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This Talk

This talk is not about F5 but

about Matrix F5

and the basic ideas behind F5.

Matrix F5 is not published in English, but

several French PhD theses and
several sets of slides by Jean-Charles Faugère

exist describing it (in brief).

The algorithm was explained to us by Ludovic Perret at Sage
Days 12.

John Perry and Christian Eder helped us to refine some points
and to understand some relations to F5.
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Notation

K is a field;

P = K[x0, . . . , xn−1] is a polynomial ring;

I is an ideal ⊂ P;

J is the homogenisation of I .

We restrict our attention to homogeneous polynomials in this talk.
This make everything much easier.

We note that while F5 needs homogeneous inputs (or some sugar
strategy) XL doesn’t require homogeneous inputs.
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Lazard’s Theorem [Laz83] I

Let f0, . . . fm−1 be homogeneous polynomials in P. We can

construct the Macaulay matrix Macaulay
D,m . Write down horizontally

all the degree D monomials from smallest to largest. Multiply each
fi by all monomials of degree D − di where di = deg(fi ).

Macaulay
D,m =

monomials of degree D
(t0, f0)
(t1, f0)

...
(u0, f1)

...
(vs , fm−1)
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Lazard’s Theorem [Laz83] II

Theorem

For D “sufficiently” large Gaussian elimination on all Macaulay
d ,m for

1 ≤ d ≤ D computes a Gröbner basis.
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Lazard’s Theorem [Laz83] III

To see why this is true recall the definition of S-polynomials

Definition (S-Polynomial)

Let f , g ∈ K[x1, . . . , xn] be polynomials 6= 0 and define
xγ = LCM(LM(f ),LM(g)). Then the S-polynomial of f and g
is defined as

S(f , g) =
xγ

LT(f )
· f − xγ

LT(g)
· g .

and multivariate polynomial division.
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Lazard’s Theorem [Laz83] IV

. . . we have got everything in these matrices we need.

the S-polynomial for S(f , g) with xγ = LCM(LM(f ), LM(g))

is represented in Macaulay
d ,m for d = deg(xγ) as the rows

matching xγ

LM(f ) · f and xγ

LM(g) · g ;

all multiplies of fi of degree d are in Macaulay
d ,m ;

. . . Gaussian elimination takes care of the rest
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Rediscovery: XL [CKPS00]

def g a u s s e l i m i n a t i o n ( F ) :
A, v = C o e f f i c i e n t M a t r i x ( F )
E = EchelonForm (A)
r e t u r n E∗v

def x l (F , D) :
M = ” a l l monomials o f d e g r e e D”
F t i l d e = [ ]
f o r f i n F :

f o r m i n M:
F t i l d e . append (m∗ f )

F t i l d e = g a u s s e l i m i n a t i o n ( F t i l d e )
r e t u r n F t i l d e

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Matrix F5 11/39



Introduction Preliminaries From XL Matrix F5 Notes on Matrix F5 References

XL & Gröbner Bases

def x l g b (F , D) :
b a s i s = [ ]
f o r d i n r a n g e (D+1):

b a s i s . e x t e n d ( x l (F , d ) )
r e t u r n b a s i s

J =〈x0 + x1 + x2 + x3,

x0x1 + x1x2 + x0x3 + x2x3,

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3,

x0x1x2x3 − h4〉

sage : P.<x0 , x1 , x2 , x3> = P o l y n o m i a l R i n g (GF( 3 2 0 0 3 ) )
sage : J = sage . r i n g s . i d e a l . C y c l i c (P ) . homogenize ( )
sage : gb1 = x l g b ( J , 3 ) . r e d u c e d b a s i s ( )
sage : gb2 = J . g r o e b n e r b a s i s ( )
sage : gb1 == gb2
True

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Matrix F5 12/39



Introduction Preliminaries From XL Matrix F5 Notes on Matrix F5 References

XSL [CP02a] I

“In order to solve these equations, we are going to
introduce an improved version of the XL approach from
[CKPS00], that takes advantage of their specific
structure and sparsity. We call it ‘the XSL algorithm’
where XSL stands for: ‘eXtended Sparse Linearization’ or
‘multiply(X) by Selected monomials and Linearize’. In
the XL algorithm, we would multiply each of the
equations by all possible monomials of some degree
D − 2, see [CKPS00]. Instead we will only multiply
them by carefully selected monomials. It seems that
the best thing to do, is to use products of monomials,
that already appear in other equations.” – [CP02a]
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XSL [CP02a] II

“Therefore, no matter how large the parameter P
[number of monomials, malb] is, there is no hope that
the XSL algorithm (as described in [CP02a]) can solve
the initial set of equations.” – [CL05]

“Furthermore it should be clear that there seems to be
no benefit in running this method [sXL, malb] instead of
simply applying XL or XL2 to the simplified AES system
of 8000 equations over 1600 variables described in
[CP02b].” – [CL05]

