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Abstract

The project focusses on developing an unmanned aerial vehicle with an
onboard flight management unit for controlling the flight as per the remote
operator’s commands and a customized imagery system capable of capturing
& transmitting live video with simultaneous processing done on it to deliver
actionable data. The design discussed in this report is based on the develop-
ment of UAV quad rotor helicopter (quadcopter) with emphasis on the flight
management unit and the control system.

The quadcopter consists of four brushless outrunner DC motors, four
electronic speed controllers, an Arduino Uno microcontroller board, Avionic
RCB7X receiver and lithium polymer batteries, a Raspberry Pi, charged
couple camera, receiver and a transmitter and lipo batteries for charging the
Pi. The remote operator will be using a Avionic RCB7X controller. The
software will be running onboard the quadcopter and will have sensor in-
puts from multiple sensors. We will be using a 9 degrees of freedom inertial
measurement unit and an ultrasonic distance sensor. Given availability of
sufficient funds in the future, we will incorporate other range sensors for
more stable flight. The output will be the voltage control to the four elec-
tronic speed controllers.The receiver and transmitter will be integrated with
the raspberry pi for transferring of live video feed to a laptop at the ground
station. The flight management unit will be designed using concepts of con-
trol theory, signal smoothing, and general data structures and algorithms.
On the other hand the image processing unit will be designed using OpenCV
library, utilising various algorithms for image compression, image smoothing,
image segmentation and object detection.

In the future, we intend to replace the remote operation of the quadcopter
with on-board autonomous flight control. This will require addition of other
sensors and better image processing hardware.
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Chapter 1

Introduction

An unmanned aerial vehicle (UAV), commonly known as drone, is an aircraft
without a human pilot aboard. Its flight is controlled either autonomously
by onboard computers or by the remote control of a pilot on the ground or
in another vehicle. The typical launch and recovery method of an unmanned
aircraft is by the function of an automatic system or an external operator on
the ground. There are a wide variety of UAV shapes, sizes, configurations,
and characteristics. Most recently, artificial intelligence is being incorporated
into UAVs. Autonomous take off, landing, and flying capability is being
incorporated into the current generation of UAVs. Autonomy is moving
from supervised systems to fully autonomous. Ongoing research focusses
on path planning, decision making, obstacle avoidance and other AI based
techniques for UAVs. However, fully autonomous UAVs are restricted to
military operations at present.

UAVs usually consist of an flight management unit (FMU). An FMU is a
low latency autopilot suitable for fixed wing, multi rotors, helicopters, cars,
boats and any other robotic platform that can move. These are usually used
on research and amateur projects. Full fledged commercial quadrotos usually
utilise an flight management module or flight management system. An FMU
is an expandable, modular system comprising the Flight Management Unit
(autopilot) and a number of optional interface modules. In addition to the
versatility of the hardware platform, FMU’s have a sophisticated, modular,
realtime software environment. Most FMUs have support for new sensors,
peripherals and expansion modules due to standardized interface protocols
between software components.
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Figure 1.1: Our micro aerial vehicle platform

1.1 Micro Aerial Vehicles

Since 2003, the robotics community has been showing a growing interest in
Micro Aerial Vehicle (MAV) development. The scientific challenge in MAV
design and control in cluttered environments and the lack of existing solu-
tions was very motivating. On the other hand, the broad field of applications
in both military and civilian markets was encouraging the funding of MAV
related projects. At the same time, the Autonomous Systems Laboratory
(ASL) had already accumulated a large experience on ground-based robots
with excellent results. Several theses were conducted on localization, nav-
igation, obstacle avoidance etc. The limitations of ground-based robots in
rough terrain and the recent progress in micro technology pushed us to-
wards developing new mobility concepts. This includes flying systems on
which one could apply the techniques already developed on ground-based
robots. However, the task is not trivial due to several open challenges.
In the field of sensing technologies, industry can currently provide a new
generation of integrated micro Inertial Measurement Unit (IMU) composed
generally of Micro Electro-Mechanical Systems (MEMS) technology inertial
and magneto-resistive sensors. The latest technology in high density power
storage offers about 190 Wh/kg which is a real jump ahead especially for mi-
cro aerial robotics. This technology was originally developed for hand-held
applications and is now widely used in aerial robotics. The cost and size
reduction of such systems makes it very interesting for the civilian market.
Simultaneously, this reduction of cost and size implies performance limita-
tion and thus a more challenging control. Moreover, the miniaturization of
inertial sensors imposes the use of MEMS technology, which is still much
less accurate than the conventional sensors because of noise and drift. The
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use of low-cost IMUs is synonym of less efficient data processing and thus a
bad orientation data prediction in addition to a weak drift rejection. On the
other hand, and in spite of the latest progress in miniature actuators, the
scaling laws are still unfavorable and one has to face the problem of actuator
saturation. That is to say, even though the design of micro aerial robots
is possible, the control is still a challenging goal. It was decided from the
beginning of this thesis to work on a particular VTOL configuration: the
quadrotor. The interest comes not only from its dynamics, which represent
an attractive control problem, but also from the design issue. Integrating the
sensors, actuators and intelligence into a lightweight vertically flying system
with a decent operation time is not trivial.

