
Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

On Cold Boots and Noisy Polynomials

Martin Albrecht & Carlos Cid

“Consider . . . the linear case in n variables. n equations are normally soluble, and n + 1 are
not, so one of the n + 1 must be noisy. But which? It could be any of them.”

– anonymous referee

PhD Seminar, Egham, 18.Feb. 2010

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 1/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 2/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 3/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks I

Play
http://citp.princeton.edu/memory/

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 4/35

http://citp.princeton.edu/memory/

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks II

Definition (The Coldboot Problem)

We are given

1 K : Fn
2 → FN

2 where N > n,

2 two real numbers 0 ≤ δ0, δ1 ≤ 1,

3 some noisy output O = K(k): each bit oi is correct

with probability 1− δ0 if it is zero and
with probability 1− δ1 if it is one.

4 and some control function E : Fn
2 → {True,False}, which returns

true for the pre-image of the noise free version of O.

The task is to recover k such that E(k) returns True or a noise-free O.

The Coldboot problem is equivalent to decoding a (non-)linear code with
biased noise.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 5/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks III

Results in [3]:

Cipher δ0 δ1 Success Time
DES 0.10 0.001 100% –
DES 0.50 0.001 98% –
AES 0.15 0.001 100% 1s
AES 0.30 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules like Serpent or Twofish?

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 6/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 7/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {f0, . . . , fm−1} where each fi ∈ F[x0, . . . , xn−1].

A solution to F is any point x ∈ Fn such that

∀fi ∈ F : fi (x) = 0.

Note, that we restrict ourselves to solutions in the base field here.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 8/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo I

We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 9/35

http://en.wikipedia.org/wiki/MAX-SAT

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo II

Definition (Max-PoSSo)

Find a point x ∈ Fn which satisfies the maximum number of
polynomials in F = {f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1].

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 10/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo III

Definition (Partial Max-PoSSo)

Find a point x ∈ Fn such that for two sets of polynomials H and S in
F[x0, . . . , xn−1]

∀f ∈ H : f (x) = 0 and

the number of polynomials f ∈ S with f (x) = 0 is maximised.

Max-PoSSo is Partial Max-Posso with H = ∅.

H for “hard” and S for “soft”.

Both terms are borrow from Partial Max-SAT.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 11/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo IV

Definition (Partial Weighted Max-PoSSo)

Find a point x ∈ Fn such that

∀f ∈ H : f (x) = 0 and∑
f∈S C(f , x) is minimized

where C : f ∈ S, x ∈ Fn → R≥0 is a cost function which

returns 0 if f (x) = 0 and

some value > 0 if f (x) 6= 0.

Partial Max-PoSSo is Weighted Partial Max-PoSSo
where C(f , x) returns 1 if f (x) 6= 0 for all f ∈ S.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 12/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as Partial Weighted Max-PoSSo

Let FK be an equation system corresponding to K.

Assume that for each noisy output bit oi there is some fi ∈ FK of
the form gi + oi where gi is some polynomial.

Assume that these are the only polynomials involving output bits.

Denote the set of these polynomials S.

Denote the set of all remaining polynomials ∈ FK as H.

Define the cost function C as a function which returns

1
δ0

for oi = 0, fi (x) 6= 0
1
δ1

for oi = 1, fi (x) 6= 0

0 otherwise

.

Express E as a polynomial system which is satisfiable for k only and
add these polynomials to H.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 13/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Other Applications

RFID security is often based on the LPN problem which is easily
described as a Max-PoSSo problem.

Lattices security often rests on the LWE problem which is easily
described as a Max-PoSSo problem.

Side-Channel data leakage is often noisy.

Algebraic Attacks can be improved by simplifying equation systems using
probabilistic equations.

The family of Max-PoSSo problems has not be studied before as far as
we can tell. There is some connection to solving polynomial systems over
fixed precision real-numbers.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 14/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 15/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming I

Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a
problem of the form

min
x
{cT x |Ax ≤ b, x ∈ Zk × Rl}

where

A is an m × n-matrix (n = k + l),

b is an m-vector and c is an n-vector.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 16/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming II

This means that we minimize the linear function cT x subject to linear
equality and inequality constraints given by A and b.

