On Cold Boots and Noisy Polynomials

Martin Albrecht & Carlos Cid

“Consider ...the linear case in n variables. n equations are normally soluble, and n+ 1 are
not, so one of the n + 1 must be noisy. But which? It could be any of them.”

— anonymous referee

PhD Seminar, Egham, 18.Feb. 2010

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 1/35

Coldboot Attacks Polynomial System Solving with Noise ed Intege ogramming Application

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

A Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 2/35

Coldboot Attacks Polynomial System Solving with Noise Mixe gramming Application

Outline

Coldboot Attacks

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 3/35

Coldboot Attacks Polynomi tem Solving with Noise Mixed Integer Programming

Coldboot Attacks |

Play

http://citp.princeton.edu/memory/

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 4/35

http://citp.princeton.edu/memory/

Coldboot Attacks Polync ing with Noise Mixed Integ

Coldboot Attacks Il

Definition (The Coldboot Problem)
We are given
K : F3 — FY where N > n,
two real numbers 0 < &g, 01 < 1,
some noisy output O = K(k): each bit o; is correct

= with probability 1 — dp if it is zero and
= with probability 1 — §; if it is one.

and some control function & : F3 — { True, False}, which returns
true for the pre-image of the noise free version of O.

The task is to recover k such that £(k) returns True or a noise-free O.

<

The Coldboot problem is equivalent to decoding a (non-)linear code with
biased noise.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 5/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programmi

Coldboot Attacks Il

Results in [3]:

Cipher do 01 | Success | Time
DES | 0.10 | 0.001 100% -
DES | 0.50 | 0.001 98% -
AES | 0.15 | 0.001 100% 1s
AES | 0.30 | 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules like Serpent or Twofish?

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

Polynomial System Solving with Noise

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 7/35

Attacks Polynomial System Solving with Noise Mixed Integ gramming Application

PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {fy, ..., f,_1} where each f; € F[xo, ..., x,_1].

A solution to F is any point x € F” such that

Vf € F: fi(x) =0.

Note, that we restrict ourselves to solutions in the base field here.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 8/35

ot Attacks Polynomial System Solving with Noise Mixec

Max-PoSSo |

We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 9/35

http://en.wikipedia.org/wiki/MAX-SAT

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo Il

Definition (Max-PoSSo)

Find a point x € F” which satisfies the maximum number of
polynomials in F = {fo,...,fm_1} C F[xo, .-, Xp_1].

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 10/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo IlI

Definition (Partial Max-PoSSo)

Find a point x € F" such that for two sets of polynomials 7 and S in
F[Xo, 500 ,Xn_]_]

mVfeH:f(x)=0and
m the number of polynomials ¥ € S with f(x) = 0 is maximised.

m Max-PoSSo is Partial Max-Posso with H = &.
m H for “hard” and S for “soft”.

m Both terms are borrow from Partial Max-SAT.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 11/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo IV

Definition (Partial Weighted Max-PoSSo)
Find a point x € F” such that
mVfeH:f(x)=0and
" > s C(f, x) is minimized

where C: f € §,x € F” — R is a cost function which
m returns 0 if f(x) =0 and
m some value > 0 if f(x) # 0.

Partial Max-PoSSo is Weighted Partial Max-PoSSo
where C(f, x) returns 1 if f(x) # 0 for all f € S.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 12/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as Partial Weighted Max-PoSSo

m Let F be an equation system corresponding to K.

Assume that for each noisy output bit o; there is some f; € Fxc of
the form g; + o; where g; is some polynomial.

Assume that these are the only polynomials involving output bits.
Denote the set of these polynomials S.
Denote the set of all remaining polynomials € Fi as H.

Define the cost function C as a function which returns

for 0; =0, fi(x) #0
for o; =1,fi(x) #0 .
otherwise

o &S|

m Express £ as a polynomial system which is satisfiable for k only and
add these polynomials to H.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 13/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Other Applications

RFID security is often based on the LPN problem which is easily
described as a Max-PoSSo problem.

Lattices security often rests on the LWE problem which is easily
described as a Max-PoSSo problem.
Side-Channel data leakage is often noisy.

