Cold Boot Key Recovery using Polynomial System Solving with Noise

Martin Albrecht \& Carlos Cid

Information Security Group, Royal Holloway, University of London

Optimierungsseminar, Zuse Institute Berlin, 10. May 2010

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Background

- Cryptography provides the means to accomplish data integrity and confidentiality.
- For hard disk encryption we use block ciphers which take a k-bit key and encrypt n-bit blocks.
- All modern block cipher designs use relatively simple rounds which are repeated m times. In each round n bits of key material are mixed with the current state. Thus, we need to expand the k-bit key to $n \times(m+1)$ bits of key material: the key schedule.
- We have not seen practical attacks against industry strength block ciphers in decades.
- However, we might be able to exploit side-channel data leakage in order to break data confidentiality.

Coldboot Attacks I

- In [7] a method for extracting cryptographic key material from DRAM used in modern computers was proposed.
- Contrary to popular belief information in DRAM is not instantly lost when the power is cut, but decays slowly over time.
- This decay can be further slowed down by cooling the chip.
- Thus, an attacker can

1 deep-freeze a DRAM module
2 move it to a target machine which dumps the content to disk
3 find the most likely key candidate (which is erroneous due to decay)
4 use some mechanism to correct those errors
The technique is called Coldboot attack in literature.

Coldboot Attacks II

Definition (The Coldboot Problem)
We are given
$\mathbb{K}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{N}$ where $N>n$,
2 two real numbers $0 \leq \delta_{0}, \delta_{1} \leq 1$,
3 $K=\mathcal{K S}(k)$ and K_{i} the i-th bit of K.
$4 K^{\prime}=\left(K_{0}^{\prime}, K_{1}^{\prime}, \ldots, K_{N-1}^{\prime}\right) \in \mathbb{F}_{2}^{N}$ based on the following process:

- if $K_{i}=0$, then let $\operatorname{Pr}\left[K_{i}^{\prime}=1\right]=\delta_{1}$ and $\operatorname{Pr}\left[K_{i}^{\prime}=0\right]=1-\delta_{1}$
- if $K_{i}=1$, then let $\operatorname{Pr}\left[K_{i}^{\prime}=0\right]=\delta_{0}$ and $\operatorname{Pr}\left[K_{i}^{\prime}=1\right]=1-\delta_{0}$.

5 and some control function $\mathcal{E}: \mathbb{F}_{2}^{n} \rightarrow\{$ True, False $\}$, which returns true for the pre-image of the noise free version of K.
The task is to recover k such that $\mathcal{E}(k)$ returns True or a noise-free K.
The Coldboot problem is equivalent to decoding a (non-)linear code with biased noise.

Coldboot Attacks III

Results in [7]:

Cipher	δ_{0}	δ_{1}	Success	Time
DES	0.10	0.001	100%	-
DES	0.50	0.001	98%	-
AES	0.15	0.001	100%	1 s
AES	0.30	0.001	100%	30 s

Can we do better and can we recover keys for more complicated key schedules like Serpent?

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

PoSSo

We define polynomial system solving (PoSSo) as the problem of finding a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set $F=\left\{f_{0}, \ldots, f_{m-1}\right\}$ where each $f_{i} \in \mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$.
A solution to F is any point $x \in \mathbb{F}^{n}$ such that

$$
\forall f_{i} \in F: f_{i}(x)=0
$$

Note, that we restrict ourselves to solutions in the base field here.

Max-PoSSo I

We can define a family of Max-PoSSo problems, analogous to the well known Max-SAT family of problems.

```
http://en.wikipedia.org/wiki/MAX-SAT
```


Max-PoSSo II

Definition (Max-PoSSo)
Find a point $x \in \mathbb{F}^{n}$ which satisfies the maximum number of polynomials in $F=\left\{f_{0}, \ldots, f_{m-1}\right\} \subset \mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$.

