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The Blockcipher Present

Present [4] was proposed by Bogdanov et al. at CHES 2007 as an
ultra-lightweight block cipher, suitable for RFIDs and similar devices.

Where the S-Box is defined as

S = [12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2]

and the permutation layer P as 4 · j + i → 16 · i + j with (0 ≤ j < 16,
0 ≤ i < 4).



Present-80 Key Schedule

The user-supplied key is stored in key register K and represented as

K = k79k78 . . . k0.

At round i the round key Ki consists of the 64 most significant bits of K .

Ki = ki,63ki,62 . . . ki,0 = k79k78 . . . k16.

Afterwards, the key register is updated:

1 [k79k78 . . . k1k0] = [k18k17 . . . k20k19]

2 [k79k78k77k76] = S[k79k78k77k76]

3 [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter

The key schedule for 128-bit keys is quite similar.
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Differential Cryptanalysis I

Pr(δi ) = pi −→ Pr(∆) =
∏

pi



Differential Cryptanalysis II

Key Recovery:

backward key guessing to recover subkey bits of last rounds not
covered by characteristic

right pairs suggest correct and wrong key bits

wrong pairs suggest random key bits

filter functions used to remove wrong pairs

candidate key arrays to count suggestions and observe peak



Differential Cryptanalysis III

Properties of the attack:

One of the most successful attack techniques against block ciphers,
hash functions, etc. [2].

Usually requires huge quantities of plaintext–ciphertext pairs
(> 2−p).

Attack is well understood, so modern block ciphers usually do not
have their security affected.

Differential Cryptanalysis of 16-round DES [3]

distinguishes right pairs,

uses outer round active S-Boxes to recover key bits and

does not rely on candidate key arrays.



Difference Distribution Matrix for Present
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14-Round Characteristic for Present [12]

Rounds Differences Pr Rounds Difference Pr

I x2 = 7,x14 = 7 1

R1 S x2 = 1,x14 = 1 2−4 R8 S x8 = 9,x10 = 9 2−4

R1 P x0 = 4,x3 = 4 1 R8 P x2 = 5,x14 = 5 1

R2 S x0 = 5,x3 = 5 2−4 R9 S x2 = 1,x14 = 1 2−6

R2 P x0 = 9,x8 = 9 1 R9 P x0 = 4,x3 = 4 1

R3 S x0 = 4,x8 = 4 2−4 R10 S x0 = 5,x3 = 5 2−4

R3 P x8 = 1,x10 = 1 1 R10 P x0 = 9,x8 = 9 1

R4 S x8 = 9,x10 = 9 2−4 R11 S x0 = 4, x8 = 4 2−4

R4 P x2 = 5,x14 = 5 1 R11 P x8 = 1, x10 = 4 1

R5 S x2 = 1,x14 = 1 2−6 R12 S x8 = 9, x10 = 9 2−4

R5 P x0 = 4,x3 = 4 1 R12 P x2 = 5, x14 = 5 1

R6 S x0 = 5,x3 = 5 2−4 R13 S x2 = 1, x14 = 1 2−6

R6 P x0 = 9,x8 = 9 1 R13 P x0 = 4, x3 = 4 1

R7 S x0 = 4,x8 = 4 2−4 R14 S x0 = 5, x3 = 5 2−4

R7 P x8 = 1,x10 = 1 1 R14 P x0 = 9, x8 = 9 1

Table: 14-round differential characteristic for Present with probability 2−62



Two Round Filter Function for Present-80-16 [12]

Two S-Boxes are active in
round 15.

Each has six possible output
differences.

We have 36 possible output
differences for round 15.

At most 6 S-Boxes are active in
round 16.

We can discard ∼ 250 out of
262 pairs.