MAVs are usually deployed for military and special operations like surveil-
lance and reconnaissance of hostile territory, patrolling border areas to detect
intrusions. They are being used for a growing number of civil applications,
such as policing, fire fighting and non-military security work, such as surveil-
lance of pipelines. As a tool for search and rescue, UAVs can help find
humans lost in the wilderness, trapped in collapsed buildings, or adrift at
sea. In India, they were recently used in successfully locating survivors dur-
ing the 2013 Uttarakhand floods, and are used by the Border Security Force
(BSF) for patrolling the Indo-Pak border in the arid regions Prime Air pro-
gramme in which UAVs will be used for product deliveries. Another company
utilizing UAVs is Dominos, which attempts to deliver pizzas using UAVS.

1.2 Control System

Control theory is an interdisciplinary branch of engineering and mathematics
that deals with the behavior of dynamical systems with inputs. The external
input of a system is called the reference. When one or more output variables
of a system need to follow a certain reference over time, a controller manip-
ulates the inputs to a system to obtain the desired effect on the output of
the system. The objective of control theory is to calculate solutions for the
proper corrective action from the controller that result in system stability,
that is, the system will hold the set point and not oscillate around it.

There are predominantly two types of control systems, open loop and
closed loop systems. An open-loop controller, also called a non-feedback
controller, is a type of controller that computes its input into a system us-
ing only the current state and its model of the system. A characteristic of
the open-loop controller is that it does not use feedback to determine if its
output has achieved the desired goal of the input. Consequently, an open-
loop system cannot correct any errors and it also may not compensate for
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disturbances in the system. A closed-loop controller, on the other hand, uses
feedback to control states or outputs of a dynamical system.

Closed-loop controllers have various advantages over open-loop controllers
such as disturbance rejection, guaranteed performance even with model un-
certainties, when the model structure does not match perfectly the real pro-
cess and the model parameters are not exact, unstable processes can be sta-
bilized, reduced sensitivity to parameter variations, and improved reference
tracking performance. A common closed-loop controller architecture is the
PID controller.

1.2.1 LTI

Linear time-invariant (LTI) theory, comes from applied mathematics and has
direct applications in signal processing, control theory, and other technical
areas. It investigates the response of a linear and time-invariant system
to an arbitrary input signal. Trajectories of these systems are commonly
measured and tracked as they move through time but in applications like
image processing and field theory, the LTI systems also have trajectories in
spatial dimensions.

Linearity of a system refers to its property of additive superposition. This
essentially means that if we are to excite a system with input signal x and get
an output as X, and excite the same system with signal y to get an output
Y , then the system will yield an output response of magnitude X + Y when
excited by the inputs x and y together. A system is said to be time invariant
it obeys the following time-shift invariance property:

If the response to the input signal x(t) is

y(t) = S[x(t)] (1.1)

then for any real constant k,

y(t− k) = S[x(t− k)] (1.2)

This is an idealistic way of looking into a system, as no system designed
has been found to be entirely linear or time invariant. We can only aim to
attain these properties with as much perfection as possible but practically,
we cannot reach there entirely. A LTI system is important from an analytical
point of view as it helps us in realising the entire system mathematically.
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1.2.2 PID

PID is an acronym for Proportional-Integral Derivative, referring to the three
terms operating on the error signal to produce a control signal. If u(t) is the
control signal sent to the system, y(t) is the measured output and r(t) is the
desired output, and tracking error e(t)=r(t)- y(t), a PID controller has the
general form

u(t) = KP e(t) +KI

∫
e(t)dt+KD

d

dt
e(t). (1.3)

The desired closed loop dynamics is obtained by adjusting the three pa-
rameters KP, KI and KD, often iteratively by ”tuning” and without specific
knowledge of a plant model. PID controllers are the most well established
class of control systems: however, they cannot be used in several more com-
plicated cases, especially if MIMO systems are considered.

Figure 1.2: A proportional-integral-derivative controller

1.3 Digital Signal Processing

For remote operation, MAVs are operated by a radio controlled transmitter
receiver system. The control signals are usually transmitted across a fixed
frequency range. As they travel through the channel, these signals are subject
to interference by noise, which can corrupt the control signal and compromise
the functionality of the MAV. A variation in the control signal to the MAV
will cause abrupt changes in motor RPM, leading to varying thrust values.
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This variation in the thrust generated by the propellers can significantly
change the orientation of the craft, in turn compromising flight stability.
Thus, there is a need to filter out the noisy part of the signal to ensure that
the MAV responds reliably to different control inputs. This field of DSP
addresses the removal of noise in a control signal.

Digital signal processing and analog signal processing are subfields of sig-
nal processing. Digital signal processing is the mathematical manipulation of
an information signal to modify or improve it in some way. It is characterized
by the representation of discrete time, discrete frequency, or other discrete
domain signals by a sequence of numbers or symbols and the processing of
these signals. The goal of DSP is usually to measure, filter and/or compress
continuous real-world analog signals. The first step is usually to convert
the signal from an analog to a digital form, by sampling and then digitizing
it using an analog-to-digital converter (ADC), which turns the analog sig-
nal into a stream of numbers. However, often, the required output signal
is another analog output signal, which requires a digital-to-analog converter
(DAC). Even if this process is more complex than analog processing and has
a discrete value range, the application of computational power to digital sig-
nal processing allows for many advantages over analog processing in many
applications, such as error detection and correction in transmission as well
as data compression.