. . . so is there a clever way to select the monomials?
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XL + Critical Pairs: F4 [Fau99]

You Heard About This Last Week

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Matrix F5 15/39
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Reconsider XLGB

def x l g b (F , D) :
b a s i s = [ ]
f o r d i n r a n g e (D+1):

M = ” a l l monomials o f d e g r e e d”
F t i l d e = [ ]
f o r f i n F :

f o r m i n M:
F t i l d e . append (m∗ f )

F t i l d e = g a u s s e l i m i n a t i o n ( F t i l d e )
b a s i s . e x t e n d ( F t i l d e )

r e t u r n b a s i s

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Matrix F5 17/39
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Example

J =〈x0 + x1 + x2 + x3,

x0x1 + x1x2 + x0x3 + x2x3,

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3,

x0x1x2x3 − h4〉

over F32003[x0, x1, x2, x3, h] with degrevlex.

d XLGB1

1
2 4× 11
3 20× 34
4 60× 69
5 140× 125

6 280× 209

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Matrix F5 18/39
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F̃ vs. F I

Observation

If for the degree d the polynomial mj · fk reduces to zero then so
will ximj · fk for degree d + 1 and all 0 ≤ i < n.
So instead of starting from scratch in step d + 1 from the fi s reuse
the linear dependencies already discovered for degree d .

. . . this is the first criterion used by F5: “Rewritten Criterion”
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F̃ vs. F II

def x l g b 2 (F , D) :
b a s i s = F
f o r d i n r a n g e ( 1 ,D+1):

F t i l d e = [ ]
f o r f i n F :

f o r x i n v a r i a b l e s :
F t i l d e . append ( x∗ f )

F t i l d e = g a u s s e l i m i n a t i o n ( F t i l d e )
F = [ f f o r f i n F t i l d e i f f != 0 ]
b a s i s . e x t e n d ( F )

r e t u r n b a s i s
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F̃ vs. F III

d XLGB1 XLGB2

1
2 4× 11
3 20× 34 20× 32
4 60× 69 100× 69
5 140× 125 270× 125

6 280× 209 550× 209
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F̃ vs. F IV

That avoids one problem but introduces another: When the
original code multiplied by e.g. xy only we will multiply by xy and
yx due to the incremental strategy. We need to keep track by what
monomials we multiplied already.

Definition (Signature)

A Signature is a tuple (m, fi ) attached to a row r of Macaulay
d ,m ,

encoding that this row is the result of the multiplication m · fi .
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F̃ vs. F V

def x l g b 3 (F , D) :
f o r f i n F :

s e t s i g n a t u r e ( ( 1 , f ) , f )
b a s i s = F
f o r d i n r a n g e ( 1 ,D+1):

F t i l d e = [ ]
f o r h i n F :

m, f i = g e t s i g n a t u r e ( h )
f o r x i n v a r i a b l e s :

i f x < max ( v a r i a b l e s (m) ) :
cont inue

F t i l d e . append ( x∗h )
s e t s i g n a t u r e ( ( x∗m, f i ) , x∗h )

F t i l d e = g a u s s e l i m i n a t i o n ( F t i l d e )
F = [ h f o r h i n F t i l d e i f h !=0]
b a s i s . e x t e n d ( F )

r e t u r n b a s i s
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F̃ vs. F VI

d XLGB1 XLGB2 XLGB3

1
2 4× 11
3 20× 34 20× 32 20× 32
4 60× 69 100× 69 60× 69
5 140× 125 270× 125 121× 118

6 280× 209 550× 209 201× 171
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Trivial Syzygys I

A syzygy for F = (f0, . . . , fm−1) is a vector G = (g0, . . . , gm−1)
such that

m−1∑
i=0

gi fi = 0.

We have that gi = fj , gj = −fi , gk = 0 for k 6= i , j is a trivial
syzygy for F because

fi fj − fj fi = 0.

We want to avoid all reductions to zero caused by these trivial
relations.
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Trivial Syzygys II

Consider f0, f1, f2 as an example. A combination of the trivial
relations fi fj = fj fi can always be written as

u(f1f2 − f2f1) + v(f0f2 − f2f0) + w(f1f0 − f0f1)

where u, v , w are arbitrary polynomials. This can be rewritten

(uf1 + vf0)f2 − uf1f2 − vf0f2 + wf1f0 − wf0f1

Hence the (trivial) relations for f2 are in the ideal generated by f0

and f1. So it is easy to remove lines if we have compute the
Gröbner basis for 〈f0, f1〉 already.
So, we need to restrict elimination, such that we iteratively
compute the Gröbner basis for 〈f0〉, 〈f0, f1〉 etc.
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Trivial Syzygys III

A more general way of putting it:

Given signatures of a current basis, when considering
whether to generate a new polynomial — when
computing x · h —, if the normal way of computing the
signature — x ·m, fi — would give a signature that is
recognizably larger than it needs to be, then there is a
syzygy that allows one to rewrite the polynomial with a
smaller signature. Top-cancellations with smaller
signatures have already been considered, so the
polynomial can be discarded.

