Algebraic Techniques in Differential Cryptanalysis

Martin Albrecht and Carlos Cid

Information Security Group,
Royal Holloway, University of London

FSE 2009, Leuven, 24.02.2009

Outline

1 Introduction

2 Our Contribution

3 Experimental Resuls

4 Discussion

Outline

1 Introduction

2 Our Contribution

3 Experimental Resuls

4 Discussion

The Blockcipher Present

Present [2] was proposed by Bogdanov et al. at CHES 2007.

Where S is the 4-bit S -Box and P a permutation of bit positions.
We define reduced round variants and denote them by Present-Ks-Nr.

Prior DC on Reduced Round Versions

Differential characteristics and two round filter function available in [3].

Differential Cryptanalysis I

Differential Cryptanalysis II

Key Recovery:
■ backward key guessing to recover subkey bits of last rounds not covered by characteristic

- right pairs suggest correct and wrong key bits
- wrong pairs suggest random key bits
- filter functions used to remove wrong pairs
- candidate key arrays to count suggestions and observe peak

Differential Cryptanalysis of 16 -round DES [1]

- distinguishes right pairs,

■ uses outer round active S-Boxes to recover key bits and
■ does not rely on candidate key arrays.

Algebraic Cryptanalysis

$$
\begin{aligned}
& y_{2} x_{3}+y_{3} x_{3}+x_{1} x_{3}+x_{2} x_{3}+x_{3}, \\
& y_{0} x_{3}+y_{3} x_{3}+x_{1} x_{3}+x_{2} x_{3}+\ldots, \\
& x_{1} x_{2}+y_{3}+x_{0}+x_{1}+x_{3} \\
& x_{0} x_{2}+y_{3} x_{3}+x_{1} x_{3}+x_{2} x_{3}+\ldots \\
& y_{3} x_{2}+y_{3} x_{3}+x_{1} x_{3}+y_{0}+y_{1}+y_{3} \ldots \\
& y_{0} x_{2}+y_{1} x_{2}+y_{1} x_{3}+y_{3} x_{3}+\ldots \\
& x_{0} x_{1}+y_{3} x_{3}+x_{1} x_{3}+x_{2} x_{3}+\ldots \\
& y_{3} x_{1}+y_{3} x_{3}+x_{2} x_{3}+\ldots, \ldots
\end{aligned}
$$

We call $X_{i, j}$ and $Y_{i, j}$ the input resp. output variable for the j-th bit of the i-th S-Box application (i.e. round).

For example, for Present-80-31 we have a system of 4172 variables in 13642 equations.

Multiple $P-C$ Pairs I

- Given two equation systems F^{\prime} and $F^{\prime \prime}$ for two plaintext-ciphertext pairs $\left(P^{\prime}, C^{\prime}\right)$ and $\left(P^{\prime \prime}, C^{\prime \prime}\right)$ under same encryption key K.
- We can combine these equation systems to form a system $F=F^{\prime} \cup F^{\prime \prime}$.
- While F^{\prime} and $F^{\prime \prime}$ do not share most of the state variables $X^{\prime}, X^{\prime \prime}, Y^{\prime}, Y^{\prime \prime}$ but they share the key K and key schedule variables K_{i}.
- Thus by considering two plaintext-ciphertext pairs the cryptanalyst gathers twice as many equations, involving however many new variables.

Multiple P - C Pairs II

Outline

1 Introduction

2 Our Contribution

3 Experimental Resuls

4 Discussion

■ Each one-round difference gives rise to equations relating the input and output pairs for active S-Boxes.

- We have that the expressions

$$
X_{j, k}^{\prime}+X_{j, k}^{\prime \prime}=\Delta X_{j, k} \rightarrow \Delta Y_{j, k}=Y_{j, k}^{\prime}+Y_{j, k}^{\prime \prime}
$$

where $\Delta X_{j, k}, \Delta Y_{j, k}$ are known values predicted by the characteristic, are valid with some non-negligible probability $p_{j, k}$.

- For non-active S-Boxes we have the relations

$$
X_{j, k}^{\prime}+X_{j, k}^{\prime \prime}=0=Y_{j, k}^{\prime}+Y_{j, k}^{\prime \prime}
$$

also valid with a non-negligible probability.
These are $2 n$ linear equations per round we can add to our equation system F. The resulting system \bar{F} is expected to be easier to solve but we need to solve $1 / \operatorname{Pr}(\Delta)$ such systems.

