Not Reinventing the Wheel: a Sage Introduction
http://www.sagemath.org

Martin Albrecht (M.R.Albrecht@rhul.ac.uk)
Royal Holloway, University of London

Egham, 1.November 2007

http://www.sagemath.org

Outline

Introduction

A Free Distribution

A Unified Interface

(New) Functionality

Roundup/Demo

Outline

Introduction

Mission Statement (my words)

Provide a free, open-source (GPL-compatible), viable alternative to
Magma, Mathematica, Maple and MATLAB (probably in that order).

To achieve this do not reinvent the wheel but use as much existing
building blocks as possible and make sure the result is rigorously tested,
easy to modify by the end user and very well documented.

Also create a helpful environment for users to get help (mailinglists,
irc-channel, meetings).

What is Sage?

Sage was started by William Stein in 2004 and is now developed by a
worldwide community of developers (ca. 30 people submit patches each
month, ca. 200 people are subscribed to [sage-devel])

a distribution of the best free, open-source mathematics software
available (Sage 2.8.9 ships roughly 70 third-party packages) that is
easy to compile and/or install on Linux, OS X, Solaris (soon) and
Windows (via virtualisation)

a unified interface to many free and commercial mathematics
software packages (e.g. Magma, Mathematica)

the mathematics package which covers the widest area of
functionality ever (see: 1.) including new implementations not yet
found in the open-source world.

Outline

A Free Distribution

Systems |

Arithmetic

GMP, MPFR, Givaro

Commutative Algebra

SINGULAR (libSINGULAR)

Linear Algebra

LinBox, M4RI, IML, fpLLL

Highlevel Cryptography

GnuTLS, PyCrypto

Factoring FlintQS, ECM
Group Theory and Combinatorics | GAP, Symmetrica
Graph Theory NetworkX

Number Theory

PARI, NTL, Flint

Numerical Computation

GSL, Numpy, Scipy

Calculus, Symbolic Comp.

Maxima, Sympy

Specialised Math

many C/C++ programs...

Interface Notebook, jsmath, Moin wiki, IPython
Plotting Matplotlib, Tachyon, libgd, Java3d
Networking Twisted

Database Z0ODB, SQLite, Python Pickles

Programming Language

Python, Cython (compiled)

Systems ||

In total that makes roughly 4.5 Million physical lines of code (number
generated using David A. Wheeler's SLOCCount)

ansic
p/cython
cpp
fortran
lisp

sh

asm

perl

1907386 (39.01%)
1258260 (25.73%)
553701 (11.32%)
492184 (10.07%)
340210 (6.96%)
138356 (2.83%)
79260 (1.62%)
60285 (1.23%)

with a development effort estimation of 1,262.90 Person-Years (take this
figure with a spoon of salt).

Interactive Math Packages

m All programs/libraries installed by

m: cd $SAGE_ROOT
m: make #... drink lots and lots of tea or coffee

m You can use every provided program on its own:

m: sage —singular

SINGULAR / Development
A Computer Algebra System for Polynomial Computations / version 3—0—3
0<
by: G.—M. Greuel, G. Pfister, H. Schoenemann \ May 2007
FB Mathematik der Universitaet, D—67653 Kaiserslautern
> 141
2
> ring r = 0,(a,b),dp;
> r;
// characteristic : 0
// number of vars : 2
// block 1 : ordering dp
// : names ab
// block 2 : ordering C
> quit;

Auf Wiedersehen .

Libraries

also all libraries are installed with development headers etc.

m: s $SAGE.ROOT/local/include /NTL/GF2x
/home/malb/SAGE/local /include /NTL/GF2E.h
/home/malb/SAGE/local /include /NTL/GF2EXFactoring.h
/home/malb/SAGE/local /include /NTL/GF2EX.h
/home/malb/SAGE/local /include /NTL/GF2.h

test.cpp:
#include <NTL/GF2.h>

using namespace NTL;
using namespace std;

int main(int argc, char sxargv) {
GF2 n;
conv(n,1);
cout << n << endl;
exit (0);

m$ source $SAGE-.ROOT/local/bin/sage—env

m$ g++ —I$SAGE_.ROOT/local /include —L$SAGE.ROOT/local/lib —Intl —Igmp test.cpp
m$./a.out

1

Outline

A Unified Interface

Why Use Many Math Packages?

