Algebraic Precomputations in Differential Cryptanalysis

Martin Albrecht¹ Carlos Cid¹ Thomas Dullien² Jean-Charles Faugère³ Ludovic Perret³

1 Information Security Group, Royal Holloway, University of London 2 Lehrstuhl für Kryptologie und IT-Sicherheit, Ruhr-Universität Bochum 3 SALSA Project -INRIA, UPMC, Univ Paris 06

Tools for Cryptanalysis 2010, Egham, UK

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Outline

1 Introduction

- 2 The Main Idea
- 3 Decreasing the Noise
- 4 Increasing the Signal

Outline

1 Introduction

- 2 The Main Idea
- 3 Decreasing the Noise
- 4 Increasing the Signal

Algebraic Techniques in Differential Cryptanalysis

- In [AC09] a combination of differential cryptanalysis with algebraic attacks against block ciphers was proposed.
- All three proposed techniques (Attack-A, Attack-B and Attack-C) require Gröbner basis computations during the online phase of the attack.
- This limitation prevented to apply the techniques to PRESENT-80 reduced to more than 16 rounds.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Here we only compute Gröbner bases in a pre-computation phase.

Outline

1 Introduction

- 2 The Main Idea
- 3 Decreasing the Noise
- 4 Increasing the Signal

Ideal Membership as Implication I

- Consider an arbitrary function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ and its polynomial representation f_0, \ldots, f_{m-1} .
- Let x_0, \ldots, x_{n-1} be the input variables and y_0, \ldots, y_{m-1} the output variables
- Consider the ideal $I = \langle f_0, \ldots, f_{m-1} \rangle$:
 - Every member g of this ideal is a combination of f_0, \ldots, f_{m-1} .
 - If f_0, \ldots, f_{m-1} vanish, so does g.
 - This can be read as: f_0, \ldots, f_{m-1} implies g.

"If
$$f_0, \ldots, f_{m-1}$$
 hold, so does g ".

Ideal Membership as Implication II

- Let c be a condition on the input variables (in polynomial form).
- Calculate a Gröbner basis for (c, f₀,..., f_{m-1}) in an elimination ordering which eliminates input variables first.
- The smallest elements of this Gröbner basis will be polynomials with a minimum number of input variables (if possible, none). Call them g_0, \ldots, g_{r-1} .
- These polynomials are **implied** by the polynomials f_0, \ldots, f_{m-1} and the condition c.

"If f_0, \ldots, f_{m-1} and the condition c hold, so do g_0, \ldots, g_{r-1} "

Ideal Membership as Implication III

■ The polynomials *g*₀,..., *g*_{*r*-1} generate the **elimination ideal** [BW91, p.256]

$$I \bigcap \mathbb{F}[y_0,\ldots,y_{m-1}]$$

- This means: **all** on the output bits that are implied by *f* under condition *c* are **combinations** of *g*₀,...,*g*_{*r*-1}
- If we pick the term ordering right, g_0, \ldots, g_{r-1} have minimal degree.

For a given function f under a precondition c you can calculate **all** conditions on the output bits that **must** hold.

■ Consider the 4-bit S-Box of PRESENT [BKL⁺07]:

S = (12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2).

- Two pairs of input bits $X'_{1,0}, \ldots, X'_{1,3}$ and $X''_{1,0}, \ldots, X''_{1,3}$,
- The respective output bits are $Y'_{1,0}, \ldots, Y'_{1,3}$ and $Y''_{1,0}, \ldots, Y''_{1,3}$.
- S can be described as boolean polynomials in $Y_{i,j}$'s and $X_{i,j}$'s.
- Assume that we have the input difference (0, 0, 0, 1) for this S-Box; that is, we have that $X'_{1,3} + X''_{1,3} = 1$.
- We are interested in all linearly independent low degree equations in the Y_{i,j}'s that must hold if this input difference holds.

- We define I to be the ideal spanned by
 - **1** the S-Box polynomials on $X'_{1,j}, Y'_{1,j}$,
 - **2** the S-Box polynomials on $X_{1,j}^{\prime\prime}, Y_{1,j}^{\prime\prime}$,
 - 3 the set $\{X'_{1,0} + X''_{1,0}, X'_{1,1} + X''_{1,1}, X'_{1,2} + X''_{1,2}, X'_{1,3} + X''_{1,3} + 1\}$ and 4 the field polynomials $\{X^2_{i,j} - X_{i,j}\}$ and $\{Y^2_{i,j} - Y_{i,j}\}$.
- We define a **block ordering** [BW91, p.168] where the variables $X_{i,j}$ are in the first block and the variables $Y_{i,j}$ are in the second, that is, we have that all $X_{i,j} > Y_{i,j}$.

