Implementing Operations in Power-of-2 Cyclotomic Rings

LATTICE MEETING

Martin R. Albrecht 2016-04-14

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

```
Inverting in \mathbb{Q}[X]/(X^n+1)
```

Small Remainders

Discrete Gaussians

Approximate Square Roots

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

```
Inverting in \mathbb{Q}[X]/(X^n+1)
```

Small Remainders

Discrete Gaussians

Approximate Square Roots

- In 2013, Garg, Gentry and Halevi¹ proposed a construction, relying on ideal lattices, of a graded encoding scheme that approximates a cryptographic multilinear map.
- Shortly after, this construction was improved by Langlois, Stéhle and Steinfeld².
- Implementing GGH-like schemes naively would not allow instantiating it for non-trivial parameter sizes.

 ¹Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate Multilinear Maps from Ideal Lattices. In: EUROCRYPT 2013. Ed. by Thomas Johansson and Phong Q. Nguyen.
 Vol. 7881. LNCS. Springer, Heidelberg, May 2013, pp. 1–17. DOI:
 10.1007/978-3-642-38348-9_1.
 ²Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More Efficient

Multilinear Maps from Ideal Lattices. In: *EUROCRYPT 2014*. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 239–256. DOI: 10.1007/978-3-642-55220-5_14.

Martin R. Albrecht, Catalin Cocis, Fabien Laguillaumie, and Adeline Langlois. Implementing Candidate Graded Encoding Schemes from Ideal Lattices. In: ASIACRYPT 2015, Part II. ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. LNCS. Springer, Heidelberg, 2015, pp. 752–775. DOI: 10.1007/978-3-662-48800-3_31

WAIT, AREN'T THOSE ALL BROKEN?

http://malb.io/are-graded-encoding-schemes-broken-yet.html

Key Exchange

Yupu Hu and Huiwen Jia. Cryptanalysis of GGH Map. accepted at EUROCRYPT 2016. 2015

• Polynomial-time attack using low-level encodings of zero.³

³Sage implementation: https://martinralbrecht.wordpress.com/2015/04/13/

Ατταςκς ΙΙ

Attacks without Low-Level Encodings of Zero

Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An Algorithm for NTRU Problems and Cryptanalysis of the GGH Multilinear Map without an encoding of zero. In: *IACR Cryptology ePrint Archive* 2016 (2016). URL: http://ia.cr/2016/139

Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU assumptions: Cryptanalysis of some FHE and Graded Encoding Schemes. In: IACR Cryptology ePrint Archive 2016 (2016). URL: http://ia.cr/2016/127

- Polynomial-time attack for large levels of multilinearity κ without low-level encodings of zero.
- Subexponential attack for large levels of multilinearity κ without low-level encodings of zero without using the zero-testing parameter.

Indistinguishability Obfuscation

Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13. In: IACR Cryptology ePrint Archive 2016 (2016). URL: http://ia.cr/2016/147

• Polynomial-time attack on several iO constructions⁴⁵⁶

⁴Sanjam Garg et al. Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits. In: *54th FOCS*. IEEE Computer Society Press, Oct. 2013, pp. 40–49.

⁵Boaz Barak et al. Protecting Obfuscation against Algebraic Attacks. In: *EUROCRYPT 2014.* Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 221–238. DOI: 10.1007/978-3-642-55220-5_13. ⁶Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing Obfuscation: Avoiding Barrington's Theorem. In: *ACM CCS 14.* Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li. ACM Press, Nov. 2014, pp. 646–658. GGH-like graded encodings schemes might be broken, but designers of lattice-based schemes might still be tempted to write: "Sample $g \leftrightarrow D_{R,\sigma}$ until $\mathcal{I} = (g)$ is a prime ideal" or "Sample $f \leftrightarrow D_{(g)+c,\sigma}$."

