

Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective It's like Gaussian elimination, but exponential

Martin Albrecht (malb@informatik.uni-bremen.de)

"Thus, if we could show that solving a certain system requires at least as much work as solving a system of simultaneous equations in a large number of unknowns, of a complex type, then we would have a lower bound of sorts for the work characteristic." [Sha49]

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 1/38

- 1 Gröbner Bases and Varieties
- 2 Block Cipher Example
- 3 Computing Gröbner Bases
- 4 Specialized Attacks in Algebraic Cryptanalysis

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 2/38

1 Gröbner Bases and Varieties

- 2 Block Cipher Example
- 3 Computing Gröbner Bases
- 4 Specialized Attacks in Algebraic Cryptanalysis

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 3/38

Some notation and definitions

- $P = k[x_0, ..., x_{n-1}]; k \text{ a field}$
- I is an ideal $\subset P$. $m, n \in I \rightarrow m + n \in I$; $v \in P \rightarrow v \cdot m \in I$
- $< f_0, \ldots, f_{n-1} >$ is the ideal spanned by f_0, \ldots, f_{n-1} .
- $V(f_0, \ldots, f_{n-1}) = \{(a_0, \ldots, a_{m-1}) \in k^m : f_i(a_0, \ldots, a_{m-1}) = 0$ for all $0 \le i < n\}$.
- V(I) is the variety of I. Especially, if $I = \langle f_0, \ldots, f_{n-1} \rangle$, then $V(I) = V(f_0, \ldots, f_{n-1})$

Given a set "complicated" set f_0, \ldots, f_{n-1} , compute a simpler set g_0, \ldots, g_{m-1} , such that $\langle f_0, \ldots, f_{n-1} \rangle = \langle g_0, \ldots, g_{m-1} \rangle$ and consequently $V(f_0, \ldots, f_{n-1}) = V(g_0, \ldots, g_{m-1})$.

Those "complicated" sets are for example:

- AES (128-bit, 10 rounds) 8000 equations in 1600 variables over \mathbb{F}_2 [CP02] or 5248 equations in 3968 variables over \mathbb{F}_{2^8} [MR02].
- CTC (255-bit, 6 rounds) 11985 equations in 6375 variables over $\mathbb{F}_2.$

イロト イボト イヨト イヨト ラー のくや

How do we know where to look for a simpler set?

Little Detour: Monomial Orderings

Monomials can be ordered in different ways, i.e. there is no canonical ordering.

Important examples include:

lexicographical Given e.g. *a*, *b*, *c* then *a* is always greater than *b* . . . like in a phone book.

degree **lex**icographical Sort by degrees first, then use *lex*

block Every element from one block B_1 is always bigger than any element from another block B_2 (like *lex*), but inside the blocks use e.g. *deglex*.

Leading monomials etc. are always considered with respect to some monomial ordering.

(I) (Reduced) Gröbner Bases

Definition (Gröbner Basis)

Fix a monomial order. A finite subset $G = \{g_0, \ldots, g_{m-1}\}$ of an ideal I is said to be a *Gröbner basis* or standard basis if

$$\langle LT(g_0),\ldots,LT(g_{m-1})\rangle = \langle LT(I)\rangle.$$

Definition (Reduced Gröbner Basis)

A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis for G such that:

1
$$LC(f) = 1$$
 for all $f \in G$;

2 For all $f \in G$, no monomial of f lies in $\langle LT(G - \{f\}) \rangle$.

Consider (and ignore abuse of notation):