B coverage varies
GAP group theory
Singular (non-)commutative algebra
Pari number theory
Maxima calculus

m quality/speed of implementations varies (e.g. Pari/NTL/Magma)
m verify results with independent implementations: even Magma has
bugs

How Many Languages Can You Handle?

GP/Pari

? a=1; for(X=1,100,if (isprime(X),a+=1,a+=2)); a
%l = 176

SINGULAR

> int a=1; int i = 1;

> for(i=1; i<=100; i=i+1) { if(prime(i) = i){ a=a+1; } else {a=a+2;} };
> a;

176

Magma

> a:=1;

> for i in [1..100] do if IsPrime(i) then a:=a+1; else a:=a+2; end if; end for;
> a;

176

GAP

gap> a = 1;
gap> for i in [1..100] do if IsPrime(i) then a:=a+1; else a:=a+2; fi; od; a;
176

Maxima

(%i1) a: 1;

(%ol) 1

(%i2) for i:1 thru 100 do if primep(i) then a: a + 1 else a: a + 2;
(%02) done

(%i3)
(%03) 176

Languages of Mathematics Packages

m every package has its own

m languages often a by-product and ad-hoc-ish, developer want to do
math not design a programming language

m thus interpreter sometimes really bad and slow

m languages often lack fundamental building blocks: sets, hashtables,
object orientation, memory management, inheritance, modularisation

m lack of debugging tools, editor support, references and general
purpose libraries (1/0, networking, serialisation)

m ...it's a pain!

So Use a General Purpose Language: Python

http://www.python.org and http://www.cython.org

@ python & @gthon

m easy for you to define your own data types and methods on it
(bitstreams, ciphers, rings, whatever).

m very clean language that results in easy to read code.

m easy to learn: e.g., “Dive into Python”
http://www.diveintopython.org/

m a huge number of libraries: statistics, networking, databases,
bioinformatic, physics, video games, 3d graphics, numerical
computation (scipy), and serious “pure” mathematics (via Sage)

m easy to use existing C/C++ libraries from Python.

m Cython — an almost Python compiler.

http://www.python.org
http://www.cython.org
http://www.diveintopython.org/

Stupid Example Revisited

Instead of learning n special purpose languages learn 1 general purpose
language to control all systems.

sage: a= gap(1) # or gp(1), magma(1l), singular(1)

sage: for i in range(100):
if gap(i+1).IsPrime():
at+=1
else:
at+=2
sage: a

176

This code won't break any speed records, because of the way these
interfaces work

How the Interfaces Work

Use buffered psuedo-tty, files, and Python objects that wrap native
objects. This makes it possible to wrap all math software that has a
command line interface using similar code.

sage: a = gap('1l")

This fires up one copy of GAP and sends the line *$sagel = 1’ to it

sage: !ps ax |grep gap

6995 pts/4 Ss+ 0:00 .../ local/lib/gap—4.4.10/bin /.../gap —m 24m —| ...
sage: type(a)

<class 'sage.interfaces.gap.GapElement >

sage: a, a.name()

(1, '$sagel’)

sage: a.lsPrime()

false

William Stein on [sage-support]:

“Using pseudo-tty’s is slow and should be avoided when other options are
available. It allows us to very quickly get lots of functionality, whilst not
reinventing the wheel. But it's not a panacea.”

A More Realistic Example

sage: P.<x,y> = PolynomialRing(GF(2))
sage: | = Ideal ([xxy + x + 1, x*xy + y])
sage: |.groebner_basis? # output reformated slightly for this slide

Return a Groebner basis of this ideal.