- We work in the *m*-th cyclotomic ring for *m* a power of two.
- It has degree n = m/2 and we consider the representation $R \simeq \mathbb{Z}[X]/(x^n + 1)$.
- We also consider $R_q \simeq \mathbb{Z}_q[X]/(x^n + 1)$ and $R_g \simeq \mathbb{Z}[X]/(x^n + 1, g)$.

- Instance generation. Given security parameter λ and multilinearity parameter κ , determine scheme parameters n, q, σ , σ' , $\ell_{g^{-1}}$, ℓ_b , ℓ as in GGHLite⁷. Then proceed as follows:
 - Sample $g \leftrightarrow D_{R,\sigma}$ until $||g^{-1}|| \le \ell_{g^{-1}}$ and $\mathcal{I} = (g)$ is a prime ideal. Define encoding domain $R_g = R/(g)$.
 - Sample $z_i \leftrightarrow U(R_q)$ for all $0 < i \le \kappa$.
 - Sample $h \leftrightarrow D_{R,\sqrt{q}}$ s.t. h and g are co-prime and define the zero-testing parameter $p_{zt} = \left[\frac{h}{g}\prod_{i=1}^{\kappa} Z_i\right]_c$.
 - Return public parameters params = (n, q, ℓ) and p_{zt} .

⁷Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More Efficient Multilinear Maps from Ideal Lattices. In: *EUROCRYPT 2014*. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 239–256. DOI: 10.1007/978-3-642-55220-5_14.

- Encode at level-0. Compute a small representative $e' = [e]_g$ and sample an element $e'' \leftrightarrow D_{e'+\mathcal{I},\sigma'}$. Output e''.
- Encode in group. Given parameters params, z_i and a level-0 encoding $e \in R$, output $[e/z_i]_a$.

GGHLITE: ARITHMETIC & ZERO-TESTING

- Adding encodings. Given encodings $u_1 = [c_1/(\prod_{i \in S} z_i)]_q$ and $u_2 = [c_2/(\prod_{i \in S} z_i)]_q$ with $S \subseteq \{1, \ldots, \kappa\}$:
 - Return $u = [u_1 + u_2]_a$, an encoding of $[c_1 + c_2]_a$ in the group S.
- Multiplying encodings. Let $S_1 \subset [\kappa]$, $S_2 \subset [\kappa]$ with $S_1 \cap S_2 = \emptyset$, given an encoding $u_1 = [c_1/(\prod_{i \in S_1} z_i)]_q$ and an encoding $u_2 = [c_2/(\prod_{i \in S_2} z_i)]_q$:
 - Return $u = [u_1u_2]_q$, an encoding of $[c_1c_2]_q$ in $S_1 \cup S_2$.
- Zero testing. Given parameters params, a zero-testing parameter p_{zt} , and an encoding $u = \left[c / \left(\prod_{i=0}^{\kappa-1} z_i \right) \right]_q$ in the group $[\kappa]$, return 1 if $\| [p_{zt}u]_q \|_{\infty} < q^{3/4}$ and 0 else.

gghlite-flint		
<pre> - applications</pre>	# 0.9	k benchmarks, high-level applications, …
- dgs	# 1.2	<pre>< discrete Gaussian sampling over the Integers</pre>
- dgsl	# 0.7	<pre>< discrete Gaussian sampling over lattices</pre>
- flint	# 250	<pre>we rely on flint</pre>
- gghlite	# 1.5	<pre>instance generation, zero testing</pre>
- OZ	# 2.2	<pre>c operations in Z[x]/(x^n+1)</pre>
- tests	# 1.1	< tests!
- tests	# 1.1	< tests!

https://bitbucket.org/malb/gghlite-flint
 https://bitbucket.org/malb/dgs

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

```
Inverting in \mathbb{Q}[X]/(X^n+1)
```

Small Remainders

Discrete Gaussians

Approximate Square Roots

- Naive multiplication takes $\mathcal{O}\left(n^2\right)$.
- Asymptotically fast multiplication:
 - + Reduce to multiplication in $\mathbb{Z}\left[X\right]$
 - Schönehage-Strassen algorithm for multiplying large integers in $\mathcal{O}(n \log n \log \log n)$.
 - This is the strategy implemented in FLINT.
 - FLINT has highly optimised implementation of the Schönehage-Strassen algorithm.
- We can also achieve $\mathcal{O}(n \log n)$ by the Number-Theoretic Transform.

