
The libalf Library

August 15, 2010

Contents

1 Introduction 9
1.1 libALF Basics . 9

1.2 Conceptual Details . 10

1.2.1 The Knowledgebase . 10

1.2.2 Learning Algorithm . 10

1.2.3 Filters and Normalizers . 12

1.2.4 Loggers and Statistics . 12

1.2.5 Connections of the Components . 12

1.3 Demo Application . 13

1.3.1 Online Algorithm . 14

1.3.2 Offline Algorithm . 16

2 Compiling and Installing libALF 19
2.1 libALF Package Information . 19

2.2 Prerequisites . 19

2.3 The libALF C++ Library . 20

2.3.1 Compiling libALF . 20

2.3.2 Installing libALF . 21

2.3.3 Compiling Applications That Use libALF 21

2.3.4 Running Applications That Use libALF 22

2.4 The jALF Java Library . 22

2.4.1 Compiling jALF’s Java sources . 22

2.4.2 Compiling jALF’s C++ Sources . 23

2.4.3 Compiling Java applications that use jALF 23

2.4.4 Running Java applications that use jALF 23

2.5 Compiling and Using the Dispatcher . 24

2.5.1 Compiling the Dispatcher . 24

2.5.2 Running the Dispatcher . 24

2.6 Troubleshooting . 25

3 The Knowledgebase 27
3.1 The knowledgebase - A User’s Perspective 27

3.1.1 Methods in Detail . 29

3.2 Structure of the Knowledgebase - A Developer’s Perspective 32

3.2.1 Representation of a word in the Knowledgebase 32

3.2.2 Description of the Structure . 32

3

Contents Contents

3.2.3 Methods in Detail . 33
3.3 Methods Specifications . 37

3.3.1 Class - node . 37
3.3.2 Class - iterator . 43
3.3.3 Class - knowledgebase . 45

4 Learning Algorithms 55
4.1 Methods - User Perspective . 56
4.2 Methods - Developer’s Perspective . 59

5 Loggers & Statistics 61
5.1 logger . 61
5.2 Loggers . 61

5.2.1 The concept of Loglevel . 62
5.2.2 The Logger class . 62
5.2.3 Types of Loggers . 63

5.3 Statistics . 64

6 Filters & Normalizers 67
6.1 Filters . 67

6.1.1 Class - filter . 67
6.1.2 Class - filter subfilter array . 68
6.1.3 Important Methods of all Filters 68
6.1.4 Types of Filters . 69

6.2 Normalizers . 69
6.2.1 Working Overview . 69
6.2.2 Methods . 70

7 jALF Java Library 73
7.1 Source Code Structure . 73
7.2 jALF- User Perspective . 73
7.3 jALF- Developer Perspective . 75

7.3.1 Naming Conventions . 75
7.3.2 JNIObject . 75
7.3.3 Automaton Tools . 76
7.3.4 Exceptions . 76
7.3.5 JNItools . 76

4

List of Figures

1.1 Components of libALF . 11
1.2 Pictorial Representation of Plug and Play support 12
1.3 Addition of Loggers and Statistics in Plug and Play fashion 13
1.4 data flow of the libALF components . 14

3.1 Representation of a word “01101” in knowledgebase 32

5

List of Tables

1.1 List of Algorithms Implemented . 9

7

1 Introduction

1.1 libALF Basics

The libALF library is an actively developed, stable, and extensively-tested library for
learning finite state machines. It unifies different kinds of learning techniques into a
single flexible, easy-to-extend, open source library with a clear and easy-to-understand
user interface.

The libALF Library provides a wide range of online and offline algorithms for learning
Deterministic (DFA) and Nondeterministic Finite Automata (NFA). online algorithm is
a technique where the hypothesis is built by understanding the classification (whether
accepted or rejected) of queries asked to some kind of a teacher . While, an offline
algorithm builds an apposite hypothesis from a set of classified examples that were pas-
sively provided to it. As of August 15, 2010, the library contains seven such algorithms
implemented in it which are listed in Table 1.1.

The central aim of libALF Library is to provide significant advantages through po-
tential features to the user. Our design of the tool primarily focuses on offering high
flexibility and extensibility.

Flexibility is realized through two essential features the library offers. The first being
the support for switching easily between learning algorithms and information sources,
which allows the user to experiment with different learning techniques. The second
being the versatility of the tool. Since it is available in both C++ and Java (using the
Java Native Interface), it can be used in all familiar operating systems (Windows, Linux
and MacOS in 32- and 64-bit). In addition, the dispatcher implements a network based
client-server architecture, which allows one to run libALF not only in local environment
but also remotely, e.g., on a high performance machine.

Online Algorithms Offline Algorithms

Angluin’s L [2] (two variants) Biermann [3]
NL [4] RPNI [13]
Kearns / Vazirani [10] DeLeTe2 [6]

Table 1.1: List of Algorithms Implemented

9

1.2. CONCEPTUAL DETAILS CHAPTER 1. INTRODUCTION

In contrast, the goal of extensibility is to provide easy means to augment the library.
This is mainly achieved by libALF’s easy-to-extend design and distributing libALF freely
as open source code. Its modular design and its implementation in C++ makes it the
ideal platform for adding and engineering further, other efficient learning algorithms for
new target models (e.g., B?chi automata, timed automata, or probabilistic automata).

Other pivotal features of the library include, ability to change the alphabet size during
the learning process, extensive logging facilities, domain-based optimizations via so-
called normalizers and filters, GraphViz visualization.

1.2 Conceptual Details

The libALF consists of four main components, the Learning Algorithm, the Knowledge-
base, Filters & Normalizers and Logger & Statistics. Figure 1.1 shows a characteristic
view of the these components. Our implementation of these components allows for plug
and play usage.

1.2.1 The Knowledgebase

The knowledgebase is an efficient storage for language information that accumulates
every word and its associated classification. It allows storage of values of arbitrary types
and in the forthcoming sections we will describe its implementation where a word is
stored as a list or array of Integers. It forms the fundamental source of information for a
learning algorithm. Using an external storage for the knowledgebase has the advantage of
it being independent of the choice of the learning algorithm. This enables interchanging
of learning algorithms on the basis of same knowledge available.

1.2.2 Learning Algorithm

A learning algorithm is a component that retrieves the desired information from the
knowledgebase to construct a conjecture. As mentioned in the previous section, there
exists two types of learning algorithms - offline and online algorithm.

The workflow of the algorithms begins with a common step wherein the algorithm is
supplied with information about size of the alphabet for the conjecture. Thereafter, the
algorithms follow two separate procedures to compute the conjecture.

The offline algorithm continues as stated below.

1. The knowledgebase is furnished with the set of words and their classifications
(provided by the user).

2. When all details have been supplied and is available in the knowledgebase, the
learning algorithm is made to advance to compute the conjecture in conformance
with the samples.

10

CHAPTER 1. INTRODUCTION 1.2. CONCEPTUAL DETAILS

(a) Algorithms (b) Knowledgebase

(c) Filter & Normalizer (d) Logger & Statistics

Figure 1.1: Components of libALF

An online algorithm proceeds in the following manner.
The following two steps are repeated until a correct conjecture is determined.

1. The algorithm is made to advance.

2. Here one of the following two possible events may occur.

a) If no hypothesis is created, “membership queries” that require associated
classification are resolved (by the teacher) and added to the knowledgebase.

b) If a hypothesis was created, the “equivalence query” is answered by the
teacher. If the conjecture is incorrect a counter example is rendered by the
teacher.

An insight into the working of the two algorithms is given in Section 1.3.

11

1.2. CONCEPTUAL DETAILS CHAPTER 1. INTRODUCTION

Figure 1.2: Pictorial Representation of Plug and Play support

1.2.3 Filters and Normalizers

The knowledgebase can be associated with a number of filters, which are used for domain-
specific optimization. This implies that the knowledgebase makes use of domain-specific
information to reduce the number of queries to the teacher. Such filters can be composed
by logical connectors (and, or, not). In contrast, normalizers are able to recognize words
equivalent in a domain-specific sense to reduce the amount of knowledge that has to be
stored.

1.2.4 Loggers and Statistics

The library additionally features means for statistical evaluation or loggers. A logger
is an adjustable logging facility that an algorithm can write to, to ease application
debugging and development. The modularity of our approach in developing libALF

facilitates these components to be added in an easy plug and play fashion and that is
shown in Figure 1.2 and Figure 1.3.

1.2.5 Connections of the Components

The primary aspect in describing the working would be to outline the data flow between
a learning algorithm, the knowledgebase and the user (or teacher) as sketched in Figure
1.4.

12

CHAPTER 1. INTRODUCTION 1.3. DEMO APPLICATION

Figure 1.3: Addition of Loggers and Statistics in Plug and Play fashion

The learning algorithm and the knowledgebase share information with user. The
knowledgebase, as stated earlier, is the fundamental information for the learning al-
gorithm to develop an automaton. The learning algorithm advances with whatever
knowledge is available. The learning algorithm connects with the user to collect rel-
evant information such as equivalence of a conjecture or to retrieve counter-example.
When the learning algorithm creates more membership queries, they are stored in the
knowledgebase leading to it initiating a communication with the user who is required to
answer membership queries (or input sample words in case of an offline algorithm). All
such information extended by the user are stored in the knowledgebase.

1.3 Demo Application

In this section we describe the working of the offline and online algorithms with refer-
ence to the demo code in C++ available at our website http://libalf.informatik.

rwth-aachen.de/. Demo programs of the algorithms in Java are also available there.

The following code snippet briefly demonstrates how to employ the libALF library in
a user application. It is important that you become familiar with the auxilliary methods
used in the program and hence their operations are explained first.

• get AlphabetSize() - Prompts the user to provide information about the size of
alphabet and stores it as an Integer.

• answer Membership(li) - Takes the list of queries as an argument and presents

13

http://libalf.informatik.rwth-aachen.de/
http://libalf.informatik.rwth-aachen.de/

1.3. DEMO APPLICATION CHAPTER 1. INTRODUCTION

Learning Algorithm Knowledgebase

User

advance()

conjecture equivalence

counter-example

membership queries

sample words

Figure 1.4: data flow of the libALF components

it to the user to classify them. It returns true when the word is to be accepted
and returns false when it is to be rejected.

• check Equivalence(cj) - Presents the computed conjecture to the user who marks
it as correct or incorrect. Returns true or false respectively.

• get CounterExample(alphabetsize) - Requests the user to input the counter-
example and returns the word as a list (array in Java implementation) of integers.
It takes the alphabetsize as a parameter for validation purposes.

• get Samples(alphabetsize) - Retrieves the sample word from the user. The
alphabetsize is passed as a parameter for validation purposes.

• classification = get Classification() - Retrieves the classification of the sample
word from the user. Returns true when the word is to be accepted and returns
false when it is to be rejected.

• enough Samples() - Requests the user to specify whether all samples have been
provided by the user. Returns “y” if user desires addition of more samples or “n”
if all samples have been provided already.

1.3.1 Online Algorithm

An online Algorithm, as mentioned in the previous section, formulates the conjecture
by putting forth “queries” to the teacher .