Attack-B I

Restrict the first round bits to one active S-Box and assume we have a right pair. The S-Box can be written as a vectorial Boolean function

$$
\begin{aligned}
& f_{0}\left(X_{i, 0}, \ldots, X_{i, n-1}\right) \\
S\left(X_{i}\right)= & \ldots \\
& f_{n-1}\left(X_{i, 0}, \ldots, X_{i, n-1}\right)
\end{aligned}
$$

If P^{\prime}, C^{\prime} and $P^{\prime \prime}, C^{\prime \prime}$ is a right pair, we have
$\square S\left(P^{\prime} \oplus K_{0}\right)=S\left(X_{1}^{\prime}\right)=Y_{1}^{\prime}$
■ $S\left(P^{\prime \prime} \oplus K_{0}\right)=S\left(X_{1}{ }^{\prime \prime}\right)=Y_{1}{ }^{\prime \prime}$
■ $Y_{1}^{\prime} \oplus Y_{1}{ }^{\prime \prime}=\Delta Y_{1}$
$\rightarrow S\left(P_{1}^{\prime} \oplus K_{0}\right) \oplus S\left(P_{1}^{\prime \prime} \oplus K_{0}\right)=\Delta Y_{1}$

Attack-B II

We can use this small equation system F_{s} to recover bits of information about the subkey. Specifically:

Lemma

Given a differential characteristic Δ with a first round active S-Box with a difference that is true with probability 2^{-b}, then by considering F_{s} we can recover b bits of information about the key from this S-Box.

This is the algebraic equivalent of the well known subkey bit recovery from outer rounds in differential cryptanalysis.

In the case of Present and Wang's differentials we can learn 4-bit of information per characteristic Δ.

Attack-B III

Experimental Observation

For some ciphers Attack-A can be used to distinguish right pairs and thus enables this attack.

Attack-B proceeds by measuring the time t it maximally takes to find that the system is inconsistent and assume we have a right pair if this time t elapsed without a contradiction.

Alternatively, we may measure other features of a Gröbner basis computation (degree reached, matrix dimensions, ...).

Attack-B IV

N_{r}	K_{s}	r	$\operatorname{Pr}(\Delta)$	Singular	POLYBORI
4	80	3	2^{-12}	$106.55-118.15$	$6.18-7.10$
4	80	2	2^{-8}	$119.24-128.49$	$5.94-13.30$
4	80	1	2^{-4}	$137.84-144.37$	$11.83-33.47$
16	80	14	2^{-62}	$\mathrm{~N} / \mathrm{A}$	$43.42-64.11$
16	128	14	2^{-62}	$\mathrm{~N} / \mathrm{A}$	$45.59-65.03$
16	80	13	2^{-58}	$\mathrm{~N} / \mathrm{A}$	$80.35-262.73$
16	128	13	2^{-58}	$\mathrm{~N} / \mathrm{A}$	$81.06-320.53$
16	80	12	2^{-52}	$\mathrm{~N} / \mathrm{A}$	>4 hours
17	80	14	2^{-62}	$12,317.49-13,201.99$	$55.51-221.77$
17	128	14	2^{-62}	$12,031.97-13,631.52$	$94.19-172.46$
17	80	13	2^{-58}	$\mathrm{~N} / \mathrm{A}$	>4 hours

Table: Times in seconds for Attack-B
Times obtained on William Stein's sage.math.washington. edu computer purchased under NSF Grant No. 0555776.
221.77 s

≈ 6.626

 33.47 s

The algebraic computation is essentially equivalent to solving a related cipher of $2\left(N_{r}-r\right)$ rounds (from C^{\prime} to $C^{\prime \prime}$ via the predicted difference δ_{r}) with a symmetric key schedule, using an algebraic meet-in-the-middle attack.

Attack-C III

In a Nutshell
Attack-C is an algebraic filter.

Attack-C IV

N	K_{s}	r	$\operatorname{Pr}(\Delta)$	Singular	POLYBORI	MINISAT2
4	80	4	2^{-16}	$0.07-0.09$	$0.05-0.06$	$\mathrm{~N} / \mathrm{A}$
4	80	3	2^{-12}	$6.69-6.79$	$0.88-1.00$	$0.14-0.18$
4	80	2	2^{-8}	$28.68-29.04$	$2.16-5.07$	$0.32-0.82$
4	80	1	2^{-4}	$70.95-76.08$	$8.10-18.30$	$1.21-286.40$
16	80	14	2^{-62}	$123.82-132.47$	$2.38-5.99$	$\mathrm{~N} / \mathrm{A}$
16	128	14	2^{-62}	$\mathrm{~N} / \mathrm{A}$	$2.38-5.15$	$\mathrm{~N} / \mathrm{A}$
16	80	13	2^{-58}	$301.70-319.90$	$8.69-19.36$	$\mathrm{~N} / \mathrm{A}$
16	128	13	2^{-58}	$\mathrm{~N} / \mathrm{A}$	$9.58-18.64$	$\mathrm{~N} / \mathrm{A}$
16	80	12	2^{-52}	$\mathrm{~N} / \mathrm{A}$	>4 hours	N / A
17	80	14	2^{-62}	$318.53-341.84$	$9.03-16.93$	$0.70-58.96$
17	128	14	2^{-62}	$\mathrm{~N} / \mathrm{A}$	$8.36-17.53$	$0.52-8.87$
17	80	13	2^{-58}	$\mathrm{~N} / \mathrm{A}$	>4 hours	>4 hours

