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Background

m Cryptography provides the means to accomplish data integrity and
confidentiality.

m For hard disk encryption we use block ciphers which take a k-bit
key and encrypt n-bit blocks.

m All modern block cipher designs use relatively simple rounds which
are repeated m times. In each round n bits of key material are mixed
with the current state. Thus, we need to expand the k-bit key to
n x (m+ 1) bits of key material: the key schedule.

m We have not seen practical attacks against industry strength block
ciphers in decades.

m However, we might be able to exploit side-channel data leakage in
order to break data confidentiality.
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Coldboot Attacks |

m In [7] a method for extracting cryptographic key material from
DRAM used in modern computers was proposed.

m Contrary to popular belief information in DRAM is not instantly lost
when the power is cut, but decays slowly over time.

m This decay can be further slowed down by cooling the chip.

m Thus, an attacker can

deep-freeze a DRAM module

move it to a target machine which dumps the content to disk

find the most likely key candidate (which is erroneous due to decay)
1 use some mechanism to correct those errors

The technique is called Coldboot attack in literature.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v
5/42



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application Appendix: Modular Addition

Coldboot Attacks Il

Definition (The Coldboot Problem)
We are given
K : F3 — FY where N > n,
two real numbers 0 < §g, 01 < 1,
K = KS(k) and K; the i-th bit of K.
@ K = (K, Ki,...,Ky_1) € FY based on the following process:

m if K; =0, then let Pr[K{ =1] =41 and Pr[K{ =0] =1— &
m if Ki =1, then let Pr[K{ = 0] = o and Pr[K{ = 1] =1 — .

and some control function & : F5 — { True, False}, which returns
true for the pre-image of the noise free version of K.

The task is to recover k such that £(k) returns True or a noise-free K.

V.

The Coldboot problem is equivalent to decoding a (non-)linear code with
biased noise.
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Coldboot Attacks Il

Results in [7]:

Cipher do 01 | Success | Time
DES | 0.10 | 0.001 100% -
DES | 0.50 | 0.001 98% -
AES | 0.15 | 0.001 100% 1s
AES | 0.30 | 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules like Serpent?
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PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {fy, ..., f,_1} where each f; € F[xo, ..., x,_1].

A solution to F is any point x € F” such that

Vf € F: fi(x) =0.

Note, that we restrict ourselves to solutions in the base field here.
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Max-PoSSo |

We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v
10/42


http://en.wikipedia.org/wiki/MAX-SAT

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application Appendix: Modular Addition

Max-PoSSo Il

Definition (Max-PoSSo)

Find a point x € F” which satisfies the maximum number of
polynomials in F = {fo,...,fm_1} C F[xo, .-, Xp_1].
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Max-PoSSo IlI

Definition (Partial Max-PoSSo)

Find a point x € F" such that for two sets of polynomials 7 and S in
IF[X()7 500 ,Xn_]_]

mVfeH:f(x)=0and
m the number of polynomials ¥ € S with f(x) = 0 is maximised.

m Max-PoSSo is Partial Max-Posso with H = &.
m H for “hard” and S for “soft”.

m Both terms are borrowed from Partial Max-SAT.
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Max-PoSSo IV

Definition (Partial Weighted Max-PoSSo)
Find a point x € F” such that
mVfeH:f(x)=0and
" > s C(f, x) is minimized

where C: f € §,x € F” — R is a cost function which
m returns 0 if f(x) =0 and
m some value > 0 if f(x) # 0.

Partial Max-PoSSo is Weighted Partial Max-PoSSo
where C(f, x) returns 1 if f(x) # 0 for all f € S.
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Coldboot as Partial Welghted Max-PoSSo

m Let F be an equation system corresponding to K.

Assume that for each noisy output bit K there is some f; € Fx of
the form g; + K! where g; is some polynomial.

Assume that these are the only polynomials involving output bits.
Denote the set of these polynomials S.
Denote the set of all remaining polynomials € Fi as H.

Define the cost function C as a function which returns

for K/ =0,fi(x)#0
for K =1,fi(x)#0 .
otherwise

o S-S

m Express £ as a polynomial system which is satisfiable for k only and
add these polynomials to H.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v
14/42



Col Attacks Polynomial System Solving with Noise Mixed Integ \ppendix: Modular Addition

Other Applications

RFID security is often based on the LPN problem which is easily
described as a Max-PoSSo problem.