1 void main (int argc , char∗∗ argv) {
2 int a l p h a b e t s i z e = get AlphabetS i ze () ;

14

CHAPTER 1. INTRODUCTION 1.3. DEMO APPLICATION

3 knowledgebase<bool> base ;
4 a n g l u i n s i m p l e t a b l e<bool> a lgor i thm(&base ,
5 NULL, a l p h a b e t s i z e) ;
6 do {
7 c on j e c t u r e ∗ c j = algor i thm . advance () ;
8 i f (c j == NULL)
9 {

10 l i s t < l i s t <int> > q u e r i e s = base . g e t q u e r i e s () ;
11 l i s t < l i s t <int> > : : i t e r a t o r l i ;
12 for (l i = q u e r i e s . begin () ; l i != q u e r i e s . end () ; l i ++)
13 {
14 bool a = answer Membership (∗ l i) ;
15 base . add knowledge (∗ l i , a) ;
16 }
17 }
18 else
19 {
20 bool i s e q u i v a l e n t = check Equiva lence (c j) ;
21 i f (i s e q u i v a l e n t) r e s u l t = c j ;
22 else
23 {
24 l i s t <int> ce = get CounterExample (a l p h a b e t s i z e) ;
25 a lgor i thm . add counterexample (ce) ;
26 }
27 }
28 }while (r e s u l t == NULL) ;
29 cout<<r e s u l t−>v i s u a l i z e () ;
30 }

The workflow of the program is as described below:

1. At line 2, the program prompts the user to input the alphabet size of the Automa-
ton.

2. An empty knowledgebase is now initialized at line 3. (The knowledgebase stores
the words as a list of Integers)

3. Now, a learning algorithm is created by providing three parameters - the knowl-
edgebase, NULL for a logger, the Alphabet Size.

4. After having initialized the learning algorithm, the program is subjected to a loop
where the algorithm is made to advance (Line 7). The result of this is stored in a
conjecture type variable cj.

5. If there was no sufficient information available in the knowledgebase to construct a
conjecture, then cj is NULL and the algorithm enters the condition at line 8. The

15

1.3. DEMO APPLICATION CHAPTER 1. INTRODUCTION

algorithm produces the membership queries that needs to be resolved by the user
(or teacher). The queries are obtained using the method get queries. (Note:
the queries are obtained in “list of list of Integers” since words are stored as
Integers and there may be more than one query)

6. The queries produced are presented to the user who classifies it as accepted or
rejected . This is done at Line 13 with answerMembership function. Subsequently,
This information is added to the knowledgebase and the iteration of the loop
continues.

7. However, if a conjecture was computed at line 7, (implying that enough information
was available in the knowledgebase), then algorithm enters the condition at line
18. The conjecture is presented to the user by check equivalence function at line
20.

8. If the conjecture is equivalent, the user marks it correct and the conjecture is stored
in variable result. Iteration ends and the result is displayed in line 32.

9. If it is not equivalent, the user is now prompted to provide a counter example (line
27) and the program continues with the iteration. Typically, the counter example
would influence the learning algorithm to invoke more membership queries that is
to be resolved during the next advance of the algorithm.

1.3.2 Offline Algorithm

An offline algorithm, as mentioned in the previous section, computes a conjecture from
a set of passively provided input samples with their classifications.

1 int main (int argc , char∗∗ argv)
2 {
3 int a l p h a b e t s i z e = get AlphabetS i ze () ;
4 s t r i n g input = ”y” ;
5 l i s t <int> words ;
6 bool c l a s s i f i c a t i o n ;
7 knowledgebase<bool> base ;
8 while (input == ”y”)
9 {

10 words = get Samples (a l p h a b e t s i z e) ;
11 c l a s s i f i c a t i o n = g e t C l a s s i f i c a t i o n () ;
12 base . add knowledge (words , c l a s s i f i c a t i o n) ;
13 input = enough Samples () ;
14 }
15 RPNI<bool> a lgor i thm(&base , NULL, a l p h a b e t s i z e) ;
16 c on j e c t u r e ∗ c j = algor i thm . advance () ;
17 cout <<c j−>v i s u a l i z e () ;
18 }

16

CHAPTER 1. INTRODUCTION 1.3. DEMO APPLICATION

The workflow of the above program is as follows:

1. At line 2, the program prompts the user to input the alphabet size used for the
automaton (coded in the function get alphabetsize)

2. Variables for storing the sample words and their classifications are described sub-
sequently. An empty knowledgebase is now initialized.

3. The program then passes over a loop which recursively performs the action of
reading the sample (line 10) and its classification (line 11) from the user. As and
when the user inputs this information, it is continually added to the knowledgebase
(line 13). The loop ends when the user indicates that the desired number of samples
have been entered as coded in line 13 (its for this purpose that the String input

is first initialized to “y”).

4. Now, a learning algorithm (RPNI Offline Algorithm) is created by providing three
parameters - the knowledgebase, NULL for a logger, the Alphabet Size (line 15)

5. Having initialized the algorithm, it is now made to advance which produces a
conjecture that pertains to the user’s specification of samples. (line 16)

6. Finally, the conjecture is printed as coded in line 17 of the program.

In both the command line programs implemented in C++ and Java, the program
outputs the “.dot” file which contains the code that builds the conjecture graphically.
(This file may be executed using the GraphVIZ tool).

17

2 Compiling and Installing libALF

This chapter will guide you through the compilation and installation of libALF on Linux
and Windows.
libALF works on Linux and Windows on both 32- and 64-bit architectures. However,

as libALF has no prerequisites, it is most likely that it also runs on various additional
operating systems. If you want to compile libALF for another operating system, e.g.
MacOS X, the guidelines for compiling libALF for Linux may be a good reference.

This document is organized in six sections: The first two sections describe how to
obtain libALF (if you not already have) and what prerequisites need to be fulfilled.
Sections 2.3 to 2.5 show how to compile and use libALF, jALF and dispatcher. The
sixth section gives help on troubleshooting.

2.1 libALF Package Information

The library is freely available under the open source LGPL v3 license at the libALF

website http://libalf.informatik.rwth-aachen.de. Download the libALF package
and extract it to a folder of your choice. The package contains the following components:

• The libALF C++ library.

• jALF (libALF’s Java interface).

• The dispatcher (a network-based libALF server).

This guide will demonstrate how to employ and use libALF in user applications
through examples available at libALF’s website. We recommend that you download
and extract the example sources to a folder of your choice.

2.2 Prerequisites

The libALF library itself does not have any prerequisites, but some components have.
To use the additional components, please ensure that the following requirements are
satisfied.

• For compiling and using jALF you need a Java Development Kit (JDK) Version 6.0
or later installed. Moreover, we recommend using the Ant build tool downloadable
from http://ant.apache.org/.

• The dispatcher requires a POSIX-compliant operating system. While there is no
problem under Linux, the dispatcher will not compile under Windows.

19

http://libalf.informatik.rwth-aachen.de
http://ant.apache.org/

2.3. THE LIBALF C++ LIBRARYCHAPTER 2. COMPILING AND INSTALLING LIBALF

Linux. For compiling the C++ sources in Linux, you require a C++ compiler (this
document assumes that you use the GNU C++ compiler) and the make utility, which is
used to automate the build process. Both tools should be installed by default on every
Linux machine.

Windows. To compile the C++ sources on Windows, we recommend using the Mini-
malist GNU for Windows (MinGW) compiler and MSYS, a Unix-style shell for Windows.
Both can be obtained from http://www.mingw.org/.

Please follow the instructions on the website to set up MinGW and MSYS properly.
In particular, make sure that you install the MSYS make package (if not done auto-
matically). Using MSYS gives you the advantage of following all instructions described
in this document no matter whether you use Linux or Windows. However, please be
careful with folder names that contain blanks; you may have to enclose them in quotes
and replace every blank with a backslash followed by a blank (or, in the best case, you
avoid them completely).

2.3 The libALF C++ Library

The section will describe how to compile and install the library as well as how to run
applications that use the library.

2.3.1 Compiling libALF

You have the choice to compile the libALF library either as a static or as a shared library.
If you do not know the difference or if you just want to use the library, you should compile
a shared library as described below and follow the respective instructions for running
your application.

Compiling a Shared Library

Compiling libALF is easy: simply change into the libalf/src folder and invoke the
make utility by typing

make

The make utility automatically detects which operating system you are running and
compiles the library accordingly. After the compilation you should find the binary
file libalf.so (on Linux) or libalf.dll (on Windows) inside the libalf/src folder.
However, if you experience problems, you can explicitly tell the make utility for which
system you want to compile libALF by typing make libalf.so (under Linux) or make

libalf.dll (under Windows).

Compiling a Static Library

You can compile a static library using the command (inside libalf/src)

make libalf.a

20

http://www.mingw.org/

CHAPTER 2. COMPILING AND INSTALLING LIBALF2.3. THE LIBALF C++ LIBRARY

on both Linux and Windows.

However, make sure that you delete any shared library in the folder before you link
your application with libalf as some operating systems (e.g. Linux) always prefer shared
libraries if present.

2.3.2 Installing libALF

Installing libALF means to copy to the compiled shared library and libALF’s headers
to a location where your operating system finds them.

Linux. To install libALF in Linux, first compile the library and type make install.
You can uninstall libALF by using the command make uninstall. Please note that you
need root privileges for both actions.

Windows. On Windows, you have to manually copy the compiled shared binary files
to your windows/system directory. Unfortunately, there is no common place to put
header files in. Thus, you have to specify the header’s location every time you compile
an application that uses libALF (see the section below).

2.3.3 Compiling Applications That Use libALF

When compiling an application that uses libALF, the compiler needs to find libALF’s
headers and the compiled library. Please note that you do not have to provide this
information if you have libalf installed on your system.

Otherwise, you have to use the GNU C++ compiler’s -I parameter to specify libALF’s
header locations (typically libalf/include) and the -L parameter to specify the loca-
tion for the compiled library (which is libalf/src). You also have to link the application
to libALF using -lalf.

We will consider the online-example to explain the compilation.

Compiling applications that links to shared library. To compile the online example
that uses the shared library, type the following command.

g++ -I path to headers -L path to library online.cpp -lalf

Compiling applications that links to static library. If you want to link libalf statically
into your application, you can do so by adding -static as additional parameter just
before linking to libalf like below.

g++ -I path to headers -L path to library online.cpp -static

-lalf

In both cases, it is also a good idea to specify the name of the output file using the
-o parameter, e.g. -o online.

21

2.4. THE JALF JAVA LIBRARYCHAPTER 2. COMPILING AND INSTALLING LIBALF

Additional Parameter for Windows. Please note that on Windows the Winsock2 li-
brary has to be linked additionally to every program using libALF. You can do this by
adding -lws2 32. Again it is crucial that you add this parameter after all input files.

2.3.4 Running Applications That Use libALF

An application statically linked to libalf can be executed as usual. However, if you run a
program that uses libALF as a shared library, you need to specify where your operating
system can find the library (again, you do not need to provide this information if you
have installed libALF on your system).

