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Differential Cryptanalysis I

Formally introduced by Eli Biham and Adi Shamir [4].

Can be used to distinguish an n-bit block cipher.

Considers the distribution of differences through the cipher.

Constructs differential characteristics for a number of rounds N

P
′
⊕ P

′′
= ∆P → ∆C = C

′
⊕ C

′′

that are valid with probability p.

If p � 2−n query the cipher with a large number of pairs with ∆P.

Distinguish the cipher by counting the number of pairs with ∆C .

A pair for which the characteristic holds is called a right pair.



Differential Cryptanalysis II

One can use it to recover key information.

Instead of characteristics for the full N-round cipher, consider
characteristics valid for r rounds only (r = N − R, with R > 0).

Guess some key bits in last rounds, partially decrypt the known
ciphertexts, and verify if the result matches the one predicted by the
characteristic.

Candidate (last round) keys are counted.

Random noise is expected for wrong key guesses.

Eventually a peak may be observed in the candidate key counters,
pointing to the correct round key.



Signal/Noise Ratio I

The number of right pairs that are needed to distinguish the right
candidate key depends on

1 the probability of the characteristic p,

2 the number k of simultaneous subkey bits that are counted,

3 the average count α how many keys are suggested per analysed pair,

4 the fraction β of the analysed pairs among all the pairs.

If we are looking for k subkey bits then we count the number of
occurrences of 2k possible key values in 2k counters.

The counters contain an average count of m·α·β
2k counts were

m is the number of pairs,

m · β is the expected number of pairs to analyse and

α the number of suggested keys on average.

Since suggestions are spread across 2k counters, we divide by 2k .



Signal/Noise Ratio II

The right subkey value is counted m · p times by the right pairs, plus
the random counts for all the possible subkeys.

The signal to noise ration is therefore:

S/N =
m · p

m · α · β/2k
=

2k · p
α · β

.

In this work we aim to improve this ratio for a given cipher.



Characteristics vs. Differentials

It would be sufficient to consider the probability p of the differential – i.e.
the sum of all pi for all characteristics with ∆P → ∆C – instead of the
probability of the characteristic.

However, in practice authors often work with the probabilities of
characteristics because it is easier to estimate them.



Algebraic Techniques in Differential Cryptanalysis

In [1] a combination of differential cryptanalysis with algebraic
attacks against block ciphers was proposed.

All three proposed techniques (Attack-A, Attack-B and Attack-C)
require Gröbner basis computations during the online phase of the
attack.

This limitation prevented to apply the techniques to Present-80
reduced to more than 16 rounds because then the computation time
would exceed exhaustive key search.

In this work we only perform Gröbner basis computations in a
pre-computation (or offline) phase.
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Ideal Membership as Implication I

Consider an arbitrary function f : Fn
2 → Fm

2 and its polynomial
representation f0, . . . , fm−1

Let x0, . . . xn−1 be the input variables and y0, . . . , ym−1 the output
variables

Consider the ideal I = 〈f0, . . . , fm−1〉:
Every member g of this ideal is a combination of f0, . . . , fm−1.

If f0, . . . , fm−1 vanish, so does g .

This can be read as: f0, . . . , fm−1 implies g .

“If f0, . . . , fm−1 hold, so does g”.



Ideal Membership as Implication II

Let c be a condition on the input variables (in polynomial form).

Calculate a Gröbner basis for 〈c , f0, . . . , fm−1〉 in an elimination
ordering which eliminates input variables first.

The smallest elements of this Gröbner basis will be polynomials with
a minimum number of input variables (if possible, none). Call them
g0, . . . , gr−1.

These polynomials are implied by the polynomials f0, . . . , fm−1 and
the condition c .