INPUT :
algorithm — determines the algorithm to use, available are:
* None — autoselect (default)
% 'singular:groebner’ — Singulars groebner command
'singular:std’ — Singulars std command
% 'singular:stdhilb’ — Singulars stdhib command
* 'singular:stdfglm’ — Singulars stdfglm command
* 'singular:slimgb’ — Singulars slimgb command
* 'libsingular:std’ — libSINGULARs std command
* '"libsingular:slimgb’ — libSINGULARs slimgb command
% 'toy:buchberger’ — SAGEs toy/educational buchberger w.o. strategy
* 'toy:buchberger2’ — SAGEs toy/educational buchberger with strategy
'macaulay2:gb’ (if available) — Macaulay2s gb command
'magma: GroebnerBasis’ (if available) — MAGMAs Groebnerbasis command
EXAMPLES :

Consider Katsura—3 over QQ with term ordering 'degrevlex’

Ways to Work with Singular

m You can construct Singular elements directly:
sage: r = singular.ring (0, (a,b)", 'dp")

sage: i = singular('2xa"343%axb+1,b"2 + a"2', 'ideal')
sage: i.std().vdim() # note we never wrote a method 'std' or 'vdim’

m Some Sage objects use Singular behind the scenes:
sage: P.<a,b> = PolynomialRing(QQ, order="degrevlex ")
sage: | = ldeal([2%a"343%axb+1, b"2 4+ a"2]) # calls Singular

sage: gb = |.groebner.basis ()
sage: lIdeal(gb).vector-space-dimension () # calls Singular
6

m low-level arithmetic implemented via libSingular:

sage: P.<a,b> = PolynomialRing(GF(127),order="degreviex ')

sage: an, bn = a._magma_().name(),b._magma.().name()
sage: t = magma.cputime()
sage: s = magma.eval("for i in [1..1076] do z:= %s*%s; end for"%(an,bn))

sage: magma.cputime(t)

0.73999999999999999

sage: time for i in xrange(10°6): z = axb

CPU times: user 0.60 s, sys: 0.05 s, total: 0.65 s

Interfaces to Special Purpose Programs

fpLLL

mwrank

by Damien Stehle for floating point LLL-reduction:

m: time ./generate u 200 1000 | ./fplll —r 200 —c 200 > /dev/null
real 0m4.336s

you can also use if from Sage:

sage: from sage.libs. fplll.fplll import gen_uniform

sage: A = gen_uniform (200,200,1000)

sage: time B.LLL()

CPU time: 4.11 s, Wall time: 4.16 s

sage: AM = A._magma_()

sage: t = magma.cputime(); BM = AM.LLL (); magma.cputime(t)
10.48

by John Cremona for elliptic curves over Q

sage: E = EllipticCurve ([1, —1, 1, —29372, —1932937])
sage: E.conductor(algorithm="mwrank")

3006

sage: Em = E.mwrank_curve ()

sage: Em.conductor()

3006

Web-based Notebook Interface

public notebooks available at http://www.sagenb.org

(SAGE) - Iceweasel

Bo Edt Vev Hgoy Bookmris oo Hep oeious +3
Q-0 @) A [&rimccanonssoonansamnior @O[a) [G-fs= Q) .
SDE. Notebook admin | Toggle | Home | Published | Log | Help | sign out m gra ph |Ca| user
The Linear Combination of Poly - T e Nl interface

Fie.. x| [eetion.. 7] [Datn.. i[soge x| Berunt

P.<x y> = Dulynumhammg(oq order='lex'}

[rox [revmonsT srore] poov=r]

m 2d plotting
m LaTeX

show(f1)

show(12) typesetting

Ql=] B remote access

- m worksheet
sharing

g

Leading power products w.r.t. an ordering of the power products (e.g. lexicographically, by u WOI’kSh eet
total degree or ...) There are infinitely many "admissable" orderings for Grébner bases theory
that can be characterized by two easy axioms. u p' d own |Oa d

m security (?)