Linux. On Linux, use the LD LIBRARY PATH variable to point to the location of the
shared library. For instance, you can run the above compiled online example with the
command

LD LIBRARY PATH=path to library ./online

Windows. Unfortunately, on Windows there is no direct way of telling the system
where to find shared libraries. Instead, you have to add their locations to Windows’
PATH variable or copy the library into the folder your application is executed from.
Then, execute your application as usual.

For further details please refer to the examples’ Readme and Makefile.

2.4 The jALF Java Library

jALF is the Java interface to libALF. It lets you access libALF via the dispatcher or via
Java’s Native Inter-face JNI. The latter way requires that you compile a second C++
library (some kind of wrapper), that obeys Java’s naming convention and performs some
basic conversions of internal data structures. However, if you want to use jALF only in
connection with the dispatcher, it is enough to compile and use the Java sources.

In the following we assume that you are familiar with basics of compiling and running
Java programs.

2.4.1 Compiling jALF’s Java sources

In order to compile jALF’s Java sources, change to the libalf/jalf folder and type

ant

This invokes the Ant build utility and produces the file jalf.jar containing all com-
piled class files inside the libalf/jalf folder. If you do not wish to use jALF via JNI,
you can skip compiling jALF’s C++ sources.

Note that you can generate jALF’s JavaDoc also using Ant with the command ant

doc. Thereafter, the JavaDoc can be found inside the libalf/jalf/java/doc folder.

22

CHAPTER 2. COMPILING AND INSTALLING LIBALF2.4. THE JALF JAVA LIBRARY

2.4.2 Compiling jALF’s C++ Sources

The jALF C++ library needs to be a shared library. However, you have the option to
link libALF either dynamically or statically to jALF. The latter option is often preferred
and enabled by default. Please remember to delete any shared library in libalf/src

before you compile jALF’s C++ sources (libALF is recompiled for you). You may use
the command make -C libalf/src clean for this.

Compiling jALF’s C++ sources is also automated by means of the make utility. How-
ever, as additional information the Java compiler requires the location of Java’s JNI
header files, which are contained in every JDK. Their location is passed on to the make
utility using the JAVA INCLUDE variable. Thus, to compile jALF’s C++ sources, go to
libalf/jalf/src and execute

JAVA INCLUDE=path to jdk/include make

Again, the make utility should detect your operating system automatically, but you
can also use the commands make libjalf.so (for Linux) and make jalf.dll (for Win-
dows) to explicitly compile jALF for your desired operating system. After a successful
compilation, the compiled binary is located in libalf/jalf/src.

Dynamic Linking. As mentioned, libALF is linked statically by default. If you want
link libALF dynamically, you can use the commands make libjalf.so-dynamic (for
Linux) and make jalf.dll-dynamic (for Windows).

2.4.3 Compiling Java applications that use jALF

Fortunately, the Java compiler does not need to know anything about the C++ libraries
to compile your application and only needs access to jALF’s Java class files. You spec-
ify this information by adding the jalf.jar file to Java’s classpath. Our Java online
example, for instance, can be compiled using the following command (first change into
the folder containing the example sources):

javac -classpath "path to jalf/jalf.jar" Online.java

2.4.4 Running Java applications that use jALF

Besides the location of the jalf.jar, running a Java application that uses jALF requires
telling Java where it can find the compiled jALF and libALF C++ libraries. (If you have
installed libALF to your system or if you linked jALF statically to jALF, you do not need
to bother about the latter.)

The place where Java looks for C++ libraries is controlled by Java’s interval library
path variable. This variable can only be changed at the start of the Java VM. You do so
by setting the variable named java.library.path to the location of the jALF library
(i.e, the jALF C++ binary which is typically libalf/jalf/src) using the -D parameter.

23

2.5. COMPILING AND USING THE DISPATCHERCHAPTER 2. COMPILING AND INSTALLING LIBALF

Linux. To run the online example on Linux, one has to execute the following command
(inside the folder containing the compiled online example):

java -classpath "path to jalf/jalf.jar:."

-Djava.library.path=path to jalf library Online
If necessary, specify the location of the shared libALF library as described in Section

2.3.

Windows. Please recall that Linux and Windows use different ways of separating fold-
ers. While you must use a colon on Linux, you must use a semicolon on Windows;
everything else is the same as before.

java -classpath "path to jalf/jalf.jar;."

-Djava.library.path=path to jalf library Online

For further details please refer to the examples’ Readme.

2.5 Compiling and Using the Dispatcher

Please recall that the dispatcher only compiles and runs on a POSIX-compliant operating
system such as Linux, but not on Windows.

2.5.1 Compiling the Dispatcher

To compile the dispatcher, first compile a shared libALF library as described Section
2.3.

Dynamic Linking. By default, the dispatcher is dynamically linked to libALF. To com-
pile an executable linked statically, change into the folder libalf/dispatcher and ex-
ecute

make

This creates the executable dispatcher in the same directory.

Static Linking. To link the dispatcher statically to libALF, use the following command

make dispatcher-static

Again, remember to remove any compiled shared library in libalf/src first.

2.5.2 Running the Dispatcher

The dispatcher is executed like any other executable on your system. However, remember
to specify the location of the libALF shared library if necessary.

24

CHAPTER 2. COMPILING AND INSTALLING LIBALF2.6. TROUBLESHOOTING

2.6 Troubleshooting

When experiencing troubles, the first thing you should try is to execute make clean in
the libalf and libalf/jalf folders as well as ant clean in the libalf/jalf folder.
This deletes all compiled files and solves most compiler and linker problems. However,
if this does not work for you, you may find a solution for your problem in the list below:

• There are no known problems.

25

3 The Knowledgebase

The knowledgebase is the central repository of membership information. It is a database
that stores words and their classifications. Apart from this basic functionality, the
knowledgebase also offers number of other features thereby increasing the support for
extensibility. These features are reflected in its implementation wherein the methods
used in the knowledgebase can be divided into two categories - Methods important
for Using libALF and Methods important for expanding libALF .

The chapter discusses these methods from both a user and a developer’s perspective.
The material will include adequate account of its structure, operations and implementa-
tion. The final section of this chapter will provide an appendix of all the methods used
in programming the knowledgebase with a brief description corresponding to it.

3.1 The knowledgebase - A User’s Perspective

This section deals with basic functionality of the knowledgebase and provide funda-
mental information that one would have to know to employ libALF in an application. It
will explicate functional practice of the database and some elementary details of methods
to better understand how all operations are carried out.

To discover more about the internal structure of the knowledgebase and the methods
that help to extend it, you may refer to the next section on Developer’s Perspective and
Methods in Detail.

Basic Concepts

Definition of some key terms concerning the underlying concepts are listed below.

Alphabet An alphabet is a finite set of symbols which is usually denoted by Σ. Symbols
can be numbers (0,1,. . .) or alphabets(a,b,. . .) and so on.
Alphabet size | Σ | is the size of the set Alphabet. Since libALF uses integers as
symbols, the largest symbol in the alphabet is one less than the alphabet size. Thus,
when alphabet size of two is specified by the user, libALF uses the following symbols.

Σ = {0, 1}

| Σ |= 2

This implies, that an alphabet size of two results in the largest symbol being as “1”.

27

3.1. THE KNOWLEDGEBASE - A USER’S PERSPECTIVECHAPTER 3. THE KNOWLEDGEBASE

Word A word (w ∈ Σ*) is finite string formed by the concatenation of the symbols
from Σ. Since integer type are used to represent symbols, the words are operated as a
list of integer.

Language Language L = Σ* is a set of words formed by symbols, given the alphabet.
In the context of the previous example, “01101” is a word from the given set of

alphabet and the L = { 01101, 11011} is a Language.

Words and Classifications

The knowledgebase of libALF is an efficient storage of words and their classifications.
Words are represented as list of integer. Classification refers to a set of arbitrary
values which that are mapped to the words. For instance, classification for a Finite
Automata refers to true or false. Since the knowledgebase is a template class, arbitrary
values can be used for storing the classification.

Queries and Answers

The next important function of the knowledgebase is to store queries to help the learning
algorithm build the conjecture. As mentioned in the Introduction, a query is a word
whose classification is unknown and needs to be retrieved from the user or teacher.
In other words, the query must be resolved by the user. To resolve the query, user
provides what is called an answer. Thus, when a learning algorithm is processing the
membership information from the knowledgebase, it may give rise queries and are stored
in the knowledgebase. These are later presented to the user to resolve them.

Serialize and Deserialize

libALF allows serialization and deserialization of the knowledgebase. This feature is
most advantageous in offering portability. Serialization allows user to save the current
work done with libALF as a linear representation. User can save the knowledgebase into
the hard disk, share it over the internet, carry it and use it another machine and so on.
Deserialization converts the linear form back to the data structure that can be processed
by the learning algorithm.

GraphViz Visualization

The knowledgebase allows one to generate a GraphViz Visualization of all available
information. User can create a “.dot” file of the knowledgebase which can be executed
by the GraphViz tool for a pictorial representation.

Merging Knowledgebases

Another essential feature of the knowledgebase is the ability to be merged with another
knowledgebase preserving the consistency. These features are elaborated in forthcoming

28

CHAPTER 3. THE KNOWLEDGEBASE3.1. THE KNOWLEDGEBASE - A USER’S PERSPECTIVE

sections.

3.1.1 Methods in Detail

The section describes mostly the methods important for using libALF. The description
pertains to support understanding how the knowledgebase works and how it can be
employed in an application.

Creating the Knowledgebase

The knowledgebase is built on a class named knowledgebase.

• knowledgebase::knowledgebase()

The constructor of the knowledgebase class creates the knowledgebase.

Adding Knowledge to the Knowledgebase

• knowledgebase::bool add knowledge(list<int> & word, answer accep-
tance)

The method is used to add membership information to the knowledgebase. The
parameter “word” represents the sample word and “acceptance” represents the
classification of the word.
The method returns true if the knowledge was added successfully. Otherwise,
returns false.

Handling Queries

When an online algorithm produces queries, they are stored in the knowledgebase and
can be retrieved and resolved by the user. The following methods are used for related
operations.

1. knowledgebase::knowledgebase * create query tree()

The method creates a knowledgebase containing only the queries. The return type,
is therefore, set as knowledgebase.

2. knowledgebase::list<list<int>> get queries()

This method returns the list of all the queries present in the knowledgebase.

Alphabet in Knowledgebase

At any point of time, one can retrieve the largest symbol being processed in the knowl-
edgebase using the following method.

29

3.1. THE KNOWLEDGEBASE - A USER’S PERSPECTIVECHAPTER 3. THE KNOWLEDGEBASE

• knowledgebase::int get largest symbol()

The method returns the largest symbol that exists in the knowledgebase which
is one less than the alphabet size. libALF uses integers to store symbols. The
method, however, recognizes only increment in the alphabet size. A decrease in
the size of alphabet is not reflected.

• knowledgebase::int check largest symbol()

The method performs a check on the knowledgebase and realizes the largest symbol
that is currently available. Thus, a decrease in the alphabet size can be recorded
by this method.

Iterators

The knowledgebase uses the list of integer to represent the words. Consequently, a
list of list of integer is used to represent many words in a sequence. This particularly
is used when viewing the whole data or all the queries present in the knowledgebase. To
iterate over these lists and process the words, the following methods are used.

