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Background

Cryptography provides the means to accomplish data integrity and
confidentiality.

For hard disk encryption we use block ciphers which take a k-bit
key and encrypt n-bit blocks.

All modern block cipher designs use relatively simple rounds which
are repeated m times. In each round n bits of key material are mixed
with the current state. Thus, we need to expand the k-bit key to
n × (m + 1) bits of key material: the key schedule.

We have not seen practical attacks against industry strength block
ciphers in decades.

However, we might be able to exploit side-channel data leakage in
order to break data confidentiality.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London— Cold Boot Key Recovery using Polynomial System Solving with Noise
4/42



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application Appendix: Modular Addition

Coldboot Attacks I

In [7] a method for extracting cryptographic key material from
DRAM used in modern computers was proposed.

Contrary to popular belief information in DRAM is not instantly lost
when the power is cut, but decays slowly over time.

This decay can be further slowed down by cooling the chip.

Thus, an attacker can

1 deep-freeze a DRAM module

2 move it to a target machine which dumps the content to disk

3 find the most likely key candidate (which is erroneous due to decay)

4 use some mechanism to correct those errors

The technique is called Coldboot attack in literature.
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Coldboot Attacks II

Definition (The Coldboot Problem)

We are given

1 K : Fn
2 → FN

2 where N > n,

2 two real numbers 0 ≤ δ0, δ1 ≤ 1,

3 K = KS(k) and Ki the i-th bit of K .

4 K ′ = (K ′0,K
′
1, . . . ,K

′
N−1) ∈ FN

2 based on the following process:

if Ki = 0, then let Pr [K ′
i = 1] = δ1 and Pr [K ′

i = 0] = 1 − δ1
if Ki = 1, then let Pr [K ′

i = 0] = δ0 and Pr [K ′
i = 1] = 1 − δ0.

5 and some control function E : Fn
2 → {True,False}, which returns

true for the pre-image of the noise free version of K .

The task is to recover k such that E(k) returns True or a noise-free K .

The Coldboot problem is equivalent to decoding a (non-)linear code with
biased noise.
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Coldboot Attacks III

Results in [7]:

Cipher δ0 δ1 Success Time
DES 0.10 0.001 100% –
DES 0.50 0.001 98% –
AES 0.15 0.001 100% 1s
AES 0.30 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules like Serpent?
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PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {f0, . . . , fm−1} where each fi ∈ F[x0, . . . , xn−1].

A solution to F is any point x ∈ Fn such that

∀fi ∈ F : fi (x) = 0.

Note, that we restrict ourselves to solutions in the base field here.
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Max-PoSSo I

We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London— Cold Boot Key Recovery using Polynomial System Solving with Noise
10/42

http://en.wikipedia.org/wiki/MAX-SAT


Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application Appendix: Modular Addition

Max-PoSSo II

Definition (Max-PoSSo)

Find a point x ∈ Fn which satisfies the maximum number of
polynomials in F = {f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1].
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Max-PoSSo III

Definition (Partial Max-PoSSo)

Find a point x ∈ Fn such that for two sets of polynomials H and S in
F[x0, . . . , xn−1]

∀f ∈ H : f (x) = 0 and

the number of polynomials f ∈ S with f (x) = 0 is maximised.

Max-PoSSo is Partial Max-Posso with H = ∅.

H for “hard” and S for “soft”.

Both terms are borrowed from Partial Max-SAT.
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Max-PoSSo IV

Definition (Partial Weighted Max-PoSSo)

Find a point x ∈ Fn such that

∀f ∈ H : f (x) = 0 and∑
f∈S C(f , x) is minimized

where C : f ∈ S, x ∈ Fn → R≥0 is a cost function which

returns 0 if f (x) = 0 and

some value > 0 if f (x) 6= 0.

Partial Max-PoSSo is Weighted Partial Max-PoSSo
where C(f , x) returns 1 if f (x) 6= 0 for all f ∈ S.
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Coldboot as Partial Weighted Max-PoSSo

Let FK be an equation system corresponding to K.

Assume that for each noisy output bit K ′i there is some fi ∈ FK of
the form gi + K ′i where gi is some polynomial.

Assume that these are the only polynomials involving output bits.

Denote the set of these polynomials S.

Denote the set of all remaining polynomials ∈ FK as H.

Define the cost function C as a function which returns

1
δ0

for K ′i = 0, fi (x) 6= 0
1
δ1

for K ′i = 1, fi (x) 6= 0

0 otherwise

.

Express E as a polynomial system which is satisfiable for k only and
add these polynomials to H.
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Other Applications

RFID security is often based on the LPN problem which is easily
described as a Max-PoSSo problem.

Lattices security often rests on the LWE problem which is easily
described as a Max-PoSSo problem.

Side-Channel data leakage is often noisy.

Algebraic Attacks can be improved by simplifying equation systems using
probabilistic equations.

