
Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Cold Boot Key Recovery using Polynomial
System Solving with Noise

Martin Albrecht & Carlos Cid

SCC 2010, Egham, UK

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 1/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 2/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 3/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks I

In [3] a method is described for extracting cryptographic key
material from DRAM.

DRAM may retain large part of its content for several seconds after
removing its power.

Furthermore, time can potentially be increased by using cooling
techniques.

In the case of the AES and DES simple algorithms are also proposed
in [3] to recover the key from the observed set of round subkeys in
memory, which are however subject to errors (due to memory bits
decay).

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 4/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks II

We are given

1 an efficiently computable function KS : Fn
2 → FN

2 with N > n,

2 two real numbers 0 ≤ δ0, δ1 ≤ 1 and

3 some efficiently computable function E(k)→ {True,False}.
Let (K0, . . . ,KN−1) = KS(k). Compute (K ′0,K

′
1, . . . ,K

′
N−1) with:

Pr [K ′i = 0 | Ki = 0] = 1− δ1, Pr [K ′i = 1 | Ki = 0] = δ1,
Pr [K ′i = 1 | Ki = 1] = 1− δ0, Pr [K ′i = 0 | Ki = 1] = δ0.

K ′i = 0 is correct with probability Pr [Ki = 0 | K ′i = 0] = (1−δ1)
(1−δ1+δ0) = ∆0.

Likewise for K ′i = 1.

The task is to recover k such that E(k) returns True or a noise-free K .

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 5/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks III

Results in [3]:

Cipher δ0 δ1 Success Time
DES 0.10 0.001 100% –
DES 0.50 0.001 98% –
AES 0.15 0.001 100% 1s
AES 0.30 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules such as Serpent?

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 6/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 7/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {f0, . . . , fm−1} where each fi ∈ F[x0, . . . , xn−1].

A solution to F is any point x ∈ Fn such that

∀fi ∈ F : fi (x) = 0.

Note, that we restrict ourselves to solutions in the base field here.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 8/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo I

We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

In fact, we can reduce Max-PoSSo to Max-SAT.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 9/27

http://en.wikipedia.org/wiki/MAX-SAT

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo II

Definition (Max-PoSSo)

Find a point x ∈ Fn which satisfies the maximum number of
polynomials in F = {f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1].

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 10/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo III

Definition (Partial Weighted Max-PoSSo)

Find a point x ∈ Fn such that for two sets of polynomials
H and S ⊂ F[x0, . . . , xn−1]

∀f ∈ H : f (x) = 0 and∑
f∈S C(f , x) is minimized

where C : f ∈ S, x ∈ Fn → R≥0 is a cost function which

returns 0 if f (x) = 0 and

some value > 0 if f (x) 6= 0.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 11/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as P. W. Max-PoSSo

Let FK be an equation system corresponding to K.

Assume that for each noisy output bit Ki there is some fi ∈ FK of
the form gi + Ki where gi is some polynomial.

Assume that these are the only polynomials involving output bits.

Denote the set of these polynomials S.

Denote the set of all remaining polynomials ∈ FK as H.

Define the cost function C as a function which returns

1
1−∆0

for K ′i = 0, f (x) 6= 0,
1

1−∆1
for K ′i = 1, f (x) 6= 0,

0 otherwise.

Express E as a polynomial system which is satisfiable for k only and
add these polynomials to H.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 12/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 13/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming I

Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

We minimise (or maximise) a linear function cT x subject to linear
equality and inequality constraints given by some matrix A and a vector b
as Ax ≤ b.

We have that some variables are restricted to integer values while other
variables are real-valued.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 14/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming II

The set S of all x ∈ Zk ×Rl which satisfies the linear constraints Ax ≤ b

S = {x ∈ Zk × Rl ,Ax ≤ b}

is called the feasible set.

If S = ∅ the problem is infeasible. Any x ∈ S which minimises (or
maximises) cT x is an optimal solution.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 15/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

PoSSo as MIP I

Consider some f ∈ F2[x0, . . . , xn−1] and let Z a function that takes a
polynomial over F2 lifts it to the integers. Analogous for elements in F2.

1 Restrict all xi to binary values.

2 Evaluate Z(f) on all {Z(x) | x ∈ Fn
2, f (x) = 0}.

3 Let ` be the minimum value and u the maximum value.

4 Introduce some integer variable `
2 ≤ m ≤ u

2 .