1. knowledgebase::iterator begin()

The method returns an iterator that begins at the root node.

2. knowledgebase::iterator end()

The method returns the final or the end node for the iterator.

3. knowledgebase::iterator qbegin()

The method returns an iterator that begins at the first query present in the knowl-
edgebase.

4. knowledgebase::iterator qend()

It returns the end node for the iterator.

The iteration over the words is performed by overloading the “+” operator. Given
below is an example of its usage.

1 i t e r a t o r k i ;
2 l i s t < l i s t <int> > r e t ;
3 for (k i = this−>qbegin () ; k i != this−>qend () ; ++ki)
4 r e t . push back (ki−>get word ()) ;

Here, the iterator begins at the first query present in the knowledgebase and uses the
“get word()” function to retrieve the query and adds it to “ret”.

30

CHAPTER 3. THE KNOWLEDGEBASE3.1. THE KNOWLEDGEBASE - A USER’S PERSPECTIVE

Displaying the knowledgebase

This refers to various types of representation of the knowledgebase.

1. knowledgebase::string tostring()

The method creates a String representation of the entire knowledgebase.

2. knowledgebase::string generate dotfile()

The method is used to create a GraphViz Visualization of the entire knowledgebase.
The String returned by the method can be saved as a “.dot” file and executed by
the GraphViz tool for obtaining a graphical representation of the knowledgebase.

Serialization and Deserialization

The feature increases the portability of libALF. It is performed using the following
methods.

1. knowledgebase::basic string<int32 t> serialize()

The method converts the entire knowledgebase into a linear representation as a
String composed of integers.

2. knowledgebase::bool deserialize(basic string<int32 t>::iterator &it, ba-
sic string<int32 t> ::iterator limit)

This method converts the serialized linear form of the knowledgebase to the data
structure recognized and operable by the learning algorithm.

Merging Knowledgebases

• bool merge knowledgebase(knowledgebase & other tree)

The method returns true after merging two consistent knowledgebases. Two
knowledgebases are said to be consistent only if they contain similar words and
answers. The method returns false, if the knowledgebases are inconsistent.
However, the method ignores the queries and merges only all the answered words
from the two knowledgebases.

Other Methods - Retrieving Memory Usage

• unsigned long long int get memory usage()

As an additional feature, the method returns the memory used by the knowledge-
base.

31

3.2. STRUCTURE OF THE KNOWLEDGEBASE - A DEVELOPER’S
PERSPECTIVE CHAPTER 3. THE KNOWLEDGEBASE

Concluding Notes

3.2 Structure of the Knowledgebase - A Developer’s
Perspective

The data structure of the knowledgebase is designed to offer flexibility and expandability
of libALF library.

3.2.1 Representation of a word in the Knowledgebase

The knowledgebase is a prefix tree with nodes representing words. Consider a word
formed by N symbols/characters. In principal, the knowledgebase does not store the
word at the node but stores the ith symbol of the word (where i>0 and i<N). Figure
3.1 gives a pictorial representation of how a word is represented in the knowledgebase.

root

0

0

1

0

1

0 1

1

1

Figure 3.1: Representation of a word “01101” in knowledgebase

Consider the word 01101 as marked in the tree above. When this word is added to the
knowledgebase, it is not stored as a single String at a node but the symbols of the word
are stored at consecutive nodes. Sequence of these symbols at depth six (starting from
the root) constructs the word. Hence it is termed that the node circled gray represents
the word 01101. In the tree, the symbol 0 is a child of the root, symbol 1 is the child of
0 and so on. The node representing the word can be reached by traversing from the root
to the last child and accumulating the symbols that every node contains. Alternatively,
the word can also be retrieved by ascending from a node to the root and reversing the
word obtained. libALF uses the latter technique.

3.2.2 Description of the Structure

The knowledgebase is as a template class enabling the use of arbitrary values for storing
membership information. The class knowledgebase contains a class node consisting
variables necessary for the node. node also holds internal methods which are important
for both using and expanding libALF.

32

CHAPTER 3. THE KNOWLEDGEBASE
3.2. STRUCTURE OF THE KNOWLEDGEBASE - A DEVELOPER’S

PERSPECTIVE

The constructor of the class node creates the root node with the following values to
its attributes.

• parent

A pointer variable of type node that points to the parent of the node.

• label

An integer variable that stores the symbol represented by the node.

• status

The variable status indicates whether the classification of the word represented
by the node is required, answered or can be ignored.
Since the knowledgebase is a prefix tree, it stores not only the supplied words but
also the prefixes of the word. However, the classification of these prefixes may not
be of interest and can be ignored. On the other hand, learning algorithm creates
queries that are to be resolved. Status of such words are set as required. Hence, the
variable differentiates these words. For this purpose, it is an enum type variable
that can take one of three values “NODE IGNORE”, “NODE REQUIRED” and
“NODE ANSWERED”.

• ans

The variable stores the answer (or the acceptance criteria / classification) of the
node.

3.2.3 Methods in Detail

This section describes methods that are more useful for extending libALF. These meth-
ods mostly emphasize on operations that can be performed over the node, methods
on handling words, classifications and queries. A complete list of methods and their
explanation is provided in the next section.

Creating the Root node

The root node is initialized when the knowledgebase is created. The constructor of class
node defines the following properties for its attributes.

• node::node(knowledgebase * base)

The method sets the following properties to the root node.

1. parent = NULL ; root node does not have a parent.

2. label = -1 ; which is equivalent to epsilon

3. status = STATUS IGNORE ; the acceptance rule or classification of the root
node is initially not necessary.

33

3.2. STRUCTURE OF THE KNOWLEDGEBASE - A DEVELOPER’S
PERSPECTIVE CHAPTER 3. THE KNOWLEDGEBASE

Working with Nodes

The child nodes are structured as vector type node variable called children. Methods
operating on the nodes are mostly internal methods and cannot be accessed publicly.

1. node::node* get next(node * current child)

The method returns the next node or the next child of the current node (which is
passed as an argument).

2. node::node * get parent()

The method returns the parent of the current node.

3. node::list<int> get word()

The method returns the word that the current node represents. The method
traverses backwards in the tree (ascending from child to parent) and reverses the
sequence obtained to build the correct word.

4. node::int get label()

The method returns the label of the node.

5. node::node * find child(int label)

The method finds the child node with the specified label.

6. node::node * find descendant(list<int> :: iterator infix start, list<int>::
iterator infix limit)

The method finds the child node specified by a word and returns it. It traverses
through the tree based on the iteration over the word to find the path that generates
the required word.

7. knowledgebase::node* get rootptr()

The method returns the pointer to the root node of the knowledgebase.

8. knowledgebase::node* get nodeptr(list<int> & word)

The method returns the pointer to the current node specified by the word as the
parameter.

Words and Classification

The primary purpose of the knowledgebase is centered on storing words and classifica-
tions which constitutes the first source for a learning algorithm to compute a conjecture.
Methods related to this function are listed below.

1. node::node * find or create child(int label)

This function returns the child node given the label. If the node does not exist, it
creates the child node with the specified label.

34

CHAPTER 3. THE KNOWLEDGEBASE
3.2. STRUCTURE OF THE KNOWLEDGEBASE - A DEVELOPER’S

PERSPECTIVE

2. node::node * find or create descendant(list<int>::iterator infix start,
list<int>::iterator infix limit)

This function behaves almost similar to the previous one. The difference is that it
does not operate on a single label but on a word (which is a list of integer).

The method add knowledge simply calls the method find or create descendant so
that the knowledge will be added only information about the word does not already exist
in the knowledgebase.

Handling Queries

In addition to the already discussed query handling methods, the ones discussed below
is of most interest for expanding libALF. As already mentioned, query handling mainly
depends on the status of the word. The following methods operate on this aspect.

1. node::bool mark required()

The method returns true if the acceptance or the classification of the node is
required (i.e, “status” is NODE REQUIRED). It returns false if the classification
is already known.

2. node::bool is required()

The method returns the “status” as NODE REQUIRED. It is used to set this status
to a particular node under consideration.

3. node::bool is answered()

The method returns the “status” as NODE ANSWERED. It is used to set this status
to a particular node under consideration.

4. node::answer get answer()

The method returns the answer (classification of the node) stored for the node.

The following methods describe the operations associated with queries.

1. knowledgebase::int add query(list<int> & word, int prefix count = 0)

The method is primarily used to add a query to the knowledgebase. When a query
is generated, the method first checks if that word already exists with its classi-
fication in the knowledgebase (by using the find or create child(int label)

method). Hence, if the classification of the word is unknown and does not already
exist, the corresponding node will be created and eventually added in the query
tree (since this method is used by create query tree(...).

2. knowledgebase::bool resolve query(list<int> & word, answer & accep-
tance) and bool resolve or add query(list<int> & word, answer & ac-
ceptance)

35

3.2. STRUCTURE OF THE KNOWLEDGEBASE - A DEVELOPER’S
PERSPECTIVE CHAPTER 3. THE KNOWLEDGEBASE

These two methods can be described together as their functionality is almost sim-
ilar and differ only in one aspect. Both methods return true if the classification
of the word is already known and false if it is unknown. While “resolve query()”
only returns false, “resolve or add query()” marks the status of this word as re-
quired and then returns false. Naturally, the former uses “find descendant()”
and the latter makes use of “find or create descendant()”.

3. knowledgebase::void clear queries()

This method is used to remove all the nodes that are identified or marked as a
query.

Alphabet in Knowledgebase

The section gives an extended view of the concept of alphabet size in the knowledge-
base. In principal, the knowledgebase does not store the alphabet size of the conjecture
specified by the user. The knowledgebase does not work only based on the alphabet size
specified by the user and is capable of constructing the tree even if symbols outside the
alphabet set are input. The knowledgebase can identify the rise in the alphabet size and
record the largest symbol in the tree. But, such improper input will lead the learning
algorithm to compute incorrect conjecture.

1. knowledgebase::int get largest symbol()

The method has already been described in the section on user’s perspective. Deep-
ening into the concept behind it, the method simply returns what is available in
the variable “largest symbol”. It does not check whether the alphabet size has
been modified. A good way to do that would be to use the methods listed below.

2. knowledgebase::int check largest symbol()

The method performs a check on the knowledgebase and realizes the largest symbol
that is currently available. Hence, if there was a change in the size of the alphabet
at some point of time, it is automatically adjusted when this method is called.

3. bool cleanup()

The method cleans the knowledgebase by removing all the unnecessary branches
i.e., branches that consists only of IGNORE as the status. This is an example for a
method that can cause a change in the largest symbol. If the branches containing
a particular symbol are removed in the clean up, it subsequently causes a change
in the largest symbol.

Displaying the knowledgebase

Having described two methods in the previous section on the same topic, what is listed
below is another method that is mostly of interest to a developer.

36

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

• void print(ostream &os)

This method prints the knowledgebase to any kind of an output stream. It prints
the word, its status and the answer of all the words available in the knowledgebase.

The methods described above summarizes the most important methods from the view
of a developer.

3.3 Methods Specifications

The section supplies a comprehensive list of all the methods used in the knowledgebase
along account of their particulars. The section is divided based on on the class that the
methods belong to.