DSP applications include: audio and speech signal processing, sonar
and radar signal processing, sensor array processing, spectral estimation,
statistical signal processing, digital image processing, signal processing for
communications, control of systems, biomedical signal processing, seismic
data processing, etc. DSP algorithms have long been run on standard com-
puters, as well as on specialized processors called digital signal processor
and on purpose-built hardware such as application-specific integrated cir-
cuit (ASICs). Today there are additional technologies used for digital signal
processing including more powerful general purpose microprocessors, field-
programmable gate arrays (FPGAs), digital signal controllers (mostly for
industrial apps such as motor control), and stream processors, among oth-
ers.

1.4 Control System Tuning

Tuning a control loop is the adjustment of its control parameters to the
optimum values for the desired control response. Stability (no unbounded
oscillation) is a basic requirement, but beyond that, different systems have
different behavior, different applications have different requirements, and re-
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quirements may conflict with one another.
PID tuning is a difficult problem, even though there are only three param-

eters and in principle is simple to describe, because it must satisfy complex
criteria within the limitations of PID control. There are accordingly various
methods for loop tuning including manual, automated, and certain patented
techniques. The most effective methods generally involve the development of
some form of process model, then choosing P, I, and D based on the dynamic
model parameters. Manual tuning methods can be relatively inefficient, par-
ticularly if the loops have response times on the order of minutes or longer.
The choice of method will depend largely on whether or not the loop can be
taken ”offline” for tuning, and on the response time of the system. If the
system can be taken offline, the best tuning method often involves subjecting
the system to a step change in input, measuring the output as a function of
time, and using this response to determine the control parameters.

Designing and tuning a PID controller appears to be conceptually intu-
itive, but can be hard in practice, if multiple (and often conflicting) objectives
such as short transient and high stability are to be achieved. PID controllers
often provide acceptable control using default tunings, but performance can
generally be improved by careful tuning, and performance may be unaccept-
able with poor tuning. Usually, initial designs need to be adjusted repeatedly
through computer simulations until the closed-loop system performs or com-
promises as desired. Some processes have a degree of nonlinearity and so
parameters that work well at full-load conditions don’t work when the pro-
cess is starting up from no-load; this can be corrected by using different
parameters in different operating regions.

1.5 Navigation

For any mobile device, the ability to navigate in its environment is impor-
tant. Avoiding dangerous situations such as collisions and unsafe conditions
(temperature, radiation, exposure to weather, etc.) comes first, but if the
robot has a purpose that relates to specific places in the robot environment,
it must find those places.

Robot navigation means the robot’s ability to determine its own position
in its frame of reference and then to plan a path towards some goal location.
In order to navigate in its environment, the robot or any other mobility device
requires representation, i.e. a map of the environment and the ability to
interpret that representation. Navigation can be defined as the combination
of the three fundamental competences self-localisation, path planning, map-
building and map interpretation.
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Map in this context denotes any one-to-one mapping of the world onto
an internal representation. Robot localization denotes the robot’s ability
to establish its own position and orientation within the frame of reference.
Path planning is effectively an extension of localisation, in that it requires the
determination of the robot’s current position and a position of a goal location,
both within the same frame of reference or coordinates. Map building can
be in the shape of a metric map or any notation describing locations in the
robot frame of reference.

1.5.1 Visual Navigation

Vision-Based navigation uses optical sensors including laser-based range finder
and photometric cameras using CCD arrays to extract the visual features re-
quired to for localization in the surrounding environment. However, there
are a range of techniques for navigation and localization using vision infor-
mation, the main components of each technique are representations of the
environment, sensing models and localization algorithms. These may further
be classified under indoor navigation and outdoor navigation techniques.

1.5.2 Image Processing

Image processing is any form of signal processing for which the input is an
image, such as a photograph or video frame; the output of image processing
may be either an image or a set of characteristics or parameters related to
the image. Most image-processing techniques involve treating the image as
a two-dimensional signal and applying standard signal-processing techniques
to it. Image processing usually refers to digital image processing, but optical
and analog image processing also are possible. The acquisition of images
(producing the input image in the first place) is referred to as imaging. The
two types of methods used for Image Processing are Analog and Digital Im-
age Processing. Analog or visual techniques of image processing can be used
for the hard copies like printouts and photographs. Image analysts use vari-
ous fundamentals of interpretation while using these visual techniques. The
image processing is not just confined to area that has to be studied but on
knowledge of analyst. Association is another important tool in image process-
ing through visual techniques. So analysts apply a combination of personal
knowledge and collateral data to image processing. Digital Processing tech-
niques help in manipulation of the digital images by using computers. As
raw data from imaging sensors from satellite platform contains deficiencies.
To get over such flaws and to get originality of information, it has to undergo
various phases of processing. Digital image processing has many advantages
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over analog image processing. It allows a much wider range of algorithms to
be applied to the input data and can avoid problems such as the build-up of
noise and signal distortion during processing. The image processing process
generally consists of the following three steps.

1. Import the image with the help of an optical scanner or digital photog-
raphy

2. Analyze and manipulate the image that included performing compres-
sion, image enhancement, spotting patterns that are not visible to the
human eye

3. The third stage is the output which basically consists of the manipu-
lated image or analysis report.

1.5.3 Computer Vision

Computer vision is the science of endowing computers or other machines with
vision, or the ability to see. Basically it is giving machines or computers the
power to see and visualize things in the same way as humans do.Humans make
use of their brain and their eyes in order to gain a visual perspective of their
environment. The field of computer vision attempts to give a comparable
capability to a computer or other machine via the extraction, processing,
and analysis of relevant information from an image, sequence of images, or
multi-dimensional data.
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Chapter 2

Literature Survey

2.1 MAV

In order to understand the quad-rotor platform better, we went through [4].
This paper presented an overview of the application potential and design
challenges of MAVs, defined as small enough to be practical for a single-
person transport and use. This paper also looked into different types of
MAVs such as fixed-wing, rotary- wing, ornithopters (bird-like flapping) and
entomopters (insect-like flapping). Thus, we were able to decide a size that
would classify our flying robot as a MAV. We were also able to understand
the scope of the functionality which the MAV would provide.