$$\begin{split} 0 &= \kappa_{0,0} + \kappa_{1,2}, 0 = \kappa_{0,2} + \kappa_{1,1}, 0 = \kappa_{0,1} + \kappa_{1,0}, 0 = 1 + \kappa_{1,2} + Z_{1,2}, 0 = \kappa_{1,1} + Z_{1,1}, 0 = \kappa_{1,0} + Z_{1,0}, \\ 0 &= Z_{1,1} + Y_{1,2} + Y_{1,1}, 0 = Z_{12} + Y_{10}, 0 = Z_{10} + Y_{11} + Y_{10}, 0 = \kappa_{02} + X_{12}, 0 = 1 + \kappa_{01} + X_{11}, \\ 0 &= \kappa_{00} + X_{10}, 0 = Y_{12} + Y_{10} Y_{11} + X_{10}, 0 = Y_{12} + Y_{11} + Y_{11} Y_{12} + Y_{10} + X_{12} + X_{10}, \\ 0 &= Y_{12} + Y_{10} + X_{12} + X_{12} Y_{11} + X_{10}, 0 = 1 + Y_{12} + Y_{11} + Y_{10} Y_{12} + X_{11} + X_{10}, \\ 0 &= 1 + Y_{12} + Y_{11} + Y_{10} + X_{11} + X_{11} Y_{10} + X_{10}, 0 = 1 + Y_{12} + Y_{11} + Y_{10} + X_{11} + X_{11} X_{12} + X_{10}, \\ Y_{12} + Y_{10} + X_{12} Y_{10} + X_{10} Y_{12}, 0 = 1 + Y_{10} + X_{12} + X_{11} + X_{10} Y_{12}, \\ 0 &= 1 + Y_{11} + X_{12} Y_{12} + X_{11} + X_{10} + X_{10} Y_{12}, X_{11} Y_{11} + X_{10} + X_{10} Y_{12}, Y_{11} + Y_{10} + X_{12} + X_{10} Y_{11}, \\ 0 &= 1 + Y_{11} + X_{10} Y_{10}, 0 = 1 + Y_{11} + X_{11} + X_{10} X_{12}, 0 = 1 + Y_{10} + X_{12} + X_{10} + X_{10} X_{11} \\ \\ \text{The reduced Gröbner basis with respect to the lex monomial ordering is:} \end{split}$$

$$0 = K_{02}, 0 = 1 + K_{01}, 0 = 1 + K_{00}, 0 = 1 + K_{12}, 0 = K_{11}, 0 = 1 + K_{10}, 0 = Z_{12}, 0 = Z_{11}, 0 = 1 + Z_{10}, 0 = 1 + Y_{12}, 0 = 1 + Y_{11}, 0 = Y_{10}, 0 = X_{12}, 0 = X_{11}, 0 = 1 + X_{10}$$

- An ideal is zero-dimensional if V(I) is finite.
- The radical of *I* denoted by √*I*, is the set {*f* : *f^e* ∈ *I* for some integer *e* ≥ 1}.
- A perfect field is a field of chracteristic *p* where every element has a *p* − *th* root or the characteristic is zero.
- An elimination ideal is defined as: Given $I = \langle f_0, \dots, f_{m-1} \rangle \subset k[x_0, \dots, x_{n-1}]$, the *I*-th elimination ideal I_l is the ideal of $k[x_{l+1}, \dots, x_{n-1}]$ defined by $I_l = I \cap k[x_{l+1}, \dots, x_{n-1}]$.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

V(I) The Shape Lemma I

Theorem (The Shape Lemma)

Let k be a perfect field, let $I \subset P$ be a zero-dimensional radical ideal. Let $g_{n-1} \in k[x_{n-1}]$ be the monic generator of the elimination ideal $I \cap k[x_{n-1}]$, and let $d = deg(g_{n-1})$. Then the following statements are true:

■ The reduced Gröbner basis of the ideal I with respect to the lexicographic ordering x₀ > · · · > x_{n-1} is of the form

$$\{x_0 - g_0, \ldots, x_{n-2} - g_{n-2}, g_{n-1}\},\$$

where $g_0, ..., g_{n-2} \in k[x_{n-1}]$;

2 The polynomial g_{n-1} has d distinct zeros $a_0, \ldots, a_{d-1} \in k$, and the set of zeros of I is $\{(g_0(a_i), \ldots, g_{n-2}(a_i), a_i) : i = 0, \ldots, d-1\}.$

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 10/38

To bring an ideal over \mathbb{F}_p in the form such that the shape lemma applies, add the "field polynomials" $(\{x_i^p - x_i\}$ for every $0 \le i < n)$ to the ideal. This makes sure, that:

- solutions from the algebraic closue are excluded as x^p_i − x_i factors completely over F_p,
- the ideal is zero-dimensional (implied by above statement),
- the ideal is a radical ideal as GCD(^d(x_i^p-x_i)/dx_i, x_i^p x_i) = 1 (Seidenberg's Lemma).

1 Gröbner Bases and Varieties

- 2 Block Cipher Example
- 3 Computing Gröbner Bases
- 4 Specialized Attacks in Algebraic Cryptanalysis

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 12/38

CTC Overview: Bird's Eye View I

The cipher operates on block sizes which are multiples of 3. So the block size is $B \cdot s$ where s = 3 and B may be chosen. The cipher is defined in rounds where each round performs the same operation on the input data except that a different round key is added each time. The output of round i - 1 is the input of round i. Each round consists of a parallell application of B S-boxes, the application of the linear diffusion layer, and a final key addition of the round key.