3.3.1 Class - node

1. get next

node* get next(node * current child)

parameters:

current child - The current child

description:

Returns the next node

2. Constructor

node(knowledgebase * base)

parameters:

base - the name of the knowledgebase

description:

Creates the root node of the knowledgebase and sets its parent to
NULL

3. get parent

node * get parent()

parameters:

–

description:

Returns the parent of the node that calls this function

37

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

4. find child

node * find child(int label)

parameters:

label - the label that the child node must contain

description:

Returns the node that contains the label specified as the parameter

5. find descendant

node * find descendant(list<int>::iterator infix start,

list<int>::iterator infix limit)

parameters:

infix start - the word or symbol that is the starting point
infix limit - the word which is to be found

description:

Returns the node that represents the word infix limit

6. find or create child

node * find or create child(int label)

parameters:

label - the label that the child node must contain

description:

Returns the node that contains the label specified as parameter. If
not found, it creates such a node and returns it.

7. serialize subtree

void serialize subtree(basic string<int32 t> & into)

parameters:

into - the string that contains the serialized trees of the knowledge-
base

description:

Converts the subtree into String and appended to into. This method
is used during serialization

8. deserialize subtree**

bool deserialize subtree(basic string<int32 t>::iterator & it,

basic string<int32 t>::iterator limit, int & count)

parameters:

38

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

it - iterator to iterate over the string containing the word
limit - the last word that the subtree contains count - integer to
count the subtrees

description:

Returns true after deserializing the subtrees. Returns false if it

and limit are equal.

9. get selfptr

node * get selfptr()

parameters:

–

description:

A self pointer that returns its own node.

10. max child count

int max child count()

parameters:

–

description:

Returns the maximum number of children existing in the knowledge-
base. If it returns “n”, it implies that there may exist [0..n] suffixes.

11. has specific suffix

bool has specific suffix(answer specific answer)

parameters:

specific answer - the answer that needs to be compared

description:

Checks if a specific suffix/word has a specific answer. Returns true if
such a case exists, otherwise returns false.

12. get label

int get label()

parameters:

–

description:

39

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

Returns the label of this node (which is the last symbol of the word
that this node represents).

13. get word

list<int> get word()

parameters:

–

description:

Returns the word that this node represents.

14. mark required

bool mark required()

parameters:

–

description:

Returns true if answer to this node is required. Returns false if the
answer is already known.

15. is required

bool is required()

parameters:

–

description:

Returns true if this node is marked unknown and required, false

otherwise.

16. is answered

bool is answered()

parameters:

–

description:

Returns true if this node is already answered, false otherwise.

17. set answer

bool set answer(answer ans)

parameters:

40

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

ans - answer that must be set.

description:

Returns true if the node is already answered and the answer is same
as ans, otherwise false. If the node is not answered already, then it
returns true after setting ans as the answer.

18. get answer

answer get answer()

parameters:

–

description:

Returns the answer of this node.

19. no subqueries

bool no subqueries(bool check self = true)

parameters:

check self - Set to true. Used to check if the status of this node is
marked required.

description:

Returns true if there are any queries with this node as the prefix,
false otherwise. Also returns false if this node is not answered and
marked required.

20. different

bool different(node * other)

parameters:

other - a node whose answer needs to be compared to the current
node.

description:

Returns true if this node and other node have the same answer,
false otherwise.

21. recursive different

bool recursive different(node * other, int depth)

parameters:

41

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

other - a node whose answer needs to be compared to the current
node. depth - the depth of the tree that indicates the length of the
word.

description:

Compares the answers of the two nodes and their children up to a
level specified by depth. Returns true if there are no inconsistencies
in the answers, false otherwise.

22. is prefix of

bool is prefix of(node*other)

parameters:

other - a node whose answer needs to be compared to the current
node.

description:

Returns true if this node is a suffix of the other node.

23. is suffix of

bool is suffix of(node*other)

parameters:

other - a node whose answer needs to be compared to the current
node.

description:

Returns true if this node is a prefix of the other node.

24. get memory usage

unsigned long long int get memory usage()

parameters:

–

description:

Returns the size of the memory used by this subtree.

25. ignore

void ignore()

parameters:

–

description:

42

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

Changes the status of this node to NODE IGNORE.

26. cleanup

bool cleanup()

parameters:

–

description:

Returns true after deleting all the branches that has status as NODE IGNORE.

3.3.2 Class - iterator

1. iterator

iterator()

parameters:

–

description:

Sets this node to NULL and initializes an iterator to the last node
that is marked required.

2. iterator

iterator(const iterator & other)

parameters:

–

description:

Sets the values of this node to those of the other node.

3. iterator**

iterator(bool queries only, typename list<node*>::iterator currentquery,

node * current, knowledgebase * base)

parameters:

queries only - a boolean variable that is true if queries exist and
false if there are no queries in the knowledgebase currentquery -
iterator to iterate over queries current - the node under consideration
base - the knowledgebase that is being processed.

description:

Sets the values of this node to those specified in the argument.

43

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

4. operator++

iterator & operator++()

parameters:

–

description:

Operator overloading applied to “++”. Creates an iterator that points
to the next query and returns the node

5. operator++ **

iterator operator++(int foo)

parameters:

–

description:

–

6. is valid()

bool is valid()

parameters:

–

description:

Returns true if the current iterator is not NULL, false otherwise.

7. operator*

node & operator*()

parameters:

–

description:

Returns the pointer to the current iterator.

8. operator->

node * operator->()

parameters:

–

description:

44

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

Returns the current iterator.

9. operator=

iterator & operator=(const iterator & it)

parameters:

it - an iterator

description:

Creates an iterator with the values of iterator it and returns this.

10. operator==

bool operator==(const iterator & it)

parameters:

it - an iterator

description:

Returns true if the current iterator is same as it, false otherwise.

11. operator!=

bool operator!=(const iterator & it)

parameters:

it - an iterator

description:

Returns true if the current iterator is not equal to it, false other-
wise.

3.3.3 Class - knowledgebase

1. knowledgebase

knowledgebase()

parameters:

–

description:

Creates a knowledgebase with root as NULL.

2. knowledgebase
~knowledgebase()

parameters:

45

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

–

description:

Deletes the knowledgebase by deleting the root.

3. clear

void clear()

parameters:

–

description:

Deletes the existing knowledgebase and creates a new knowledgebase
containing only the root.

4. clear queries

void clear queries()

parameters:

–

description:

Deletes all the nodes that are marked as queries.

5. undo**

bool undo(unsigned int count)

parameters:

count -

description:

Used to undo the last operation.

6. get memory usage

unsigned long long int get memory usage()

parameters:

–

description:

Returns the memory used by the knowledgebase.

7. is answered

bool is answered()

parameters:

46

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

–

description:

Returns true if there are no nodes marked required, false otherwise.

8. is empty

bool is empty()

parameters:

–

description:

Returns true if there are no nodes marked required and answered (the
tree is empty), false otherwise.

9. count nodes

int count nodes()

parameters:

–

description:

Returns the number of nodes present in the knowledgebase.

10. count answers

int count answers()

parameters:

–

description:

Returns the number of nodes that are already answered in the knowl-
edgebase.

11. count queries

int count queries()

parameters:

–

description:

Returns the number of nodes that are marked required in the knowl-
edgebase.

47

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

12. count resolved queries

int count resolved queries()

parameters:

–

description:

Returns the number of answered nodes that were once marked re-
quired.

13. reset resolved queries

void reset resolved queries()

parameters:

–

description:

Resets the number of resolved queries to zero.

14. get largest symbol

int get largest symbol()

parameters:

–

description:

Returns the largest symbol that is present in the knowledgebase. Es-
sentially, this returns the number which is one less than the alphabet
size.

15. check largest symbol

int check largest symbol()

parameters:

–

description:

Adjusts the largest symbol present in the knowledgebase and returns
it.

16. print

void print(ostream &os)

parameters:

48

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

os - an output stream.

description:

Prints the knowledgebase on the screen. Prints the word, status and
the answer of all the words stored in the knowledgebase.

17. tostring

string tostring()

parameters:

–

description:

Used to return a string stream for serialization.

18. generate dotfile

string generate dotfile()

parameters:

–

description:

Generates the “.dot” file of the knowledgebase for graphical represen-
tation.

19. serialize

basic string<int32 t> serialize()

parameters:

–

description:

Returns a string which represents the complete knowledgebase.

20. deserialize

bool deserialize(basic string<int32 t>::iterator &it,

basic string<int32 t>::iterator limit)

parameters:

it - iterator to iterate over the string containing the word. limit -
iterator that points to the last word

description:

Returns true if the string was deserialized to knowledgebase success-
fully, false if the deserialization failed.

49

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

21. deserialize query acceptances

bool deserialize query acceptances(basic string<int32 t>::iterator
&it,

basic string<int32 t>::iterator limit)

parameters:

it - iterator to iterate over the string containing the word. limit -
iterator that points to the last word

description:

Returns true after answering all the queries in the knowledgebase
from a single serialized data.

22. create query tree

knowledgebase * create query tree()

parameters:

–

description:

Returns a tree created by adding to this tree, all the words marked as
required in the knowledgebase.

23. get queries

list<list<int> > get queries()

parameters:

–

description:

Returns a list of list of integer that consists of all the queries existing
in the knowledgebase.

24. merge knowledgebase

bool merge knowledgebase(knowledgebase & other tree)

parameters:

other tree - the tree to be merged.

description:

Returns true if the current tree could be merged with the other tree,
false otherwise. Two trees can be merged only if they are consistent.
This method merges only answered information, it does not merge the
queries.

50

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

25. add knowledge

bool add knowledge(list<int> & word, answer acceptance)

parameters:

word - the word to be added to the knowledgebase. acceptance - the
classification of the word.

description:

Returns true if the knowledge for this word does not already exist
and is successfully added to the knowledgebase, false otherwise.

26. add query

int add query(list<int> & word, int prefix count = 0)

parameters:

word - the word/query to be added to the knowledgebase. prefix count

- initialized to zero. It is the count of all the prefixes that can be
formed with the word.

description:

Creates the query and the necessary prefixes (which will also be marked
as a query) and returns the total number of queries formed.

27. resolve query

bool resolve query(list<int> & word, answer & acceptance)

parameters:

word - the word/query to be added to the knowledgebase. acceptance
- the classification of the word.

description:

If the word is already known and is answered, then the answer is
assigned to acceptance and returns true, otherwise returns false.

28. resolve or add query

bool resolve or add query(list<int> & word, answer & acceptance)

parameters:

word - the word/query to be added to the knowledgebase. acceptance
- the classification of the word.

description:

Returns true if the word is already known and answered, else marks
the word as required and returns false.

51

3.3. METHODS SPECIFICATIONS CHAPTER 3. THE KNOWLEDGEBASE

29. get nodeptr

node* get nodeptr(list<int> & word)

parameters:

word - a word.

description:

Returns the node that represents this word.

30. get rootptr

node* get rootptr()

parameters:

–

description:

Returns the root.

31. begin

iterator begin()

parameters:

–

description:

Returns an iterator that begins at the root node.