Lattices security often rests on the LWE problem which is easily
described as a Max-PoSSo problem.
Side-Channel data leakage is often noisy.

Algebraic Attacks can be improved by simplifying equation systems using
probabilistic equations.

The family of Max-PoSSo problems has not be studied before as far as
we can tell. There is some connection to solving polynomial systems over
fixed precision real-numbers.
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Mixed Integer Programming |

Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a
problem of the form

min{c"x|Ax < b,x € Z* x R'}

where

m Ais an m x n-matrix (n = k + /),

m b is an m-vector and c is an n-vector.
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Mixed Integer Programming ||

Maximise x + 5y, thus ¢ = (1,5), subject to the constraints x + 0.2y < 4
and 1.5x + 3y < 4 where x > 0 is real valued and y > 0 is integer valued.

: T, i« E2 _2 _
The optimal value for ¢’ x is 55 for x = 5 and y = 1.

sage: p = MixedlntegerLinearProgram ()

sage: x, y = p.new_variable(), p.new_variable()
sage: p.set_integer(y[0])

sage: p.add_constraint(x[0] + 0.2xy[0], max=4)
sage: p.add_constraint(1.5%xx[0] + 3%y [0], max=4)
sage: p.set_min(x[0],0); p.set_min(y[0],0)

sage: p.set_objective(x[0] + 5xy[0])

sage: p.solve() # work in progress (#8672): allow solver='SCIP’
5. 6666666666666661
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PoSSo as MIP |

Consider some f € Fy[x,...,Xx,—1] and let Z a function that takes a
polynomial over [F, lifts it to the integers. Analogous for elements in 5.

Restrict all x; to binary values.

Evaluate Z(f) on all {Z(x) | x € F3, f(x) = 0}.

Let ¢ be the minimum value and u the maximum value.
Introduce some integer variable % <m< %

Replace each monomial in f —2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

. N
[@ For each monomial t =[];

=1 Xi

m add a constraint x; > t and
® add a constraint 0 < E,N:l xi—t<N-—1.

This is the Integer Adapted Standard Conversion [3].
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Consider f =ac+a+b+c+1
[ {x|XEIF%,f(x):O}:{(1,0,0),(0,1,0),(0,0,1),(1,0,1)}
ml=1u=2
g=M+a+b+c+1-2m=0
a>M
c>M
0<at+c—M<1
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PoSSo as MIP I

sage: attach anf2mip.py
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = axc + a + b
sage: bc = BooleanPolynomialMIPConverter ()
sage: p = bc.integer_adapted_standard_conversion ([f]); p
Mixed Integer Program ( minimization,
sage: p.show()
Minimization:

x-1 +x.2 +x_3 +x_4
Constraints:

0 <= -2 x.0 +x_-1 4x-2 4x.3 <=0

-1 <= x.2 -1 x.3 <=0

-1 <= x2 -1 x4 <=0

0 <= -1 x.2 +x.3 +x_4 <=1
Variables:
_0 is an integer variable (min=0.0, max=1.0)
1 is an boolean variable (min=0.0, max=1.0)
2 is a real variable (min=0.0, max=1.0)
-3 is an boolean variable (min=0.0, max=1.0)
4 is an boolean variable (min=0.0, max=1.0)
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PoSSo as MIP IV

sage: attach anf2mip.py

sage: B.<a,b,c> = BooleanPolynomialRing()
sage: f = axc +a + b + 1

sage: g =a + c + 1

sage: p = bc.integer_adapted_standard_conversion ([f]); p
Mixed Integer Program (...

sage: p.solve()

1.0

sage: bc.solve ([f])
CPU Time: 0.00 Wall time: 0.00, Obj: 1.00
{b: 1, c: 0, a: 0}

sage: bc.solve ([f,g],solver="SCIP")
CPU Time: 0.00 Wall time: 0.00, Obj: 1.00
{b: 0, ¢: 0, a: 1}
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Partial Weighted Max-PoSSo as MIP

We only need to consider Partial Weighted Max-PoSSo because it is the
most general case:
m Convert each f € H to linear constraints as before.

m For each f; € S add a new binary slack variable e; to f; and convert
the resulting polynomial as before.

m The objective function we minimise is ) ¢;je; where ¢; is the value of
C(f,x) for some x such that f(x) # 0.