Next, we went through case studies of various other university teams who
had embarked on a similar project. In [8], we learnt about flight mechan-
ics, and the governing torque and force relations. This paper provided the
basic dynamic model of the quad-rotor and formed the basis for our further
exploration in the subject matter.

To understand the various electronic flight components including con-
trollers and sensors that would be required for building a functional quad-
rotor we explored [12]. This paper provided a detailed list and description
of components that would be required. It delved into the principals behind
and functioning of each of the components. Thus, we were able to obtain a
basic understanding of the hardware we would be needing for our project.

2.2 Control System

To implement a functional FMU, we delved into the field of control systems.
[21] provided a basic understanding of an LTI system, a standard control
system in the field of robotics. We were able to comprehend the complexities
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involved in the design of a responsive and stable control system. An integral
part of a control system is a PID controller. [?, ?] provided us with a thorough
understanding of various controllers that are used within LTI systems. We
also explored various tuning strategies that would be helpful in resolving
the constants that would be required for the optimal performance of a PID
controller.

Figure 2.1: High level view of control systems

For the tuning of PID and control system constant parameters, [17] moti-
vated us to develop our very own test bed, which allowed unrestricted motion
on a single axis. We used the Ziegler-Nichols tuning method on the test bed
to achieve the optimal values of the constant parameters. The Ziegler-Nichols
method is a heuristic method which requires multiple iterations by repeat-
edly changing the constant values to obtain a desired level of performance
[20].

As our platform was based on a microcontroller with very limited pro-
cessing capabilities, we had to pay special attention to the refresh rate of the
control signals that were going out to the ESCs. The ESCs typically require
a very high refresh rate in the 80-120 Hz range for responsive and stable
control. [16] motivated us to accurately estimate the time being taken in the
execution of the control system and to attempt to micro-optimize sections of
the implementation so as to increase the refresh rate.

2.3 DSP

One problem that we expected based on our previous experience was noise
in the wireless signals that are used for control of mobile robots. The error
introduced into a signal during transmission from the sender to the receiver
is called noise. The presence of noise in a signal impairs the signal to noise
ratio, which is a measure of signal quality, and causes fluctuation in the signal
value. This in turn, makes the signal inaccurate and unreliable and may even
lead to a loss of data. Noise can either be generated at the transmitter side
circuit, in the transmission channel, or at the receiver side circuit. The
types of noise being generated can be categorized depending on the cause.
Random fluctuations in the current flowing in the circuits of the transmitter
and receiver may be a source of shot noise. Flicker noise may occur in
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electronic devices and can show up as irregularities in the conducting wires
causing fluctuation in the voltage and current values. Another type of noise
is transient noise, which occurs during signal transmission and is caused by
interference in the transmission channel. These are short pulses followed by
decaying low frequency oscillations. Another source of noise is the thermal
agitation of electrons inside a conductor, called thermal noise. Lastly, a
major source of noise in our experiment is quantization noise. The analog
signal sent by the transmitter is converted to a (PWM) signal before being
sent to the motors. The rounding off of errors that occur during this process
of signal conversion is known as quantization error, which presents itself as
noise in the original signal.

Signal smoothing is a process that attempts to capture essential informa-
tion while leaving out the noise in the signal, by interpolating the raw signal
to estimate the original signal. As our system updates control signals in real
time, we have considered filters in the time domain for signal smoothing[7]
i.e. the simple moving average (SMA), cumulative moving average (CMA),
exponential moving average (EMA)[6], the Savitzky-Golay (SG) filter, and
the Ramer-Douglas-Peucker (RDP) algorithm[5]. These time domain filters
usually have a finite window width and the window moves along the data set,
as shown in the figure below. The data points in the smoothing window are
assigned different weights and the actual value is interpolated. The weighting
function is the primary factor differentiating the algorithms.

Figure 2.2: The window moves along the input sequence
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2.4 Image Processing

In order to understand the full model of how an image processing system
works in UAVs, we explored project reports of other teams who had worked
on similar projects. [24],[23],[25] were studied in order to find out the im-
age processing architecture. OpenCV, a library, was used for designing and
implementing the image processing algorithms. None of us had worked on
this library before. In order to learn OpenCV, [27] and documentation was
studied.

2.4.1 Processing unit

In order to design the image processing unit, various components such as a
camera, a processor to perform the necessary image manipulations, and a
transmitter-receiver were needed. Raspberry Pi was chosen as the processor
as it is small, credit card sized computer and has the best performance to cost
ratio. RPI camera was used for taking the digital images as it could easily be
plugged in the RPI and provided high quality pictures and videos. In order to
understand how the RPI camera works, the RPI camera documentation was
looked into. At the end we required a transmitter-receiver for transmitting
live video feed from quad-copter to the remote station while the quad-copter
is hovering. Various calculations were made so as to find out the requirements
of the transmitter i.e. transfer data rate, cost, power consumption. We
needed a transmitter that could provide a data rate of approx 1 MBps and
range of more than 1 km and be cheap at the same time. Various options were
looked into such as XBEE transmitter, Bluetooth but both of them had some
problems. XBEE has a slow data rate where as the power consumption and
price of bluetooth dongle was quite high. Finally, Wifi dongle was selected.
It can provide a data rate of more than 10 MBps and range of approx 2 km.