“If f0, . . . , fm−1 and the condition c hold, so do g0, . . . , gr−1”



Ideal Membership as Implication III

The polynomials g0, . . . , gr−1 generate the elimination ideal [3,
p.256]

I
⋂

F2[y0, . . . , ym−1]

This means: all on the output bits that are implied by f under
condition c are combinations of g0, . . . , gr−1

If we pick the term ordering right, g0, . . . , gr−1 have minimal degree.

For a given function f under a precondition c you can calculate all
conditions on the output bits that must hold.



Ideal Membership as Implication IV

Some example applications:

Differential: Given two parallel executions of a block cipher round and
an input differential: What conditions on the output hold
with probability 1?

Integral: Given many parallel executions of a block cipher round
and a condition on the inputs: What conditions on the
output hold with probability 1?



A Small Example I

Consider the 4-bit S-Box of Present [5]:

S = (12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2).

Two pairs of input bits X ′1,0, . . . ,X
′
1,3 and X ′′1,0, . . . ,X

′′
1,3,

The respective output bits are Y ′1,0, . . . ,Y
′
1,3 and Y ′′1,0, . . . ,Y

′′
1,3.

S can be described as boolean polynomials in Yi,j ’s and Xi,j ’s.

Assume that we have the input difference (0, 0, 0, 1) for this S-Box;
that is, we have that X ′1,3 + X ′′1,3 = 1.

We are interested in all linearly independent low degree equations in
the Yi,j ’s that must hold if this input difference holds.



A Small Example II

We define I to be the ideal spanned by

1 the S-Box polynomials on X ′1,j ,Y
′

1,j ,

2 the S-Box polynomials on X ′′1,j ,Y
′′

1,j ,

3 the set {X ′1,0 + X ′′1,0, X ′1,1 + X ′′1,1, X ′1,2 + X ′′1,2, X ′1,3 + X ′′1,3 + 1} and

4 the field polynomials {X 2
i,j − Xi,j} and {Y 2

i,j − Yi,j}.

We define a block ordering [3, p.168] where the variables Xi,j are in
the first block and the variables Yi,j are in the second, that is, we
have that all Xi,j > Yi,j .

Inside the second block we choose the degree lexicographical
ordering (deglex) on the Yi,j .

We compute the reduced Gröbner basis G of I .



A Small Example III

All polynomials of G only containing the variables Yi,j are listed below:

Y ′1,3 + Y ′1,3 + 1,

Y ′1,0 + Y ′1,2 + Y ′′1,0 + Y ′′1,2 + 1,

Y ′′1,0Y
′′
1,2 + Y ′1,2 + Y ′′1,0 + Y ′′1,1 + Y ′′1,3,

Y ′′1,0Y
′′
1,1 + Y ′′1,0Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′′1,0 + Y ′′1,1,

Y ′1,2Y
′′
1,2 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3,

Y ′1,2Y
′′
1,0 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′1,2 + Y ′′1,0 + Y ′′1,3,

Y ′1,1Y
′′
1,2 + Y ′1,2Y

′′
1,1 + Y ′1,2Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′1,1 + Y ′1,2 + Y ′′1,1,

Y ′1,1Y
′′
1,1 + Y ′1,1Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,1Y

′′
1,3 + Y ′′1,2Y

′′
1,3 + Y ′′1,1,

Y ′1,1Y
′′
1,0 + Y ′1,2Y

′′
1,1 + Y ′1,2Y

′′
1,3 + Y ′′1,0Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′′1,3,

Y ′1,1Y
′
1,2 + Y ′1,2Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,2



A Small Example IV

This list is exactly the reduced deglex Gröbner basis GY for the
elimination ideal

IY = I
⋂

F2[Y ′1,0, . . . ,Y
′
1,3,Y

′′
1,0, . . . ,Y

′′
1,3].

One can show that there are no other linear or quadratic polynomial p
which are not a simple algebraic combination of these polynomials.

In Other Words

This list describes the relations in the Yi,j completely.



Relaxations I

If we can compute the Gröbner basis g0, . . . , gr−1, we are done.