Max-PoSSo III

Definition (Partial Max-PoSSo)

Find a point $x \in \mathbb{F}^{n}$ such that for two sets of polynomials \mathcal{H} and \mathcal{S} in $\mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$

■ $\forall f \in \mathcal{H}: f(x)=0$ and

- the number of polynomials $f \in \mathcal{S}$ with $f(x)=0$ is maximised.
- Max-PoSSo is Partial Max-Posso with $\mathcal{H}=\varnothing$.
- \mathcal{H} for "hard" and \mathcal{S} for "soft".
- Both terms are borrowed from Partial Max-SAT.

Max-PoSSo IV

Definition (Partial Weighted Max-PoSSo)

Find a point $x \in \mathbb{F}^{n}$ such that

- $\forall f \in \mathcal{H}: f(x)=0$ and
- $\sum_{f \in \mathcal{S}} \mathcal{C}(f, x)$ is minimized
where $\mathcal{C}: f \in \mathcal{S}, x \in \mathbb{F}^{n} \rightarrow \mathbb{R}_{\geq 0}$ is a cost function which
- returns 0 if $f(x)=0$ and
- some value >0 if $f(x) \neq 0$.

Partial Max-PoSSo is Weighted Partial Max-PoSSo where $\mathcal{C}(f, x)$ returns 1 if $f(x) \neq 0$ for all $f \in \mathcal{S}$.

Coldboot as Partial Weighted Max-PosSoht

- Let $F_{\mathcal{K}}$ be an equation system corresponding to \mathcal{K}.
- Assume that for each noisy output bit K_{i}^{\prime} there is some $f_{i} \in F_{\mathcal{K}}$ of the form $g_{i}+K_{i}^{\prime}$ where g_{i} is some polynomial.
- Assume that these are the only polynomials involving output bits.
- Denote the set of these polynomials \mathcal{S}.
- Denote the set of all remaining polynomials $\in F_{\mathcal{K}}$ as \mathcal{H}.
- Define the cost function \mathcal{C} as a function which returns

$$
\begin{aligned}
& \frac{1}{\delta_{0}} \quad \text { for } K_{i}^{\prime}=0, f_{i}(x) \neq 0 \\
& \frac{1}{\delta_{1}} \quad \text { for } K_{i}^{\prime}=1, f_{i}(x) \neq 0 . \\
& 0
\end{aligned} \quad \text { otherwise } .
$$

- Express \mathcal{E} as a polynomial system which is satisfiable for k only and add these polynomials to \mathcal{H}.

Other Applications

RFID security is often based on the LPN problem which is easily described as a Max-PoSSo problem.
Lattices security often rests on the LWE problem which is easily described as a Max-PoSSo problem.
Side-Channel data leakage is often noisy.
Algebraic Attacks can be improved by simplifying equation systems using probabilistic equations.

The family of Max-PoSSo problems has not be studied before as far as we can tell. There is some connection to solving polynomial systems over fixed precision real-numbers.

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Mixed Integer Programming I

Integer optimization deals with the problem of minimising (or maximising) a function in several variables subject to linear equality and inequality constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a problem of the form

$$
\min _{x}\left\{c^{\top} x \mid A x \leq b, x \in \mathbb{Z}^{k} \times \mathbb{R}^{\prime}\right\}
$$

where

- A is an $m \times n$-matrix $(n=k+l)$,
- b is an m-vector and c is an n-vector.

Mixed Integer Programming II

Example

Maximise $x+5 y$, thus $c=(1,5)$, subject to the constraints $x+0.2 y \leq 4$ and $1.5 x+3 y \leq 4$ where $x \geq 0$ is real valued and $y \geq 0$ is integer valued.