2.4.2 Smoothing algorithms and Machine learning

As the image taken by the camera consisted of different types of noise such
as salt noise, salt and pepper noise or Gaussian noise, various algorithms
for noise reduction were studied and applied using OpenCV library. Also,
as one of the main aim was to take images of a screen and then identify
the digits being displayed on them. This required applying Machine Learn-
ing Algorithms such as Support Vector Machine(SVM), K-nearest neighbour
and Artificial Neural Network. These were studied from [26] and OpenCV
documentation.
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Chapter 3

Overall Design

3.1 System Overview

The system can be visualised to have the following components with the
interactions as shown:

Figure 3.1: An overall view of the system

For this project, we have focussed on the execution level, the FMU, and
the sensor integration into the FMU. We have also started development on
the IP module.

3.2 Quad-rotor Dynamic Model

The quad-rotor has no moving parts and as a result has a simple mechanical
design. However, its simplicity in design is challenged by its complicated
dynamic system. The quad-rotor will be operating in two frames: the inertial
frame and the body frame. The inertial frame is defined by the ground, and
gravity points in the negative z direction. The body frame is defined by the
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orientation of the quad-rotor, with the rotor axes pointing in the positive z
direction and the arms pointing in the x and y directions.

Figure 3.2: An overall view of the system

3.2.1 Kinematics

The position and velocity of the quad-rotor in the inertial frame is given by
x = (x, y, z)T and ẋ = (ẋ, ẏ, ż)T , respectively. Similarly, the roll, pitch, and
yaw angles in the body frame are given by θ = (φ, θ,Ψ)T , with corresponding
angular velocities given by Θ̇ = (φ̇, θ̇, Ψ̇)T . Also, the angular velocity vector
ω = Θ̇ is a vector pointing along the axis of rotation. In order to convert
these angular velocities into the angular velocity vector, the following rela-
tion is used:

ω =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 θ̇ (3.1)

where ω is the angular velocity vector in the body frame. The body and
inertial frames are related by a rotation matrix R which goes from the body
frame to the inertial frame. This matrix is derived by using the ZYZ Euler
angle conventions and successively undoing the yaw, pitch, and roll.

R =

cφcΨ − cθsφsΨ −cΨsφ − cφcθsΨ sθsΨ

cθcΨsφ + cφsΨ cφcθcΨ − sφsΨ −cΨsθ
sφsθ cφsθ cθ

 (3.2)
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3.2.2 Equations of Motion

In the inertial frame, the acceleration of the quad-rotor is due to thrust,
gravity, and drag. The thrust vector in the inertial frame can be obtained by
using the rotation matrix R to map the thrust vector from the body frame
to the inertial frame. Thus, the linear motion can be summarized as

ẍ =

 0
0

−mg

 +RTB + FD (3.3)

where ~x is the position of the quad-rotor, g is the acceleration due to grav-
ity, FD is the drag force, and TB is the thrust vector in the body frame.TB
and FD are given by the following matrices:

TB =
4∑
i=1

Ti = k

 0
0

Σω2
i

 (3.4)

FD =

−kdẋ−kdẏ
−kdż

 (3.5)

While it is convenient to have the linear equations of motion in the inertial
frame, the rotational equations of motion are useful in the body frame, so
that express rotations can be expressed about the center of the quad-rotor
instead of about the inertial center. The rotational equations of motion are
derived from Euler’s equations for rigid body dynamics. Expressed in vector
form, Euler’s equations are written as

Iω̇ + ω × (Iω) = τ (3.6)

where ω is the angular velocity vector, I is the inertia matrix, and τ is a
vector of external torques. This can be rewritten as

ω̇ =

ω̇xω̇y
ω̇z

 = I -1(τ − ω × (Iω)) (3.7)
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We can model our quad-rotor as two thin uniform rods crossed at the ori-
gin with a point mass (motor) at the end of each. This results in a simple
diagonal inertia matrix of the form.

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (3.8)

Thus, the final result for the body frame rotational equations of motion
are:

ω̇ =

τφI−1
xx

τθI
−1
yy

τΦI
−1
zz

−


Iyy−Izz
Ixx

ωyωz
Izz−Ixx
Iyy

ωxωz
Ixx−Iyy
Izz

ωxωy

 (3.9)

3.3 Prototype

Initially, an exploratory prototype was developed that focussed on basic flight
dynamics to gain a better understanding of the flight characteristics of the
quad-rotor. The initial prototype implemented a basic flight model that dealt
with only motor thrusts, yaw, pitch and roll as an open control system. The
aim behind the exploratory prototype was to gain a better understanding of
the components being used and to test the basic functioning of each of those
components.

The main control equation on this flight model was

Tn = Tin +Ky Yin +Kp Pin +Kr Rin (3.10)

where, Tin is the mapped control input for thrust, Yin is the mapped control
input for yaw, Ky is the multiplier for yaw input, Pin is the mapped control
input for pitch, Kp is the multiplier for pitch input, Rin is the mapped control
input for roll and Kr is the multiplier for roll input.

This prototype served as the basic structure for our current iteration of
the flight management unit.