5 Replace each monomial in f − 2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

6 For each monomial t =
∏N

i=1 xi
add a constraint xi ≥ t and
add a constraint 0 ≤

∑N
i=1 xi − t ≤ N − 1.

This is the Integer Adapted Standard Conversion [1].

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 16/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Partial Weighted Max-PoSSo as MIP

Convert each f ∈ H to linear constraints as before.

For each fi ∈ S add a new binary slack variable ei to fi and convert
the resulting polynomial as before.

The objective function we minimise is
∑

ciei where ci is the value of
C(f , x) for some x such that f (x) 6= 0.

Any optimal solution x ∈ S will be an optimal solution to the Weighted
Partial Max-PoSSo problem.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 17/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as MIP

Coldboot → Partial Weighted Max-PoSSo → MIP

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [2].

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 18/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

1 Coldboot Attacks

2 Polynomial System Solving with Noise

3 Mixed Integer Programming

4 Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 19/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Simplifications

We do not model E since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

We may use an “aggressive” modelling strategy where we assume
δ1 = 0 which allows us to promote some polynomials from S to H.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 20/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

AES I

Core ⊕ ⊕ ⊕ ⊕

Core ⊕ ⊕ ⊕ ⊕

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 21/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

AES II

Gurobi http://www.gurobi.com
N δ0 a #cores cutoff t r max t
3 0.15 – 24 ∞ 100% 17956.4s
3 0.15 – 2 240.0s 25% 240.0s
3 0.30 + 24 3600.0s 25% 3600.0s
3 0.35 + 24 28800.0s 30% 28800.0s

SCIP http://scip.zib.de

3 0.15 + 1 3600.0s 65% 1209.0s
4 0.30 + 1 7200.0s 47% 7200.0s
4 0.35 + 1 10800.0s 45% 10800.0s
4 0.40 + 1 14400.0s 52% 14400.0s
5 0.40 + 1 14400.0s 45% 14400.0s

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 22/27

http://www.gurobi.com
http://scip.zib.de

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent I

w−8 w−7 w−6 w−5 w−4 w−3 w−2 w−1

wi−8 wi−7 wi−6 wi−5 wi−4 wi−3 wi−2 wi−1iφ wi

⊕ ⊕ ⊕ ⊕⊕
≪11

wi wi+1 wi+2 wi+3

S

ki ki+1 ki+2 ki+3

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 23/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent II

Gurobi http://www.gurobi.com
N δ0 a #cores cutoff t r Max t
8 0.05 – 2 60.0s 50% 16.22s

12 0.05 – 2 60.0s 85% 60.00s
8 0.15 – 24 600.0s 20% 103.17s

12 0.15 – 24 600.0s 55% 600.00s
12 0.30 + 24 7200.0s 20% 7200.00s

SCIP http://scip.zib.de

12 0.15 + 1 600.0s 32% 597.37s
16 0.15 + 1 3600.0s 48% 369.55s
20 0.15 + 1 3600.0s 29% 689.18s
32 0.15 + 1 3600.0s 21% 1105.58s
16 0.30 + 1 3600.0s 55% 3600.00s
20 0.30 + 1 7200.0s 57% 7200.00s

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 24/27

http://www.gurobi.com
http://scip.zib.de

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Serpent III

Ad-hoc approach:

We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

On average the noise free output should have 64 bits set to zero.

In order to consider an error rate up to δ0, we have to consider

dδ0·64e∑
i=0

(
64 + dδ0 · 64e

i

)
candidates and test them.

If δ0 = 0.15 we have ≈ 236.87.

If δ0 = 0.30 we have ≈ 262.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 25/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Thank you!

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 26/27

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Literature I

Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe.
Bivium as a Mixed-Integer Linear programming problem.
In Matthew G. Parker, editor, Cryptography and Coding – 12th IMA
International Conference, volume 5921 of Lecture Notes in Computer
Science, pages 133–152, Berlin, Heidelberg, New York, 2009.
Springer Verlag.

Jon Feldman.
Decoding Error-Correcting Codes via Linear Programming.
PhD thesis, Massachusetts Institute of Technology, 2003.

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten.
Lest we remember: Cold boot attacks on encryption keys.
In Proceedings of 17th USENIX Security Symposium, pages 45–60,
2008.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 27/27

	Coldboot Attacks
	Polynomial System Solving with Noise
	Mixed Integer Programming
	Application