We have that k ≥ 0 variables are restricted to integer values while l ≥ 0
variables are real-valued.

The set S of all x ∈ Zk ×Rl which satisfies the linear constraints Ax ≤ b

S = {x ∈ Zk × Rl ,Ax ≤ b}

is called the feasible set.

If S = ∅ the problem is infeasible. Any x ∈ S which minimises (or
maximises) cT x is an optimal solution.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 17/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming III

Example

Maximise x + 5y , thus c = (1, 5), subject to the constraints x + 0.2y ≤ 4
and 1.5x + 3y ≤ 4 where x ≥ 0 is real valued and y ≥ 0 is integer valued.

The optimal value for cT x is 5 2
3 for x = 2

3 and y = 1.

sage : p = Mixed In t ege rL i nea rP rog ram ()
sage : x , y = p . n ew v a r i a b l e () , p . n ew v a r i a b l e ()
sage : p . s e t i n t e g e r (y [0])
sage : p . a d d c o n s t r a i n t (x [0] + 0 .2∗ y [0] , max=4)
sage : p . a d d c o n s t r a i n t (1 . 5∗ x [0] + 3∗y [0] , max=4)
sage : p . s e t m in (x [0] , 0) ; p . s e t m in (y [0] , 0)
sage : p . s e t o b j e c t i v e (x [0] + 5∗y [0])
sage : p . s o l v e ()
5.6666666666666661

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 18/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo as MIP I

Consider some f ∈ F2[x0, . . . , xn−1] and let Z a function that takes a
polynomial over F2 lifts it to the integers. Analogous for elements in F2.

1 Restrict all xi to binary values.

2 Evaluate Z(f) on all {Z(x) | x ∈ Fn
2, f (x) = 0}.

3 Let ` be the minimum value and u the maximum value.

4 Introduce some integer variable `
2 ≤ m ≤ u

2 .

5 Replace each monomial in f − 2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

6 For each monomial t =
∏N

i=1 xi
add a constraint xi ≥ t and
add a constraint 0 ≤

∑N
i=1 xi − t ≤ N − 1.

This is the Integer Adapted Standard Conversion [1].

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 19/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo as MIP II

Example

Consider f = ac + a + b + c + 1

{x | x ∈ F3
2, f (x) = 0} = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}

` = 1, u = 2

1 g = M + a+ b + c + 1− 2m = 0
2 a ≥ M
3 c ≥ M
4 0 ≤ a+ c −M ≤ 1

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 20/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo as MIP III

sage : a t t a ch anf2mip . py
sage : B.<a , b , c> = Boo leanPo lynomia lR ing ()
sage : f = a∗c + a + b
sage : bc = Boo leanPo lynomia lMIPConver te r ()
sage : p = bc . i n t e g e r a d a p t e d s t a n d a r d c o n v e r s i o n ([f]) ; p
Mixed I n t e g e r Program (min im i za t i on , . . .
sage : p . show ()
M in im i z a t i on :

x 1 +x 2 +x 3 +x 4
Con s t r a i n t s :

0 <= −2 x 0 +x 1 +x 2 +x 3 <= 0
−1 <= x 2 −1 x 3 <= 0
−1 <= x 2 −1 x 4 <= 0
0 <= −1 x 2 +x 3 +x 4 <= 1

Va r i a b l e s :
x 0 i s an i n t e g e r v a r i a b l e (min=0.0 , max=1.0)
x 1 i s an boo l ean v a r i a b l e (min=0.0 , max=1.0)
x 2 i s a r e a l v a r i a b l e (min=0.0 , max=1.0)
x 3 i s an boo l ean v a r i a b l e (min=0.0 , max=1.0)
x 4 i s an boo l ean v a r i a b l e (min=0.0 , max=1.0)

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 21/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Partial Weighted Max-PoSSo as MIP

Convert each f ∈ H to linear constraints as before.

For each fi ∈ S add a new binary slack variable ei to fi and convert
the resulting polynomial as before.

The objective function we minimise is
∑

ciei where ci is the value of
C(f , x) for some x such that f (x) 6= 0.

