

▲ロ ▶ ▲局 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

Cold Boot Key Recovery using Polynomial System Solving with Noise

Martin Albrecht & Carlos Cid Information Security Group, Royal Holloway, University of London

Optimierungsseminar, Zuse Institute Berlin, 10. May 2010

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 1/42

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

1 Coldboot Attacks

- 2 Polynomial System Solving with Noise
- 3 Mixed Integer Programming
- 4 Application
- 5 Appendix: Modular Addition

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 2/42

Outline

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 3/42

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

- Cryptography provides the means to accomplish data integrity and confidentiality.
- For hard disk encryption we use **block ciphers** which take a *k*-bit key and encrypt *n*-bit blocks.
- All modern block cipher designs use relatively simple rounds which are repeated *m* times. In each round *n* bits of key material are mixed with the current state. Thus, we need to expand the *k*-bit key to $n \times (m+1)$ bits of key material: the **key schedule**.
- We have not seen practical attacks against industry strength block ciphers in decades.
- However, we might be able to exploit side-channel data leakage in order to break data confidentiality.

Coldboot Attacks I

イロト イボト イエト イエト ラー りくや

- In [7] a method for extracting cryptographic key material from DRAM used in modern computers was proposed.
- Contrary to popular belief information in DRAM is not instantly lost when the power is cut, but decays slowly over time.
- This decay can be further slowed down by cooling the chip.
- Thus, an attacker can
 - 1 deep-freeze a DRAM module
 - 2 move it to a target machine which dumps the content to disk
 - **3** find the most likely key candidate (which is erroneous due to decay)
 - 4 use some mechanism to correct those errors

The technique is called Coldboot attack in literature.

Coldboot Attacks II

Information Security Group

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Definition (The Coldboot Problem)

We are given

- 1 $\mathcal{K}: \mathbb{F}_2^n \to \mathbb{F}_2^N$ where N > n,
- 2 two real numbers 0 $\leq \delta_0, \delta_1 \leq 1$,
- 3 $K = \mathcal{KS}(k)$ and K_i the *i*-th bit of K.
- 4 $K' = (K'_0, K'_1, \dots, K'_{N-1}) \in \mathbb{F}_2^N$ based on the following process:
 - if $K_i = 0$, then let $Pr[K'_i = 1] = \delta_1$ and $Pr[K'_i = 0] = 1 \delta_1$
 - if $K_i = 1$, then let $Pr[K'_i = 0] = \delta_0$ and $Pr[K'_i = 1] = 1 \delta_0$.
- **5** and some control function $\mathcal{E} : \mathbb{F}_2^n \to \{ True, False \}$, which returns true for the pre-image of the noise free version of K.

The task is to recover k such that $\mathcal{E}(k)$ returns *True* or a noise-free K.

The Coldboot problem is equivalent to decoding a (non-)linear code with biased noise.

Coldboot Attacks III

Results in [7]:

Cipher	δ_0	δ_1	Success	Time
DES	0.10	0.001	100%	-
DES	0.50	0.001	98%	-
AES	0.15	0.001	100%	1s
AES	0.30	0.001	100%	30s

Can we do better and can we recover keys for more complicated key schedules like Serpent?

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 7/42

Outline

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ ・ う へ つ ・

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 8/42

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

We define polynomial system solving (**PoSSo**) as the problem of finding a solution to a system of polynomial equations over some field.

Definition (PoSSo)

PoSSo

Consider the set $F = \{f_0, \ldots, f_{m-1}\}$ where each $f_i \in \mathbb{F}[x_0, \ldots, x_{n-1}]$.

