
ObsModel Changes
1

1 Changes to Handle E ×K ×K Stuff

These are in issue 32 (use tensordot, allow the AllocModel to tell the ObsModel what the sufficient
statistics dimensions are, etc.). Assume this is done.

2 GraphXData

Implemented as suggested by Mike: maintains a list of only observed edges in an E × D matrix
Data.X, and 1-D arrays sourceID, and destID give the node IDs that these edges run between.
Assuming the changes in Section ?? are done, obsmodels should run their calculations totally
normally on this data.

2.1 Issues

While the bnpy code will run with these changes, there are a couple of issues.

Interpretation of Missing Data. One big problem with this as-is is that there’s no way to
distinguish between data that was truly un-observed and data that isn’t there because we’re using
sparse storage. For example, if we’re placing a gaussian on each edge of a graph, lack of an entry
for xij probably means we didn’t observe anything between nodes i and j. On the other hand, the
MMSB and SMSB assume that all edges are “observed,” but the majority are marked with a 0.
We need some extra flag for how to interpret the data, probably given to GraphXData by the data
module that creates it.

ObsModel’s SoftEVMatrix With Sparse Binary Data. (I’m talking about calc local params

for a relational model). For the BernObsModel, the SoftEv matrix is given by:

SoftEv[n, `,m] = xnEq[logw`m] + (1− xn)Eq[log 1−w`m]

If GraphXData stores only edges that exist, Data.X will be a big vector of 1’s (which is a waste
of space, but ignore that optimization for now), and the corresponding SoftEv matrix will be an
E×K ×K matrix, where each K ×K slice contains Eq[logw`m]. Worse than this being a waste of
space, it won’t work, as we’re completely missing Eq[log 1−w`m], which is needed by the AllocModel

to compute φ̂ij`m for (i, j) 6∈ E.

3 Solutions

Interpretation of Missing Data. For now, I think this should be a flag in the DataObj,
missingEntriesUnobserved (probably needs a better name), since this is a property that en-
tirely depends on what the data is and how it was collected. AllocModels can then determine if
and how they want to distinguish between the two cases. Ultimately, we might want to allow the
DataObj to make the distinction on a more fine grained level (“these 500 datapoints are missing
because of sparse storage, these 10 are missing because they’re unobserved”).

This shouldn’t change any existing behavior, as all current code corresponds to the case of missing
entries being unobserved. I don’t think that the ObsModel should ever account for this distinction;
I imagine that the AllocModel will read the flag and then tell the ObsModel how to behave.



ObsModel Changes
2

ObsModel’s SoftEVMatrix With Sparse Binary Data. In obsmodel.setupWithAllocModel,
the obsmodel should ask the allocmodel what the correct way to handle this problem is. The de-
fault behavior should be what is currently done; the obsmodel computes a E ×K ×K matrix of
Eq[p(xe | φ`m)] (N×K for all current models). A second option is to pass back a V ×K×K matrix
ev, where ev[v, `,m] = Eq[p(x = v | φ`m)]. That is, V is the number of values that each observation
can take on. This only makes sense for discrete likelihoods (and maybe only useful for Bernouli).
This both saves space and allows the obsmodel to communicate all the needed information.

Again, this shouldn’t require changing all obsmodels, only ones that we want to pair with al-
locmodels that use this option.