3.4 Control System Design

We intended to implement a linear time invariant system for the quad-rotor
platform that would be running on the Arduino microcontroller. The general
equations of an LTI are:

ẋ = Ax+B u (3.11)
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y = C x+Du (3.12)

where, A matrix is a 12×12 matrix. The matrix entries are governed
by the physical forces that govern the quad-rotor motion. The B matrix is
a 12×4 matrix whose entries are governed by the actuators we have in our
system. The C matrix is a 4×12 matrix whose entries are governed by what
sensors we have in our system. The D matrix is a 4×4 order matrix. The x
matrix is a 12×1 order matrix and it contains the states of the system. The
u matrix is a 4×1 order matrix and it contains the inputs to the system. The
y matrix is a 4×1 order matrix and it contains the outputs of the system.

A =



0 0 0 0 0 0 0 9.81 0 0 0 0
0 0 0 0 0 0 −9.81 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0



(3.13)

B =



0 0 0 0
0 0 0 0
k1 k2 k3 k4

k5 k6 k7 k8

k9 k10 k11 k12

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(3.14)

3.5 PID Design

Proportional-Integral-Derivative (PID) control is the most common control
algorithm used in industry and has been universally accepted in industrial
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Figure 3.3: Control system statespace

control. The popularity of PID controllers can be attributed partly to their
robust performance in a wide range of operating conditions and partly to their
functional simplicity, which allows engineers to operate them in a simple,
straightforward manner. As the name suggests, PID algorithm consists of
three basic coefficients; proportional, integral and derivative which are varied
to get optimal response. Closed loop systems are the primary application area
of PID controllers. The PID controller can be described by the function:

u(t) = KP error(t) +KI

∫
error(t)dt+KD

d

dt
error(t). (3.15)

The basic idea behind a PID controller is to read a sensor, then compute
the desired actuator output by calculating proportional, integral, and deriva-
tive responses and summing those three components to compute the output.
These responses are calculated based on an error term:

error = setpointdesired − setpointactual (3.16)

3.5.1 Proportional Response

The proportional component depends only on the difference between the set
point and the process variable or the error. The proportional gain (KP )
determines the ratio of output response to the error signal. For instance,
if the error term has a magnitude of 10, a proportional gain of 5 would
produce a proportional response of 50. In general, increasing the proportional
gain will increase the speed of the control system response. However, if the
proportional gain is too large, the process variable will begin to oscillate. If
Kc is increased further, the oscillations will become larger and the system
will become unstable and may even oscillate out of control.

Proportional Term = KP e(t) (3.17)
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3.5.2 Integral Response

The integral component sums the error term over time. The result is that
even a small error term will cause the integral component to increase slowly.
The integral response will continually increase over time unless the error is
zero, so the effect is to drive the Steady-State error to zero. Steady-State
error is the final difference between the process variable and set point.

Integral Term = KI

∫
e(t)dt (3.18)

3.5.3 Derivative Response

The derivative component causes the output to decrease if the process vari-
able is increasing rapidly. The derivative response is proportional to the rate
of change of the process variable. Increasing the derivative time (Td) param-
eter will cause the control system to react more strongly to changes in the
error term and will increase the speed of the overall control system response.
Most practical control systems use very small derivative time (Td), because
the Derivative Response is highly sensitive to noise in the process variable
signal. If the sensor feedback signal is noisy or if the control loop rate is too
slow, the derivative response can make the control system unstable.

Derivative Term = KD
d

dt
e(t) (3.19)

3.6 PID Tuning

The process of setting the optimal gains for P, I and D to get an ideal response
from a control system is called tuning. There are different methods of tuning
of which the manual method and the Ziegler Nichols method will be used.

3.6.1 Manual Method

The gains of a PID controller can be obtained by trial and error. In this
method, the I and D terms are set to zero and the proportional gain is in-
creased until the output of the loop oscillates. As one increases the propor-
tional gain, the system becomes faster, but care must be taken not make the
system unstable. Once P has been set to obtain a desired fast response, the
integral term is increased to stop the oscillations. The integral term reduces
the steady state error, but increases overshoot. Some amount of overshoot
is always necessary for a fast system so that it could respond to changes
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Table 3.1: Ziegler Nichols Tuning Constants

Control Type Kp Ki Kd

P 0.50(Ku) - -
PI 0.45(Ku) 1.2(Kp)/Pu -
PID 0.60(Ku) 2(Kp)/Pu (Kp)(Pu)/8

immediately. The integral term is tweaked to achieve a minimal steady state
error. Once the P and I have been set to get the desired fast control system
with minimal steady state error, the derivative term is increased until the
loop is acceptably quick to its set point. Increasing derivative term decreases
overshoot and yields higher gain with stability but would cause the system
to be highly sensitive to noise.

3.6.2 Ziegler Nicholas Method

The Ziegler-Nichols method is another popular method of tuning a PID con-
troller. It is very similar to the manual method wherein I and D are set to
zero and P is increased until the loop starts to oscillate. Once oscillation
starts, the critical gain Kc and the period of oscillations Pc are noted. The
P, I and D are then adjusted as per the tabular column shown below.

3.7 DSP Design and Testing

We have considered filters in the time domain for signal smoothing i.e. the
simple moving average (SMA), cumulative moving average (CMA), expo-
nential moving average (EMA), the Savitzky-Golay filter, and the Ramer-
Douglas-Peucker (RDP) algorithm.