A solution to F is any point $x \in \mathbb{F}^n$ such that

 $\forall f_i \in F : f_i(x) = 0.$

Note, that we restrict ourselves to solutions in the base field here.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 9/42

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

We can define a family of **Max-PoSSo** problems, analogous to the well known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 10/42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

Definition (Max-PoSSo)

Find a point $x \in \mathbb{F}^n$ which satisfies the **maximum number** of polynomials in $F = \{f_0, \ldots, f_{m-1}\} \subset \mathbb{F}[x_0, \ldots, x_{n-1}].$

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 11/42

Max-PoSSo III

イロト イボト イエト イエト ラー りくや

Definition (Partial Max-PoSSo)

Find a point $x \in \mathbb{F}^n$ such that for **two sets of polynomials** \mathcal{H} and \mathcal{S} in $\mathbb{F}[x_0, \ldots, x_{n-1}]$

- $\forall f \in \mathcal{H} : f(x) = 0$ and
- the number of polynomials $f \in S$ with f(x) = 0 is maximised.
- Max-PoSSo is Partial Max-Posso with $\mathcal{H} = \emptyset$.
- $\blacksquare \ \mathcal{H}$ for "hard" and $\mathcal S$ for "soft".
- Both terms are borrowed from Partial Max-SAT.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 12/42

Max-PoSSo IV

イロト (過) (目) (日) (日) (の)

Definition (Partial Weighted Max-PoSSo)

Find a point $x \in \mathbb{F}^n$ such that

- $\forall f \in \mathcal{H} : f(x) = 0$ and
- $\sum_{f \in S} C(f, x)$ is minimized

where $C: f \in S, x \in \mathbb{F}^n \to \mathbb{R}_{\geq 0}$ is a **cost function** which

• returns 0 if f(x) = 0 and

some value > 0 if $f(x) \neq 0$.

Partial Max-PoSSo is Weighted Partial Max-PoSSo where C(f, x) returns 1 if $f(x) \neq 0$ for all $f \in S$.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving w 13/42

Coldboot as Partial Weighted Max-PosSon (

- Let $F_{\mathcal{K}}$ be an equation system corresponding to \mathcal{K} .
- Assume that for each noisy output bit K'_i there is some $f_i \in F_{\mathcal{K}}$ of the form $g_i + K'_i$ where g_i is some polynomial.
- Assume that these are the only polynomials involving output bits.
- Denote the set of these polynomials S.
- Denote the set of all remaining polynomials $\in F_{\mathcal{K}}$ as \mathcal{H} .
- Define the cost function C as a function which returns

$$\begin{array}{l} \frac{1}{\delta_0} & \text{ for } K'_i = 0, f_i(x) \neq 0 \\ \frac{1}{\delta_1} & \text{ for } K'_i = 1, f_i(x) \neq 0 \\ 0 & \text{ otherwise } \end{array} .$$

Express \mathcal{E} as a polynomial system which is satisfiable for k only and add these polynomials to \mathcal{H} .

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○○○

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving w 14/42

Other Applications

イロト (過) (日) (日) (日) (日) (日)

RFID security is often based on the LPN problem which is easily described as a Max-PoSSo problem.

Lattices security often rests on the LWE problem which is easily described as a Max-PoSSo problem.

Side-Channel data leakage is often noisy.

Algebraic Attacks can be improved by simplifying equation systems using probabilistic equations.

The family of Max-PoSSo problems has not be studied before as far as we can tell. There is some connection to solving polynomial systems over fixed precision real-numbers.

Outline

1 Coldboot Attacks

- 2 Polynomial System Solving with Noise
- 3 Mixed Integer Programming
- 4 Application
- 5 Appendix: Modular Addition

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 16/42

Mixed Integer Programming I

Integer optimization deals with the problem of minimising (or maximising) a function in several variables subject to linear equality and inequality constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a problem of the form

$$\min_{x} \{ c^{\mathsf{T}} x | Ax \leq b, x \in \mathbb{Z}^{k} \times \mathbb{R}^{l} \}$$

where

• A is an $m \times n$ -matrix (n = k + l),

b is an *m*-vector and *c* is an *n*-vector.

