
VolatilityBot
Installation and plugin development guide

Martin G. Korman
Nov. 2015 

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !1

System installation
Introduction

Download the Source code from bitbucket, at the following address:
https://bitbucket.org/martink90/volatilitybot_public
Unzip it, and copy it to the location where you want to install VolatilityBot.

Preparing the host

VolatilityBot was tested in Mac OS Yosemite and on various Ubuntu
distributions. General requirements are as follows:
1. Volatility 2.5, and all its pre-requisites documented in the project site.
2. Python 2.7
3. Python Libraries:

3.1. distorm3
3.2. pefile
3.3. yara
3.4. sqlalchemy
3.5. pydasm
3.6. yaml

4. VMware workstation for Linux, VMware Fusion for Mac.

Creating and configuring the Virtual Machines
Create a new windows virtual machine , choose From WinXPx86 to Win7x64. Windows 8 or
Windows 10 machines were not tested, but should work if Volatility Supports. After
installation was complete do the following:

1. Disable Windows FW

2. Disable Windows updates

3. Install python 2.7

4. Add the following script to the startup folder, and name it agent.pyw (Note *.pyw
extension and not *.py):

5. Change the IP address in s.bind to the IP of the virtual machine.

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !2

https://bitbucket.org/martink90/volatilitybot_public

6. Launch the script, and any additional programs you want to keep open, and take a VM
snapshot.

7. Clone as many machines as you like, remember to change the IP in the script.

8. The machine pools features enables you to send the same sample to multiple different
Virtual Machines. You can create additional machines with different operating system as
well. Just repeat these steps.

Creating the configuration files
The main configuration file is called main.conf and can be found at conf/
folder:

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !3

mainconfig:
 general:
 VolatilityBot_Home: /home/martin/MWA/VolatilityBot/volatilitybot
 machine_type: vmware
 db_engine: "sqlite:////home/martin/MWA/db.sqlite3"
 volatility_path: "/usr/local/bin/vol.py"
 modules: malfind,modscan,procdump
 active_pools: WinXPx86,Win7x64
 log_path : /home/martin/MWA/VolatilityBot/volatilitybot/logs
 machine_failure_threshold : 6

import socket
import sys
import subprocess

s = socket.socket()
s.bind(("192.168.47.20",9999))
s.listen(1) # Acepta hasta 10 conexiones entrantes.
sc, address = s.accept()

print address
i=1
f = open('c:\\binary_to_exec.exe','wb')
i=i+1

l = sc.recv(1024)
while (l):
 f.write(l)
 l = sc.recv(1024)
f.close()

sc.close()
s.close()

You can change the address to 0.0.0.0 to listen at any address.

Change the configuration as follows:
* VolatilityBot_Home - This is the path you copied VolatilityBot to
* machine_type - Leave it as vmware
* db_engine - This is the path to your sqlite DB, which you will create later. This file can get

really big.
* volatility_path - The path where vol.py is stored.
* modules - Choose the Code extractor plugins you want to be used every execution:

* malfind, modscan, procdump, apihooks
* active_pools - Which machine pools will be used. Give a name to each machine pool you

created in the previous section - use a descriptive name (If you created only one, put only
that one).

* log_path - Where the execution log will be stored
* machine_failure_threshold - How much times a VM has to fail to revert/shutdown before it

is set as failed, and not used for the rest of the analysis queue.

Inside the configuration folder, there is a file name yara_rules.yar. Save inside it all the YARA
rules you want to.