3.7.1 Simple Moving Average

The SMA is the mean of the set of data points distributed uniformly on
either side of a central value. The computed mean is then set as the control
value in place of the received value at that time instant. The number of data
points, also known as the window size can be varied.
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3.7.2 Cumulative Moving Average

The CMA takes the mean of all the data that has arrived till that particular
instant. It is given by the formula:

Ck+1 =
xk+1 + xCk
k + 1

(3.20)

Ck =

∑k
i=1 xi
k

(3.21)

where Ck is the cumulative average of k data points and xk is the value of
kth data point. C0 is taken as zero. Similar to SMA, we again compute the
CMA and set it as the control value, in place of the received value at that
time instant.

3.7.3 Exponential Moving Average

The EMA is a type of weighted moving average with an exponential weighting
function [6]. The weighting function uses a continuously decreasing exponen-
tial function. A constant factor, alpha, represents the degree of decrease in
successive weights, and lies between 0 and 1. A smaller value of alpha takes
more of the previous readings into account for calculating the current signal
value. The EMA for a series S can be calculated as:

S1 = C1 for t = 1

St = αYt + (1 − α)St−1 for t > 1 (3.22)

where Yt is the data value at a time instant t. St is the value of the EMA
at any time instant t.

3.7.4 Savitzky Golay Filter

The SG filter is a digital filter, which works on the method of fitting least
squares, of a polynomial of a given order, to data points in a moving window.
The polynomial is evaluated at the center of the moving window, and that
value is the filtered value. The window is shifted over the entire data set
and the central value of the window is calculated in each iteration of the
algorithm. The degree of the polynomial used for least squares fitting and the
moving window size can be varied and tested to obtain the most appropriate
combination of parameters. The convolution coefficients for smoothing the
signal can be obtained from the original paper of Savitzky and Golay [?].
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Figure 3.4: Plot representing input signal and smoothed output for EMA
0.10

3.7.5 Ramer Douglas Peucker Algorithm

The final algorithm implemented was RDP algorithm [5]. Given a set of
curves, it attempts to reduce the number of points required to best approx-
imate the curve. The algorithm uses the perpendicular distance of points
from the curve to estimate which points need to be ignored. The ones at a
distance greater than a fixed value (ε) are considered significant and remain
part of the final smoothed output. It can be applied for smoothing noisy
signals by filtering the data set to include fewer points.

3.7.6 Testing

Now that the algorithms were implemented, we executed the program on
the Arduino board and observed the performance in real time. An open
serial connection between the Arduino board and the workstation was used
to collect data for a period of 30 seconds using the input signal as described
above. Each record of the data set collected consisted of four parameters:
time of call of smoothing function, raw value of input signal, time of return
of smoothing function, and the smoothed signal value. We then analyzed the
data and evaluated the performance of each algorithm.

3.8 Image Processing

The main aim of using image processing in this project is to identify the
digits being displayed on a screen. The overall design of the image processing
module is as follows:
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Figure 3.5: An overall view of the system

Firstly, we were required to capture the images from the camera and send
it to the RPI. As the Open CV was installed on RPI, image processing was
performed on RPI. Now we need to identify the digits in the captured images.
This is basically a two step process:

1. Screen Localization: Extract the screen from the image.

2. Digits Identification: Extract the digits on the screen and then identify
them.

For extracting the screen from the image i.e. the localization of the
screen, SVM algorithm was used. Whereas for the second step, two algo-
rithms k-nearest algorithm and artificial neural intelligence were applied and
compared.

3.8.1 Screen Localization

Localizing the screen in the captured image itself is a two step process:

1. Segmentation: We apply different filters, morphological operations,
contour algorithms, and validations to retrieve those parts of the image
that could have a screen.

2. Classification: We apply a Support Vector Machine (SVM) classifier to
each image patchour feature. Before creating our main application, we
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train with two different classes: screen and non-screen images which
acts as our training data.

Segmentation is a process of dividing the image into several segments
and then finding and extracting the regions of our interest. One important
feature of our image will be that it will be having lots of vertical lines. We can
use this as out tool to segment the image. First, we convert our image to a
gray scale image and then apply a sobel filter to extract vertical edges. Then
we apply a threshold filter to obtain a binary image. After this we apply
a close morphological operation in order to remove blank spaces between
each vertical edge and connect all vertical lines that have a high number
of edges. After this step we have regions in our image that could possibly
have a screen. Then we find the external contours in the image and for each
contour detected, extract the bounding rectangle of minimal area. We then
make basic validations on its area and aspect ratio so as to classify them in
a screen or a not screen region After we preprocess and segment all possible
parts of an image, we now need to decide if each segment is (or is not) a
screen. To do this, we will use a Support Vector Machine (SVM) algorithm. A
Support Vector Machine (SVM) is a discriminative classifier formally defined
by a separating hyperplane. In other words, given labelled training data
(supervised learning), the algorithm outputs an optimal hyperplane which
categorizes new examples.

One of the basic requirements of SVM is that it requires a lot of training
data in order to classify the image. We trained our system with several screen
images and several non-screen images. SVM classifier uses these images to
train the system and saves the resultant information in an XML file. Finally
it uses the information stored in an XML file in order to use them to detect
screen in the test data.

3.8.2 Digits Identification

The second step aims to retrieve the characters on the screen with optical
character recognition. For the detected screen, we proceed to find the posi-
tion of digit in that image and then apply Artificial Neural Network (ANN)
machine-learning algorithm to recognize the character.