For many functions f computing g0, . . . , gr−1 is infeasible. However, to
recover some equations we might not need to compute the full Gröbner
basis.

As an example consider the same S-Box and the same input difference
(0, 0, 0, 1). If we only compute the Gröbner basis up to degree 2 we can
still recover some properties of the Yi,j ’s.



Relaxations II

Y ′1,3 + Y ′′1,3 + 1,

Y ′1,0 + Y ′1,2 + Y ′′1,0 + Y ′′1,2 + 1,

Y ′′1,0Y
′′
1,2 + Y ′1,2 + Y ′′1,0 + Y ′′1,1 + Y ′′1,3,

Y ′′1,0Y
′′
1,1 + Y ′′1,0Y

′′
1,2 + Y ′′1,0Y

′′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3 + Y ′1,1 + Y ′1,2 + Y ′′1,3,

Y ′1,2Y
′′
1,0 + Y ′1,2Y

′′
1,2 + Y ′′1,0Y

′′
1,2 + Y ′1,1 + Y ′′1,1,

Y ′1,1Y
′′
1,0 + Y ′1,1Y

′′
1,2 + Y ′′1,0Y

′′
1,3 + Y ′′1,2Y

′′
1,3 + Y ′1,2 + Y ′′1,1 + Y ′′1,3,

Y ′1,1Y
′
1,2 + Y ′1,2Y

′
1,3 + Y ′′1,1Y

′′
1,2 + Y ′′1,2Y

′′
1,3,

Y′′1,0Y′′1,1Y′′1,3 + Y′′1,1Y′′1,2Y′′1,3 + Y′1,1Y′′1,3 + Y′′1,1Y′′1,3 + Y′′1,2Y′′1,3,

Y′1,2Y′′1,0Y′′1,2 + Y′1,2Y′′1,1 + Y′1,2Y′′1,3 + Y′′1,0 + . . .,

. . .
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Discarding Wrong Pairs I

In [1] Attack-C is proposed to discard wrong pairs.

The attacker considers an equation system only for the rounds > r .

Denote the equation system for the last R rounds of the encryption
of P ′ to C ′ and P ′′ to C ′′ as F ′R and F ′′R respectively.

The algebraic part of Attack-C is a Gröbner basis computation on
the polynomial system

F = F ′R ∪ F ′′R ∪ {X ′r+1,i + X ′′r+1,i + ∆Xr+1,i | 0 ≤ i < Bs}.

Whenever the Gröbner basis is {1} the pair can be discarded.

No strong assurances are given about how many pairs are actually
discarded by Attack-C.



Discarding Wrong Pairs II



Discarding Wrong Pairs III

Our approach:

We consider the same system of equations as in Attack-C.

But we replace the tuples of constants C ′ and C ′′ by symbols.

We then compute a Gröbner basis for an elimination ordering with
C ′ and C ′′ smallest.

We aim to recover equations in the variables C ′ and C ′′.

These equations must evaluate to zero on the actual ciphertext
values if the input difference for round r + 1 holds.

To estimate the quality of the filter, we can calculate the probability
that all these polynomials evaluate to zero for random values for C ′

and C ′′.

The cost of the filter is only a few polynomial evaluations average.



Example: Present I

We consider the characteristics from [9] also considered in [1] and
construct filters for Present reduced to 14 + R rounds.

We construct the polynomial ring P =

F2[ K0,0, . . . ,K0,79, K1,0, . . . ,K1,3,
Y ′1,0, . . . ,Y

′
1,63, Y ′′1,0, . . . ,Y

′′
1,63,

X ′1,0, . . . ,X
′
1,63, X ′′1,0, . . . ,X

′′
1,63,

. . . , K14+R,0, . . . ,K14+R,3,
Y ′14+R,0, . . . ,Y

′
14+R,63, Y ′′14+R,0, . . . ,Y

′′
14+R,63,

X ′14+R,0, . . . ,X
′′
14+R,63, X ′′14+R,0, . . . ,X

′′
14+R,63,

C ′0, . . . ,C
′
63, C ′′0 , . . . ,C

′′
63]

and attach the following block ordering:

K0,0, . . . ,X
′′
14+R,63︸ ︷︷ ︸

degrevlex

,C ′0, . . . ,C
′′
63,C

′′
0 , . . . ,C

′′
63︸ ︷︷ ︸

degrevlex

.