The family of Max-PoSSo problems has not be studied before as far as
we can tell. There is some connection to solving polynomial systems over
fixed precision real-numbers.
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Mixed Integer Programming I

Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a
problem of the form

min
x
{cT x |Ax ≤ b, x ∈ Zk × Rl}

where

A is an m × n-matrix (n = k + l),

b is an m-vector and c is an n-vector.
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Mixed Integer Programming II

Example

Maximise x + 5y , thus c = (1, 5), subject to the constraints x + 0.2y ≤ 4
and 1.5x + 3y ≤ 4 where x ≥ 0 is real valued and y ≥ 0 is integer valued.

The optimal value for cT x is 5 2
3 for x = 2

3 and y = 1.

sage : p = Mixed In t ege rL i nea rP rog ram ( )
sage : x , y = p . n ew v a r i a b l e ( ) , p . n ew v a r i a b l e ( )
sage : p . s e t i n t e g e r ( y [ 0 ] )
sage : p . a d d c o n s t r a i n t ( x [ 0 ] + 0 .2∗ y [ 0 ] , max=4)
sage : p . a d d c o n s t r a i n t ( 1 . 5∗ x [ 0 ] + 3∗y [ 0 ] , max=4)
sage : p . s e t m in ( x [ 0 ] , 0 ) ; p . s e t m in ( y [ 0 ] , 0 )
sage : p . s e t o b j e c t i v e ( x [ 0 ] + 5∗y [ 0 ] )
sage : p . s o l v e ( ) # work i n p r o g r e s s (#8672): a l l ow s o l v e r =’SCIP ’
5.6666666666666661
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PoSSo as MIP I

Consider some f ∈ F2[x0, . . . , xn−1] and let Z a function that takes a
polynomial over F2 lifts it to the integers. Analogous for elements in F2.

1 Restrict all xi to binary values.

2 Evaluate Z(f ) on all {Z(x) | x ∈ Fn
2, f (x) = 0}.

3 Let ` be the minimum value and u the maximum value.

4 Introduce some integer variable `
2 ≤ m ≤ u

2 .

5 Replace each monomial in f − 2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

6 For each monomial t =
∏N

i=1 xi
add a constraint xi ≥ t and
add a constraint 0 ≤

∑N
i=1 xi − t ≤ N − 1.

This is the Integer Adapted Standard Conversion [3].
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PoSSo as MIP II

Example

Consider f = ac + a + b + c + 1

{x | x ∈ F3
2, f (x) = 0} = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}

` = 1, u = 2

1 g = M + a + b + c + 1 − 2m = 0
2 a ≥ M
3 c ≥ M
4 0 ≤ a + c −M ≤ 1
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PoSSo as MIP III

sage : a t t a ch anf2mip . py
sage : B.<a , b , c> = Boo leanPo lynomia lR ing ( )
sage : f = a∗c + a + b
sage : bc = Boo leanPo lynomia lMIPConver te r ( )
sage : p = bc . i n t e g e r a d a p t e d s t a n d a r d c o n v e r s i o n ( [ f ] ) ; p
Mixed I n t e g e r Program ( min im i za t i on , . . .
sage : p . show ( )
M in im i z a t i on :

x 1 +x 2 +x 3 +x 4
Con s t r a i n t s :

0 <= −2 x 0 +x 1 +x 2 +x 3 <= 0
−1 <= x 2 −1 x 3 <= 0
−1 <= x 2 −1 x 4 <= 0
0 <= −1 x 2 +x 3 +x 4 <= 1

Va r i a b l e s :
x 0 i s an i n t e g e r v a r i a b l e (min=0.0 , max=1.0)
x 1 i s an boo l ean v a r i a b l e (min=0.0 , max=1.0)
x 2 i s a r e a l v a r i a b l e (min=0.0 , max=1.0)
x 3 i s an boo l ean v a r i a b l e (min=0.0 , max=1.0)
x 4 i s an boo l ean v a r i a b l e (min=0.0 , max=1.0)
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PoSSo as MIP IV

sage : a t t a ch anf2mip . py
sage : B.<a , b , c> = Boo leanPo lynomia lR ing ( )
sage : f = a∗c + a + b + 1
sage : g = a + c + 1

sage : p = bc . i n t e g e r a d a p t e d s t a n d a r d c o n v e r s i o n ( [ f ] ) ; p
Mixed I n t e g e r Program ( . . .
sage : p . s o l v e ( )
1 . 0

sage : bc . s o l v e ( [ f ] )
CPU Time : 0 .00 Wal l t ime : 0 . 00 , Obj : 1 .00
{b : 1 , c : 0 , a : 0}

sage : bc . s o l v e ( [ f , g ] , s o l v e r=’ SCIP ’ )
CPU Time : 0 .00 Wal l t ime : 0 . 00 , Obj : 1 .00
{b : 0 , c : 0 , a : 1}
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Partial Weighted Max-PoSSo as MIP

We only need to consider Partial Weighted Max-PoSSo because it is the
most general case:

Convert each f ∈ H to linear constraints as before.

For each fi ∈ S add a new binary slack variable ei to fi and convert
the resulting polynomial as before.