Theorem (Negative Wrapped Convolution)

Let ω_n be an nth root of unity in \mathbb{Z}_q and $\varphi^2 = \omega_n$. Let

$$a = \sum_{i=0}^{n-1} a_i X^i$$
 and $b = \sum_{i=0}^{n-1} b_i X^i \in \mathbb{Z}_q[X]/(X^n + 1).$

Let $c = a \cdot b \in \mathbb{Z}_q[X]/(X^n + 1)$ and let

$$\overline{a} = (a_0, \varphi a_1, \ldots, \varphi^{n-1} a_{n-1})$$

and define \overline{b} and \overline{c} analogously. Then

 $\overline{c} = 1/n \cdot \operatorname{NTT}_{\omega_n}^{-1}(\operatorname{NTT}_{\omega_n}(\overline{a}) \odot \operatorname{NTT}_{\omega_n}(\overline{b})).$

```
mp ptr b = nmod vec init(n);
const double ninv = n_precompute_inverse(q.n);
for(size t i=0; i<k; i++) {</pre>
  const mp limb t tkm = ~(((1UL)<<(k-1-i)) - 1);</pre>
  for(size t j=0; j<n/2; j++) {</pre>
    const size_t pij = j & tkm;
    mp_limb_t tmp = n_mulmod_precomp(a[2*j+1], w[pij], q.n, ninv);
    b[j] = n addmod(a[2*j], tmp, q.n);
    b[j+n/2] = n \text{ submod}(a[2*j], tmp, q.n);
  }
  if(i!=k-1)
    nmod vec set(a, b, n);
_nmod_vec_set(rop, b, n);
_nmod_vec_clear(b);
_nmod_vec_clear(a);
```

- If we do many operations in $\mathbb{Z}_q[X]/(X^n + 1)$ we can avoid repeated conversions between coefficient and "evaluation" representation $(f(1), f(\omega_n), \dots, f(\omega_n^{n-1}))$
- We convert encodings to their evaluation representation once on creation
- We convert back only when running extraction.
- This reduces the amortised cost from $\mathcal{O}(n \log n)$ to $\mathcal{O}(n)$.

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

```
Inverting in \mathbb{Q}[X]/(X^n+1)
```

Small Remainders

Discrete Gaussians

Approximate Square Roots

- \cdot During instance generation we have to compute the norm of g.
- We can compute norms in $\mathbb{Z}[X]/(X^n + 1)$ by observing that

 $\mathcal{N}(f) = \operatorname{res}(f, X^n + 1).$

- The usual strategy for computing resultants over the integers is to use a multi-modular approach.
- We compute resultants modulo many small primes q_i and then combine the results using the Chinese Remainder Theorem.
- Resultants modulo a prime q_i can be computed in $\mathcal{O}(M(n) \log n)$ operations where M(n) is the cost of one multiplication in $\mathbb{Z}_{q_i}[X]/(X^n + 1)$.
- Overall cost $\mathcal{O}\left(n\log^2 n\right)$ without specialisation.

• $res(f, X^n + 1) \mod q_i$ can be rewritten as

 $\prod_{(X^n+1)(x)=0} f(x) \bmod q_i,$

i.e. as evaluating f on all roots of $X^n + 1$.