Any optimal solution x ∈ S will be an optimal solution to the Weighted
Partial Max-PoSSo problem.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 22/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as MIP

Coldboot → Partial Weighted Max-PoSSo → MIP

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [2].

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 23/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 24/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Simplifications

We do not model E since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

We may use an “aggressive” modelling strategy where we assume
δ1 = 0 which allows us to promote some polynomials from S to H.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 25/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

AES I

Core ⊕ ⊕ ⊕ ⊕

Core ⊕ ⊕ ⊕ ⊕

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 26/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

AES II

Gurobi
instance δ0 #cores cutoff t r max t

SR(2,4,4,4) 0.15 24 ∞ 100% 0.8s
SR(3,4,4,4) 0.30 24 ∞ 100% 41.41s
SR(3,4,4,4) 0.45 24 ∞ 60% 86.24s
SR(4,4,4,4) 0.45 24 ∞ 100% 976.0s

SR(2,4,4,8) 0.15 24 ∞ 100% 17956.4s
SR(2,4,4,8) 0.15 2 240.0s 25% 240.0s

aSR(2,4,4,8) 0.30 4 3600.0s 20% 3600.0s

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 27/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent I

w−8 w−7 w−6 w−5 w−4 w−3 w−2 w−1

wi−8 wi−7 wi−6 wi−5 wi−4 wi−3 wi−2 wi−1iφ wi

⊕ ⊕ ⊕ ⊕⊕
≪11

wi wi+1 wi+2 wi+3

S

ki ki+1 ki+2 ki+3

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 28/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent II

Gurobi
#words δ0 #cores cutoff t r max t

8 0.05 2 60.0s 50% 16.22s
12 0.05 2 60.0s 85% 60.00s

8 0.15 24 600.0s 20% 103.17s
12 0.15 24 600.0s 55% 600.00s

*12 0.30 24 7200.0s 20% 7200.00s

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 29/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent III

Ad-hoc approach:

We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

On average the noise free output should have 64 bits set to zero.

In order to consider an error rate up to δ0, we have to consider

dδ0·64e∑
i=0

(
64 + dδ0 · 64e

i

)
candidates and test them.

If δ0 = 0.15 we have ≈ 236.87.

If δ0 = 0.30 we have ≈ 262.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 30/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Twofish I

known constant known constant

⊕ ⊕M0 M1

X2i X2i+1

Q0 Q0 Q1 Q1 Q0 Q0 Q1 Q1

Y2i Y2i+1

⊕ ⊕M2 M3

Z2i Z2i+1

MDS MDS

Ai Bi

The output of the
key schedule is
then

Ai � Bi

and

Ai � 2 · Bi .

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 31/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Twofish II

Ad-hoc approach:

We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

On average the noise free output should have 64 bits set to zero.

In order to consider an error rate up to δ0, we have to consider

dδ0·64e∑
i=0

(
64 + dδ0 · 64e

i

)
candidates and test them.

If δ0 = 0.15 we have ≈ 236.87.

If δ0 = 0.30 we have ≈ 262.

Due to the lack of inner diffusion solving the system for each
instance is easy.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 32/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Twofish III

Other approaches:

We have more information from the key dependent S-boxes which
give us 64 bits worth of linear equations. However, including them
makes the final solving step much harder.

We can attempt to recover the noise-free version of O using MIP
and then solve only once.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 33/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Thank you!
Drinks at 6 in the Happy Man?

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 34/35

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Literature I

Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe.
Bivium as a Mixed-Integer Linear programming problem.
In Matthew G. Parker, editor, Cryptography and Coding – 12th IMA
International Conference, volume 5921 of Lecture Notes in Computer
Science, pages 133–152, Berlin, Heidelberg, New York, 2009.
Springer Verlag.

Jon Feldman.
Decoding Error-Correcting Codes via Linear Programming.
PhD thesis, Massachusetts Institute of Technology, 2003.

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten.
Lest we remember: Cold boot attacks on encryption keys.
In Proceedings of 17th USENIX Security Symposium, pages 45–60,
2008.

Martin Albrecht & Carlos Cid — On Cold Boots and Noisy Polynomials 35/35

	Coldboot Attacks
	Polynomial System Solving with Noise
	Mixed Integer Programming
	Application