Algebraic Cryptanalysis I

→
y2x3 + y3x3 + x1x3 + x2x3 + x3,
y0x3 + y3x3 + x1x3 + x2x3 + . . . ,
x1x2 + y3 + x0 + x1 + x3,
x0x2 + y3x3 + x1x3 + x2x3 + . . .
y3x2+y3x3+x1x3+y0+y1+y3 . . .
y0x2 + y1x2 + y1x3 + y3x3 + . . .
x0x1 + y3x3 + x1x3 + x2x3 + . . .

y3x1 + y3x3 + x2x3 + . . . , . . .

We call Xi,j and Yi,j the input resp. output variable for the j-th bit of the
i-th S-Box application (i.e. round).

For Present-80-31 we would have a system of 8140 variables in 34742
equations if we consider two plaintext-ciphertext pairs.



Algebraic Cryptanalysis II

Properties of the attack:

Requires very few plaintext–ciphertext pairs (∼ 1).

No attack against “industrial strength” cipher faster than other
techniques known.

Algorithms: Bucherberger algorithm [7], F4 [9], F5 [10],
Raddum-Semaev [11], SAT-solvers [1], XL family [6]

Often statistical components: SAT-solvers, key bit guessing, AES
inversion equations xy + 1 [5].



Multiple P − C Pairs [8] I

Given two equation systems F ′ and F ” for two plaintext-ciphertext
pairs (P ′,C ′) and (P”,C ”) under same encryption key K .

We can combine these equation systems to form a system
F = F ′ ∪ F ”.

While F ′ and F ” do not share most of the state variables
X ′,X ”,Y ′,Y ” but they share the key K and key schedule variables
Ki .

Thus by considering two plaintext–ciphertext pairs the cryptanalyst
gathers twice as many equations, involving however many new
variables.



Multiple P − C Pairs [8] II
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Attack-A I



Attack-A II

Each one-round difference gives rise to equations relating the input
and output pairs for active S-Boxes.

We have that the expressions

X ′j,k + X ”j,k = ∆Xj,k → ∆Yj,k = Y ′j,k + Y ”j,k ,

where ∆Xj,k ,∆Yj,kare known values predicted by the characteristic,
are valid with some non-negligible probability pj .

For non-active S-Boxes we have the relations

X ′j,k + X ”j,k = 0 = Y ′j,k + Y ”j,k

also valid with a non-negligible probability.

These are 2n linear equations per round we can add to our equation
system F . The resulting system F is expected to be easier to solve but
we need to solve 1/p such systems.



Attack-B I

Restrict the first round bits to an active S-Box and assume we have a
right pair. Also let the S-Box be representable by the vectorial Boolean
function

S(Xi ) =
f0(Xi,0, . . . ,Xi,n−1)
. . .
fn−1(Xi,0, . . . ,Xi,n−1)

.

If P ′ − C ′ and P”− C ” is a right
pair, we have

S(P ′ ⊕ K0) = S(X ′1) = Y ′1
S(P”⊕ K0) = S(X1”) = Y1”

Y ′1 ⊕ Y1” = ∆Y1

→ S(P ′1⊕K0)⊕S(P1”⊕K0) = ∆Y1



Attack-B II

We can use this small equation system Fs to recover bits of information
about the subkey. Specifically:

Lemma

Given a differential characteristic ∆ with a first round active S-Box with
a difference that is true with probability 2−b, then by considering Fs we
can recover b bits of information about the key from this S-Box.

In the case of Present we can learn 4-bit of information per
characteristic ∆.



Attack-B III

Experimental Observation

For some ciphers Attack-A can be used to distinguish right pairs and
thus enables this attack.

Attack-B proceeds by measuring the time t it maximally takes to find
that the system is inconsistent and assume we have a right pair if this
time t elapsed without a contradiction.