The optimal value for $c^{T} x$ is $5 \frac{2}{3}$ for $x=\frac{2}{3}$ and $y=1$.

```
sage: p = MixedIntegerLinearProgram()
sage: x, y = p.new_variable(), p.new_variable()
sage: p.set_integer(y[0])
sage: p.add_constraint(x[0] + 0.2*y[0], max=4)
sage: p.add_constraint(1.5*x[0] + 3*y[0], max=4)
sage: p.set_min(x[0],0); p.set_min(y[0],0)
sage: p.set_objective(x[0] + 5*y[0])
sage: p.solve() # work in progress (#8672): allow solver='SCIP'
5.6666666666666661
```


PoSSo as MIP |

Consider some $f \in \mathbb{F}_{2}\left[x_{0}, \ldots, x_{n-1}\right]$ and let \mathcal{Z} a function that takes a polynomial over \mathbb{F}_{2} lifts it to the integers. Analogous for elements in \mathbb{F}_{2}.
11 Restrict all x_{i} to binary values.
12 Evaluate $\mathcal{Z}(f)$ on all $\left\{\mathcal{Z}(x) \mid x \in \mathbb{F}_{2}^{n}, f(x)=0\right\}$.
3 Let ℓ be the minimum value and u the maximum value.
(4) Introduce some integer variable $\frac{\ell}{2} \leq m \leq \frac{\mu}{2}$.

5 Replace each monomial in $f-2 m$ by a new linearised variable, call the result g and add the linear constraint $g=0$.
[6 For each monomial $t=\prod_{i=1}^{N} x_{i}$

- add a constraint $x_{i} \geq t$ and
- add a constraint $0 \leq \sum_{i=1}^{N} x_{i}-t \leq N-1$.

This is the Integer Adapted Standard Conversion [3].

PoSSo as MIP II

Example
Consider $f=a c+a+b+c+1$
■ $\left\{x \mid x \in \mathbb{F}_{2}^{3}, f(x)=0\right\}=\{(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}$

- $\ell=1, u=2$
$1 \mathrm{~g}=\mathrm{M}+a+b+c+1-2 m=0$
$2 a \geq M$
$3 c \geq M$
$40 \leq a+c-M \leq 1$

PoSSo as MIP III

sage: attach anf2mip.py
sage: $B .<a, b, c>=$ BooleanPolynomialRing ()
sage: $f=a * c+a+b$
sage: $b c=$ BooleanPolynomialMIPConverter ()
sage: $p=b c$.integer_adapted_standard_conversion ([f]); p
Mixed Integer Program (minimization, ...
sage: p.show ()
Minimization:
$x_{-} 1+x_{-} 2+x_{-} 3+x_{-} 4$
Constraints:
$0<=-2 x_{-} 0+x_{-} 1+x_{-} 2+x_{-} 3<=0$
$-1<=x_{-} 2-1 \times x_{-}<=0$
$-1<=x_{-} 2-1 \times x_{-}<=0$
$0<=-1 \times$ _ $2+x_{_} 3+x_{_} 4<=1$
Variables:
$x_{-} 0$ is an integer variable $(\min =0.0, \max =1.0)$
$x_{-} 1$ is an boolean variable $(\min =0.0, \max =1.0)$
$x_{2} 2$ is a real variable $(\min =0.0, \max =1.0)$
$x _3$ is an boolean variable $(\min =0.0, \max =1.0)$
$x_{-} 4$ is an boolean variable $(\min =0.0, \max =1.0)$

PoSSo as MIP IV

```
sage: attach anf2mip.py
sage: \(B .<a, b, c>=\) BooleanPolynomialRing ()
sage: \(f=a * c+a+b+1\)
sage: \(g=a+c+1\)
sage: \(p=b c\).integer_adapted_standard_conversion ([f]); \(p\)
Mixed Integer Program (...
sage: p.solve()
1.0
sage: bc.solve([f])
CPU Time: 0.00 Wall time: 0.00 , Obj: 1.00
\(\{b: 1, c: 0, a: 0\}\)
sage: bc.solve([f,g], solver='SCIP')
CPU Time: 0.00 Wall time: 0.00, Obj: 1.00
\(\{b: 0, c: 0, a: 1\}\)
```


We only need to consider Partial Weighted Max-PoSSo because it is the most general case:

- Convert each $f \in \mathcal{H}$ to linear constraints as before.
- For each $f_{i} \in \mathcal{S}$ add a new binary slack variable e_{i} to f_{i} and convert the resulting polynomial as before.
- The objective function we minimise is $\sum c_{i} e_{i}$ where c_{i} is the value of $\mathcal{C}(f, x)$ for some x such that $f(x) \neq 0$.

