supportive for my effort, i.e. changes might
hit upstream

API is surprisingly easy to understand for internal code, but
some quirks necessary (global variables)

aim to support polynomials over Q, R, C, FpFpn + quotient
rings over them.

considering to link Singular against Givaro for faster
arithmetic over Fpn .

need to sort out memory management issues at some point

will take a lot of time till a production ready version is
released (time limit: end of summer)

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 13/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Preliminary Timing I

object creation isn’t killing us for small examples.

#SAGE us i ng S i n g u l a r (64−b i t , custom bu i l d)
sage : t ime f o r i i n range (1000000) : f = (x∗y + z)ˆ5
CPU t imes : u s e r 3 .33 s , s y s : 0 .01 s , t o t a l : 3 .34 s

#SAGE us i ng S i n g u l a r i n SageX loop (64−b i t , custom bu i l d)
sage : t ime somete s t (P,1000000)
CPU t imes : u s e r 1 .40 s , s y s : 0 .00 s , t o t a l : 1 .40 s

#MAGMA 2.11−2 (32−b i t , not op t im i z ed f o r my machine)
> t := Cputime () ;
> f o r i i n [1 . . 1 0 0 0 0 0 0] do ; f := (x∗y + z) ˆ 5 ; end f o r ;
> Cputime (t) ;
3 .709

bigger examples look even better

#SAGE S i n g u l a r
sage : t ime f o r i i n range (1000000) : f = (x∗yˆ3 + z ˆ2)ˆ20
CPU t imes : u s e r 8 .21 s , s y s : 0 .02 s , t o t a l : 8 .23 s

#MAGMA 2.11−2 (32− b i t)
> t := Cputime () ;
> f o r i i n [1 . . 1 0 0 0 0 0 0] do ; f := (x∗yˆ3 + z ˆ2)ˆ20 ; end f o r ;
> Cputime (t) ;
25 .709

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 14/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Preliminary Timing II

Incidently:

#S i n g u l a r v i a SAGE/Python
sage : t ime f o r i i n range (1000000) : f = (x∗y + z)
CPU t imes : u s e r 0 .71 s , s y s : 0 .01 s , t o t a l : 0 .72 s
Wal l t ime : 0 .72

#S i n g u l a r ’ s own i n t e r p r e t e r , what ’ s go ing wrong?
sage : t ime s i n g u l a r . e v a l (” po l y f ; f o r (i n t i =0; i <1000000; i++) { f = x∗y + z ; }”)
CPU t imes : u s e r 0 .00 s , s y s : 0 .00 s , t o t a l : 0 .00 s
Wal l t ime : 12 .85

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 15/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Outline

1 State of the Art in SAGE

2 Candidate One: Improving the Current Implementation

3 Candidate Two: Make Singular a Library

4 Candidate Three: Use CoCoALib

5 Candidate Four: Specialized Implementations

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 16/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

What is CoCoALib

“CoCoALib is now GPL’d! However we still ask you not to disclose
this address to others, but to invite them to contact us!”

. . . a secret GPL’d C++ library for multivariate polynomial
arithmetic. Rumored to be released to the general public end of
February. It is a complete rewrite of the CoCoA computer algebra
system.

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 17/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Sorry

I haven’t really looked into CoCoALib yet. However, this is how it
looks like:

// Q
r i n g Q = NewFrac t i onF i e l d (Z) ;

//−−
// Q[y]

// I n d e t name i s y [0]
Po lyR ing P = NewPolyRing (Q, 1 , symbol (”y”)) ;

// s e t the C++ v a r i a b l e y to the v a l u e o f the i n d e t e rm i n a t e y i n r i n g P
RingElem y = i n d e t (P , 0) ;
RingElem f = 15 ∗ y + power (y , 3) ;
RingElem g = 4 ∗ y − 3 ∗ power (y , 7) ;
G loba lOutput () << ”−−” << end l ;
G loba lOutput () << ” r i n g i s Q[y [0]] ” << end l ;
TestRing (P , f , g) ;

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 18/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Outline

1 State of the Art in SAGE

2 Candidate One: Improving the Current Implementation

3 Candidate Two: Make Singular a Library

4 Candidate Three: Use CoCoALib

5 Candidate Four: Specialized Implementations

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 19/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Quotient Ring over GF(2) I

We can represent monomials as bitstrings in
F2[x1, . . . , xn]/ < x2

1 − x1, x
2
n − xn >. Examples:

Mu l t i p l y
x ∗ y = xy | | x ∗ x = x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 | 01 = 11 | | 10 | 10 = 10
D i v i s i o n (i f d i v i s i b l e)
xy / y = x | | xy / x = y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ˆ 01 = 10 | | 11 ˆ 10 = 01

D i v i s i b i l i t y t e s t i n g
x d i v i d e s xy = True
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(10 ˆ 11) & (˜10) = 1

01 & 01 = 0

xy d i v i d e s x = Fa l s e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(11 ˆ 10) & (˜11) = 0

01 & 00 = 0

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 20/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Quotient Ring over GF(2) II

using SSE2 (x86) or AltiVec (PPC) instruction set: monomial
multiply of up to 128 variables in one instruction.

have (okay) implementation in my thesis.

still many stupid things in there: use Python dictionary in
multiplication to ensure uniqueness of terms in resulting
polynomial.

For very large rings with very sparse polynomials: slow.

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 21/23

State of the Art in SAGE Candidate One: Improving the Current Implementation Candidate Two: Make Singular a Library Candidate Three: Use CoCoALib Candidate Four: Specialized Implementations

Questions?

Thank You!

Martin Albrecht (malb@informatik.uni-bremen.de) — Options for Commutative Algebra in SAGE 22/23

	State of the Art in SAGE
	Candidate One: Improving the Current Implementation
	Candidate Two: Make Singular a Library
	Candidate Three: Use CoCoALib
	Candidate Four: Specialized Implementations