(日) (日) (日) (日) (日) (日) (日) (日)

- Inside the second block we choose the degree lexicographical ordering (**deglex**) on the *Y*_{*i*,*j*}.
- We compute the reduced Gröbner basis G of I.

All polynomials of G only containing the variables $Y_{i,j}$ are listed below:

・ロト・日本・日本・日本・日本・今日や

This list is exactly the reduced **deglex** Gröbner basis G_Y for the **elimination ideal**

$$I_Y = I \bigcap \mathbb{F}_2[Y'_{1,0}, \ldots, Y'_{1,3}, Y''_{1,0}, \ldots, Y''_{1,3}].$$

One can show that there are no other linear or quadratic polynomial p which are not a simple algebraic combination of these polynomials.

(日) (日) (日) (日) (日) (日) (日) (日)

In Other Words

This list describes the relations in the $Y_{i,j}$ completely.

If we can compute the Gröbner basis g_0, \ldots, g_{r-1} , we are done.

For many functions f computing g_0, \ldots, g_{r-1} is infeasible. However, to recover **some** equations we might not need to compute the full Gröbner basis.

As an example consider the same S-Box and the same input difference (0, 0, 0, 1). If we only compute the Gröbner basis up to degree 2 we can still recover some properties of the $Y_{i,j}$'s.

. . .

$$\begin{split} &Y_{1,3}' + Y_{1,2}'' + 1, \\ &Y_{1,0}' + Y_{1,2}' + Y_{1,0}'' + Y_{1,2}'' + 1, \\ &Y_{1,0}'' Y_{1,2}'' + Y_{1,2}' + Y_{1,0}'' + Y_{1,1}'' + Y_{1,3}'', \\ &Y_{1,0}'' Y_{1,1}'' + Y_{1,0}'' Y_{1,2}'' + Y_{1,0}'' Y_{1,3}'' + Y_{1,1}' Y_{1,2}'' + Y_{1,2}'' Y_{1,3}'' + Y_{1,1}' + Y_{1,2}' + Y_{1,3}'', \\ &Y_{1,2}' Y_{1,0}'' + Y_{1,2}' Y_{1,2}'' + Y_{1,0}'' Y_{1,2}'' + Y_{1,1}' + Y_{1,1}'', \\ &Y_{1,1}' Y_{1,0}'' + Y_{1,1}' Y_{1,2}'' + Y_{1,0}'' Y_{1,3}'' + Y_{1,2}'' Y_{1,3}'' + Y_{1,1}'' + Y_{1,3}'', \\ &Y_{1,1}' Y_{1,2}' + Y_{1,2}' Y_{1,3}' + Y_{1,1}'' Y_{1,2}'' + Y_{1,2}'' Y_{1,3}'', \\ &Y_{1,0}'' Y_{1,1}'' Y_{1,3}'' + Y_{1,1}'' Y_{1,2}'' Y_{1,3}'' + Y_{1,1}'' Y_{1,3}'' + Y_{1,2}'' Y_{1,3}'', \\ &Y_{1,2}'' Y_{1,0}'' Y_{1,2}'' + Y_{1,2}' Y_{1,1}'' + Y_{1,2}'' Y_{1,3}'' + Y_{1,1}'' Y_{1,3}'' + Y_{1,2}'' Y_{1,3}'', \\ &Y_{1,2}' Y_{1,0}'' Y_{1,2}'' + Y_{1,2}' Y_{1,1}'' + Y_{1,2}' Y_{1,3}'' + Y_{1,0}'' + \dots, \end{split}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ��?

Outline

1 Introduction

- 2 The Main Idea
- 3 Decreasing the Noise
- 4 Increasing the Signal

5 Conclusion

・ロト・雪・・雪・・雪・ うへの

Discarding Wrong Pairs I

- In [AC09] Attack-C is proposed to discard wrong pairs.
- The attacker considers an equation system only for the rounds > r.
- Denote the equation system for the last R rounds of the encryption of P' to C' and P'' to C'' as F'_R and F''_R respectively.
- The algebraic part of Attack-C is a Gröbner basis computation on the polynomial system

$$F = F'_R \cup F''_R \cup \{X'_{r+1,i} + X''_{r+1,i} + \Delta X_{r+1,i} \mid 0 \le i < B_s\}.$$

- Whenever the Gröbner basis is {1} the pair can be discarded.
- No strong assurances are given about how many pairs are actually discarded by Attack-C.