— John Perry
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Gaussian Top Elimination I

def g a u s s e l i m i n a t i o n 2 ( F ) :
A, v = C o e f f i c i e n t M a t r i x ( F )
f o r c i n r a n g e (A . n c o l s ( ) ) :

f o r r i n r a n g e ( 0 ,A . nrows ( ) ) :
i f A [ r , c ] != 0 : # i s p i v o t ?

i f any (A [ r , i ] f o r i i n x r a n g e ( c ) ) :
cont inue # t h i s wouldn ’ t happen n o r m a l l y

A . r e s c a l e r o w ( r , A [ r , c ]ˆ(−1)
f o r i i n r a n g e ( r +1,A . nrows ( ) ) :

i f A [ i , c ] != 0 : # c l e a r below ?
i f any (A [ i , k ] f o r k i n r a n g e ( c ) ) :

cont inue # t h i s wouldn ’ t happen n o r m a l l y
A . a d d m u l t i p l e o f r o w ( i , r , −A [ i , c ] , c )

break
r e tu rn (A∗v )
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Gaussian Top Elimination II

We perform normal Gaussian elimination, but:

we don’t compute the reduced row echelon form

we dont’ allow row swaps

we don’t allow lower rows to affect higher rows ever
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The F5 Criterion [Fau02]

To detect redudant rows we can apply the following theorem due
to Jean-Charles Faugère.

Theorem (F5 Criterion)

For all j < m, if we have a row labeled (t, fj) in the matrix

Macaulay
D−dm,m−1 that has leading term t ′ then the row (t ′, fm) in

Macaulay
D,m is redundant.

If ∃g ∈Macaulay
D−dm,m−1 with LM(g) = t′ −→ h 6∈Macaulay

D,m with
signature(h) = (t ′, fm).
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Matrix F5 I

def m a t r i x f 5 (F , D) :
f o r d i n r a n g e ( 1 ,D+1):

f o r f i i n F :
i f deg ( f i ) == d :

a d d s i g n a t u r e ( ( 1 , f i ) , f i )
M[ d ] . append ( f i ) ; cont inue

f o r f i n M[ d−1] with g e t s i g n a t u r e ( f ) == (∗ , f i ) :
m, f i = g e t s i g n a t u r e ( f )
f o r x i n v a r i a b l e s :

i f x < max ( mult . v a r i a b l e s ( ) ) :
cont inue

i f t i n M[ d−deg ( f i ) ] with LM( t ) == x∗m:
m2, f j = g e t s i g n a t u r e ( t )
i f j < i :

cont inue
a d d s i g n a t u r e ( ( x∗m, f i ) , x∗ f )

M[ d ] . append ( x∗ f )

M[ d ] = [ f f o r f i n g a u s s e l i m i n a t i o n 2 (M[ d ] ) i f f !=0]
r e t u r n [ f f o r d i n r a n g e (D+1) f o r f i n M[ d ] ]
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Matrix F5 II

d XLGB1 XLGB2 XLGB3 Matrix F5 F4

1
2 4× 11 4× 11 4× 11
3 20× 34 20× 32 20× 32 20× 34 15× 28
4 60× 69 100× 69 60× 69 54× 69 37× 44
5 140× 125 270× 125 121× 118 110× 125 31× 36

6 280× 209 550× 209 201× 171 194× 209
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F5 Critera & Buchberger’s Criteria

The F5 criteria are not generalisations of Buchberger’s criteria

For example consider

(1, f0) : f0 = xy + . . .

(1, f1) : f1 = z2 + . . .

(1, f2) : f2 = yz2 + . . .

Buchberger’s first criterion tells us that S(f0, f1) reduces to zero,
since GCD(z2, xy) = 1. However, in F5 we restrict elimination
such that this reduction (to zero) might not be performed.
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XL and Matrix F5

Matrix F5 removes only rows from Macaulay
d ,m if we know that

they are redundant.

XL thus cannot be more efficient than Matrix F5 because it
strictly does more useless work.

One can do to Matrix F5 matrices whatever one can do to XL
matrices, as long as ordering is preserved

MutantMatrixF5 ?
MatrixF5-Wiedemann [FJ03]
GeometryMatrixF5?

Martin Albrecht (M.R.Albrecht@rhul.ac.uk) — Matrix F5 35/39
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F4, F5 and Matrix F5

Even if we don’t reduce to zero, we still compute a lot of
useless information in Matrix F5: linear algebra & F5 criteria;

F4 is more efficient in many examples because it only
considers critical pairs: linear algebra & critical pairs;

F5 also only considers critical pairs, thus is much more
efficient than Matrix F5 for sparse examples: F5 criteria &
critical pairs;

→ F4-style F5: linear algebra & F5 criteria & critical pairs
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Questions?

Thank You!
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