Any optimal solution x € S will be an optimal solution to the Partial
Weighted Max-PoSSo problem.
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Coldboot as MIP

Coldboot — Partial Weighted Max-PoSSo — MIP J

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [5].
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Simplifications

= We do not model £ since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

m We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

= We may use an “aggressive” modelling strategy where we assume
01 = 0 which allows us to promote some polynomials from S to H.
The “normal” modelling assumes 3 = 0 + €.
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AES [4] |
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AES [4] Il

m Most of the key schedule is linear.
m The original key k appears in the output.
m The S-box size is 8-bit (explicit degree: 7).
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AES [4] 1l

Gurobi [6]
N | a | #cores | cutoff t r max t
31015 | - 24 oo | 100% | 17956.4s
31015 | - 2 240.0s | 25% 240.0s
31030+ 24 | 3600.0s | 25% | 3600.0s
31035 + 24 | 7200.0s | 10% | 7200.0s
31035+ 24 | 28800.0s | 30% | 28800.0s
SCIP (hardlp.set) [1]
31015 + 1| 3600.0s | 65% | 3600.0s
31030+ 1| 7200.0s | 45% | 7200.0s
31035 + 1| 10800.0s | 10% | 10800.0s
31040 | + 1 | 14400.0s 0% | 14400.0s
4 1040 | + 1 | 14400.0s | 10% | 14400.0s
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Serpent [2] |

10) i Wi_g || Wi—7 || Wi—6 || Wi—5 || Wi—4 || Wj—3 || Wj—2 || Wj—1 || W;
Tl 1 ! I J«u
P—-P fan fan D

N & NP NP
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Serpent [2] Il

m All key schedule output bits depend non-linearly on the input.
m The original key k does not appear in the output.
m The S-box size is 4-bit (explicit degree: 3).
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Serpent [2] 1l

Gurobi [6]
N do a | #cores | cutoff t r Max t
8 | 0.05 | - 2 60.0s | 50% 16.22s
12 |1 0.05 | - 2 60.0s | 85% 60.00s
8 | 015 | - 24 | 600.0s | 20% | 103.17s
12 | 0.15 | - 24 | 600.0s | 55% | 600.00s
12 | 0.30 | + 24 | 7200.0s | 20% | 7200.00s
SCIP (hardlp.set) [1]
8 | 015 | - 1| 3600.0s | 15% | 3600.00s
8 | 015 | + 1] 3600.0s | 5% | 259.97s
12 | 0.15 | + 1| 3600.0s | 40% | 271.47s
16 | 0.15 | + 1| 3600.0s | 45% | 1942.27s
12 | 0.30 | + 1 | 3600.0s | 25% | 3600.00s
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Serpent [2] IV

Ad-hoc approach:

m We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

m On average the noise free output should have 64 bits set to zero.

m In order to consider an error rate up to dg, we have to consider

[00-64]

S (64—1— (;so : 641)

i=0
candidates and test them.

m If 6o = 0.15 we have ~ 23687,
m If 6o = 0.30 we have ~ 262,
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’ known constant ‘ ’ known constant

69 o m |

| || Xoit1 |

Q) - - AR - Q)

I

-@ @m
VoY ‘ ’ Loit1

| | | |

The output of the
key schedule is
then
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Twofish [8] Il

m The input k (My, ..., Ms) does not appear in the output.
m All output bits depend non-linearly on the input.

B The S-box (Qp, Q1) size is 8-bit (explicit degree: 7)

m There is a modular addition (mod 232) at the end.

As of now, we cannot recover the key using mixed integer programming.
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Twofish [8] Il

Ad-hoc approach:

m We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

m On average the noise free output should have 64 bits set to zero.

m In order to consider an error rate up to dg, we have to consider

[60-64]

Z (64+ (fo . 641)

i=0
candidates and test them.

m If 6o = 0.15 we have ~ 23687,

m If 6o = 0.30 we have ~ 262.

m Due to the lack of inner diffusion solving the system for each
instance is easy.
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Representation

Modular addition modulo 232 is used in many cryptographic algorithms to
provide non-linearity over F,. However, over the integers this is linear.

We represent the addition AB B = C modulo 2V as

n—1 n—1 n—1
0= 24+ 2B, - 2'¢;—2"
=0 i=0 i=0
forne{l,...,N} and m € {0,1}.

However, this representation may lead to overflows of machine ints and
floats.

Martin Albrecht & Carlos CidInformation Security Group, Royal Holloway, University of London — Cold Boot Key Recovery using Polynomial System Solving v
/42



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application Appendix: Modular Addition

Thank you!
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