Algebraic Attacks can be improved by simplifying equation systems using
probabilistic equations.

The family of Max-PoSSo problems has not be studied before as far as
we can tell. There is some connection to solving polynomial systems over
fixed precision real-numbers.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 14/35

Coldboot Attacks Polynomial tem Solving with Noise Mixed Integer Programming Application

Outline

Mixed Integer Programming

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 15/35

se Mixed Integer Programming Applicatio

Mixed Integer Programming |

Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a
problem of the form

min{c"x|Ax < b,x € Z* x R'}

where

m Ais an m x n-matrix (n = k + /),

m b is an m-vector and c is an n-vector.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 16/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming ||

This means that we minimize the linear function ¢’ x subject to linear

equality and inequality constraints given by A and b.

We have that k > 0 variables are restricted to integer values while / > 0
variables are real-valued.

The set S of all x € Z* x R/ which satisfies the linear constraints Ax < b
S:{XEZkXR/,AXSb}
is called the feasible set.

If S = & the problem is infeasible. Any x € S which minimises (or
maximises) ¢’ x is an optimal solution.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 17/35

Attacks Polync stem Solving with Noise Mixed Integer Programming Appl

Mixed Integer Programming lll

Maximise x + 5y, thus ¢ = (1,5), subject to the constraints x + 0.2y < 4
and 1.5x + 3y < 4 where x > 0 is real valued and y > 0 is integer valued.

: T, i« E2 _2 _
The optimal value for ¢’ x is 55 for x = 5 and y = 1.

sage: p = MixedlntegerLinearProgram ()

sage: x, y = p.new_variable(), p.new_variable()
sage: p.set_integer(y[0])

sage: p.add_constraint(x[0] + 0.2xy[0], max=4)
sage: p.add_constraint(1.5%xx[0] + 3%y [0], max=4)
sage: p.set_min(x[0],0); p.set_min(y[0],0)

sage: p.set_objective(x[0] + 5xy[0])

sage: p.solve()
5. 6666666666666661

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 18/35

ot Attacks Polynomia m Solving with Noise Mixed Integer Programming

PoSSo as MIP |

Consider some f € Fy[x,...,Xx,—1] and let Z a function that takes a
polynomial over [F, lifts it to the integers. Analogous for elements in 5.

Restrict all x; to binary values.

Evaluate Z(f) on all {Z(x) | x € F3, f(x) = 0}.

Let ¢ be the minimum value and u the maximum value.
Introduce some integer variable % <m< %

Replace each monomial in f —2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

. N
@ For each monomial t =[[;_; x;

m add a constraint x; > t and
® add a constraint 0 < E,N:l xi—t<N-—1.

This is the Integer Adapted Standard Conversion [1].

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 19/35

Coldboot Attacks Polynomial System Solving

PoSSo as MIP I

with Noise Mixed Integer Programming Application

Consider f =ac+a+b+c+1
[{x|XEIF%,f(x):O}:{(1,0,0),(0,1,0),(0,0,1),(1,0,1)}
ml=1u=2
g=M+a+b+c+1-2m=0
a>M
c>M
0<at+c—M<1

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 20/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo as MIP I

sage: attach anf2mip.py
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = axc + a + b
sage: bc = BooleanPolynomialMIPConverter ()
sage: p = bc.integer_adapted_standard_conversion ([f]); p
Mixed Integer Program (minimization,
sage: p.show()
Minimization:

x-1 +x.2 +x_3 +x_4
Constraints:

0 <= -2 x.0 +x_-1 4x-2 4x.3 <=0

-1 <= x.2 -1 x.3 <=0

-1 <= x2 -1 x4 <=0

0 <= -1 x.2 +x.3 +x_4 <=1
Variables:
_0 is an integer variable (min=0.0, max=1.0)
1 is an boolean variable (min=0.0, max=1.0)
2 is a real variable (min=0.0, max=1.0)
-3 is an boolean variable (min=0.0, max=1.0)
4 is an boolean variable (min=0.0, max=1.0)

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 21/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Partial Weighted Max-PoSSo as MIP

m Convert each f € H to linear constraints as before.

m For each f; € S add a new binary slack variable e; to f; and convert
the resulting polynomial as before.

m The objective function we minimise is > c;e; where ¢; is the value of
C(f,x) for some x such that f(x) # 0.