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 14/38

Gröbner Bases and Varieties Block Cipher Example Computing Gröbner Bases Specialized Attacks in Algebraic Cryptanalysis R V(I) CTC Overview: Some Details

- The S-Box is defined over GF(2³) as the non-linear random permutation [7, 6, 0, 4, 2, 5, 1, 3]. The transformation from GF(2)³ to GF(2³) is the "natural"-mapping.
- This gives rise to 14 lineary independent quadratic equations in the input and output variables
- The diffusion layer is very thin:

$$\begin{split} & Z_{i,(257\%Bs)} = Y_{i,0} \text{ for all } i = 1 \dots N_r, \\ & Z_{i,(j \cdot 1987 + 257\%Bs)} = Y_{i,j} + Y_{i,(j+137\%Bs)} \text{ for } j \neq 0 \text{ and all } i. \end{split}$$

The key schedule is a simple permutation of wires.

$$P_0 + K_{0,0} + X_{1,0},$$

$$P_1 + K_{0,1} + X_{1,1},$$

$$P_2 + K_{0,2} + X_{1,2},$$

 $Y_{1,0} + Y_{1,1} + Z_{1,0}$ $1 + X_{1,0} + X_{1,1} + X_{1,1}X_{1,0} + X_{1,2} + Y_{1,0}$ $Y_{1,1} + Y_{1,2} + Z_{1,1}$ $1 + X_{1,1} + X_{1,2}X_{1,0} + Y_{1,1}$ $Y_{1,0} + Z_{1,2}$ $1 + X_{1,1} + Y_{1,0}X_{1,0} + Y_{1,1}$ $X_{1,2} + Y_{1,0} + Y_{1,1} + Y_{1,1}X_{1,0}$ $K_{0,1} + K_{1,0}$ $1 + X_{1,0} + X_{1,1} + X_{1,2}X_{1,1} + Y_{1,0} + Y_{1,1} + Y_{1,2}$ $K_{0,2} + K_{1,1}$ $1 + X_{1,0} + X_{1,1} + Y_{1,0} + Y_{1,0}X_{1,1} + Y_{1,1} + Y_{1,2}$ $K_{0,0} + K_{1,2}$ $X_{1,0} + Y_{1,1}X_{1,1} + Y_{1,2}X_{1,0},$ $1 + X_{11} + X_{12} + Y_{10} + Y_{12}X_{10} + Y_{12}X_{11}$ $Z_{1,0} + K_{1,0} + C_{0}$ $Y_{1,0} + Y_{1,0}X_{1,2} + Y_{1,2} + Y_{1,2}X_{1,0}$ $Z_{1\ 1} + K_{1\ 1} + C_{1}$ $X_{1,0} + X_{1,2} + Y_{1,0} + Y_{1,1}X_{1,2} + Y_{1,2}$ $Z_{1,2} + K_{1,2} + C_{2}$ $1 + X_{1,0} + X_{1,1} + Y_{1,1} + Y_{1,2}X_{1,0} + Y_{1,2}X_{1,2}$ $X_{1,0} + Y_{1,1}Y_{1,0} + Y_{1,2}$ $1 + X_{1,0} + X_{1,1} + Y_{1,1} + Y_{1,2} + Y_{1,2}Y_{1,0}$ $X_{1,0} + X_{1,2} + Y_{1,0} + Y_{1,1} + Y_{1,2} + Y_{1,2}Y_{1,1}$

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 16/38

1 Gröbner Bases and Varieties

2 Block Cipher Example

Outline

- 3 Computing Gröbner Bases
- 4 Specialized Attacks in Algebraic Cryptanalysis

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 17/38

Recall the definition of a Gröbner basis. It is a set G of polynomials $g_0, \ldots g_{m-1}$ such that:

$$\langle LT(g_0),\ldots,LT(g_{m-1})\rangle = \langle LT(I)\rangle.$$

Now, try to create elements in $\langle LT(I) \rangle$ and not in $\langle LT(g_0), \ldots, LT(g_{m-1}) \rangle$. If you find such an element **add it** to the basis. If such an element provably cannot be constructed *G* is a Gröbner basis. This procedure **terminates** as the ideals of leading terms created this way are strictly increasing and such a sequence **must stabilize** eventually due to the **Ascending Chain Condition**. At this point $\langle LT(g_0), \ldots, LT(g_{m-1}) \rangle = \langle LT(I) \rangle$.