Discarding Wrong Pairs II

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Our approach:

- Consider the same system of equations as in Attack-C.
- Replace the tuples of constants C' and C'' by symbols.
- Compute a Gröbner basis for an elimination ordering where C' and C'' smallest.
- Recover equations in the variables C' and C''.
- These equations must evaluate to zero on the actual ciphertext values if the input difference for round r + 1 holds.
- To estimate the quality of the filter, calculate the probability that all these polynomials evaluate to zero for random values for C' and C''.
- The cost of the filter is only a few polynomial evaluations average.

We setup an equation system as in **Attack-C** of [AC09] except that the ciphertext bits (C'_i and C''_i). are symbols and computed the Gröbner basis up to degree D = 3 using POLYBORI 0.6.3 [BD07] and filter out any polynomial that contains non-ciphertext variables.

For each R we list the number of linear, quadratic and cubic equations we found (d = 1, 2, 3) and the logarithm of the approximate quality of the filter.

R	d = 1	<i>d</i> = 2	<i>d</i> = 3	$pprox \log_2 p$	$pprox \log_2$ opt.	$pprox \log_2$ [Wan08]
1	58	2		-58.830		
2	46	14	6	-50.669	-51.67	-50.07
3	16	1	11	-18.296	-25.13	
4			16	-3.082	-3.35	

Example: KTANTAN32

We used the best differential for 42 rounds of KTANTAN32 [CDK09] by the designers and extended it to 71 rounds. The characteristic has a probability of 2^{-31} .

Ν	d = 1	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4	<i>d</i> = 5	$pprox \log_2 p$
78	31	3	0	0	0	-32.0
80	28	11	0	0	0	-31.4
82	25	23	0	0	0	-31.0
84	20	32	4	32	0	-29.0
86	16	46	23	75	106	< -24.0
90	8	42	133	612	1762	< -22.0
92	4	33	133	743	2646	-20.4
94	1	25	124	662	2345	-18.5
96	0	8	52	287	1264	-14.3
98	0	3	10	46	156	-9.1
100	0	1	3	18	47	-4.6
102	0	0	0	4	9	-0.9

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = つへぐ

Outline

1 Introduction

- 2 The Main Idea
- 3 Decreasing the Noise
- 4 Increasing the Signal

5 Conclusion

・ キロ・ キョ・ キョ・ キョ・ しゅうくの

Assume:

- an SP-network,
- 2 a differential characteristic Δ = (ΔP, ΔY₁,..., ΔY_r) valid for r rounds with probability p,
- **3** a right pair (P', P'') for Δ ,
- **4** only one S-Box is active in round 1, with input $X'_{1,i}$ and $X''_{1,i}$, and

5 there is a key addition immediately before the S-Box operation.

Gathering More Information II

We have

$$S(P_j' + K_{0,j}) = S(X_{1,j}') = Y_{1,j}'$$
 and $S(P_j'' + K_{0,j}) = S(X_{1,j}'') = Y_{1,j}''$.

The polynomial equations arising from the relation

$$\Delta Y_{1,j} = Y'_{1,j} + Y''_{1,j} = S(P'_j + K_{0,j}) + S(P''_j + K_{0,j})$$

give us a very simple equation system to solve, with only the key variables $K_{0,i}$ as unknowns.

We can:

- recover *b* bits of information about the key, if ΔY_1 holds with probability 2^{-b} .
- replace P', P'' by symbols to get polynomials in K_0, P' and P''.
- compute similar polynomials for **more than one round**.

Assume that

- we can indeed compute the Gröbner basis with P', P" symbols for the first q rounds,
- **2** the probability of the characteristic restricted to q rounds is 2^{-b} ,
- **3** the Gröbner basis of $I \cap \mathbb{F}[K_0, P', P'']$ has m_q elements.

We have *b* bits of additional information. However, we have to perform m_q polynomial evaluations (where we replace P', P'' by their actual values).

Example: PRESENT |

- Consider two rounds of PRESENT and the characteristic from [Wan08].
- Setup a polynomial ring with two blocks such that the variables P_i and K_i are lexicographically smaller than any other variables.
- Within the blocks choose a degree lexicographical term ordering.
- Setup an equation system and add the linear equations suggested by the characteristic.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Compute a Gröbner basis up to degree five.

