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Coldboot Attacks |

m In [3] a method is described for extracting cryptographic key
material from DRAM.

m DRAM may retain large part of its content for several seconds after
removing its power.

m Furthermore, time can potentially be increased by using cooling
techniques.

m In the case of the AES and DES simple algorithms are also proposed
in [3] to recover the key from the observed set of round subkeys in
memory, which are however subject to errors (due to memory bits
decay).
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We are given
an efficiently computable function XS : Fj — ]FQ’ with N > n,

two real numbers 0 < dg,d; < 1 and
some efficiently computable function £(k) — { True, False}.
Let (Ko, ..., Kn—1) = KS(k). Compute (K{, K7, ..., Ky_q) with:

PriIK! =0 | K;=0] = 1-6, Pr[Kl=1|K =0 = o,
Prikl =1 Ki=1] = 1-d, PrK/=0|K =1 = d.

K/ = 0 is correct with probability Pr[K; =0 | K/ = 0] = % = Ay.
Likewise for K/ =

The task is to recover k such that £(k) returns True or a noise-free K.
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Results in [3]:

Cipher do 01 | Success | Time
DES | 0.10 | 0.001 100% -
DES | 0.50 | 0.001 98% -
AES | 0.15 | 0.001 100% 1s
AES | 0.30 | 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules such as Serpent?
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PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {fy, ..., f,_1} where each f; € F[xo, ..., x,_1].

A solution to F is any point x € F” such that

Vf € F: fi(x) =0.

Note, that we restrict ourselves to solutions in the base field here.
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We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

In fact, we can reduce Max-PoSSo to Max-SAT.
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Definition (Max-PoSSo)

Find a point x € F” which satisfies the maximum number of
polynomials in F = {fo,...,fm_1} C F[xo, .-, Xp_1].
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Definition (Partial Weighted Max-PoSSo)

Find a point x € F” such that for two sets of polynomials
H and S C Fxo, ..., Xn—1]

mVfeH:f(x)=0and

B > res C(f, x) is minimized

where C : f € §,x € F" — Ry is a cost function which
m returns 0 if £(x) =0 and
m some value > 0 if f(x) # 0.
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m Let F be an equation system corresponding to K.

Assume that for each noisy output bit K; there is some f; € Fic of
the form g; + K; where g; is some polynomial.

Assume that these are the only polynomials involving output bits.
Denote the set of these polynomials S.
Denote the set of all remaining polynomials € Fi as H.

Define the cost function C as a function which returns
1 ’_
- for Ki =0,f(x) #0,

L - for K/ =1,f(x) #0,
0 otherwise.

m Express £ as a polynomial system which is satisfiable for k only and
add these polynomials to H.
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Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

We minimise (or maximise) a linear function ¢’ x subject to linear

equality and inequality constraints given by some matrix A and a vector b
as Ax < b.

We have that some variables are restricted to integer values while other
variables are real-valued.
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The set S of all x € Z* x R/ which satisfies the linear constraints Ax < b
SZ{XEZkXR/,AXSb}
is called the feasible set.

If S = & the problem is infeasible. Any x € S which minimises (or
maximises) ¢’ x is an optimal solution.
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PoSSo as MIP |

Consider some f € Fy[x,...,Xx,—1] and let Z a function that takes a
polynomial over [F, lifts it to the integers. Analogous for elements in 5.

Restrict all x; to binary values.

Evaluate Z(f) on all {Z(x) | x € F3, f(x) = 0}.

Let ¢ be the minimum value and u the maximum value.
Introduce some integer variable % <m< %

Replace each monomial in f —2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

. N
@ For each monomial t =[[;_; x;

m add a constraint x; > t and
® add a constraint 0 < E,N:l xi—t<N-—1.

This is the Integer Adapted Standard Conversion [1].
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Partial Weighted Max-PoSSo as MIP

m Convert each f € H to linear constraints as before.

m For each f; € S add a new binary slack variable e; to f; and convert
the resulting polynomial as before.

m The objective function we minimise is > c;e; where ¢; is the value of
C(f,x) for some x such that f(x) # 0.

Any optimal solution x € S will be an optimal solution to the Weighted
Partial Max-PoSSo problem.
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Coldboot as MIP

Coldboot — Partial Weighted Max-PoSSo — MIP J

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [2].
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Simplifications

= We do not model £ since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

m We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

m We may use an “aggressive” modelling strategy where we assume

01 = 0 which allows us to promote some polynomials from S to H.
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iming  Application

Gurobi http://www.gurobi.com
N | & a | #cores | cutoff t r max t
31015 - 24 oo | 100% | 17956.4s
31015 | - 2 240.0s | 25% 240.0s
31030+ 24 | 3600.0s | 25% | 3600.0s
31035+ 24 | 28800.0s | 30% | 28800.0s
SCIP http://scip.zib.de
31015 | + 1| 3600.0s | 65% | 1209.0s
4 1030 | + 1| 7200.0s | 47% | 7200.0s
4 1035 |+ 1| 10800.0s | 45% | 10800.0s
4 1040 | + 1 | 14400.0s 52% | 14400.0s
5040 | + 1 | 14400.0s | 45% | 14400.0s
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ith N
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Serpent |l

Gurobi http://www.gurobi. com

N | 0o a | #cores | cutoff ¢ r Max t
8 | 0.05| - 2 60.0s | 50% 16.22s
12 | 0.05 | - 2 60.0s | 85% 60.00s
8 | 0.15 | - 24 | 600.0s | 20% | 103.17s
12 | 0.15 | - 24 | 600.0s | 55% | 600.00s
12 | 0.30 | + 24 | 7200.0s | 20% | 7200.00s

SCIP http://scip.zib.de

12 | 0.15 | + 1| 600.0s | 32% | 597.37s
16 | 0.15 | + 1 | 3600.0s | 48% | 369.55s
20 | 0.15 | + 1| 3600.0s | 29% | 689.18s
321015 | + 1| 3600.0s | 21% | 1105.58s
16 | 0.30 | + 1| 3600.0s | 55% | 3600.00s
20 | 0.30 | + 1 | 7200.0s | 57% | 7200.00s
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Serpent Il

Ad-hoc approach:

m We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

m On average the noise free output should have 64 bits set to zero.

m In order to consider an error rate up to dg, we have to consider

[00-64]

S (64—1— (;so : 641)

i=0
candidates and test them.

m If 6o = 0.15 we have ~ 23687,
m If 6o = 0.30 we have ~ 262,
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Thank you!
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Lest we remember: Cold boot attacks on encryption keys.
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