Mixed Integer Programming II

Example

Maximise x + 5y, thus c = (1,5), subject to the constraints $x + 0.2y \le 4$ and $1.5x + 3y \le 4$ where $x \ge 0$ is real valued and $y \ge 0$ is integer valued.

Information Security Group

イロト イヨト イヨト ヨー りくや

The optimal value for $c^T x$ is $5\frac{2}{3}$ for $x = \frac{2}{3}$ and y = 1.

```
sage: p = MixedIntegerLinearProgram()
sage: x, y = p.new_variable(), p.new_variable()
sage: p.set_integer(y[0])
sage: p.add_constraint(x[0] + 0.2*y[0], max=4)
sage: p.add_constraint(1.5*x[0] + 3*y[0], max=4)
sage: p.set_min(x[0],0); p.set_min(y[0],0)
sage: p.set_objective(x[0] + 5*y[0])
sage: p.solve() # work in progress (#8672): allow solver='SCIP'
5.66666666666666666
```

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving w 18/42

PoSSo as MIP I

Consider some $f \in \mathbb{F}_2[x_0, \ldots, x_{n-1}]$ and let \mathcal{Z} a function that takes a polynomial over \mathbb{F}_2 lifts it to the integers. Analogous for elements in \mathbb{F}_2 .

Information Security Group

イロト イボト イエト イエト シックへの

- **1** Restrict all x_i to binary values.
- **2** Evaluate $\mathcal{Z}(f)$ on all $\{\mathcal{Z}(x) \mid x \in \mathbb{F}_2^n, f(x) = 0\}$.
- **3** Let ℓ be the minimum value and u the maximum value.
- 4 Introduce some integer variable $\frac{\ell}{2} \leq m \leq \frac{u}{2}$.
- **5** Replace each monomial in f 2m by a new linearised variable, call the result g and add the linear constraint g = 0.
- **6** For each monomial $t = \prod_{i=1}^{N} x_i$
 - add a constraint $x_i \ge t$ and
 - add a constraint $0 \leq \sum_{i=1}^{N} x_i t \leq N 1$.

This is the Integer Adapted Standard Conversion [3].

PoSSo as MIP II

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Example

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 20/42

PoSSo as MIP III

```
sage: attach anf2mip.py
sage: B. < a, b, c > = BooleanPolynomialRing()
sage: f = a * c + a + b
sage: bc = BooleanPolynomialMIPConverter()
sage: p = bc.integer_adapted_standard_conversion([f]); p
Mixed Integer Program ( minimization , ...
sage: p.show()
Minimization ·
  \times 1 + \times 2 + \times 3 + \times 4
Constraints:
  0 <= -2 \times 0 + x_1 + x_2 + x_3 <= 0
  -1 \le x 2 - 1 x 3 \le 0
  -1 \le x_2 - 1 x_4 \le 0
  0 <= -1 \times 2 + \times 3 + \times 4 <= 1
Variables:
  x_0 is an integer variable (min=0.0, max=1.0)
  x_1 is an boolean variable (min=0.0, max=1.0)
  x_2 is a real variable (min=0.0, max=1.0)
  x_3 is an boolean variable (min=0.0, max=1.0)
  x_4 is an boolean variable (min=0.0, max=1.0)
```

Information Security Group

イロト (過) (日) (日) (日) (日) (日)

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving w 21/42

PoSSo as MIP IV

sage: attach anf2mip.py

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

```
sage: f = a * c + a + b + 1
sage: g = a + c + 1
sage: p = bc.integer_adapted_standard_conversion([f]); p
Mixed Integer Program (...
sage: p.solve()
1 0
sage: bc.solve([f])
CPU Time: 0.00 Wall time: 0.00, Obj:
                                        1.00
{b: 1, c: 0, a: 0}
sage: bc.solve([f,g],solver='SCIP')
CPU Time: 0.00 Wall time: 0.00, Obj:
                                        1 00
{b: 0, c: 0, a: 1}
```

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London --- Cold Boot Key Recovery using Polynomial System Solving v

Partial Weighted Max-PoSSo as MIP

We only need to consider Partial Weighted Max-PoSSo because it is the most general case:

- Convert each $f \in \mathcal{H}$ to linear constraints as before.
- For each $f_i \in S$ add a new binary slack variable e_i to f_i and convert the resulting polynomial as before.
- The objective function we minimise is $\sum c_i e_i$ where c_i is the value of C(f, x) for some x such that $f(x) \neq 0$.

