gsl-ocaml / lib / linalg.ml

(* gsl-ocaml - OCaml interface to GSL                       *)
(* Copyright (©) 2002-2012 - Olivier Andrieu                *)
(* Distributed under the terms of the GPL version 3         *)

open Vectmat
open Gsl_complex

(* Simple matrix multiplication *)

external matmult : 
  a:mat -> ?transpa:bool -> 
  b:mat -> ?transpb:bool -> mat -> unit
    = "ml_gsl_linalg_matmult_mod"


(* LU decomposition *)

(* Low-level functions  *)

external _LU_decomp : mat -> Permut.permut -> int
    = "ml_gsl_linalg_LU_decomp"

external _LU_solve : mat -> Permut.permut -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_LU_solve"

external _LU_svx : mat -> Permut.permut -> vec -> unit
    = "ml_gsl_linalg_LU_svx"

external _LU_refine : a:mat -> lu:mat -> Permut.permut -> 
  b:vec -> x:vec -> res:vec -> unit
    = "ml_gsl_linalg_LU_refine_bc" "ml_gsl_linalg_LU_refine"

external _LU_invert : mat -> Permut.permut -> mat -> unit
    = "ml_gsl_linalg_LU_invert"

external _LU_det : mat -> int -> float
    = "ml_gsl_linalg_LU_det"

external _LU_lndet : mat -> float
    = "ml_gsl_linalg_LU_lndet"

external _LU_sgndet : mat -> int -> int
    = "ml_gsl_linalg_LU_sgndet"

(* Higher-level functions *)

(* With these, the arguments are protected (copied) and necessary
intermediate datastructures are allocated; *)

let decomp_LU ?(protect=true) mat =
  let mA = mat_convert ~protect mat in
  let (len, _) = Vectmat.dims mA in
  let p = Permut.create len in
  let sign = _LU_decomp mA p in
  (mA, p, sign)

let solve_LU ?(protect=true) mat b =
  let mA = mat_convert ~protect mat in
  let vB = vec_convert b in
  let (len, _) = Vectmat.dims mA in
  let p = Permut.create len in
  let _ = _LU_decomp mA p in
  let x = Vector_flat.create len in
  _LU_solve mA p ~b:vB ~x:(`VF x) ;
  x.Vector_flat.data

let det_LU ?(protect=true) mat =
  let (lu, _, sign) = decomp_LU ~protect mat in
  _LU_det lu sign

let invert_LU ?(protect=true) ?result mat = 
  let (lu, lu_p, _) = decomp_LU ~protect mat in
  let result = match result with
  | Some r -> r
  | None -> Vectmat.tmp lu in
  _LU_invert lu lu_p result ;
  result


(* Complex LU decomposition *)

external complex_LU_decomp : cmat -> Permut.permut -> int
    = "ml_gsl_linalg_complex_LU_decomp"

external complex_LU_solve : cmat -> Permut.permut -> b:cvec -> x:cvec -> unit
    = "ml_gsl_linalg_complex_LU_solve"

external complex_LU_svx : cmat -> Permut.permut -> cvec -> unit
    = "ml_gsl_linalg_complex_LU_svx"

external complex_LU_refine : a:cmat -> lu:cmat -> Permut.permut -> 
  b:cvec -> x:cvec -> res:cvec -> unit
    = "ml_gsl_linalg_complex_LU_refine_bc" "ml_gsl_linalg_complex_LU_refine"

external complex_LU_invert : cmat -> Permut.permut -> cmat -> unit
    = "ml_gsl_linalg_complex_LU_invert"

external complex_LU_det : cmat -> int -> complex
    = "ml_gsl_linalg_complex_LU_det"

external complex_LU_lndet : cmat -> float
    = "ml_gsl_linalg_complex_LU_lndet"

external complex_LU_sgndet : cmat -> int -> complex
    = "ml_gsl_linalg_complex_LU_sgndet"



(* QR decomposition *)

external _QR_decomp : mat -> vec -> unit
    = "ml_gsl_linalg_QR_decomp"

external _QR_solve : mat -> vec -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_QR_solve"

external _QR_svx : mat -> vec -> x:vec -> unit
    = "ml_gsl_linalg_QR_svx"

external _QR_lssolve : mat -> vec -> b:vec -> x:vec -> res:vec -> unit
    = "ml_gsl_linalg_QR_lssolve"

external _QR_QTvec : mat -> vec -> v:vec -> unit
    = "ml_gsl_linalg_QR_QTvec"

external _QR_Qvec : mat -> vec -> v:vec -> unit
    = "ml_gsl_linalg_QR_Qvec"

external _QR_Rsolve : mat -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_QR_Rsolve"

external _QR_Rsvx : mat -> x:vec -> unit
    = "ml_gsl_linalg_QR_Rsvx"

external _QR_unpack : mat -> tau:vec -> q:mat -> r:mat -> unit
    = "ml_gsl_linalg_QR_unpack"

external _QR_QRsolve : mat -> r:mat -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_QR_QRsolve"

external _QR_update : mat -> r:mat -> w:vec -> v:vec -> unit
    = "ml_gsl_linalg_QR_update"

external _R_solve : r:mat -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_R_solve"

