Cold Boot Key Recovery using Polynomial
System Solving with Noise

Martin Albrecht & Carlos Cid

SCC 2010, Egham, UK

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 1/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

A Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 2/27



Coldboot Attacks Polynomial tem Solving with Noise Mixed Integer Programming Application

Outline

H Coldboot Attacks

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 3/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot Attacks |

m In [3] a method is described for extracting cryptographic key
material from DRAM.

m DRAM may retain large part of its content for several seconds after
removing its power.

m Furthermore, time can potentially be increased by using cooling
techniques.

m In the case of the AES and DES simple algorithms are also proposed
in [3] to recover the key from the observed set of round subkeys in
memory, which are however subject to errors (due to memory bits
decay).

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 4/21



Coldboot Attacks Polynomial System

Coldboot Attacks [

We are given
an efficiently computable function XS : Fj — ]FQ’ with N > n,

two real numbers 0 < dg,d; < 1 and
some efficiently computable function £(k) — { True, False}.
Let (Ko, ..., Kn—1) = KS(k). Compute (K{, K7, ..., Ky_q) with:

PriIK! =0 | K;=0] = 1-6, Pr[Kl=1|K =0 = o,
Prikl =1 Ki=1] = 1-d, PrK/=0|K =1 = d.

K/ = 0 is correct with probability Pr[K; =0 | K/ = 0] = % = Ay.
Likewise for K/ =

The task is to recover k such that £(k) returns True or a noise-free K.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programmi

Coldboot Attacks Il

Results in [3]:

Cipher do 01 | Success | Time
DES | 0.10 | 0.001 100% -
DES | 0.50 | 0.001 98% -
AES | 0.15 | 0.001 100% 1s
AES | 0.30 | 0.001 100% 30s

Can we do better and can we recover keys for more complicated key
schedules such as Serpent?

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Outline

Polynomial System Solving with Noise

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 7/21



Attacks Polynomial System Solving with Noise Mixed Integ gramming  Application

PoSSo

We define polynomial system solving (PoSSo) as the problem of finding
a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set F = {fy, ..., f,_1} where each f; € F[xo, ..., x,_1].

A solution to F is any point x € F” such that

Vf € F: fi(x) =0.

Note, that we restrict ourselves to solutions in the base field here.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 8/27



ot Attacks Polynomial System Solving with Noise Mixec

Max-PoSSo |

We can define a family of Max-PoSSo problems, analogous to the well
known Max-SAT family of problems.

http://en.wikipedia.org/wiki/MAX-SAT

In fact, we can reduce Max-PoSSo to Max-SAT.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 9/27


http://en.wikipedia.org/wiki/MAX-SAT

Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo Il

Definition (Max-PoSSo)

Find a point x € F” which satisfies the maximum number of
polynomials in F = {fo,...,fm_1} C F[xo, .-, Xp_1].

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 10/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Max-PoSSo IlI

Definition (Partial Weighted Max-PoSSo)

Find a point x € F” such that for two sets of polynomials
H and S C Fxo, ..., Xn—1]

mVfeH:f(x)=0and

B > res C(f, x) is minimized

where C : f € §,x € F" — Ry is a cost function which
m returns 0 if £(x) =0 and
m some value > 0 if f(x) # 0.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as P. W. Max-PoSSo

m Let F be an equation system corresponding to K.

Assume that for each noisy output bit K; there is some f; € Fic of
the form g; + K; where g; is some polynomial.

Assume that these are the only polynomials involving output bits.
Denote the set of these polynomials S.
Denote the set of all remaining polynomials € Fi as H.

Define the cost function C as a function which returns
1 ’_
- for Ki =0,f(x) #0,

L - for K/ =1,f(x) #0,
0 otherwise.

m Express £ as a polynomial system which is satisfiable for k only and
add these polynomials to H.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 12/27



Coldboot Attacks Polynomial tem Solving with Noise Mixed Integer Programming Application

Outline

Mixed Integer Programming

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 13/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Mixed Integer Programming |

Integer optimization deals with the problem of minimising (or maximising)
a function in several variables subject to linear equality and inequality
constraints and integrality restrictions on some or all of the variables.

We minimise (or maximise) a linear function ¢’ x subject to linear

equality and inequality constraints given by some matrix A and a vector b
as Ax < b.

We have that some variables are restricted to integer values while other
variables are real-valued.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 14/27



ot Attacks Polynomia m Solving with Noise Mixed Integer Programming

Mixed Integer Programming ||

The set S of all x € Z* x R/ which satisfies the linear constraints Ax < b
SZ{XEZkXR/,AXSb}
is called the feasible set.

If S = & the problem is infeasible. Any x € S which minimises (or
maximises) ¢’ x is an optimal solution.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 15/27



ot Attacks Polynomia m Solving with Noise Mixed Integer Programming

PoSSo as MIP |

Consider some f € Fy[x,...,Xx,—1] and let Z a function that takes a
polynomial over [F, lifts it to the integers. Analogous for elements in 5.

Restrict all x; to binary values.

Evaluate Z(f) on all {Z(x) | x € F3, f(x) = 0}.