Any optimal solution $x \in S$ will be an optimal solution to the Partial Weighted Max-PoSSo problem.

▲ロ → ▲ 同 → ▲ 臣 → ▲ 臣 → 今 Q @

$\mathsf{Coldboot} \to \mathsf{Partial} \ \mathsf{Weighted} \ \mathsf{Max}\text{-}\mathsf{PoSSo} \to \mathsf{MIP}$

This approach is essentially the non-linear generalisation of decoding random linear codes with linear programming [5].

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 24/42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Outline

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

1 Coldboot Attacks

- 2 Polynomial System Solving with Noise
- 3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 25/42

イロト イボト イエト イエト ラー りくや

- We do not model & since its representation is often too costly; consequently we have no guarantee that the optimal k returned is indeed the k we are looking for.
- We do not include all equations available to us but restrict our attention to a subset (e.g. one or two rounds).
- We may use an "aggressive" modelling strategy where we assume $\delta_1 = 0$ which allows us to promote some polynomials from S to H. The "normal" modelling assumes $\delta_1 = 0 + \epsilon$.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 26/42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 27/42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

- Most of the key schedule is linear.
- The original key k appears in the output.
- The S-box size is 8-bit (explicit degree: 7).

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 28/42

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

		Gurobi [6]					
N	δ_0	а	#cores	cutoff t	r	max t	
3	0.15	-	24	∞	100%	17956.4s	
3	0.15	-	2	240.0s	25%	240.0s	
3	0.30	+	24	3600.0s	25%	3600.0s	
3	0.35	+	24	7200.0s	10%	7200.0s	
3	0.35	+	24	28800.0s	30%	28800.0s	
		SCIP (hardlp.set) [1]					
3	0.15	+	1	3600.0s	65%	3600.0s	
3	0.30	+	1	7200.0s	45%	7200.0s	
3	0.35	+	1	10800.0s	10%	10800.0s	
3	0.40	+	1	14400.0s	0%	14400.0s	
4	0.40	+	1	14400.0s	10%	14400.0s	

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 29/42

Serpent [2] I

・ロト ・聞ト ・ヨト ・ヨト

$$w_{-8}$$
 w_{-7}
 w_{-6}
 w_{-5}
 w_{-4}
 w_{-3}
 w_{-2}
 w_{-1}

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 30/42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

- All key schedule output bits depend non-linearly on the input.
- The original key k does not appear in the output.
- The S-box size is 4-bit (explicit degree: 3).

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 31/42

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

		Gurobi [6]					
N	δ_0	а	#cores	cutoff t	r	Max t	
8	0.05	-	2	60.0s	50%	16.22s	
12	0.05	-	2	60.0s	85%	60.00s	
8	0.15	-	24	600.0s	20%	103.17s	
12	0.15	-	24	600.0s	55%	600.00s	
12	0.30	+	24	7200.0s	20%	7200.00s	
		SCIP (hardlp.set) [1]					
8	0.15	-	1	3600.0s	15%	3600.00s	
8	0.15	+	1	3600.0s	5%	259.97s	
12	0.15	+	1	3600.0s	40%	271.47s	
16	0.15	+	1	3600.0s	45%	1942.27s	
12	0.30	+	1	3600.0s	25%	3600.00s	

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 32/42

Serpent [2] IV

Ad-hoc approach:

We wish to recover a 128-bit key, so we need to consider at least 128-bit of output.