32. end

iterator end()

parameters:

–

description:

Returns an iterator which is used to point to the last node.

33. qbegin

iterator qbegin()

parameters:

–

description:

Returns an iterator that begins at the first node that is marked re-
quired.

52

CHAPTER 3. THE KNOWLEDGEBASE 3.3. METHODS SPECIFICATIONS

34. qend

iterator qend()

parameters:

–

description:

Returns an iterator which is used to point to the last node that is
marked required.

53

4 Learning Algorithms

Learning algorithms try to construct a conjecture from available information stored in the
knowledgebase. A conventional way to distinguish learning algorithms is to group them
into online and offline algorithms. Online learning techniques are capable of actively
asking queries to some kind of teacher who is able to classify these queries. Offline
algorithms, on the other hand, are passively provided with a set of classified examples
from which they have to build the conjecture.

Online Algorithms

The online learning algorithm follows the most common model of Minimally Adequate
Teacher (MAT) that involves some kind of a teacher to resolve two types of queries mem-
bership queries and equivalence queries. Online learning algorithms build the conjecture
by actively asking queries to a teacher (i.e. a user application).
The teacher is required to resolve a membership query by providing the classification of
the given word. Equivalence queries check whether a derived conjecture is an equivalent
description of the target language to be inferred.

• The algorithm runs on iteration which begins at making an advance where in the
algorithm tries to compute a conjecture with information available in the knowl-
edgebase.

• This leads to the rise of membership queries if no conjecture was created. These
queries are resolved by the teacher, answer added to the knowledgebase and the
algorithm continues the iteration.

• On the other hand, if a conjecture was computed, it is presented to the teacher.
The algorithm terminates if the conjecture is correct. Otherwise, the iteration
continues after the teacher renders a counter example.

Offline Algorithms

Offline algorithms, in contrast to the online variant, finds the smallest DFA consistent
with a given set of classified words. The algorithm is provided with a set S of classified
words (called samples) and the algorithm derives a conjecture which conforms to these
samples.

The working of this algorithm follows a simple two step procedure.

• The knowledgebase is furnished with all samples.

55

4.1. METHODS - USER PERSPECTIVECHAPTER 4. LEARNING ALGORITHMS

• The algorithm is then made to advance to compute the conjecture conforming to
the samples.

List of Algorithms

As of August 15, 2010, libALF implements seven algorithms for both deterministic and
non deterministic automata as listed below.

Online Algorithms

1. Angluin L* [?] [?] [?] (..)

2. NL* [?] [?] (..)

3. Kearns/Vazirani [?] [?] [?] (..)

Offline Algorithms

1. RPNI [?] [?] [?] [?] (..)

2. Biermann [?] (..)

3. DeLeTe2 [?] (..)

4.1 Methods - User Perspective

In this section, we describe methods that are important for using libALF. The following
material elaborates on initializing the learning algorithm, its association with knowl-
edgebase and building the conjecture. Like the knowledgebase, learning algorithm also
supports serialization and deserialization. Other methods that enable the user to work
on the statistics are also described.

Initializing the Learning Algorithm

Given below is an example of the RPNI algorithm is initialized.

• RPNI(knowledgebase<answer> * base, logger * log, int alphabet size)

learning algorithm(parameters)

The constructor of all the learning algorithms follow such an initialization. It sets
the pointer to the knowledgebase, the logger and the alphabet size.

Note: Other algorithms may need more than the above mentioned arguments since they
depend on the working of the algorithm itself. However, the above example shows the
minimal set of arguments required for any learning algorithm.

56

CHAPTER 4. LEARNING ALGORITHMS4.1. METHODS - USER PERSPECTIVE

Working with Alphabet Size

1. learning algorithm::void set alphabet size(int alphabet size)

The method sets the alphabet size for computing the conjecture. This method is
used only during the initial setting of the learning algorithm.

2. learning algorithm::void increase alphabet size(int new asize)

The method increases the size of the alphabet to a new value.

3. learning algorithm::int get alphabet size()

Returns the alphabet size of the conjecture.

Knowledgebase in Learning Algorithm

1. learning algorithm::void set knowledge source(knowledgebase <answer>
* base)

The method sets the source (the knowledgebase) which consists of all the mem-
bership information to the learning algorithm.

2. learning algorithm::knowledgebase<answer> * get knowledge source()

Returns the pointer to the knowledgebase which is currently the source of mem-
bership information.

Advancing

• learning algorithm::conjecture * advance()

The method returns a conjecture if enough information is available in the knowl-
edgebase to construct one. If not, it returns NULL but produces membership
queries that are stored in the knowledgebase.

Adding Counter-example

• virtual bool add counterexample(list<int>)

The method is used by online algorithms when a computed conjecture is declined
by the teacher, i.e. when the equivalence query is answered negative. The counter
example provided is first processed by the learning algorithm which marks it as a
membership query and is added to the knowledgebase.
This method is used only by an online algorithm. For offline algorithms, this
method is a stub.

57

4.1. METHODS - USER PERSPECTIVECHAPTER 4. LEARNING ALGORITHMS

Synchronization with Knowledgebase

As discussed in the previous chapter, the knowledgebase supports undo operation. When
an undo operation has been performed, the learning algorithm must be synchronized
to the knowledgebase, failing to which may generate erroneous output. We use the
following method to synchronize the learning algorithm with the knowledgebase. This
method must be called after each undo operation.

• learning algorithm::bool sync to knowledgebase()
The method checks the knowledgebase and changes its internal data to be synchro-
nized with the knowledgebase and returns true. If it returns false, the algorithm
is in an undefined state and must not be used anymore.
Note: This method should be called after each undo operation performed in the
knowledgebase.

On the other hand, the knowledgebase need not necessarily allow the undo operation.
Hence we use the following method to check the same.

• learning algorithm::bool supports sync()
Returns true if undo operations on the knowledgebase are allowed, otherwise re-
turns false.

Working with Loggers and Normalizers

1. virtual void set logger(logger * l)

If the value of “l” is not NULL, then it is set as the logger. Otherwise, the logger
is set to “ignore” which implies that no logger exists.

2. virtual void set normalizer(normalizer * norm)

Sets the normalizer to the one pointed by the argument “norm”.

3. virtual void unset normalizer()

Sets the normalizer to NULL.

Working with Statistics

1. virtual memory statistics get memory statistics()

Returns the memory statistics.

2. virtual timing statistics get timing statistics()

Returns the timing statistics which is stored in the variable “current stats”.

3. virtual void enable timing()

Enables the maintenance of timing statistics by setting the “do timing” variable
to be true.

58

CHAPTER 4. LEARNING ALGORITHMS4.2. METHODS - DEVELOPER’S PERSPECTIVE

4. virtual void disable timing()

Disables the maintenance of timing statistics by setting the “do timing” variable
to be false.

5. virtual void reset timing()

The “current stats” is reset.

Serialize and Deserialize

1. virtual basic string<int32 t> serialize()

The method returns a String composed of integer containing the serialization
of the state of the learning algorithm. The data can be loaded with the following
method.

2. virtual bool deserialize(basic string<int32 t>::iterator & it, basic string
<int32 t>::iterator limit)

Restores the data of a serialized learning algorithm. The current state of the
learning algorithms is discarded.
The method returns true if the deserialization was successful. Otherwise, returns
false.

4.2 Methods - Developer’s Perspective

A developer’s perspective of learning algorithm mainly centers on the how the algorithm
advances and builds the conjecture. The section describes “advance()” and its associated
methods. B

• virtual conjecture * advance()

The most important method towards building the conjecture. The method first
gathers all knowledge available and tries to derive a conjecture. If a conjecture is
formulated, it is returned. If a conjecture was not produced, the knowledge having
unknown classification is marked required and NULL is returned.

The following code snippet shows how advance works. The methods used internally
are described below.

1 virtual c on j e c t u r e ∗ advance ()
2 {{{
3 c on j e c t u r e ∗ r e t = NULL;
4 //When no knowledgebase i s found .
5 i f (my knowledge == NULL) {
6 (∗my logger) (LOGGER ERROR, ” l e a r n i n g a l g o r i t h m : : advance () : no knowledgebase was s e t !\n”) ;

59

4.2. METHODS - DEVELOPER’S PERSPECTIVECHAPTER 4. LEARNING ALGORITHMS

7 return fa l se ;
8 }
9

10 s t a r t t i m i n g () ; // For s t a t i s t i c s
11 i f (complete ()) {
12 r e t = d e r i v e c o n j e c t u r e () ;
13 // When a c o n j e c t u r e cou ld not be d e r v i e d
14 i f (! r e t)
15 (∗my logger) (LOGGER ERROR, ” l e a r n i n g a l g o r i t h m : : advance () : d e r i v e from completed data s t r u c t u r e f a i l e d ! p o s s i b l y i n t e r n a l e r r o r .\n”) ;
16 }
17 s top t iming () ;
18 return r e t ;
19 }}} ;

1. virtual bool complete()

The method is used by the learning algorithm to complete their internal data
structures such that a conjecture can be derived from it. Returns true if all
internal data is available. Returns false if there is missing knowledge.

2. virtual conjecture * derive conjecture()

The method derives a conjecture from the given data structure available in the
knowledgebase.

One other method used by learning algorithms is the conjecture ready method to
check if a conjecture can be derived successfuly or not.

• virtual bool conjecture ready()

Returns true if a conjecture can be constructed without any further queries. Oth-
erwise, returns false.

60

5 Loggers & Statistics

5.1 logger

To ease application development and debugging, libALF provides two components -
Loggers and Statistics.

A Logger is an adjustable logging facility that an algorithm can write to. One may
insert different category of messages in the logger and is of substantial use in application
debugging. When a learning algorithm is initialized, a logger is associated with it along
with the knowledgebase. libALF provides flexible logger implementations for the user.
A learning algorithm can either use an output stream or a buffer as the logger. On the
contrary, one may also choose to work without a logger.

Statistics refers to the statistical data that can be acquired by evaluating the learning
procedure. Information about the memory usage, queries produced, time taken for
computing conjecture and other details may serve as base for analysing the learning
algorithm in various cases.

5.2 Loggers

A learning algorithm may write different types of messages to the logger. A logger has to
be associated with the knowledgebase during the initialization of the learning algorithm.

Example of how to set a logger

The following code snippet shows to how to create an instance of a logger and associate
it with the learning algorithm along with knowledgebase and alphabet size.

1 // g e t t i n g the a l p h a b e t s i z e
2 int a l p h a b e t s i z e = get AlphabetS i ze () ;
3

4 // c r e a t e i n s t a n c e o f knowledgebase
5 knowledgebase<bool> base ;
6

7 // c r e a t e i n s t a n c e o f a b u f f e r e d l o g g e r .
8 b u f f e r e d l o g g e r b u f f l o g ;
9

10 // Create l e a r n i n g a l g or i t hm (Angluin L∗)
11 // wi th a l o g g e r − b u f f l o g and a l p h a b e t s i z e − a l p h a b e t s i z e
12 a n g l u i n s i m p l e t a b l e<bool> a lgor i thm(&base , bu f f l og , a l p h a b e t s i z e) ;

61

5.2. LOGGERS CHAPTER 5. LOGGERS & STATISTICS

5.2.1 The concept of Loglevel

To achieve a good organization of these messages written to the logger, the messages are
categorized with different labels. A loglevel is a marker indicating the priority of types
of messages to be written into the logger. Setting up a loglevel ensures only messages
having priority of that level and higher are written to the logger while messages having
lower priority are discarded or skipped.

