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Datastructures

Consider for example the ring Q[x , y , z ] and f = 5 ∗ x2y3 + z4 − 2.
This boils down to

{ { 0 : 2 , 1 : 3 } : 5 ,{ 2 :4 } : 1 , { }:−2}

in the current implementation. This data structure is called a
PolyDict in SAGE. Every MPolynomial has such a thing (it isn’t
one). The exponent dictionaries are called ETuple. PolyDict and
ETuple are implemented in not-optimized Pyrex/SageX using
Python dictionaries. MPolynomial is implemented in Python.
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Operations

Simple operations (Addition, Multiplication, etc.) are
implemented natively (and naively btw.) while more complicated
operations (factorization, gcd, division) are performed using
Singular. This adds additional overhead as data has to be passed
back and forth between Singular and SAGE.
Btw.: There is also a tiny wrapper around libCF in SAGE which I
use sometimes for polynomial evaluation and such. It is faster than
the native SAGE implementation but slower than Singular as it
wraps a library meant for factorization.
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Improving the Current Implementation

need to do it anyway: no library allows polynomial rings over
Python objects

need to have fallback implementation
might be okay if it is not optimized well
might even stay in Python for a while

There is lots of room for improvements

don’t use Python dictionaries for the ETuples
improve overall implementation, use Pyrex tricks, use better
algorithms
push multivariate polynomials down to SageX
. . . but is it worth it?

Feature-wise: Many monomial orderings are not implemented,
e.g. block orderings, which are important for crypto.
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What is Singular I

computer algebra system focused on commutative algebra

developed since 1980s in Kaiserslautern (Greuel) and Berlin
(Pfister).

current version is 3-0-2.

written in C-ish C++. (good, since C is better understood by
me and Pyrex than C++)
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What is Singular II

claims to have the fastest multivariate polynomial arithmetic
overall. Claim backed by William’s and my experience.
Actually,

polynomial arithmetic faster than MAGMA
coefficient arithmetic supposed to be slower than MAGMA

#MAGMA 2.13−5 (32−b i t , not op t im i z ed f o r my machine )
> e := Random(1000ˆ400 ,1000ˆ410)/Random(1000ˆ400 ,1000ˆ410) ;
> t := Cputime ( ) ;
> f o r i i n [ 1 . . 1 0 ˆ 5 ] do ; f := e∗e ; end f o r ;
> Cputime ( t ) ;
3 .070

#SAGE (64−b i t , l o c a l b u i l d )
sage : e = ZZ . random element (1000ˆ400 ,1000ˆ410)/\

ZZ . random element (1000ˆ400 ,1000ˆ410)
sage : t ime f o r i i n range ( 10ˆ5 ) : f = e∗e
CPU t imes : u s e r 1 .16 s , s y s : 0 .00 s , t o t a l : 1 .16 s

#S i n g u l a r ’ s RR i n SAGE (64−b i t , l o c a l b u i l d )
sage : P.<x , y , z> = MPo lynomia lR ing s i (QQ, 3 )
sage : ep = P( e )
sage : t ime f o r i i n range (100000 ) : f = ep∗ep
CPU t imes : u s e r 1 .11 s , s y s : 0 .00 s , t o t a l : 1 .71 s
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What is Singular III

Also, very rich set of features: set related ideal operations,
radicals, closures

term orderings: Matrix ordering, block orderings

higher level algorithms: solving, Gröbner basis algorithms,
Gröbner walks

We use a lot of its functionality via pexpect already
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Problem: Singular is a stand-alone application

cannot link against Singular (symbols not exported, main)

not designed to play nice with other components (e.g.
memory management)

no bird’s eye view API documentation

pexpect too slow for low level arithmetic

. . . fixed.
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Wrapping Singular

wrote libsingular.so.3-0-2 prototype + some SAGE bindings

changes to Singular library are minimal so far (just don’t
create main())

Singular team is supportive for my effort, i.e. changes might
hit upstream

API is surprisingly easy to understand for internal code, but
some quirks necessary (global variables)

aim to support polynomials over Q, R, C, FpFpn + quotient
rings over them.

considering to link Singular against Givaro for faster
arithmetic over Fpn .

need to sort out memory management issues at some point

will take a lot of time till a production ready version is
released (time limit: end of summer)
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Preliminary Timing I

object creation isn’t killing us for small examples.