The objective function we minimise is
∑

ciei where ci is the value of
C(f , x) for some x such that f (x) 6= 0.

Any optimal solution x ∈ S will be an optimal solution to the Partial
Weighted Max-PoSSo problem.
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Coldboot as MIP

Coldboot → Partial Weighted Max-PoSSo → MIP

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [5].
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Simplifications

We do not model E since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

We may use an “aggressive” modelling strategy where we assume
δ1 = 0 which allows us to promote some polynomials from S to H.
The “normal” modelling assumes δ1 = 0 + ε.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London— Cold Boot Key Recovery using Polynomial System Solving with Noise
26/42



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application Appendix: Modular Addition

AES [4] I

Core ⊕ ⊕ ⊕ ⊕

Core ⊕ ⊕ ⊕ ⊕
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AES [4] II

Most of the key schedule is linear.

The original key k appears in the output.

The S-box size is 8-bit (explicit degree: 7).
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AES [4] III

Gurobi [6]
N δ0 a #cores cutoff t r max t
3 0.15 – 24 ∞ 100% 17956.4s
3 0.15 – 2 240.0s 25% 240.0s
3 0.30 + 24 3600.0s 25% 3600.0s
3 0.35 + 24 7200.0s 10% 7200.0s
3 0.35 + 24 28800.0s 30% 28800.0s

SCIP (hardlp.set) [1]
3 0.15 + 1 3600.0s 65% 3600.0s
3 0.30 + 1 7200.0s 45% 7200.0s
3 0.35 + 1 10800.0s 10% 10800.0s
3 0.40 + 1 14400.0s 0% 14400.0s
4 0.40 + 1 14400.0s 10% 14400.0s
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Serpent [2] I

w−8 w−7 w−6 w−5 w−4 w−3 w−2 w−1

wi−8 wi−7 wi−6 wi−5 wi−4 wi−3 wi−2 wi−1iφ wi

⊕ ⊕ ⊕ ⊕⊕
≪11

wi wi+1 wi+2 wi+3

S

ki ki+1 ki+2 ki+3
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Serpent [2] II

All key schedule output bits depend non-linearly on the input.

The original key k does not appear in the output.

The S-box size is 4-bit (explicit degree: 3).
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Serpent [2] III

Gurobi [6]
N δ0 a #cores cutoff t r Max t
8 0.05 – 2 60.0s 50% 16.22s

12 0.05 – 2 60.0s 85% 60.00s
8 0.15 – 24 600.0s 20% 103.17s

12 0.15 – 24 600.0s 55% 600.00s
12 0.30 + 24 7200.0s 20% 7200.00s

SCIP (hardlp.set) [1]
8 0.15 – 1 3600.0s 15% 3600.00s
8 0.15 + 1 3600.0s 5% 259.97s

12 0.15 + 1 3600.0s 40% 271.47s
16 0.15 + 1 3600.0s 45% 1942.27s
12 0.30 + 1 3600.0s 25% 3600.00s
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Serpent [2] IV

Ad-hoc approach:

We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

On average the noise free output should have 64 bits set to zero.

In order to consider an error rate up to δ0, we have to consider

dδ0·64e∑
i=0

(
64 + dδ0 · 64e

i

)
candidates and test them.

If δ0 = 0.15 we have ≈ 236.87.

If δ0 = 0.30 we have ≈ 262.
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Twofish [8] I

known constant known constant

⊕ ⊕M0 M1

X2i X2i+1

Q0 Q0 Q1 Q1 Q0 Q0 Q1 Q1

Y2i Y2i+1

⊕ ⊕M2 M3

Z2i Z2i+1

MDS MDS

Ai Bi

The output of the
key schedule is
then

Ai � Bi

and

Ai � 2 · Bi .
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Twofish [8] II

The input k (M0, . . . ,M3) does not appear in the output.

All output bits depend non-linearly on the input.

The S-box (Q0,Q1) size is 8-bit (explicit degree: 7)

There is a modular addition (mod 232) at the end.

As of now, we cannot recover the key using mixed integer programming.
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Twofish [8] III

Ad-hoc approach:

We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

On average the noise free output should have 64 bits set to zero.

In order to consider an error rate up to δ0, we have to consider

dδ0·64e∑
i=0

(
64 + dδ0 · 64e

i

)
candidates and test them.

If δ0 = 0.15 we have ≈ 236.87.

If δ0 = 0.30 we have ≈ 262.

Due to the lack of inner diffusion solving the system for each
instance is easy.
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Representation

Modular addition modulo 232 is used in many cryptographic algorithms to
provide non-linearity over F2. However, over the integers this is linear.

We represent the addition A� B = C modulo 2N as

0 =
n−1∑
i=0

2iAi +
n−1∑
i=0

2iBi −
n−1∑
i=0

2iCi − 2n

for n ∈ {1, . . . ,N} and m ∈ {0, 1}.

However, this representation may lead to overflows of machine ints and
floats.
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Thank you!
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