• Picking q_i such that $q_i \equiv 1 \mod 2n$ this can be accomplished using the NTT reducing the cost mod q_i to $\mathcal{O}(M(n))$ saving a factor of log n.

```
void _fmpz_poly_oz_ideal_norm(fmpz_t norm, const fmpz_poly_t f,
                               const long n) {
  ...
#pragma omp parallel for
  for (i = 0; i<num primes; i++) {</pre>
    nmod t mod;
    nmod_init(&mod, parr[i]);
    const int id = omp get thread num();
    /* reduce polynomials modulo p */
    _fmpz_vec_get_nmod_vec(a[id], F, n, mod);
    /* compute resultant over Z/pZ */
    rarr[i] = nmod vec oz resultant(a[id], n, mod);
    flint cleanup();
```

```
mp_limb_t _nmod_vec_oz_resultant(const mp_ptr a, long n, nmod_t q) {
  const mp_limb_t w_ = _nmod_nth_root(2*n, q.n);
  mp ptr w = nmod vec init(2*n);
  mp ptr t = nmod vec init(2*n);
  _nmod_vec_oz_set_powers(w, 2*n, w_, q);
  _nmod_vec_oz_ntt(t, a, w, 2*n, q);
  mp limb t acc = 1;
  for(int i=1; i<2*n; i+=2)</pre>
    acc = n_mulmod2_preinv(acc, t[i], q.n, q.ninv);
  nmod vec clear(w);
  _nmod_vec_clear(t);
  return acc;
```

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

Inverting in $\mathbb{Q}[X]/(X^n+1)$

Small Remainders

Discrete Gaussians

Approximate Square Roots

To check if (g) is prime, compute the norm and check if prime. This is a sufficient but not necessary condition.

Before computing resultants, check if $res(g, X^n + 1) \equiv 0 \mod q_i$ for several "interesting" primes q_i .

```
int fmpz poly oz ideal not prime factors(const fmpz poly t f, long n,
                                           const mp limb t *primes) {
  nmod poly t a[num threads], b[num threads];
  int r[num threads];
  for(size t i=0; i<k; i+=num threads) {</pre>
    if (k-i < (unsigned long)num threads)</pre>
      num threads = k-i;
#pragma omp parallel for
    for (int j=0; j<num threads; j++) {</pre>
      mp limb t p = primes[1+i+j];
      fmpz_poly_get_nmod_poly(a[j], f);
      r[j] = nmod_poly_oz_resultant(a[j], n);
    for(int j=0; j<num threads; j++)</pre>
      if (r[j] == 0)
        return r[0];
  return r[0]:
```

These primes are 2 and then all primes up to some bound with $q_i \equiv 1 \mod n$ because these occur with good probability as factors.

n	$\log \sigma$	wall time
1024	15.1	0.54s
2048	16.2	3.03s
4096	17.3	20.99s
32768	20.4	1834.99s

Average time of checking primality of a single (g) on Intel Xeon CPU E5–2667 v2 3.30GHz with 256GB of RAM using 16 cores.

VERIFYING CO-PRIMALITY

• When re-randomisation elements are required, then it is necessary that they generate all of (g), i.e.

$$(b_1^{(1)}, b_2^{(1)}) = (g)$$

• When $b_i^{(1)} = \tilde{b}_i^{(1)}g$ for $0 < i \le 2$ then this is equivalent to

$$(\tilde{b}_1^{(1)}) + (\tilde{b}_2^{(1)}) = \mathbb{Z}[X]/(X^n + 1).$$

 $\cdot\,$ We check the sufficient but not necessary condition

$$gcd(res(\tilde{b}_1^{(1)}, X^n + 1), res(\tilde{b}_2^{(1)}, X^n + 1)) = 1,$$

i.e. if the respective ideal norms are co-prime.

AVOIDING RESULTANTS

- Perform this check for every candidate pair $(\tilde{b}_1^{(1)}, \tilde{b}_2^{(1)})$.
- Compute two resultants and their gcd: expensive.
- But

$$gcd(res(\tilde{b}_{1}^{(1)}, X^{n} + 1), res(\tilde{b}_{2}^{(1)}, X^{n} + 1)) \neq 1$$

when

$$\operatorname{res}(\tilde{b}_1^{(1)}, X^n + 1) = 0 = \operatorname{res}(\tilde{b}_2^{(1)}, X^n + 1) \mod q_i$$

for any modulus q_i .