Any optimal solution $x \in S$ will be an optimal solution to the Partial Weighted Max-PoSSo problem.

Coldboot as MIP

Coldboot \rightarrow Partial Weighted Max-PoSSo \rightarrow MIP

This approach is essentially the non-linear generalisation of decoding random linear codes with linear programming [5].

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Simplifications

- We do not model \mathcal{E} since its representation is often too costly; consequently we have no guarantee that the optimal k returned is indeed the k we are looking for.
- We do not include all equations available to us but restrict our attention to a subset (e.g. one or two rounds).
- We may use an "aggressive" modelling strategy where we assume $\delta_{1}=0$ which allows us to promote some polynomials from \mathcal{S} to \mathcal{H}. The "normal" modelling assumes $\delta_{1}=0+\epsilon$.

AES [4] I

AES [4] II

- Most of the key schedule is linear.
- The original key k appears in the output.
- The S-box size is 8 -bit (explicit degree: 7).

AES [4] III

		Gurobi [6]					
N	δ_{0}	a	\#cores	cutoff t	r	$\max t$	
3	0.15	-	24	∞	100%	17956.4 s	
3	0.15	-	2	240.0 s	25%	240.0 s	
3	0.30	+	24	3600.0 s	25%	3600.0 s	
3	0.35	+	24	7200.0 s	10%	7200.0 s	
3	0.35	+	24	28800.0 s	30%	28800.0 s	
	SCIP (hardlp.set) $[1]$						
3	0.15	+	1	3600.0 s	65%	3600.0 s	
3	0.30	+	1	7200.0 s	45%	7200.0 s	
3	0.35	+	1	10800.0 s	10%	10800.0 s	
3	0.40	+	1	14400.0 s	0%	14400.0 s	
4	0.40	+	1	14400.0 s	10%	14400.0 s	

Serpent [2] I

Serpent [2] II

- All key schedule output bits depend non-linearly on the input.
- The original key k does not appear in the output.
- The S-box size is 4 -bit (explicit degree: 3).

Serpent [2] III

		Gurobi [6]					
N	δ_{0}	a	\#cores	cutoff t	r	Max t	
8	0.05	-	2	60.0 s	50%	16.22 s	
12	0.05	-	2	60.0 s	85%	60.00 s	
8	0.15	-	24	600.0 s	20%	103.17 s	
12	0.15	-	24	600.0 s	55%	600.00 s	
12	0.30	+	24	7200.0 s	20%	7200.00 s	
	SCIP (hardlp.set) $[1]$						
8	0.15	-	1	3600.0 s	15%	3600.00 s	
8	0.15	+	1	3600.0 s	5%	259.97 s	
12	0.15	+	1	3600.0 s	40%	271.47 s	
16	0.15	+	1	3600.0 s	45%	1942.27 s	
12	0.30	+	1	3600.0 s	25%	3600.00 s	

Serpent [2] IV

Ad-hoc approach:

- We wish to recover a 128-bit key, so we need to consider at least 128-bit of output.
- On average the noise free output should have 64 bits set to zero.
- In order to consider an error rate up to δ_{0}, we have to consider

$$
\sum_{i=0}^{\left\lceil\delta_{0} \cdot 64\right\rceil}\binom{64+\left\lceil\delta_{0} \cdot 64\right\rceil}{ i}
$$

candidates and test them.

- If $\delta_{0}=0.15$ we have $\approx 2^{36.87}$.
- If $\delta_{0}=0.30$ we have $\approx 2^{62}$.