Example: Present II

We setup an equation system as in Attack-C of [1] except that the
ciphertext bits (C ′i and C ′′i ). are symbols and computed the Gröbner
basis up to degree D = 3 using PolyBoRi 0.6.3 [6] and filter out any
polynomial that contains non-ciphertext variables.

For each R we list the number of linear, quadratic and cubic equations
we found (d = 1, 2, 3) and the logarithm of the approximate quality of
the filter.

R d = 1 d = 2 d = 3 ≈ log2 p comment

1 58 2 −58.830

2 46 14 6 −50.669 Wang: 2−50.07

3 16 1 11 −18.296 Attack-C: < 2−22.00

4 16 −3.082 optimal: 2−3.35



Example: NOEKEON

NOEKEON looks like an easy target because of its simple structure and
small S-boxes.

However, we were only able to compute equations for one round, when
considering a four round characteristic provided by the NOEKEON
designers. We found 81 linear and 3 quadratic equations which hold with
probability ≈ 2−81 on random values for C ′ and C ′′.

Thus, NOEKEON resists our computation attempts quite well.



Example: KTANTAN32

We used the best differential for 42 rounds of KTANTAN32 [7] by the
designers and extended it to 71 rounds. The characteristic has a
probability of 2−31.

N d = 1 d = 2 d = 3 d = 4 d = 5 ≈ log2 p
78 31 3 0 0 0 −32.0
80 28 11 0 0 0 −31.4
82 25 23 0 0 0 −31.0
84 20 32 4 32 0 −29.0
86 16 46 23 75 106 < −24.0
90 8 42 133 612 1762 < −22.0
92 4 33 133 743 2646 −20.4
94 1 25 124 662 2345 −18.5
96 0 8 52 287 1264 −14.3
98 0 3 10 46 156 −9.1
100 0 1 3 18 47 −4.6
102 0 0 0 4 9 −0.9
103 0 0 0 2 4 −0.4
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Gathering More Information I

Assume:

1 an SP-network,

2 a differential characteristic ∆ = (∆P,∆Y1, . . . ,∆Yr ) valid for r
rounds with probability p,

3 a right pair (P ′,P ′′) for ∆,

4 only one S-Box is active in round 1, with input X ′1,j and X ′′1,j , and

5 there is a key addition immediately before the S-Box operation.



Gathering More Information II

We have

S(P ′j + K0,j) = S(X ′1,j) = Y ′1,j and S(P ′′j + K0,j) = S(X ′′1,j) = Y ′′1,j .

The polynomial equations arising from the relation

∆Y1,j = Y ′1,j + Y ′′1,j = S(P ′j + K0,j) + S(P ′′j + K0,j)

give us a very simple equation system to solve, with only the key
variables K0,j as unknowns.

We can:

recover b bits of information about the key, if ∆Y1 holds with
probability 2−b.

replace P ′,P ′′ by symbols to get polynomials in K0,P
′ and P ′′.

compute similar polynomials for more than one round.



Gathering More Information III

Assume that

1 we can indeed compute the Gröbner basis with P ′,P ′′ symbols for
the first q rounds,

2 the probability of the characteristic restricted to q rounds is 2−b,

3 the Gröbner basis of I ∩ F2[K0,P
′,P ′′] has mq elements.

We have b bits of additional information and thus can write

S/N =
2k+b · p
α · β

without performing any additional partial decryptions.