→ Check this condition for several "interesting" primes and resample if this condition holds.

- After having ruled out small common prime factors it is quite unlikely that the gcd of the norms is not equal to one.
- With good probability we will perform this expensive step only once as a final verification.

Improvement

A possible strategy is to sample m > 2 re-randomisers $b_i^{(1)}$ and to apply bounds on the probability of m elements $\tilde{b}_i^{(1)}$ sharing a prime factor after excluding small prime factors.

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

Inverting in $\mathbb{Q}[X]/(X^n+1)$

Small Remainders

Discrete Gaussians

Approximate Square Roots

Instance generation relies on inversion in $\mathbb{Q}[X]/(X^n + 1)$.

- 1. when sampling g we have to check that the norm of its inverse is bounded by ℓ_g .
- 2. To set up our discrete Gaussian samplers we need to run many inversions in an iterative process.

- The core idea⁸ is similar to the FFT, i.e. to reduce the inversion of f to the inversion of an element of degree n/2.
- Since *n* is even, f(X) is invertible modulo $X^n + 1$ if and only if f(-X) is also invertible.
- By setting

$$F(X^2) = f(X)f(-X) \mod X^n + 1,$$

the inverse $f^{-1}(X)$ of f(X) satisfies

$$F(X^2)f^{-1}(X) = f(-X) \mod X^n + 1.$$

⁸Dario Bini, Gianna M. Del Corso, Giovanni Manzini, and Luciano Margara. Inversion of Circulant Matrices over Z_m. In: International Colloquium on Automata, Languages and Programming. Vol. 1443. LNCS. Springer, 1998, pp. 719–730.

Inverting in $\mathbb{Q}[X]/(X^n+1)$

• Let

$$f^{-1}(X) = g(X) = G_e(X^2) + XG_o(X^2)$$

and

$$f(-X) = F_e(X^2) + XF_o(X^2).$$

• We obtain

$$F(X^{2})(G_{e}(X^{2}) + XG_{o}(X^{2})) = F_{e}(X^{2}) + XF_{o}(X^{2}) \mod X^{n} + 1$$

or equivalently

$$F(X^2)G_e(X^2) = F_e(X^2) \pmod{X^n + 1},$$

$$F(X^2)G_o(X^2) = F_o(X^2) \pmod{X^n + 1}$$

- Invert f(X) by inverting $F(X^2)$ and multiplying at degree n/2.
- Recursively call the inversion of F(Y) modulo $(X^{n/2} + 1)$ by setting $Y = X^2$.

Instance generation relies on inversion in $\mathbb{Q}[X]/(X^n + 1)$.

- 1. when sampling g we have to check that the norm of its inverse is bounded by ℓ_g .
- 2. To set up our discrete Gaussian samplers we need to run many inversions in an iterative process.

Instance generation relies on inversion in $\mathbb{Q}[X]/(X^n + 1)$.

- 1. when sampling g we have to check that the norm of its inverse is bounded by ℓ_g .
- 2. To set up our discrete Gaussian samplers we need to run many inversions in an iterative process.

Approximates Suffice

In the first case we only need to estimate the size of g^{-1} and in the second case inversion is a subroutine of an approximation algorithm.

```
void fmpq_poly_truncate_prec(fmpq_poly_t op, const mp_bitcnt_t prec) {
    mpq_t *tmp_q = (mpq_t*)calloc(fmpq_poly_length(op), sizeof(mpq_t));
    mpf_t tmp_f; mpf_init2(tmp_f, prec);
    for (int i=0; i<fmpq_poly_length(op); i ++) {
        mpq_init(tmp_q[i]);
        fmpq_poly_get_coeff_mpq(tmp_q[i], op, i);
        mpf_set_q(tmp_f, tmp_q[i]);
        mpq_set_f(tmp_q[i], tmp_f);
    }
    fmpq_poly_set_array_mpq(op, (const mpq_t*)tmp_q, fmpq_poly_length(op));
    ...
}</pre>
```