Attack-B IV

Nr Ks r p Singular PolyBoRi

4 80 4 2−16 11.92-12.16 0.72 - 0.81
4 80 3 2−12 106.55-118.15 6.18 - 7.10
4 80 2 2−8 119.24-128.49 5.94 - 13.30
4 80 1 2−4 137.84-144.37 11.83- 33.47

16 80 14 2−62 N/A 43.42-64.11
16 128 14 2−62 N/A 45.59-65.03
16 80 13 2−58 N/A 80.35-262.73
16 128 13 2−58 N/A 81.06-320.53
16 80 12 2−52 N/A >4 hours

17 80 14 2−62 12,317.49-13,201.99 55.51 - 221.77
17 128 14 2−62 12,031.97-13,631.52 94.19 - 172.46
17 80 13 2−58 N/A >4 hours

Table: Times in seconds for Attack-B

Times obtained on William Stein’s sage.math.washington.edu
computer purchased under NSF Grant No. 0555776.

sage.math.washington.edu


Why?

262.73 s

33.47 s
≈ 7.85



Attack-C I



Attack-C II

The algebraic computation is essentially equivalent to solving a related
cipher of 2(Nr − r) rounds (from C ′ to C ” via the predicted difference
δr ) with a symmetric key schedule, using an algebraic meet-in-the-middle
attack.



Attack-C III

In a Nutshell

Attack-C is an algebraic filter.



Attack-C IV

Nr r p #trials Ks t for PolyBoRi Ks t for PolyBoRi

4 4 2−16 50 80 0.05− 0.06 128 N/A
4 3 2−12 50 80 0.88− 1.00 128 N/A
4 2 2−8 50 80 2.16− 5.07 128 N/A
4 1 2−4 50 80 8.10− 18.30 128 N/A

16 14 2−62 100 80 2.38− 5.99 128 2.38− 5.15
16 13 2−58 100 80 8.69− 19.36 128 9.58− 18.64
17 14 2−62 100 80 9.03− 16.93 128 8.36− 17.53

Table: Times in seconds for Attack-C
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Present-80-16 I

4 bits:

Filter: (1± ε) · 262 ciphertext checks

Algebraic Filter: (1± ε) · 211.93 · 6 · 1.8 · 109 ≈ 246 cpu cycles

Full Key Recovery:

Characteristics: 6 characteristics from [13]

Filter: 6 · (1± ε) · 262 ciphertext checks

Algebraic Filter: 6 · (1± ε) · 246 cpu cycles

Guess: 80− 18 = 62 bits



Present-128-18

Consider the input difference for round 15 and iterate over all possible
output differences. For the exampel difference we have 36 possible
output differences for round 15.

Full Key Recovery:

Algebraic Filter: 6 · (1± ε) · 36 · 262 · 18 · 1.8 · 109 ≈ 2102 cpu cycles

Guessing: 128− 18 = 110 bits



Experimental Results Summary

Attack Nr Ks r #pairs time #bits Ks −#bits
Wang 16 80 14 263 265 MA 57 23

Attack-C 16 80 14 262 262 MA 4 76
Attack-C 16 80 14 6 · 262 262 encr. 18 62
Attack-C 18 128 14 262 2102 cycles 4 124
Attack-C 18 128 14 6 · 262 2110 encr. 128 110
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Discussion

Properties:

One right pair is sufficient to learn some information about the key.

No requirement for candidate key counter.

Silimar to DC attack on full DES [3] but in theory applicable to any
block cipher.

Possible improvements are

better algebraic representations,

better algorithms (e.g. SAT-solvers) and

better exploitation of right pair.



Present-128-(18+i)?

Speculation

It might be possible to find contradictions using Attack-C in
� 2128−62 = 266 cpu cycles for Present-128-20 “a situation without
precedent”[4].



Conclusion

We presented a new approach which uses algebraic techniques in
differential cryptanalysis.

Specifically, we show how to invest more time in the last rounds not
covered by a differential.

To illustrate the viability of the attack we improved the best known
attack against Present-128 by two rounds using the same
characteristics.

Note

This attack has no implication for the security of Present!



Thank you!
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