Bruno Buchberger showed that every cancelation of leading terms may be accounted to *S-polynomials*.

Definition (S-Polynomial)

Let $f, g \in k[x_1, \ldots, x_n]$ be polynomials $\neq 0$ and define $x^{\gamma} = \text{LCM}(\text{LM}(f), \text{LM}(g))$. Then the S-polynomial of f and g is defined as

$$S(f,g) = \frac{x^{\gamma}}{\operatorname{LT}(f)} \cdot f - \frac{x^{\gamma}}{\operatorname{LT}(g)} \cdot g.$$

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 19/38

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

(I) Polynomial Reduction

The S-polynomial h of g_i, g_j is not in $< LT(g_i), LT(g_j) >$ but it is in < LT(I) >. It may be in $G_r = <\{g_k | k \neq i, j\} >$.

Definition

Let $G=\{g_0,\ldots,g_{m-1}\}\subset P$. Given a polynomial $h\in P$, we say that h reduces to zero modulo G, written

$$h \xrightarrow{G} 0$$

if h can be written in the form

$$h = a_0g_0 + \cdots + a_{m-1}g_{m-1},$$

such that whenever $a_i g_i \neq 0$, we have $h \geq a_i g_i$.

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 21/38

- Intermediate basis grows pretty quickly
- Major bottleneck is reduction modulo G2
- Need strategy which S-polynomial to construct in which order
- Need criteria which S-polynomial reduces to zero
- Computing with respect to *lex* takes much longer than e.g. *deglex*
- Runtime is exponential or worse in general. Solving polynomial equation systems in NP-hard.
- We don't know much about the actual runtime Buchberger's algorithm applied to a given ideal basis.

イロト イヨト イヨト ヨー りくや

(I) Runtime II

Situation could be better for algebraic attacks:

- zero-dimensional (one solution)
- systems are often sparse yet overdefined
- working over simple fields like 𝔽₂
- systems are highly structured

Several improvements and specializations to Buchberger's algorithm exist

- Gebauer-Möller installation
- \bullet F_4 and F_5
- SlimGB
- Gröbner Proofing

/(I) State of the Art: *F*₄ [Fau99]

Theorem

Construct the coefficient matrix A for an ideal basis F and call the (reduced) row echelon form \tilde{A} . Then \tilde{F} constructed from \tilde{A} is called the row echelon form of F. Let \tilde{F}^+ denote the set

 $\{g \in \tilde{F} : LM(g) \not\in LM(F)\}.$

The elements of \tilde{F}^+ are joined with a subset H of the original F, such that:

$$LM(H) = LM(F)$$
 and $|H| = |LM(F)|$

holds. Then the ideal < F > is spanned by $H \cup \tilde{F}^+$.

1 Gröbner Bases and Varieties

2 Block Cipher Example

Outline

- 3 Computing Gröbner Bases
- 4 Specialized Attacks in Algebraic Cryptanalysis

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 25/38

(I) Meet-in-the-Middle [CMR05]

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 26/38

D Meet-in-the-Middle Results

- Implemented on top of Singular's Gröbner basis engine
- Faster for *lex* monomial ordering than naïve approach
- Faster for *degrevlex* monomial ordering up to B = 2.

Abbildung: Runtimes for B=1 and term ordering *lex*

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 27/38

V(I) Gröbner Surfing: Idea

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 28/38

(I) Gröbner Surfing: Algorithm

```
def groebner_surf(F):
    """
    Returns a Groebner basis for a given MQ problem F.
    INPUT:
        F --- MQ problem, separable in rounds
    OUTPUT:
        a Groebner basis for F with respect to F.ring().term_order()
    """
    singular.option("redSB")
    P = F.ring()
    gb = P.ideal([0])
    for i in range(len(F.round)):
        gb = (gb + P.ideal(F.round[i])).groebner_basis()
    return gb
```

(I) Gröbner Surfing: Correctness

Correctness Algorithm is in fact selection strategy. It doesn't affect correctness.

Termination Buchberger's Algorithm terminates, thus *Nr* times Buchberger's Algorithm terminate as well.