This computation returned 22 polynomials. We give a selection below:

$$\begin{aligned} & (K_1 + P'_1 + 1)(K_0 + K_3 + K_{29} + P'_0 + P'_3), \\ & (K_2 + P'_2)(K_0 + K_3 + K_{29} + P'_0 + P'_3), \\ & K_1K_2 + K_1P'_2 + K_2P'_1 + P'_1P'_2 + K_0 + K_1 + K_3 + K_{29} + P'_0 + P'_1 + P'_3, \\ & \dots \\ & K_5 + K_7 + P'_5 + P'_7, \\ & K_6 + K_7 + P'_6 + P'_7, \\ & K_{53} + K_{55} + P'_{53} + P'_{55}, \\ & K_{54} + K_{55} + P'_{54} + P'_{55} \end{aligned}$$

This system gives 8 bits of information about the key. The first two rounds of the characteristic pass with probability 2^{-8} .

*ロ * * ● * * ● * * ● * ● * ● * ●

We consider the first 24 rounds of KTANTAN32 and the previously mentioned characteristic. We computed the full Gröbner basis. This computation recovers 39 polynomials of which we list the 8 smallest non-redundant below. Note that the characteristic also imposes restrictions on the plaintext.

$$\begin{aligned} (P'_{19}+1)(P'_{3}P'_{8}+P'_{10}P'_{12}+K_{3}+K_{53}+P'_{7}+P'_{18}+P'_{23}), \\ P'_{8}P'_{10}P'_{19}+K_{8}P'_{19}+P'_{3}P'_{8}+P'_{6}P'_{19}+P'_{10}P'_{12}+P'_{16}P'_{19}+K_{3}+K_{53}+\ldots, \\ P'_{19}P'_{22}+K_{1}+K_{11}+P'_{6}+P'_{11}+P'_{17}+P'_{21}+P'_{26}, \\ P'_{23}P'_{26}+K_{65}+P'_{21}+P'_{25}+P'_{30}, \\ P'_{1}+1,P'_{2},P'_{5}+1,P'_{9}+1 \end{aligned}$$

These eight equations give up to four bits (depending on the value of P'_{19}) of information about the key.

Outline

1 Introduction

- 2 The Main Idea
- 3 Decreasing the Noise
- 4 Increasing the Signal

Conclusion

- We demonstrated cryptographic applications of Gröbner basis algorithms beyond polynomial system solving¹.
- Using the rich algebraic structure of Gröbner bases we compute properties for various block ciphers which can be used to improve "classical" differential cryptanalysis attacks.
- The techniques proposed and used in this work are not limited to differential cryptanalysis.

¹Of course, we are not the first to notice that, cf. [TS98] $\rightarrow \langle B \rangle \langle B \rangle$

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 の�?

Literature I

Martin Albrecht and Carlos Cid.

Algebraic Techniques in Differential Cryptanalysis.

In *Fast Software Encryption 2009*, Lecture Notes in Computer Science, Berlin, Heidelberg, New York, 2009. Springer Verlag.

 Michael Brickenstein and Alexander Dreyer.
PolyBoRi: A framework for Gröbner basis computations with Boolean polynomials.
In *Electronic Proceedings of MEGA 2007*, 2007.

Available at

http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Literature II

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.

PRESENT: An ultra-lightweight block cipher.

In Cryptographic Hardware and Embedded Systems - CHES 2007, volume 7427 of Lecture Notes in Computer Science, pages 450-466, Berlin, Heidelberg, New York, 2007. Springer Verlag. Available at http://www.crypto.rub.de/imperia/md/content/ texte/publications/conferences/present_ches2007.pdf.

Thomas Becker and Volker Weispfenning. Gröbner Bases - A Computational Approach to Commutative Algebra. Springer Verlag, Berlin, Heidelberg, New York, 1991.

Literature III

Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers.

In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, volume 5747 of Lecture Notes in Computer Science, pages 272-288. Springer Verlag, 2009.

Toshinobu Kaneko Takeshi Shimoyama.

Quadratic relation of s-box and its application to the linear attack of full round DFS.

In Advances in Cryptology — CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 200–211. Springer Verlag, 1998.

Literature IV

Meiqin Wang.

Differential Cryptanalysis of reduced-round PRESENT.

In Serge Vaudenay, editor, *Africacrypt 2008*, volume 5023 of *Lecture Notes in Computer Science*, pages 40–49, Berlin, Heidelberg, New York, 2008. Springer Verlag.