Calling fmpq_poly_set_array_mpq instead of setting each coefficient one-by-one avoids repeated GCD computations.

if n = 1 then $q_0 \leftarrow f_0^{-1}$ else $F(X^2) \leftarrow f(X)f(-X) \mod X^n + 1$ $\tilde{F}(Y) = F(Y)$ truncated to prec bits of precision $G(Y) \leftarrow \text{InverseMod}(\tilde{F}(Y), q, n/2)$ Set $F_{e}(X^{2})$, $F_{0}(X^{2})$ such that $f(-X) = F_{e}(X^{2}) + XF_{0}(X^{2})$ $T_e(Y), T_o(Y) \leftarrow G(Y)F_e(Y), G(Y)F_o(Y)$ $f^{-1}(X) \leftarrow T_e(X^2) + XT_o(X^2)$ $\tilde{f}^{-1}(X) = f^{-1}(X)$ truncated to **prec** bits of precision return $\tilde{f}^{-1}(X)$ end if

Approximate inverse of $f(X) \mod X^n + 1$ using **prec** bits of precision

n	$\log \sigma$	xgcd	160	160iter	∞
4096	17.2	234.1s	0.067s	0.073s	121.8s
8192	18.3	1476.8s	0.195s	0.200s	755.8s

Inverting $g \leftarrow_{\$} D_{\mathbb{Z}^n,\sigma}$ with FLINT's extended Euclidean algorithm ("xgcd"), our implementation with precision 160 ("160"), iterating our implementation until $\|\tilde{f}^{-1}(X)f(X) - 1\| < 2^{-160}$ ("160iter") and our implementation without truncation (" ∞ ") on Intel Core i7–4850HQ CPU at 2.30GHz, single core.

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

Inverting in $\mathbb{Q}[X]/(X^n+1)$

Small Remainders

Discrete Gaussians

Approximate Square Roots

- The Jigsaw Generator⁹ takes as input elements a_i in \mathbb{Z}_p where $p = \mathcal{N}(\mathcal{I})$ and produces encodings with respect to some S_i .
- This algorithm produces some small representative of the coset $a_i \mod (g)$ from large integers of size $\approx (\sigma \sqrt{n})^n$.

⁹Sanjam Garg et al. Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits. In: *54th FOCS*. IEEE Computer Society Press, Oct. 2013, pp. 40–49.

• We can use Babai's trick and that g is small, i.e. compute

 $a_i - g \cdot \lfloor g^{-1} \cdot a_i \rfloor$ in $\mathbb{Q}[X]/(X^n + 1)$

- To produce sufficiently small elements, we need g^{-1} either exactly or with high precision.
- Computing such a high quality approximation of g^{-1} is prohibitively expensive.

1. Rewrite a_i as

$$a_i = \sum_{j=0}^{\lceil \log_2(a_i)/B \rceil} 2^{B \cdot j} \cdot a_{ij}$$

where $a_{ij} < 2^B$ for some *B*.

- 2. Compute small representatives for all $2^{B \cdot j}$ and a_{ij} using an approximation of g^{-1} with precision *B*.
- 3. Multiply small representatives for $2^{B \cdot j}$ and a_{ij} and add up their products.

This produces a somewhat short element which we then reduce using approximation of g^{-1} with precision *B* until its size does not decrease any more.

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

Inverting in $\mathbb{Q}[X]/(X^n+1)$

Small Remainders

Discrete Gaussians

Approximate Square Roots

- We need to sample from the discrete Gaussian $D_{(g),\sigma',c}$ where c is a small representative of a coset of (g).
- Fundamental building block is sampler over the Integers.