oure [BIEE] @ [0

http://www.sagenb.org

GUI to Many Mathematics Packages

Fle Edit Mew Hgtory Bookmarks Toos Hep celicous +3
Q-O-9 7 | mipsinscainestoa00nemsadming! & O8] [[Clv[sess: &)
SDE. Notebook admin | Toggle | Home | Published |Log |Help |Sign ot
‘Int(zrfdacis‘ e e save | Save s close | _Discard ehanges
st editad on October 28, 2007 11,56 AM by sdmin

Fle.. | [Acton.. <] [Data.. =] [spe v

for(i=1,100, if(isprime(i), a+=l, a+=2));
a

176

Ssingular

inta=1;int i=1;

for(i=l; i<=100; i=i+l) { if(prime(i) == i) { a=a+l; } else { a=a+2; } }:
a;

176
snagma
a:=l;
for 1 in [1..100] do 1f IsPrime(i) then a:=a+l; else a:=a+2; end if; end for;
a;

176

%gap
a =

for 1 in [1..100] do if IsPrime(i) then a:=a+l; else a:=a+2; fi; od
a;

= [@

Outline

(New) Functionality

Example: Number of Partitions

sage: list(partitions(5))

[(1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 2, 2), (1, 1, 3),
(2.3), (1. 4). (5,)]

sage: number_of_partitions(5)

7

The beginning of the Mathematica tour has an assertion that:
“Mathematica computes the number of partitions of 1 billion in a
few seconds — a frontier number theory calculation”.

Sage (and Magma!) would take years to do that, so William Stein
posted on [sage-devel]; 72 posts among 15 people followed.

Now — thanks to Jon Bobber (U Mich grad student) Sage is faster
at this than any other program in the world on some architectures:

sage: time len(str(number_of_partitions(10°9)))
CPU times: user 33.32 s, sys: 0.08 s, total: 33.40 s
35219

Mathematica 5.2.1 takes 61.34 seconds.

In[1] := Timing[N[Log[PartitionsP [10°9]]]]

Out[1]= {61.3417 Second, 81092.9}

More Examples

list is result of a thread on [sage-devel]

free re-implementation of Nauty's graph isomorphism algorithm

certain models of arithmetic with p-adic numbers & polynomial rings
over them

task farming distributed computing (DSage)

modular symbols, modular forms, modular abelian varieties
computing with Dirichlet characters

Eisenstein series enumeration

arithmetic on jacobians of curves

quaternion algebras

p-adic L-functions of elliptic curves in a lot of generality, with
proven precision

fast computation of p-adic heights on elliptic curves
Coleman integration
Duursma zeta functions of linear codes

permanents of rectangular matrices over general rings

Outline

Roundup/Demo

Things Sage Can Do |

see http://www.sagemath.org:9001/cando

Commutative Algebra commutative algebra over [Fy» using Singular,
basic arithmetic over arbitrary rings, very fast basic
arithmetic over [F,», boolean polynomial rings (soon via
PolyBoRi), quotient rings over multivariate polynomial
rings, global & local orderings

Linear Algebra dense linear algebra over F, using LinBox, M4RI (for Fy),
and custom code, and sparse linear algebra over Fg via
custom code and LinBox (e.g. sparse solver). Numerical
dense linear algebra via Numpy and GSL. Matrix structure
visualisation.

Group Theory permutations groups, abelian groups, matrix groups (in
particular, classical groups over finite fields)

Combinatorics many basic functions, many of Sloane’s functions are
implemented.

http://www.sagemath.org:9001/cando

Things Sage Can Do Il

see http://www.sagemath.org:9001/cando

Graph Theory construction, directed graphs, labeled graphs. 2d and 3d
plotting of graphs using an optimized implementation of
the spring layout algorithm. constructors for all standard
families of graphs, graph isomorphism testing,
automorphism group computation