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 30/38

Gröbner Surfing Results I

Lexicographical Term Ordering

- Faster than naïve approach and Meet-in-the-Middle for B = 1
- Graded Reverse Lexicographical & Block Term Ordering
 - Split equation systems in blocks by rounds, use *degrevlex* in blocks [Wei06]
 - Faster than naïve Buchberger for *degrevlex*.
 - Also: Gröbner basis looks better, as blocks eliminate.
- Why is this faster?
 - Exploits structure: We know the dependencies
 - Reduces intermediate basis grow: reduction after every round
 - Thus it is not faster for *degrevlex* in general

Gröbner Surfing Results II

A good monomial order:

```
sage: F, s = ctc_MQ(Nr=3, variable_order=1, term_order=block_order(Nr=3))
sage: F.ring()._singular_()
     characteristic : 2
     number of vars : 39
                 1 : ordering dp
          block
                               K_3,2 K_3,1 K_3,0 Z_3,2 Z_3,1 Z_3,0
                    : names
                                Y_3,2 Y_3,1 Y_3,0 X_3,2 X_3,1 X_3,0
                                K_2,2 K_2,1 K_2.0
          block
                  2 : ordering
                                dp
                    : names
                                Z_2,2 Z_2,1 Z_2,0 Y_2,2 Y_2,1 Y_2,0
                                X_2,2 X_2,1 X_2,0 K_1,2 Kv1,1 K_1,0
                      ordering dp
          block
                  3 :
                                Z_1,2 Z_1,1 Z_1,0 Y_1,2 Y_1,1 Y_1,0
                    : names
                                X_1,2 X_1,1 X_1,0 K_0,2 K_0,1 K_0,0
          block
                  4 : ordering C
```

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 32/38

Gröbner Surfing Results III

Abbildung: Runtimes for B = 2

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 33/38

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

() Gröbner Surfing Results IV

Abbildung: Runtimes for B = 3

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 34/38

- First Buchberger Criterion: Suppose that we have $f, g \in G$, such that the leading monomials of f and g are pairwise prime. Then the S-polynomial of f and g reduces to zero.
- We have *n* equations in *n* variables, so make sure each leading monomial is univariate and distinct from each other.
- We get a zero-dimensional Gröbner basis *CTCgb* for CTC ideals.
- Basis is still quadratic, but unclear how to exploit the fact that it is Gröbner basis; FGLM [FGLM93] and Gröbner Walk [CKM97] are too slow.

Questions?

Thank You!

Martin Albrecht (malb@informatik.uni-bremen.de) — Algebraic Attacks on Block Ciphers from a Gröbner Basis Perspective 36/38

イロン イロン イヨン イヨン

(I) References I

. 14			
			_
- 14			

Johannes Buchmann, Andrei Pychkine, and Ralf-Philipp Weinmann.

Block ciphers sensitive to gröbner basis attacks. Cryptology ePrint Archive, Report 2005/200, 2005. available at: http://eprint.iacr.org/2005/200.

S. Collart, M. Kalkbrener, and D. Mall.

Converting bases with the gröbner walk. In Journal Of Symbolic Computation 24, pages 465–469. Academic Press, 1997

Carlos Cid, S. Murphy, and M. Robshaw.

Small scale variants of the aes.

In Proceedings Of Fast Software Encryption 2005, LNCS 3557, pages 145-162. Springer, 2005. available at http://www.isg.rhul.ac.uk/~sean/smallAES-fse05.pdf.

Nicolas Courtois and Josef Pieprzyk.

Cryptanalysis of block ciphers with overdefined systems of equations. Cryptology ePrint Archive, Report 2002/044, 2002. available at http://eprint.iacr.org/2002/044.

Jean-Charles Faugère.

A new efficient algorithm for computing gröbner basis (f4), 1999. available at http://modular.ucsd.edu/129-05/refs/faugere_f4.pdf

Jean-Charles Faugère, P. Gianno, P. Lazard, and T. Mora.

Efficient computation of zero-dimensional gröbner bases by change of ordering. In *Journal Of Symbolic Computation 16*, pages 329–344. Academic Press, 1993

(I) References II

S. Murphy and M. Robshaw.

Essential algebraic structure within the aes. In Proceedings Of Crypto 2002, LNCS 2442, pages 1–16. Springer, 2002. available at http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/aes-crypto.pdf

C. E. Shannon.

Communication theory of secrecy systems. In *Bell System Technical Journal 28*, pages 656–715, 1949.

Ralf-Philipp Weinmann.

Private communication, 12 2006.