The category of messages is initialized with a enum type variable logger loglevel.

• LOGGER INTERNAL=0 ; (An internal method)

• LOGGER ERROR = 1 ; All log messages that describe a non-recoverable error
are marked with this.

• LOGGER WARN = 2 ; Messages describing a state or command that is erro-
neous but may be ignored under most conditions.

• LOGGER INFO = 3 ; Any information that does not describe an erroneous
condition.

• LOGGER DEBUG = 4 ; Messages that may help debugging of libalf.(Most
likely removed before release version).

• LOGGER ALGORITHM = 5 ; (Do not use this as minimal loglevel)

For instance, setting up a loglevel of “2” will make the learning algorithm write warning
and error messages (level 1 and 2) to the logger while messages labelled with lower
priority (3 and 4) and discarded.

5.2.2 The Logger class

The main class that consists of attributes and methods to implement the logger.

Attributes

It consists of two attributes that every type of logger makes use of.

1. enum logger loglevel minimal loglevel - a minimal setting of the loglevel.

2. bool log algorithm - An boolean variable to indicate if a logger is to be associated
with an algorithm or not.

62

CHAPTER 5. LOGGERS & STATISTICS 5.2. LOGGERS

Methods

The following methods are defined in the class.

1. void set minimal loglevel(enum logger loglevel minimal loglevel)
Sets the minimum logger level using the loglevel attributes.

2. void set log algorithm(bool log algorithm)
The method sets logger for the algorithm if the argument is true. It ignores the
logger if the parameter is false.

3. virtual void operator()(enum logger loglevel, string&) and virtual void
operator()(enum logger loglevel, const char* format, ...)
The method takes the logger type and message as parameters for entry to the
logger. If other variables also need to be used, it can be done so using the second
method.

Example of a learning algorithm writing message to the logger - Developer’s
View

1 i f (my knowledge == NULL)
2 {
3 (∗my logger) (LOGGER ERROR, ‘ ‘ l e a r n i n g a l g o r i t h m : : advance ()
4 no knowledgebase was s e t !\n ’ ’) ;
5 return fa l se ;
6 }

The above code snippet is an extraction from the “advance()” method of a learning
algorithm. When no knowledgebase is set to the algorithm, it enters the message “learn-
ing algorithm::advance(): no knowledgebase was set” to the log “my logger” and marks
it as an error with “LOGGER ERROR”.

All three types of loggers are implemented with the respective classes, ignore logger,
ostream logger and buffered logger. All the classes inherit the logger class.

5.2.3 Types of Loggers

ignore logger

A class that does not consist of any methods. In this case, the logger simply discards all
messages.

ostream logger

The class consists of method to write the message to an output stream.

• ostream logger::ostream logger(ostream *out, enum logger loglevel min-
imal loglevel, bool log algorithm = true, bool use color = true)

63

5.3. STATISTICS CHAPTER 5. LOGGERS & STATISTICS

The method creates an output stream for the logger. The parameter *out points
to the output stream and the minimal loglevel indicates the initial setting. The
parameter log algorithm is set to true by default since the logger will be used
by the algorithm. The parameter use color is set to true so that on a console
output, you may view the messages in different colors!

buffered logger

The class consists of methods for setting a buffer as a log (typically a string). It should
be noted that the messages passed to the buffer will not be available until it is received
and flushed explicitly.

1. buffered logger::buffered logger(enum logger loglevel minimal loglevel,
bool log algorithm = true)
The method sets the buffered logger with the minimal loglevel. log algorithm is
set to true.

2. buffered logger::string * receive and flush()
The method receives and flushes the buffered stream.

5.3 Statistics

The Statistics component provides variable statistic types through a set of classes which
consist of methods to map string to a value. Using this component, any statistical
information can be generated and the value can be of types: int, double, bool or string.
Casting between any of the above forms is also allowed but a wrong reference will give
out an exception. The component also supports serialization and deserialization. The
classes and methods from this component are described below.

statistic type

The global enum variable statistic type defines the values that can be used. It consists
of UNSET, INTEGER, DOUBLE, BOOL, STRING.

statistic data bad typecast e

The constructor of this class throws the exception when typecast error occurs.

Class Statistic Data

The class provides many functions for working with the statistic type variable. The
methods provided are given below.

1. Get and Set methods
The class provides these methods to set and get appropriate values on the variables.

64

CHAPTER 5. LOGGERS & STATISTICS 5.3. STATISTICS

The methods are of the form get type () and set type () where type is one of
integer, double, bool or string.

2. Operator overloading functions There are methods that overload operators
for assigning values to the variables. when a typecast error occurs, exception is
thrown.

generate statistic

The class extends map<string, statistic data> and provides methods to map the
statistic data to a key string. In essence, a statistical value is mapped to a statistical
property (which is named as key) The methods are as follows.

1. Get and Set methods
The class provides methods to set value to a property or get the value from the
property. The method is of the form inline void set type property(const

string & key, type value) where the type is one of integer, double, bool or
string. Naturally, these methods use the set and get methods from statistic data

class.

2. inline void remove property(const string & key)
The method is used to remove the property key completely.

3. inline void unset property(const string & key)
The method unsets this property but does not remove from memory.

65

6 Filters & Normalizers

A knowledgebase can be associated with filters which can exploit domain specific prop-
erties and by that actively reduce the number of queries to the teacher during the learning
phase. Such filters can be composed by logical connectors (and, or, not).
In contrast, Normalizers recognize equivalent words in a domain-specific sense to re-
duce the amount of knowledge that has to be stored.
Both components can be serialized and deserialized.

6.1 Filters

A knowledgebase can be associated with more than one filter through the logical connec-
tors. A filter essentially works on the word and tries to resolve its classification. Thus,
it reduces the number of queries that are asked to the teacher. You may also connect
the filters with more than one logical connectors and, or and not.

A simple example Lets assume that you have associated two filters with learning al-
gorithm. You wish that the classification of word is 1 (accepted) if only both the filters
give positive results and is 0 (rejected) if even one of the filters give a negative result.
libALF lets you connect these filters with logical connector “and” so that the above
operation is precisely performed.
In the following material, we discuss the methods associated with Filters are implemented
and how to work with it.

6.1.1 Class - filter

It is the main class that defines the types of filter.

Attributes - filter types

An enum type variable type is used to define the filter type.

• FILTER NONE = 0 ; No filter associated

• FILTER AND = 1 ; Filter type and

• FILTER OR = 2 ; Filter type or

• FILTER NOT = 3 ; Filter type not

• FILTER ALL EQUAL = 4 ; Filter type for equal words

67

6.1. FILTERS CHAPTER 6. FILTERS & NORMALIZERS

• FILTER REVERSE = 100 ; Filter type handling reverse of a word.

• FILTER IDENTITY = 200 ; Identity filter **

6.1.2 Class - filter subfilter array

The subfilter is an array of filters that is used to associate more than one filter to the
knowledgebase. The class inherits the filter class.

Attributes

• list<filter<answer>*> subfilter array
A list of all the subfilters associated with the knowledgebase.

Methods

• virtual void free all subfilter()
The method to erase all subfilters.

• virtual void add(filter<answer> *f)
Method to add a filter into the array.

• virtual void remove(filter<answer> *f)
Method to remove a filter from the array.

6.1.3 Important Methods of all Filters

All the filters (including the logical connectors) are associated with the following impor-
tant methods that execute its feature.

1. filter::void free all subfilter()
Method to erase all the subfilters (logical connectors) associated with the knowl-
edgebase.

2. filter::virtual enum type get type()
The method returns the type of filter.

3. filter::virtual bool evaluate(knowledgebase<answer> & base, list<int>
& word, answer & result)
The main method to evaluate the word with the associated filter. It returns true

if the word was evaluated successfully and the answer is stored in the parameter
result. It returns false otherwise.

68

CHAPTER 6. FILTERS & NORMALIZERS 6.2. NORMALIZERS

6.1.4 Types of Filters

1. filter and
It is the logical connector and that can be associated with any two filters. The
evaluate method returns true only if the answer of the word can be determined
by both the associated filters and the answer obtained is the same.

2. filter or
It is the logical connector or that can be associated with any two filters. It returns
true if the word if at least one of the filters provide an answer for the word.

3. filter not
It is the logical connector not that can be associated with a filter. It returns true
if the word was answered by the filter and sets the result to the not of the derived
answer.

4. filter all equal
Filter to check if the result is the same in all filters. Returns true if the subfilter
array is non-empty, and if all filters can evaluate a word and produce the same
answer.

5. filter reverse
The filter reverses the word and sends to all subfilters. Returns true if the reversed
word can be evaluated by the subfilters and the answer is stored to the result.

6. filter identity
This is a filter that tries to identify if the answer to the word is already available
in the knowledgebase. It returns true if it exists and is answered already (after
setting the answer to result), false otherwise.

6.2 Normalizers

As mentioned before, Normalizers are means to reduce memory consumption during the
learning phase. A normalizer defines a domain-specific equivalence relation (...) over
all words and only stores data for one representative of each equivlance class. This
means that the data for equivalent queries is only queried and stored once. Apart from
reducing the memory consumption, the number of queries are also reduced. By subtyping
the respective interface, a user can easily define her own domain-specific optimizations.
Normalizers are extensively used by Angluin Algorithm.

6.2.1 Working Overview

Normalizers are based on the concept of Message Sequence charts (MSC). An MSC
consists of a set of processes (or nodes) P, set of messages M, a set E of events which is
partitioned into a set S of send events and a set R of receive events In the normalizer,
the send and receive events are organized as odd and even pairs respectively. Odd

69

6.2. NORMALIZERS CHAPTER 6. FILTERS & NORMALIZERS

represents the send event of the sending process and even represents the receive event
of the receiving process. The processes pass the symbols of the word as the messages
and the normalizer tries to identify if the word belongs to the MSC’s language. If yes,
it returns the normalized word available in the knowledgebase. In this way, the need to
store another word is eliminated.
Normalizer also supports the serialize and deserialize features.

6.2.2 Methods

The methods governing this component is described below.

User Perspective

From the user perspective, the two important methods that perform the normalization
are given below. You can simply associate a normalizer with your Angluin learning
algorithm.

• list<int> normalizer msc::prefix normal form(list<int> & w, bool & bot-
tom) This is the method that normalizes the given input. The parameter w is the
word. The method creates the MSC and then attempts to normalize the word. If
successful, it returns the normalized word. Otherwise bottom is set to true and it
returns the BOTTOM CHAR.

• list<int> normalize msc::suffix normal form(list<int> & w, bool & bot-
tom) This method performs the same operation as the previous method except
that a reversed MSC is created.

Developer Perspective

The MSC is stored in the form of a graph. The important attributes are as follows.

1. vector<int> total order - Denotes the total order. A total order is nothing but
the temporal order of the messages that are available for the events in the buffer.