Number Theory compute Mordell-Weil groups of (many) elliptic curves
using both invariants and algebraic 2-descents, a wide
range of number theoretic functions, optimized modern
quadratic sieve for factoring integers n = p - g, optimized
implementation of the elliptic curve factorization method,
modular symbols for general weight, character, Gammal,
and GammaH, modular forms for general weight > 2

http://www.sagemath.org:9001/cando

Things Sage Can Do Il

see http://www.sagemath.org:9001/cando

Elliptic Curves all standard invariants of elliptic curves over Q, division
polynomials, etc. , compute the number of points on an
elliptic curve modulo p for all primes p less than a million
in seconds, optimized implementation of the
Schoof-Elkies-Atkin point counting algorithm for counting
points modulo p when p is large, complex and p-adic
L-functions of elliptic curves. Can compute p-adic heights
and regulators for p < 100000 in a reasonable amount of
time.

p-adic Numbers extensive support for arithmetic with a range of different
models of p-adic arithmetic.

Plotting very complete 2d plotting functionality similar to
Mathematica's, limited 3d plotting via an included ray
tracer.

http://www.sagemath.org:9001/cando

Cryptography |

Sage ships with PyCrypto:

sage:
sage:
sage:
sage:
sage:

from Crypto.Cipher import AES

crypt = AES.new(' abcdefghijklmnop ', AES.MODE-ECB)
txt = 'eab523a664dabaa4476d31226ale3bab0’

c = crypt.encrypt(txt)

c

"'w\x81\xe3\xdd\x066\x9eY\xc7\xce "O\x9e\ xfb\ xef\xfa\xb5\x8a\xac
\x7f\xca\x9fl{\xe5\xfd6\x80\xe3\x81%\xb9

Sage also has some cryptography educational code:

sage:
sage:

S = AlphabeticStrings ()
E = VigenereCryptosystem (S,14); E

Vigenere cryptosystem on Free alphabetic string monoid on A-Z \
of period 14

sage:

K = S('ABCDEFGHIJKLMN"); K

ABCDEFGHIJKLMN

sage:

e = E(K); e

ABCDEFGHIJKLMN

sage:

(S (" THECATINTHEHAT"))

TIGFEYOUBQOSMG

Cryptography Il

Sage provides equation systems for algebraic cryptanalysis:

sage: sr = mq.SR(2,1,1,4, gf2=True)

sage: F,s = sr.polynomial_system()
sage: s
{k003: k002: 1, k001: 1, k000: 1}

1,
sage: gb = F.groebner_basis ()
sage: V = ldeal(gb).variety (); V[0]

Vl‘(‘OOl: 1, k000: 1, k003: 1, k002: 1,

sage: sr = mq.SR(10,4,4,8, star=True, aes_.mode=True)

sage: F,s = sr.polynomial_system (); F

Polynomial System with 8576 Polynomials in 4288 Variables

sage: F.groebner_basis() # if this terminates => AES broken :—)

Shortcomings of Sage

There are currently probably less than a thousand users of Sage
(there are millions of Python users).

Sage is not robust enough.

Sage is sometimes much slower than Magma, Mathematica, etc.
(and sometimes faster, to be fair).

Sage is new — there are too many bugs.
However, if something is wrong you can fix it, and the Sage mailing lists

and irc channel are extremely active and helpful (over 1000 messages a
month!).

Advantages of Sage

The Final Advertisment Slide

Sage is the only serious general purpose mathematics software that
uses a mainstream programing language (Python).

Sage is the only program that allows you to use Maple,
Mathematica, Magma, etc., all together.

Sage has more functionality out of the box than any other open
source mathematics software.

A Sage has a huge, active, and well rounded developer community:
[sage-devel] mailing list has over 200 subscribers, working very hard
on everything from highly optimized arithmetic, to high school
education, to computing modular forms.

Sage development is done in the open. You can read about why all
decision are made, have input into decisions, see a list of every
change anybody has made, etc. This is totally different than the
situation with Magma and Mathematica.

Live Demo

|w.
Vl
X
c
]
=
—

(o
n
c

.0
)
n
(D]
=}

o

	Introduction
	A Free Distribution
	A Unified Interface
	(New) Functionality
	Roundup/Demo