- Discrete Gaussian sampler over the integers for arbitrary precision using MPFR and double precision.
- Implements rejection sampling from a uniform distribution with and without table ("online") lookups ¹⁰ and Ducas et al's sampler which samples from $D_{\mathbb{Z},k\sigma_2}$ where σ_2 is a constant¹¹.
- Implementation automatically chooses the best algorithm based on σ , *c* and τ (tail cut).

 ¹⁰Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In: 40th ACM STOC. ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206.
 ¹¹Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice Signatures and Bimodal Gaussians. In: CRYPTO 2013, Part I. ed. by Ran Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 40–56. DOI: 10.1007/978-3-642-40041-4_3.

algorithm	σ	С	prec	samp./s	prec	samp./s
tabulated	10000	1.0	53	660.000	160	310.000
tabulated	10000	0.5	53	650.000	160	260.000
online	10000	1.0	53	414.000	160	9.000
online	10000	0.5	53	414.000	160	9.000
Alg 12 [DDLL13]	10000	1.0	53	350.000	160	123.000

Example timings for discrete Gaussian sampling over $\mathbb Z$ on Intel Core i7–4850HQ CPU at 2.30GHz, single core.

- Implemented naively this takes $O(n^3 \log n)$ operations even if we ignore issues of precision.
- Following Léo's thesis¹², we implemented a variant of Peikert's sampler¹³.

¹²Léo Ducas. Signatures Fondées sur les Réseaux Euclidiens: Attaques, Analyse et Optimisations. PhD thesis. Université Paris Diderot, 2013.
 ¹³Chris Peikert. An Efficient and Parallel Gaussian Sampler for Lattices. In: *CRYPTO 2010.* Ed. by Tal Rabin. Vol. 6223. LNCS. Springer, Heidelberg, Aug. 2010, pp. 80–97.

1. Observe that

$$D_{(g),\sigma',0} = g \cdot D_{R,\sigma'g^{-\tau}}$$

2. Compute approximate square-root $\sqrt[approx/\Sigma_2]$ of

$$\Sigma_2 = \sigma^{\prime 2} \cdot g^{-T} \cdot g^{-1} - r^2$$
 with $r = 2 \cdot \lceil \sqrt{\log n} \rceil$

- 3. Sample a vector $x \leftarrow_{\$} \mathbb{R}^n$ from a standard normal distribution and interpret it as a polynomial in $\mathbb{Q}[X]/(X^n + 1)$.
- 4. Compute $y = {}^{app} \sqrt{\Sigma_2} \cdot x$ in $\mathbb{Q}[X] / (X^n + 1)$ and return $g \cdot (\lfloor y \rceil_r)$, where $\lfloor y \rceil_r$ denotes sampling a vector in \mathbb{Z}^n where the *i*-th component follows $D_{\mathbb{Z},r,y_i}$.

1. Compute an approximate square root of

$$\Sigma_2' = g^{-\tau} \cdot g^{-1}$$

up to λ bits of precision.

- Precision: $\log(n) + 4(\log(\sqrt{n}\sigma))$ bits.
- $\cdot\,$ If square root does not converge, double precision and start over.
- 2. Use this approximate square-root, scaled appropriately, as the initial value from which to start computing a square-root of

$$\Sigma_2 = \sigma^{\prime 2} \cdot g^{-T} \cdot g^{-1} - r^2 \text{ with } r = 2 \cdot \lceil \sqrt{\log n} \rceil$$

- 3. Terminate when the square is within distance $2^{-2\lambda}$ to Σ_2 .
- 4. Converges quickly because initial candidate close to target.