#SAGE us i ng S i n g u l a r (64−b i t , custom bu i l d )
sage : t ime f o r i i n range (1000000) : f = ( x∗y + z )ˆ5
CPU t imes : u s e r 3 .33 s , s y s : 0 .01 s , t o t a l : 3 .34 s

#SAGE us i ng S i n g u l a r i n SageX loop (64−b i t , custom bu i l d )
sage : t ime somete s t (P,1000000)
CPU t imes : u s e r 1 .40 s , s y s : 0 .00 s , t o t a l : 1 .40 s

#MAGMA 2.11−2 (32−b i t , not op t im i z ed f o r my machine )
> t := Cputime ( ) ;
> f o r i i n [ 1 . . 1 0 0 0 0 0 0 ] do ; f := ( x∗y + z ) ˆ 5 ; end f o r ;
> Cputime ( t ) ;
3 .709

bigger examples look even better

#SAGE S i n g u l a r
sage : t ime f o r i i n range (1000000) : f = ( x∗yˆ3 + z ˆ2)ˆ20
CPU t imes : u s e r 8 .21 s , s y s : 0 .02 s , t o t a l : 8 .23 s

#MAGMA 2.11−2 (32− b i t )
> t := Cputime ( ) ;
> f o r i i n [ 1 . . 1 0 0 0 0 0 0 ] do ; f := ( x∗yˆ3 + z ˆ2)ˆ20 ; end f o r ;
> Cputime ( t ) ;
25 .709
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Preliminary Timing II

Incidently:

#S i n g u l a r v i a SAGE/Python
sage : t ime f o r i i n range (1000000) : f = ( x∗y + z )
CPU t imes : u s e r 0 .71 s , s y s : 0 .01 s , t o t a l : 0 .72 s
Wal l t ime : 0 .72

#S i n g u l a r ’ s own i n t e r p r e t e r , what ’ s go ing wrong?
sage : t ime s i n g u l a r . e v a l ( ” po l y f ; f o r ( i n t i =0; i <1000000; i++) { f = x∗y + z ; }” )
CPU t imes : u s e r 0 .00 s , s y s : 0 .00 s , t o t a l : 0 .00 s
Wal l t ime : 12 .85
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What is CoCoALib

“CoCoALib is now GPL’d! However we still ask you not to disclose
this address to others, but to invite them to contact us!”

. . . a secret GPL’d C++ library for multivariate polynomial
arithmetic. Rumored to be released to the general public end of
February. It is a complete rewrite of the CoCoA computer algebra
system.
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Sorry

I haven’t really looked into CoCoALib yet. However, this is how it
looks like:

// Q
r i n g Q = NewFrac t i onF i e l d (Z ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Q[ y ]

// I n d e t name i s y [ 0 ]
Po lyR ing P = NewPolyRing (Q, 1 , symbol ( ”y” ) ) ;

// s e t the C++ v a r i a b l e y to the v a l u e o f the i n d e t e rm i n a t e y i n r i n g P
RingElem y = i n d e t (P , 0 ) ;
RingElem f = 15 ∗ y + power ( y , 3 ) ;
RingElem g = 4 ∗ y − 3 ∗ power ( y , 7 ) ;
G loba lOutput ( ) << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << end l ;
G loba lOutput ( ) << ” r i n g i s Q[ y [ 0 ] ] ” << end l ;
TestRing (P , f , g ) ;
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Quotient Ring over GF(2) I

We can represent monomials as bitstrings in
F2[x1, . . . , xn]/ < x2

1 − x1, x
2
n − xn >. Examples:

# Mu l t i p l y
x ∗ y = xy | | x ∗ x = x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 | 01 = 11 | | 10 | 10 = 10
# D i v i s i o n ( i f d i v i s i b l e )
xy / y = x | | xy / x = y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ˆ 01 = 10 | | 11 ˆ 10 = 01

# D i v i s i b i l i t y t e s t i n g
x d i v i d e s xy = True
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(10 ˆ 11) & (˜10) = 1

01 & 01 = 0

xy d i v i d e s x = Fa l s e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(11 ˆ 10) & (˜11) = 0

01 & 00 = 0
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Quotient Ring over GF(2) II

using SSE2 (x86) or AltiVec (PPC) instruction set: monomial
multiply of up to 128 variables in one instruction.

have (okay) implementation in my thesis.

still many stupid things in there: use Python dictionary in
multiplication to ensure uniqueness of terms in resulting
polynomial.

For very large rings with very sparse polynomials: slow.
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Questions?

Thank You!
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