Let ¢ be the minimum value and u the maximum value.
Introduce some integer variable % <m< %

Replace each monomial in f —2m by a new linearised variable, call
the result g and add the linear constraint g = 0.

. N
@ For each monomial t =[[;_; x;

m add a constraint x; > t and
® add a constraint 0 < E,N:l xi—t<N-—1.

This is the Integer Adapted Standard Conversion [1].

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 16/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Partial Weighted Max-PoSSo as MIP

m Convert each f € H to linear constraints as before.

m For each f; € S add a new binary slack variable e; to f; and convert
the resulting polynomial as before.

m The objective function we minimise is > c;e; where ¢; is the value of
C(f,x) for some x such that f(x) # 0.

Any optimal solution x € S will be an optimal solution to the Weighted
Partial Max-PoSSo problem.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 17/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Coldboot as MIP

Coldboot — Partial Weighted Max-PoSSo — MIP J

This approach is essentially the non-linear generalisation of decoding
random linear codes with linear programming [2].

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 18/27



Coldboot Attacks Polynomial tem Solving with Noise Mixed Integer Programming Application

Outline

A Application

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 19/27



Coldboot Attacks Polynomial System Solving with Noise Mixed Integer Programming Application

Simplifications

= We do not model £ since its representation is often too costly;
consequently we have no guarantee that the optimal k returned is
indeed the k we are looking for.

m We do not include all equations available to us but restrict our
attention to a subset (e.g. one or two rounds).

m We may use an “aggressive” modelling strategy where we assume

01 = 0 which allows us to promote some polynomials from S to H.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise

20/27






iming  Application

Gurobi http://www.gurobi.com
N | & a | #cores | cutoff t r max t
31015 - 24 oo | 100% | 17956.4s
31015 | - 2 240.0s | 25% 240.0s
31030+ 24 | 3600.0s | 25% | 3600.0s
31035+ 24 | 28800.0s | 30% | 28800.0s
SCIP http://scip.zib.de
31015 | + 1| 3600.0s | 65% | 1209.0s
4 1030 | + 1| 7200.0s | 47% | 7200.0s
4 1035 |+ 1| 10800.0s | 45% | 10800.0s
4 1040 | + 1 | 14400.0s 52% | 14400.0s
5040 | + 1 | 14400.0s | 45% | 14400.0s

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 22/27


http://www.gurobi.com
http://scip.zib.de

Coldboot Attacks Polynomial System Solving

Serpent |

ith N

ogramming

Application

W_g w_7 W_g W_s5 W_y4 w_3 wW_»o Ww_1
10) i Wi_g || Wi—7 || Wi—6 || Wi—5 || Wi—4 || Wj—3 || Wj—2 || Wj—1 || W;
! ! ! ! l T<<<11
P—-P Jan fany Jany
N o o N

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise

23/27



Coldboot Attacks Polynomial System Solving with Noise rogramming Application

Serpent |l

Gurobi http://www.gurobi. com

N | 0o a | #cores | cutoff ¢ r Max t
8 | 0.05| - 2 60.0s | 50% 16.22s
12 | 0.05 | - 2 60.0s | 85% 60.00s
8 | 0.15 | - 24 | 600.0s | 20% | 103.17s
12 | 0.15 | - 24 | 600.0s | 55% | 600.00s
12 | 0.30 | + 24 | 7200.0s | 20% | 7200.00s

SCIP http://scip.zib.de

12 | 0.15 | + 1| 600.0s | 32% | 597.37s
16 | 0.15 | + 1 | 3600.0s | 48% | 369.55s
20 | 0.15 | + 1| 3600.0s | 29% | 689.18s
321015 | + 1| 3600.0s | 21% | 1105.58s
16 | 0.30 | + 1| 3600.0s | 55% | 3600.00s
20 | 0.30 | + 1 | 7200.0s | 57% | 7200.00s

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 24/27


http://www.gurobi.com
http://scip.zib.de

ot Attacks Polynomia m Solving with Noise Mixed Integ gramming Application

Serpent Il

Ad-hoc approach:

m We wish to recover a 128-bit key, so we need to consider at least
128-bit of output.

m On average the noise free output should have 64 bits set to zero.

m In order to consider an error rate up to dg, we have to consider

[00-64]

S (64—1— (;so : 641)

i=0
candidates and test them.

m If 6o = 0.15 we have ~ 23687,
m If 6o = 0.30 we have ~ 262,

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise

25/27



Polynomial tem Solving with Noise Mixe gramming  Application

Thank you!

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 26/27



Coldboot Attacks Polynomial System Solving with Noise ed Integer Programming Application

Literature |

@ Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe.
Bivium as a Mixed-Integer Linear programming problem.

@ Jon Feldman.
Decoding Error-Correcting Codes via Linear Programming.

@ J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten.

Lest we remember: Cold boot attacks on encryption keys.

Martin Albrecht & Carlos Cid — Cold Boot Key Recovery using Polynomial System Solving with Noise 27/27



	Coldboot Attacks
	Polynomial System Solving with Noise
	Mixed Integer Programming
	Application