There is an additional configuration file inside conf/ named vmware.conf:
The VMware configuration file has a JSON structure as follows:

General VMware configuration:

* vmrun_path - A path where VMware’s vmrun binary is stored, which is used by
VolatilityBot to manage the virtual machines

* machine_resource_pools - Each section has to have the same name as configured in
main.conf

 Each of the resource pool sections has the following parameters:
* active - Tell wether this resource pool is active or not

* profile - The Volatility profile used for this machine type. The list can be seen using the
vol.py command:

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !4

* machines - this section has a sub-section for each virtual machine configured:

* status - Leave as idle

* vmdk_path - The path where the VMware disk file is stored

* name - The name of the virtual machine, as it appears in VMware

* IP - The address of the VM

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !5

{
 "general": {
 "vmrun_path": "/usr/bin/vmrun",
 "machine_resource_pools": {
 "WinXPx86": {
 "active": true,
 "profile": "WinXPSP3x86",
 "machines": {
 "wxp_01": {
 "status": "idle",
 "vmdk_path": "/home/martin/vmware/wxp_01/",
 "name": "wxp_01",
 "IP": "192.168.47.20",
 "enabled": true,
 "snapshot_name": "VolatilityBot",
 "vmx_path": "/home/martin/vmware/wxp_01/wxp_01.vmx",
 "pool": "WinXPx86"
 },
 "wxp_02": {

[martin@VolatilityBot-Core-0 conf]$ vol.py --info
Volatility Foundation Volatility Framework 2.4

Profiles

VistaSP0x64 - A Profile for Windows Vista SP0 x64
VistaSP0x86 - A Profile for Windows Vista SP0 x86
VistaSP1x64 - A Profile for Windows Vista SP1 x64
VistaSP1x86 - A Profile for Windows Vista SP1 x86
VistaSP2x64 - A Profile for Windows Vista SP2 x64
VistaSP2x86 - A Profile for Windows Vista SP2 x86
Win2003SP0x86 - A Profile for Windows 2003 SP0 x86
Win2003SP1x64 - A Profile for Windows 2003 SP1 x64
Win2003SP1x86 - A Profile for Windows 2003 SP1 x86
Win2003SP2x64 - A Profile for Windows 2003 SP2 x64
Win2003SP2x86 - A Profile for Windows 2003 SP2 x86
Win2008R2SP0x64 - A Profile for Windows 2008 R2 SP0 x64
Win2008R2SP1x64 - A Profile for Windows 2008 R2 SP1 x64
Win2008SP1x64 - A Profile for Windows 2008 SP1 x64
Win2008SP1x86 - A Profile for Windows 2008 SP1 x86
Win2008SP2x64 - A Profile for Windows 2008 SP2 x64
Win2008SP2x86 - A Profile for Windows 2008 SP2 x86
Win2012R2x64 - A Profile for Windows Server 2012 R2 x64
Win2012x64 - A Profile for Windows Server 2012 x64
Win7SP0x64 - A Profile for Windows 7 SP0 x64
Win7SP0x86 - A Profile for Windows 7 SP0 x86
Win7SP1x64 - A Profile for Windows 7 SP1 x64
Win7SP1x86 - A Profile for Windows 7 SP1 x86
Win8SP0x64 - A Profile for Windows 8 x64
Win8SP0x86 - A Profile for Windows 8 x86
Win8SP1x64 - A Profile for Windows 8.1 x64
Win8SP1x86 - A Profile for Windows 8.1 x86
WinXPSP1x64 - A Profile for Windows XP SP1 x64
WinXPSP2x64 - A Profile for Windows XP SP2 x64
WinXPSP2x86 - A Profile for Windows XP SP2 x86
WinXPSP3x86 - A Profile for Windows XP SP3 x86

* enabled - true/false

* snapshot_name - The name of the snapshot you took before, with the agent.pyw running.

* vmx_path - The path where the VMware config file for the machine is stored.

* pool - The resource pool this machine belongs to

It is recommended to validate the JSON structure with JSlint after saving this file.

Initialise the DB, and create the Golden Images
Inside the Utils folder, there is a script name db_builder.py. Execute it in order to create the
DB file.

In the same folder, there is a script named gi_builder.py. Execute it and will launch each
virtual machine configured, and save a golden image of the configured virtual machines.
Each machine is reverted and after 10 seconds suspended and all relevant data is saved. This
steps takes around 25 seconds per VM.