ANN is more particularly a multi-layer perceptrons (MLP), the most
commonly used type of neural networks. MLP consists of the input layer,
output layer, and one or more hidden layers. Each layer of MLP includes one
or more neurons directionally linked with the neurons from the previous and
the next layer. Figure 3.6 represents a 3-layer perceptron with three inputs,
two outputs, and the hidden layer including five neurons.
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Figure 3.6: multi-layer perceptrons (MLP)

All the neurons in MLP are similar. Each of them has several input
links (it takes the output values from several neurons in the previous layer
as input) and several output links (it passes the response to several neurons
in the next layer). The values retrieved from the previous layer are summed
up with certain weights, individual for each neuron, plus the bias term. The
sum is transformed using the activation function f that may be also different
for different neurons.

Figure 3.7: model of neural networks

The basic design of the second step is as shown in figure 3.8.

1. Dataset The data set used consists of a training set of 3050 samples (
305 samples per digit).

2. Pre-Processing module The pre-processing module is responsible for
converting our input data into a format, which is required by the neural
network. The diagram 3.9 gives an overview of what happens to each
image in the dataset.

(a) Once the image is loaded, we apply GaussianBlur to remove noise
and then apply thresholding to obtain a binary image.
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Figure 3.8: multi-layer perceptrons (basic design)

(b) Crop the image to eliminate the extra white space.

(c) Reduce the image dimension to 1616. (16 rows with 16 pixels
each).

(d) Write the value of pixels into a file followed by the label, one image
per row. For e.g. Consider the above image of 2. Each black pixel
will be represented by 0 and white pixel by 1.So in the file we will
write something like 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2

3. Training Module The training module is responsible for taking our
transformed training set and generate the model of Neural Network.

4. Classification module This module will use the ANN model generated
by the Training module to classify the user input.
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Figure 3.9: Pre-processing step
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Chapter 4

Results and Performance

4.1 Control System Parameters

The control system parameters, namely matrices A, B, C and D as defined
in (3.11) and (3.12) have partially been estimated. We are continuing work
on establishing the remaining parameters. During the implementation of
the control system on the Arduino platform, we realised that the limited
memory of the platform did not provide sufficient resources for the complete
implementation of the control system. Hence, we have implemented a partial
control system, namely (3.12) in the current design. To solve this problem,
we intend to move the control system to the Raspberry Pi, a board that we
are already using onboard as the image processing unit. After some initial
research we have decided on, ROS, an operating system designed specifically
for robotics, to be our operating system of choice on the Raspberry Pi.

4.2 PID

The PID constant parameters for the quadrotor were found using the manual
method. Tuning was also attempted using the Zieglar Nichols method. For
tuning the system, we initially worked with an open loop system to ensure
the safety of the quadrotor and all observers. We then allowed unrestricted
motion on each of the three axes was using our testbed as the platform.

We have been able to attain optimal parameters for pitch and roll which
due to symmetry in the system, can be assumed to be equivalent. KP , KI

and KD were found to be 0.80, and 0.05, for optimal response of the system.
These parameters will further vary as we move forward and find out the
remaining parameters.
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Figure 4.1: Topview of testbed

Figure 4.2: Sideview of testbed

4.3 DSP

As mentioned above, the data was collected in real-time from the MAV using
a serial connection. The Arduino was refreshing control signal to the motors
at a variable frequency depending on the algorithm being used. The data
obtained was then preprocessed to remove any instances of invalid characters.
An example of the input signal versus the smoothed output of EMA for alpha
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0.10 is shown in figure 4.4.

Figure 4.3: Control signal after DSP

The control input was processed in real time using various signal process-
ing algorithms and their performance was evaluated. Exponential moving
average filters were found to be the best performing algorithms with alpha
parameters of 0.10 and 0.15. EMA was found to perform well on all metrics
and came across as the best choice for application in a MAV.

4.4 IP

As mentioned in the previous section, Artificial Networks and K-nearest
neighbour algorithm were applied to identify the digits being displayed on a
screen. The following image shows the result displayed on the screen after
applying Artificial Neural Networks.

Figure 4.4: Result of Artificial Neural Network
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Artificial Neural Networks provided a better result i.e. less error percent-
age as compared to K-Nearest algorithm.
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Chapter 5

Conclusion and Future Work

The project is presently in the tuning stages and we have attempted several
tethered test flights. We have worked on and implemented various discrete
modules that will be used in the complete flight control system. We con-
structed a testbed on which we are and will continue to tune the control
system of the MAV. The PID constant parameters for pitch and roll have
also been obtained. We have successfully implemented the algorithms for
detecting the digits beig displayed on a screen. Alongside, a DSP module
has been built which considers many algorithms to smooth the noisy control
signal from the transmitter. This resulted in a significant improvement in the
signal quality. We have resolved several issues encountered in this project to
date, and we continue to work on outstanding issues. In the future, we will
port the current control system to the Raspberry Pi platform, so as to be
able implement a full-fledged control system. A significant portion of time
will be invested into tuning the control system to perform optimally. On
achieving that goal, we will move forward and start building an Aritificial
Intelligence layer, on top of the FMU, which will replace the human pilot.
This will require improving the image processing module. We will conduct
more tethered test flights, and eventually move to untethered flights, followed
by exclusive mission tasks. This project is expected to cover a lot more areas
of robotics and artificial intelligence as we move forward.
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