OUTLINE

GGH-like Multilinear Maps

Multiplication

Computing Algebraic Norms

Primality

Inverting in $\mathbb{Q}[X]/(X^n+1)$

Small Remainders

Discrete Gaussians

Approximate Square Roots

STRATEGY

- For some input element Σ we want to compute some element $\sqrt[appr]{\Sigma} \in \mathbb{Q}[X]/(X^n + 1)$ such that $\|\sqrt[appr]{\Sigma} \cdot \sqrt[appr]{\Sigma} \Sigma \| < 2^{-2\lambda}$.
- We use iterative methods which iteratively refine the approximation of the square root similar to Newton's method.¹⁴
- Computing approximate square roots of matrices is a well studied research area with many algorithms known in the literature.¹⁵
- All algorithms with global convergence invoke approximate inversions in $\mathbb{Q}[X]/(X^n + 1)$ for which we call our inversion algorithm.

 ¹⁴Léo Ducas. Signatures Fondées sur les Réseaux Euclidiens: Attaques, Analyse et Optimisations. PhD thesis. Université Paris Diderot, 2013.
 ¹⁵Nicholas J. Higham. Stable iterations for the matrix square root. In: Numerical Algorithms 15.2 (1997), pp. 227–242. ISSN: 1017-1398. DOI: 10.1023/A:1019150005407.
 URL: http://dx.doi.org/10.1023/A%3A1019150005407. Babylonian only one inversion, which allows lower precision. Denman-Beavers converges faster in practice and can be parallelised on two cores.¹⁶

Padé iteration arbitrarily many cores, but workload on each core is greater than Denman-Beavers.¹⁷ Only better for us when more than 8 cores were used.

¹⁶Eugene D. Denman and Alex N. Beavers Jr. The matrix sign function and computations in systems. In: *Applied Mathematics and Computation* 2.1 (1976), pp. 63–94.

¹⁷Nicholas J. Higham. Stable iterations for the matrix square root. In: *Numerical Algorithms* 15.2 (1997), pp. 227–242. ISSN: 1017-1398. DOI: 10.1023/A:1019150005407. URL: http://dx.doi.org/10.1023/A%3A1019150005407.

- Quadratic convergence does not assure rapid convergence in practice because error can take many iterations to become small enough.
- Speed-up convergence by scaling the operands appropriately in each loop.¹⁸
- Common scaling scheme: scale by the determinant, i.e. $\operatorname{res}(f, X^n + 1)$ for some $f \in \mathbb{Q}[X]/(X^n + 1)$.
- Computing resultants in $\mathbb{Q}[X]/(X^n + 1)$ reduces to computing resultants in $\mathbb{Z}[X](X^n + 1)$.
- Computing resultants in $\mathbb{Z}[X]/(X^n + 1)$ can be expensive.

¹⁸Nicholas J. Higham. Stable iterations for the matrix square root. In: Numerical Algorithms 15.2 (1997), pp. 227–242. ISSN: 1017-1398. DOI: 10.1023/A:1019150005407. URL: http://dx.doi.org/10.1023/A%3A1019150005407.

- We are only interested in approximate determinant for scaling \rightarrow compute with reduced precision.
- Clear all but the most significant bit for each coefficient's numerator and denominator of f to produce f' and compute res $(f', X^n + 1)$.
- Reduces the size of the integer representation to speed up the resultant computation.
- With this optimisation scaling by an approximation of the determinant is both fast and precise enough to produce fast convergence.

prec	n	$\log \sigma'$	it.	wall time	$\log\left(\left(\sqrt[appr]{\Sigma_2}\right)^2 - \Sigma_2\right)$
160	1024	45.8	9	0.4s	-200
160	2048	49.6	9	0.9s	-221
160	4096	53.3	10	2.5s	-239
160	8192	57.0	10	8.6s	-253
160	16384	60.7	10	35.4s	-270

Approximate square roots of $\Sigma_2 = \sigma'^2 \cdot g^{-7} \cdot g - r^2$ on Intel Core i7–4850HQ CPU at 2.30GHz, 2 cores for Denman-Beavers, 4 cores for estimating the scaling factor, one core for sampling.

Thank You

Code https://bitbucket.org/malb/gghlite-flint

Paper http://ia.cr/2014/928