Information Security Group

▲ロ ▶ ▲局 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

- On average the noise free output should have 64 bits set to zero.
- In order to consider an error rate up to δ_0 , we have to consider

$$\sum_{i=0}^{\delta_0 \cdot 64\rceil} \binom{64 + \lceil \delta_0 \cdot 64\rceil}{i}$$

candidates and test them.

- If $\delta_0 = 0.15$ we have $\approx 2^{36.87}$.
- If $\delta_0 = 0.30$ we have $\approx 2^{62}$.

The output of the key schedule is then

 $A_i \boxplus B_i$

and

 $A_i \boxplus 2 \cdot B_i$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 34/42

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- The input k (M_0, \ldots, M_3) does not appear in the output.
- All output bits depend non-linearly on the input.
- The S-box (Q_0, Q_1) size is 8-bit (explicit degree: 7)
- There is a modular addition (mod 2^{32}) at the end.

As of now, we cannot recover the key using mixed integer programming.

Twofish [8] III

Ad-hoc approach:

• We wish to recover a 128-bit key, so we need to consider at least 128-bit of output.

Information Security Group

イロト イボト イエト イエト ラー りくや

- On average the noise free output should have 64 bits set to zero.
- In order to consider an error rate up to δ_0 , we have to consider

$$\sum_{i=0}^{\lceil \delta_0 \cdot 64 \rceil} \binom{64 + \lceil \delta_0 \cdot 64 \rceil}{i}$$

candidates and test them.

- If $\delta_0 = 0.15$ we have $\approx 2^{36.87}$.
- If $\delta_0 = 0.30$ we have $\approx 2^{62}$.
- Due to the lack of inner diffusion solving the system for each instance is easy.

Outline

(日) (종) (종) (종) (종) (종)

1 Coldboot Attacks

- 2 Polynomial System Solving with Noise
- 3 Mixed Integer Programming
- 4 Application
- 5 Appendix: Modular Addition

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 37/42

イロト イヨト イヨト ヨー りくや

Modular addition modulo 2^{32} is used in many cryptographic algorithms to provide non-linearity over \mathbb{F}_2 . However, over the integers this is linear.

We represent the addition $A \boxplus B = C \mod 2^N$ as

$$0 = \sum_{i=0}^{n-1} 2^i A_i + \sum_{i=0}^{n-1} 2^i B_i - \sum_{i=0}^{n-1} 2^i C_i - 2^n$$

for $n \in \{1, \ldots, N\}$ and $m \in \{0, 1\}$.

Representation

However, this representation may lead to overflows of machine ints and floats.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 38/42

Thank you!

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v 39/42

Literature I

Tobias Achterberg.

Constraint Integer Programming. PhD thesis, TU Berlin, 2007. http://scip.zib.de.

Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block cipher proposal. In S. Vaudenay, editor, *Fast Software Encryption 1998*, volume 1372 of *Lecture Notes in Computer Science*, pages 222–238. Springer Verlag, 1998.

Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe. Bivium as a Mixed-Integer Linear programming problem. In Matthew G. Parker, editor, *Cryptography and Coding – 12th IMA International Conference*, volume 5921 of *Lecture Notes in Computer Science*, pages 133–152, Berlin, Heidelberg, New York, 2009. Springer Verlag.

Literature II

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael, 9 1999. Available at http://csrc.nist.gov/CryptoToolkit/aes/ rijndael/Rijndael-ammended.pdf.

Jon Feldman.

Decoding Error-Correcting Codes via Linear Programming. PhD thesis, Massachusetts Institute of Technology, 2003.

Inc. Gurobi Optimization.

Gurobi 2.0.

http://www.gurobi.com, 2009.

Literature III

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember: Cold boot attacks on encryption keys. In *Proceedings of 17th USENIX Security Symposium*, pages 45–60, 2008.

Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson. Twofish: A 128-bit Block Cipher, 1998. Available at http://www.schneier.com/paper-twofish-paper.pdf.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving w 42/42