2. vector<int> process match - A relation that matches the events to a process.

3. vector<int> buffer match - A relation matching event to a buffer. The mes-
sages are queued in send and receive buffers.

4. int max buffer length - The maximum number of messages in a buffer.

5. list<msc::msc node*> graph - Variable for storing the graph

6. queue<int> * buffers - The buffers.

7. unsigned int buffercount - The count of number of buffers used.

70

CHAPTER 6. FILTERS & NORMALIZERS 6.2. NORMALIZERS

8. unsigned int label bound - The label bound is essentially the alphabet size
known by the normalizer. A message must be in [0, label bound).

The important methods are given below.

1. void graph add node(int id, int label, bool pnf)
The method is used to add node to the graph. This method is used by the prefix
and suffix normal form methods. There are two things to be noted here. First,
the process connection for prefix normal form (PNF), a connection is made to the
node from other youngest node with same process that is not connected. For
suffix normal form (SNF), a connection is made from node to other youngest node
with same process that is not connected. The connection between the messages
is again ruled by PNF or SNF. For PNF, a receiving event is connected to oldest
corresponding send-event that is not connected and for SNF, a sending event is
connected from oldest corresponding send-event that is not connected.

2. void normalizer msc::clear buffers(list<int> word)
Clears all buffers that this word has touched.

3. bool normalizer msc::check buffer(int label, bool pnf)
The method checks if the message (label) can be put into its buffer or taken from
its buffer. If yes, returns true. On the otherhand, if its buffer is full or another
message is at the head of the buffer, it returns false.

4. int normalizer msc::graph reduce(bool pnf)
This is the actual method used by the PNF and SNF methods for normalization.

5. inline void connect buffer(msc node * other)
Method to connect the buffers.

71

7 jALF Java Library

The jALF Java library, as you may have come across in various sections in the previous
chapters, is the Java implementation of libALF. However, jALF is not a standalone
library. It is implemented as calls pointing to the C++ libALF objects.
The jALF library can be used either locally through JNI or remotely from a server using
the dispatcher. The important point to be noted here is that a few features in jALF are
not identical to libALF. The differences exist at different levels and will be described in
this section along with how to use jALF and its developer’s perspective.

7.1 Source Code Structure

The jALF implementation can be found in /libalf/jalf folder of the libALF package.
The jALF package information is as follows.

• src - The folder contains C++ methods of JNI calls that forwards the calls to
libALF.

• include - The header files generated using javah command.

• java/src/de/libalf - The files in this folder are the interfaces to the native
methods.

• java/src/de/libalf/jni - The java native methods for JNI.

• java/src/de/libalf/dispatcher - The java native methods for dispatcher.

7.2 jALF- User Perspective

In this section we will introduce how to use jALF and explain its features.

Data Structures

The data structure used in jALF is mostly similar to that of libALF. An important
difference lies in the data structure of the knowledgebase. While it is possible to store
arbitrary value types for classification in libALF, it is possible to use only boolean values
(true or false) can be used for storing classification information in jALF.
However, other differences in data structures are handled entirely by the jALF itself and
the task does not burden on the user. For instance in libALF, words were represented
as list of integers. Similarly jALF uses integer arrays, or more precisely, jintArray to

73

7.2. JALF- USER PERSPECTIVE CHAPTER 7. JALF JAVA LIBRARY

represent the words and LinkedList for list of words. jALF automatically performs the
conversion during the execution.

The jALF Factory

Unlike libALF the components are not entirely free but belong to what is called a Factory
class. From an abstract point of view, this factory can be imagined as a roof under which
the components can be declared and used. The following code snippet shows an example
of how to use the factory class. (Note: refer to the examples provided in the libALF

website for the full program)

1 int [] words
2 boolean c l a s s i f i c a t i o n ;
3 LibALFFactory f a c t o r y = JNIFactory .STATIC;
4 a l p h a b e t s i z e = get AlphabetS i ze () ;
5

6 // Factory c r e a t e d
7 Knowledgebase base = f a c t o r y . createKnowledgebase () ;
8

9 /∗ Code to add knowledge to knowledgebase here ∗/
10

11 LearningAlgorithm algor i thm = f a c t o r y . createLearn ingAlgor i thm (
12 Algorithm . RPNI, base , a l p h a b e t s i z e) ;
13 //The a l gor i thm i s advanced
14 BasicAutomaton automaton = (BasicAutomaton) a lgor i thm . advance () ;
15

16 // Output d i s p l a y e d
17 make OutputFile (automaton . toDot ()) ;

As one can observe from above, the objects for knowledgebase and learning algorithm
are created only through this factory class. Loggers and Normalizers also belong to the
factory and must be initialized in the same way as the knowledgebase. After declaring
the components under this factory, they can be used normally like in the C++ program.
In this context, the user must understand and remember that jALF is a library that
points to the objects of the C++ libALF library. Which means that although the com-
ponents are declared under the factory, each component maintains a separate pointer to
its corresponding C++ object. The object can be destroyed by calling the destroy()

method and an exception is thrown when trying to access a destroyed object. And thus,
the learning algorithm class provides you two extra methods compared to libALF C++
part, which are remove logger and remove normalizer which destroys the objects of
logger and normalizer. The same can be created at a later point of time and can be
attached to the learning algorithm through set logger and set normalizer. However,
one has to note that jALF does not support IO logger. Therefore, you may choose to
use only a buffered logger or ignore logger completely.
jALF also supports exceptions that helps user for debugging. For instance, an exception

74

CHAPTER 7. JALF JAVA LIBRARY 7.3. JALF- DEVELOPER PERSPECTIVE

is thrown when trying to add a counter example for an offline algorithm or when enough
information is not provided during the creation of learning algorithm. The dispatcher
can additionally give a protocol exception. (??)

7.3 jALF- Developer Perspective

The jALF library, in essence, are methods that forward the calls to the libALF library.
(A short intro summary here - will be done after finalizing this part. Points about javah
will be added in this part)

7.3.1 Naming Conventions

Before going into the details of the jALF, the text below briefs on the naming of the
methods. The C++ part of the native methods, as a result of the javah command are
written as

Java de libalf jni JNI[ClassName] name 1of 1the 1method(parameters)

The parameters consist of the JNI Environment variable, the java object and the pa-
rameters of the original method along with a pointer to the object of this method. For
example, the method void resolve or add query is coded as

Java de libalf jni JNIKnowledgebase resolve 1or 1add 1query(JNIEnv *env,
jobject obj, jintArray word, jlong pointer)

Here, env is the JNI environment variable, obj is the jobject, word represents the knowl-
edge to be either resolved or added to the knowledgebase, pointer is the pointer to the
C++ object.

7.3.2 JNIObject

The JNIObject is the root of all classes representing the JNI libALF C++ objects. Each
JNIObject stores a 64 bit pointer variable that points to memory location of the C++
object. This ensures memory access is allowed on both 32 and 64 bit systems. Each
native method call on C++ objects via the JNI interface has to provide a pointer to
locate the object. This class is not initialized but its subclasses provide an init method
to initialize a C++ object via the JNI interface and returns the memory address of the
object. For instance, the native method private native long init() of the knowl-
edgebase invokes the JNI interface to initialize a new C++ knowledgebase object without
any parameters and returns the pointer to this object. The same exists for the dispatcher
as DispatcherObject.java.
The JNIObject extends LibALFObject which is the interface that initializes the factory

75

7.3. JALF- DEVELOPER PERSPECTIVE CHAPTER 7. JALF JAVA LIBRARY

and creates pointer to the C++ objects. And hence, the classes under the factory (knowl-
edgebase, learning algorithm, logger and normalizer) implement a destroy() method to
remove the pointer to the respective C++ object.

7.3.3 Automaton Tools

Two classes that are important for working with the automaton are described below.

• BasicAutomaton
The BasicAutomaton class represents a deterministic or nondeterministic finite
automaton as it is generated by the LibALF library.The automaton essentially
consists of the set of states which is represented by integer between 0 and
numberOfStates that work over an Alphabet set, set of initial states and final
states. This class only stores the automaton but does not provide any functional-
ity.

• BasicTransition
Creates a new transition from source to destination, given the label of this transi-
tion.

7.3.4 Exceptions

As mentioned earlier, jALF supports exceptions that is derived from the interface AlfException.
jALF throws an exception if an object has already been destroyed. This is handled by
methods derived from the interface AlfObjectDestroyedException. To add more ex-
ceptions, simply include the methods in the corresponding interface and use it in the
classes.

7.3.5 JNItools

The jni tools provide methods useful especially for converting variables to JNI data
structures. The methods provided are as follows.

• jintArray basic string2jintArray tohl(JNIEnv *env, basic string<int32 t>
str) The method is used to convert basic string to jintArray. The function uses
ntohl to convert the integer to host byte order.

• jintArray basic string2jintArray(JNIEnv *env, basic string<int32 t> str)
Method to convert basic string to jintArray.

• jintArray list int2jintArray(JNIEnv *env, list<int> l)
The method converts list of integers to jintArray.

• jobject create transition(JNIEnv* env, int source, int label, int desti-
nation)
The method creates an edge between the source node and the destination node
with the prescribed label.

76

CHAPTER 7. JALF JAVA LIBRARY 7.3. JALF- DEVELOPER PERSPECTIVE

• jobject convertAutomaton(JNIEnv* env, bool is dfa, int alphabet size,
int state count, set<int> & initial, set<int> & final, multimap<pair<int,
int>, int> & transitions)
(??)

77

	Introduction
	libALF Basics
	Conceptual Details
	The Knowledgebase
	Learning Algorithm
	Filters and Normalizers
	Loggers and Statistics
	Connections of the Components

	Demo Application
	Online Algorithm
	Offline Algorithm

	Compiling and Installing libALF
	libALF Package Information
	Prerequisites
	The libALF C++ Library
	Compiling libALF
	Installing libALF
	Compiling Applications That Use libALF
	Running Applications That Use libALF

	The jALF Java Library
	Compiling jALF's Java sources
	Compiling jALF's C++ Sources
	Compiling Java applications that use jALF
	Running Java applications that use jALF

	Compiling and Using the Dispatcher
	Compiling the Dispatcher
	Running the Dispatcher

	Troubleshooting

	The Knowledgebase
	The knowledgebase - A User's Perspective
	Methods in Detail

	Structure of the Knowledgebase - A Developer's Perspective
	Representation of a word in the Knowledgebase
	Description of the Structure
	Methods in Detail

	Methods Specifications
	Class - node
	Class - iterator
	Class - knowledgebase

	Learning Algorithms
	Methods - User Perspective
	Methods - Developer's Perspective

	Loggers & Statistics
	logger
	Loggers
	The concept of Loglevel
	The Logger class
	Types of Loggers

	Statistics

	Filters & Normalizers
	Filters
	Class - filter
	Class - filter_subfilter_array
	Important Methods of all Filters
	Types of Filters

	Normalizers
	Working Overview
	Methods

	jALF Java Library
	Source Code Structure
	jALF- User Perspective
	jALF- Developer Perspective
	Naming Conventions
	JNIObject
	Automaton Tools
	Exceptions
	JNItools