However, we have to perform mq polynomial evaluations (where we
replace P ′,P ′′ by their actual values).

Also, this approach still has the memory overhead.



Buckets

We can spread all pairs into 2b buckets, labelled by the 2b possible
conditions on the key variables.

For example, for Present we have K53 + K55 + P ′53 + P ′55 and
K54 + K55 + P ′54 + P ′55. Thus, we create 22 buckets for each set of
equations suggested by the values of P ′53 + P ′55 and P ′54 + P ′55.

We maintain smaller counters for each bucket independently. All right
pairs for the characteristic must suggest the same equations and thus
the same bucket. Pairs which do not follow the characteristic will be
thrown in a random bucket out of 2b choices. We have

S/N =
2k · p
α · β/2b

=
2k+b · p
α · β

.

If we are allowed to choose P ′ in addition to ∆P we can check the
buckets sequentially by picking the right combination of bits in P ′.



Example: Present I

Consider two rounds of Present and the characteristic from [9].

Setup a polynomial ring with two blocks such that the variables Pi

and Ki are lexicographically smaller than any other variables.

Within the blocks choose a degree lexicographical term ordering.

Setup an equation system and add the linear equations suggested by
the characteristic.

Compute a Gröbner basis up to degree five.



Example: Present II

This computation returned 22 polynomials. We give a selection below:

(K1 + P ′1 + 1)(K0 + K3 + K29 + P ′0 + P ′3),

(K2 + P ′2)(K0 + K3 + K29 + P ′0 + P ′3),

K1K2 + K1P
′
2 + K2P

′
1 + P ′1P

′
2 + K0 + K1 + K3 + K29 + P ′0 + P ′1 + P ′3,

. . .

K5 + K7 + P ′5 + P ′7,

K6 + K7 + P ′6 + P ′7,

K53 + K55 + P ′53 + P ′55,

K54 + K55 + P ′54 + P ′55

This system gives 8 bits of information about the key. The first two
rounds of the characteristic pass with probability 2−8.



Example: NOEKEON

For NOEKEON we only have the straight forward result.

We consider one round of NOEKEON [2] with

∆X1 = 00000000 00001020 00000080 00010181

and
∆Y1 = 00000081 00010101 00001020 00000000

based on the best differential provided by the NOEKEON designers.

The first round differential holds with probability 2−14. Consequently, we
recover 14 linear polynomials.



Example: KTANTAN32

We consider the first 24 rounds of KTANTAN32 and the previously
mentioned characteristic. We computed the full Gröbner basis. This
computation recovers 39 polynomials of which we list the 8 smallest
non-redundant below. Note that the characteristic also imposes
restrictions on the plaintext.

(P ′19 + 1)(P ′3P
′
8 + P ′10P

′
12 + K3 + K53 + P ′7 + P ′18 + P ′23),

P ′8P
′
10P
′
19 + K8P

′
19 + P ′3P

′
8 + P ′6P

′
19 + P ′10P

′
12 + P ′16P

′
19 + K3 + K53 + . . . ,

P ′19P
′
22 + K1 + K11 + P ′6 + P ′11 + P ′17 + P ′21 + P ′26,

P ′23P
′
26 + K65 + P ′21 + P ′25 + P ′30,

P ′1 + 1,P ′2,P
′
5 + 1,P ′9 + 1

These eight equations give up to four bits (depending on the value of
P ′19) of information about the key.



Outline

1 Introduction

2 The Main Idea

3 Decreasing the Noise

4 Increasing the Signal

5 Conclusion



Conclusion

We demonstrated cryptographic applications of Gröbner basis
algorithms beyond polynomial system solving1.

Using the rich algebraic structure of Gröbner bases we compute
properties for various block ciphers which can be used to improve
“classical” differential cryptanalysis attacks.

The techniques proposed and used in this work are not limited to
differential cryptanalysis.

1Of course, we are not the first to notice that, cf. [8]



Thank you!
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