Test VolatilityBot
1. The main script is VolatilityBot.py:

2. In order to test you installed VolatilityBot correctly, Launch it in Daemon mode:

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !6

usage: VolatilityBot.py [-h] [-f FILENAME] [-s SLEEP] [-r] [-x] [-e] [-D]
[-S]
 [-Q] [-t TAGS]

optional arguments:
 -h, --help show this help message and exit
 -f FILENAME, --filename FILENAME
 The Executable you want to submit
 -s SLEEP, --sleep SLEEP
 How much time to wait, in seconds
 -r
 -x Delete original file after submission
 -e Enqueue files, but do not analyze them now
 -D Execute in daemon mode
 -S Skip existing samples
 -Q Reprocess samples that were in waiting state and
 failed samples
 -t TAGS, --tags TAGS Sample tags, separated by commas i.e: Dyre,Upatre

[martin@VolatilityBot VolatilityBot]$ python VolatilityBot.py -D --sleep 120

3. In a separate terminal, submit a sample:

4. If you have configured everything correctly, you should see now that VolatilityBot is
reverting virtual machines and after 2 minutes suspending them and extracting all
malicious code found.

5. After VolatilityBot has finished, you will found all related output files in the Store folder.

YARA Semantic analyzer
(YSA) and writing rules for it

YARA Semantic analyzer is a post-processing module, that uses sophisticated YARA rules in
order to find various behaviour patterns in the malicious code extracted from memory. As
default the only code extractor configured to use YSA is Malfind.

This is an example of a YSA rule file with some included rules:

Let me explain the rule socket_tcp:

This rule allows VolatilityBot to detect socket creation patterns in the extracted code.
6A 06 - push 0x6 protocol (6 means TCP)
6A 01 - push 0x1 type (TCP type)
6A 02 - push 0x2 af (IPv4)
FF 15 API:WSASocketW - FF 15 is the call opcode for a function, and on runtime - YSA will
resolve the offset of WSASocketW according to the fixed binary (With fixed IAT) that came as
output the code extractor (malfind in this case)

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !7

[martin@VolatilityBot VolatilityBot]$ python VolatilityBot.py -e —f /tmp/sh.exe --sleep 120

{
 "yara_rules": [
 {
 "pattern": "68 [4] FF 15 API:LoadLibraryA 50 FF 15 API:GetProcAddress",
 "rule_name": "generic_dynamic_lib_loading"
 },
 {
 "pattern": "FF 15 API:CreateToolhelp32Snapshot [-] 50 57 FF 15
API:Process32FirstW [-] FF 15 API:Process32NextW",
 "rule_name": "generic_process_iterator"
 },
 {
 "pattern": "6A 06 6A 01 6A 02 FF 15 API:WSASocketW [-] API:WSAConnect",
 "rule_name": "socket_tcp"
 },
 {
 "pattern": "6A 17 6A 02 6A 01 FF 15 API:WSASocketW [-] API:WSAConnect",
 "rule_name": "socket_udp"
 },
 {
 "pattern": "FF 15 API:GetCurrentProcess [-] 50 FF 15 API:OpenProcessToken [-]
68 string:SeDebugPrivilege [-] FF 15 API:LookupPrivilegeValueW [-]
API:AdjustTokenPrivileges",
 "rule_name": "Process_Privilege_Escalation"
 }
]
}

[-] - wildcard (YARA Standard)
API:WSAConnect - A call to the function that established the connection

Plugin Development Guide
There are two types of plugins that can be created:

1. Code Extractors

2. Post Processing modules

Code Extractors
The core plugins of VolatilityBot, Without them there is no extraction of malicious code from
memory. Let’s take a relatively simple code extractor, and dissect it in order to understand
how to write one:

The code extractor needs a configuration reading function, That will load all required
parameters from the configuration file and/or additional configuration files if required. (i.e
Your Code Extractor plugin needs one)

This function will be called at the beginning of the main function of the code extractor,
which has to be named _run, and receive the following parameters:

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !8

def _load_config():
 global VolatilityBot_Home
 global volatility_path

 if os.path.isfile('conf/main.conf'):
 f = open('conf/main.conf')
 # use safe_load instead load
 dataMap = yaml.safe_load(f)
 f.close()

 volatility_path = pipes.quote(dataMap['mainconfig']['general']
['volatility_path'])

 return True

def _run(vm_name,f_profile,vmem_path,workdir,sample_id):

These parameters are passed by the manager, every time the plugin is called:

vm_name - The name of the machine on which the malware was executed

f_profile - The Volatility profile of that machine

vmem_path - The path to the memory dump

workdir - The directory to which the output has to be stored

sample_id - The ID of the sample, given by the manager

This is the initialisation sequence inside the _run function of the mod scan code extractor,
which extracts loaded kernel modules from memory:

Lines 1-2: Declaration of global variables

Line 3: A small whitelist, of common legitimate loading drivers. (BT and Sound card)

Lines 4-6: Loading a golden image from disk to modscan_GoldenImage variable.

Golden Image is the output of the code extractor module when executed on a specific
machine in clean state. The golden image is used in order to avoid false positives.

Creation of a golden image:
In the utils folder, there is a script named gi_builder.py. This script is used as part of the
installation, or when updating your machines or creating new ones. Each machine must have
a golden image for each code extractor that requires one. This is the part of code in
gi_builder that is responsible of saving the golden images (This code is execute once per
machine):

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !9

 global VolatilityBot_Home
 global volatility_path
 _load_config()
 mod_white_list = ['kmixer.sys','Bthidbus.sys']

 #Get golden image data
 modscan_gi = []
 f = open(VolatilityBot_Home + '/GoldenImage/' + vm_name + '/modscan', 'r')
 modscan_GoldenImage = f.readlines()

 modules = ['pslist','dlllist','ldrmodules','modscan']
 for mod in modules:
 command = volatility_path + ' --profile ' + vm['profile'] + ' -f ' +
vmem_path + ' ' + mod
 print command
 proc = subprocess.Popen(command, shell=True,stdout=subprocess.PIPE)
 print '[*] Executing ' + mod
 output = proc.stdout.read()

 #Write output to file
 obj = open(gi_dir + '/' + mod, 'wb')
 obj.write(output)
 obj.close

If your plugin is based on a simple Volatility command, you can just add it to the list inside
modules. If not, just add the code required for your golden image creation right after this
loop (Outside of this loop).

Note that since Volatility 2.5, the —output=json parameter can be used, and parsing
plugins output is much easier.

Post Processing Modules
These modules are called by the code extractors in the following convention (This code is
taken from malfind code extractor, which calls a YARA post processing module):

 The post processing module main function must be named _run, and it will receive the
following parameters:

outputpath - The path of the extracted code located in the store on disk.

sample_id - The ID of the sample given by the manager

It is recommended that the plugin will output a JSON, alt ought it is not obligatory. This is an
example of the main function in the YARA post processing module:

Line 1: An internal initialisation function

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !10

 #yara output:
 yara_output = yara_postprocessor._run(outputpath,sample_id)
 if (yara_output != "none"):
 obj = open(outputpath + '.yara_results', 'wb')
 obj.write(yara_output)
 obj.close

def _run(filename,f_sample_id):
 _init()
 global sample_id
 sample_id = f_sample_id
 yarfile = VolatilityBot_Home + '/conf/yara_rules.yar'
 print "[*] Loaded .yar file: %s" % (yarfile)
 rules = yara.compile(yarfile)
 matches = rules.match(filename,callback=showdata)
 json_output = json.dumps(results_list, indent=4, sort_keys=True)
 if (rules_matched):
 return json_output
 else:
 return "none"

Line 6: Compilation of the YARA rule file

Line 7: Execution of the YARA rules on the input file.

Line 9: The JSON is returned by the function

INSTALLATION AND PLUGIN DEVELOPMENT GUIDE !11