Twofish [8] I

known constant		
M_{0}		\oplus
$X_{2 i}$		
Q_{0}	Q_{0}	Q_{1}
$Y_{2 i}$		
Q_{1}		
M_{2}		\oplus
$Z_{2 i}$		
MDS		
A_{i}		

The output of the key schedule is then
$A_{i} \boxplus B_{i}$
and

$$
A_{i} \boxplus 2 \cdot B_{i} .
$$

Twofish [8] II

- The input $k\left(M_{0}, \ldots, M_{3}\right)$ does not appear in the output.
- All output bits depend non-linearly on the input.
- The S-box $\left(Q_{0}, Q_{1}\right)$ size is 8 -bit (explicit degree: 7)
- There is a modular addition $\left(\bmod 2^{32}\right)$ at the end.

As of now, we cannot recover the key using mixed integer programming.

Twofish [8] III

Ad-hoc approach:

- We wish to recover a 128 -bit key, so we need to consider at least 128-bit of output.
■ On average the noise free output should have 64 bits set to zero.
- In order to consider an error rate up to δ_{0}, we have to consider

$$
\sum_{i=0}^{\left\lceil\delta_{0} \cdot 64\right\rceil}\binom{64+\left\lceil\delta_{0} \cdot 64\right\rceil}{ i}
$$

candidates and test them.

- If $\delta_{0}=0.15$ we have $\approx 2^{36.87}$.
- If $\delta_{0}=0.30$ we have $\approx 2^{62}$.
- Due to the lack of inner diffusion solving the system for each instance is easy.

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

5 Appendix: Modular Addition

Representation

Modular addition modulo 2^{32} is used in many cryptographic algorithms to provide non-linearity over \mathbb{F}_{2}. However, over the integers this is linear.

We represent the addition $A \boxplus B=C$ modulo 2^{N} as

$$
0=\sum_{i=0}^{n-1} 2^{i} A_{i}+\sum_{i=0}^{n-1} 2^{i} B_{i}-\sum_{i=0}^{n-1} 2^{i} C_{i}-2^{n}
$$

for $n \in\{1, \ldots, N\}$ and $m \in\{0,1\}$.
However, this representation may lead to overflows of machine ints and floats.

Thank you!

Literature I

嗇 Tobias Achterberg.
Constraint Integer Programming.
PhD thesis, TU Berlin, 2007.
http://scip.zib.de.
Eli Biham, Ross J. Anderson, and Lars R. Knudsen.
Serpent: A new block cipher proposal.
In S. Vaudenay, editor, Fast Software Encryption 1998, volume 1372
of Lecture Notes in Computer Science, pages 222-238. Springer Verlag, 1998.

Rulia Borghoff, Lars R. Knudsen, and Mathias Stolpe. Bivium as a Mixed-Integer Linear programming problem. In Matthew G. Parker, editor, Cryptography and Coding - 12th IMA International Conference, volume 5921 of Lecture Notes in Computer Science, pages 133-152, Berlin, Heidelberg, New York, 2009. Springer Verlag.

Literature II

圊 Joan Daemen and Vincent Rijmen.
AES Proposal: Rijndael, 91999.
Available at http://csrc.nist.gov/CryptoToolkit/aes/
rijndael/Rijndael-ammended.pdf.
(Jon Feldman.
Decoding Error-Correcting Codes via Linear Programming. PhD thesis, Massachusetts Institute of Technology, 2003.
國 Inc. Gurobi Optimization.
Gurobi 2.0.
http://www.gurobi.com, 2009.

Literature III

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.Lest we remember: Cold boot attacks on encryption keys.
In Proceedings of 17th USENIX Security Symposium, pages 45-60, 2008.
(i- Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson.
Twofish: A 128-bit Block Cipher, 1998.
Available at
http://www.schneier.com/paper-twofish-paper.pdf.