Table: Times in seconds for Attack-C

Outline

1 Introduction

2 Our Contribution

3 Experimental Resuls

4 Discussion

- We ran Attack-C against Present-80-6 and Present-80-7;
- the algorithm always suggested some key bits after the expected number of runs;
- the algorithm did return false positives (as expected);
- however, a simple majority vote over three experiments, always gave the correct answer.

4 bits:

- Filter: $\approx 2^{62}$ ciphertext checks
- Algebraic Filter: $\approx 2^{11.93} \cdot 6 \cdot 1.8 \cdot 10^{9} \approx 2^{46} \mathrm{CPU}$ cycles

Full Key Recovery:

- Characteristics: 6 characteristics from [4]
- Filter: $\approx 6 \cdot 2^{62}$ ciphertext checks
- Algebraic Filter: $\approx 6 \cdot 2^{46} \mathrm{CPU}$ cycles
- Guess: $80-18=62$ bits

PRESENT-128-19

Consider the input difference for round 15 and iterate over all possible output differences. For the example difference we have 36 possible output differences for round 15 and $2^{13.93}$ possible output difference for round 16 .

$$
\begin{aligned}
& 4 \text { bits } \approx 2^{13.97} \cdot 1.8 \cdot 10^{9} \cdot\left(18 \cdot 2^{62}\right) \approx 2^{111} \mathrm{CPU} \text { cycles. } \\
& \text { full key } \approx 2^{13.97} \cdot 1.8 \cdot 10^{9} \cdot\left(18 \cdot 2^{62}+2 \cdot 6 \cdot 2^{64}\right) \approx 2^{116} \mathrm{CPU} \text { cycles. }
\end{aligned}
$$

Complexity Estimates

Attack	N_{r}	K_{s}	r	\#pairs	time	\#bits
Wang	16	80	14	2^{63}	$2^{65} \mathrm{MA}$	57
Attack-C	16	80	14	2^{62}	$2^{62} \mathrm{MA}$	4
Attack-C	16	80	14	$6 \cdot 2^{62}$	2^{62} encr.	18
Attack-C	19	128	14	2^{62}	2^{111} cycles	4
Attack-C	19	128	14	$6 \cdot 2^{62}$	2^{116} cycles	128

Outline

1 Introduction

2 Our Contribution

3 Experimental Resuls

4 Discussion

Discussion

Properties:

■ One right pair is sufficient to learn some information about the key.
■ No requirement for candidate key counter.

- Silimar to DC attack on full DES [1] but in theory applicable to any block cipher.

Some open problems:
■ Is this idea applicable to other ciphers?

- How long would it take to solve the small cipher system in Attack-C after a right pair has been identified?
■ How about other techniques: linear cryptanalysis, saturation attacks, higher order differentials, ...
■ Can we do Present-128-20 with $r=14$: "a situation without precedent" [2]?

Conclusion

- We presented a new promising research direction: combining statistical and algebraic cryptanalysis instead of holding on to the "low data complexity dream" normally attached to algebraic cryptanalysis.

■ In particular, we presented a new approach which uses algebraic techniques in differential cryptanalysis and showed how to invest more time in the last rounds not covered by a differential using algebraic techniques.

- To illustrate the viability of the attack we applied it against round reduced variants of Present. Of course, this attack has no implication for the security of PRESENT!

Thank you!

Literature I

Eli Biham and Adi Shamir.
Differential Cryptanalysis of the Full 16-round DES.
In Advances in Cryptology - CRYPTO 1992, volume 740 of Lecture Notes in Computer Science, pages 487-496, Berlin Heidelberg New York, 1991. Springer Verlag.
R A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, Matthew Robshaw, Y. Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher.
In CHES 2007, volume 7427 of Lecture Notes in Computer Science, pages 450-466. Springer Verlag, 2007.
Available at http://www.crypto.rub.de/imperia/md/content/ texte/publications/conferences/present_ches2007.pdf.

Literature II

Meiqin Wang.
Differential Cryptanalysis of reduced-round PRESENT.
In Serge Vaudenay, editor, Africacrypt 2008, volume 5023 of Lecture
Notes in Computer Science, pages 40-49. Springer Verlag, 2008.
荀
Meiqin Wang.
Private communication: 24 differential characteristics for 14 -round present we have found, 2008.