Any optimal solution x € S will be an optimal solution to the Weighted
Partial Max-PoSSo problem.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 22/35

ot Attacks Polynomia m Solving with Noise Mixed Integer Programming

Coldboot as MIP

Coldboot — Partial Weighted Max-PoSSo — MIP J

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [2].

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 23/35

Coldboot Attac Polynomial tem Solving with Noise Mixe gramming Application

Outline

A Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 24/35

ot Attacks Polynomia m Solving with Noise Mixed Integ gramming Application

Simplifications

= We do not model £ since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

m We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

m We may use an “aggressive” modelling strategy where we assume

01 = 0 which allows us to promote some polynomials from S to H.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials

25/35

iming Application

Gurobi

instance | Jg | #cores | cutoff t r max t
SR(2,4,4,4) | 0.15 24 oo | 100% 0.8s
SR(3,4,4,4) | 0.30 24 oo | 100% 41.41s
SR(3,4,4,4) | 0.45 24 co | 60% | 86.24s
SR(4,4,4,4) | 0.45 24 oo | 100% 976.0s
SR(2,4,4,8) | 0.15 24 oo | 100% | 17956.4s
SR(2,4,4,8) | 0.15 2| 240.0s | 25% 240.0s
aSR(2,4,4,8) | 0.30 4] 3600.0s | 20% | 3600.0s

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials

27/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent |

10) i Wi_g || Wi—7 || Wi—6 || Wi—5 || Wi—4 || Wj—3 || Wj—2 || Wj—1 || W;
Tl 1 ! I J«u
P—-P) fan D

N & NP NP

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 28/35

Coldboot Attacks Polynomial System

Serpent |l

iming Application

Gurobi
#words 0o || #cores | cutoff t r max t
8 | 0.05 2 60.0s | 50% 16.22s
12 | 0.05 2 60.0s | 85% 60.00s
810.15 24 | 600.0s | 20% | 103.17s
12 | 0.15 24 | 600.0s | 55% | 600.00s
[*12]030 24 [7200.0s [20% | 7200.00s

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials

29/35

ot Attacks Polynomia m Solving with Noise Mixed Integ gramming Application

Serpent Il

Ad-hoc approach:

m We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

m On average the noise free output should have 64 bits set to zero.

m In order to consider an error rate up to dg, we have to consider

[00-64]

S (64—1— (;so : 641)

i=0
candidates and test them.

m If 6o = 0.15 we have ~ 23687,
m If 6o = 0.30 we have ~ 262,

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 30/35

Twofish |

’ known constant ‘ ’ known constant

-69 o m |

| || Xoit1 |

Q) - - AR - Q)

I

-@ @m
VoY ‘ ’ Loit1

| | | |

The output of the
key schedule is
then

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials

31/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Twofish [l

Ad-hoc approach:

m We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

m On average the noise free output should have 64 bits set to zero.

m In order to consider an error rate up to dg, we have to consider

[60-64]

Z (64+ (fo . 641)

i=0
candidates and test them.

m If 6o = 0.15 we have ~ 23687,

m If 6o = 0.30 we have ~ 262.

m Due to the lack of inner diffusion solving the system for each
instance is easy.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 32/35

ot Attacks Polyn) m Solving with Noise

Twofish I

gramming Application

Other approaches:

m We have more information from the key dependent S-boxes which
give us 64 bits worth of linear equations. However, including them
makes the final solving step much harder.

m We can attempt to recover the noise-free version of O using MIP
and then solve only once.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials

33/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Thank you!

Drinks at 6 in the Happy Man?

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 34/35

Coldboot Attacks Polynomial System Solving with Noise ed Intege ogramming Application

Literature |

ﬁ Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe.
Bivium as a Mixed-Integer Linear programming problem.

@ Jon Feldman.
Decoding Error-Correcting Codes via Linear Programming.

@ J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten.

Lest we remember: Cold boot attacks on encryption keys.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 35/35

	Coldboot Attacks
	Polynomial System Solving with Noise
	Mixed Integer Programming
	Application