(* external _R_svx : r:mat -> x:vec -> unit*)
(*     = "ml_gsl_linalg_R_svx"*)


(* QR Decomposition with Column Pivoting *)

external _QRPT_decomp : a:mat -> tau:vec -> p:Permut.permut -> norm:vec -> int
    = "ml_gsl_linalg_QRPT_decomp"

external _QRPT_decomp2 : a:mat -> q:mat -> r:mat -> tau:vec -> p:Permut.permut -> norm:vec -> int
    = "ml_gsl_linalg_QRPT_decomp2_bc" "ml_gsl_linalg_QRPT_decomp2"

external _QRPT_solve : qr:mat -> tau:vec -> p:Permut.permut -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_QRPT_solve"

external _QRPT_svx : qr:mat -> tau:vec -> p:Permut.permut -> x:vec -> unit
    = "ml_gsl_linalg_QRPT_svx"

external _QRPT_QRsolve : q:mat -> r:mat -> p:Permut.permut -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_QRPT_QRsolve"

external _QRPT_update : q:mat -> r:mat -> p:Permut.permut -> u:vec -> v:vec -> unit
    = "ml_gsl_linalg_QRPT_update"

external _QRPT_Rsolve : qr:mat -> p:Permut.permut -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_QRPT_Rsolve"

external _QRPT_Rsvx : qr:mat -> p:Permut.permut -> x:vec -> unit
    = "ml_gsl_linalg_QRPT_Rsolve"



(* Singular Value Decomposition *)

external _SV_decomp : a:mat -> v:mat -> s:vec -> work:vec -> unit
    = "ml_gsl_linalg_SV_decomp"

external _SV_decomp_mod : a:mat -> x:mat -> v:mat -> 
  s:vec -> work:vec -> unit
    = "ml_gsl_linalg_SV_decomp_mod"

external _SV_decomp_jacobi : a:mat -> v:mat -> s:vec -> unit
    = "ml_gsl_linalg_SV_decomp_jacobi"

external _SV_solve : u:mat -> v:mat -> s:vec -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_SV_solve"


(* LQ decomposition *)
external _LQ_decomp : a:mat -> tau:vec -> unit = "ml_gsl_linalg_LQ_decomp"
external _LQ_solve_T : lq:mat -> tau:vec -> b:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_solve_T"
external _LQ_svx_T : lq:mat -> tau:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_svx_T"
external _LQ_lssolve_T : lq:mat -> tau:vec -> b:vec -> x:vec -> res:vec -> unit = "ml_gsl_linalg_LQ_lssolve_T"
external _LQ_Lsolve_T : lq:mat -> b:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_Lsolve_T"
external _LQ_Lsvx_T : lq:mat -> x:vec -> unit = "ml_gsl_linalg_LQ_Lsvx_T"
external _L_solve_T : l:mat -> b:vec -> x:vec -> unit = "ml_gsl_linalg_L_solve_T"
external _LQ_vecQ : lq:mat -> tau:vec -> v:vec -> unit = "ml_gsl_linalg_LQ_vecQ"
external _LQ_vecQT : lq:mat -> tau:vec -> v:vec -> unit = "ml_gsl_linalg_LQ_vecQT"
external _LQ_unpack : lq:mat -> tau:vec -> q:mat -> l:mat -> unit = "ml_gsl_linalg_LQ_unpack"
external _LQ_update : q:mat -> r:mat -> v:vec -> w:vec -> unit  = "ml_gsl_linalg_LQ_update"
external _LQ_LQsolve : q:mat -> l:mat -> b:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_LQsolve"


(* P^T L Q decomposition *)
external _PTLQ_decomp : a:mat -> tau:vec -> Permut.permut -> norm:vec -> int = "ml_gsl_linalg_PTLQ_decomp"
external _PTLQ_decomp2 : a:mat -> q:mat -> r:mat -> tau:vec -> Permut.permut -> norm:vec -> int = "ml_gsl_linalg_PTLQ_decomp2_bc" "ml_gsl_linalg_PTLQ_decomp2"
external _PTLQ_solve_T : qr:mat -> tau:vec -> Permut.permut -> b:vec -> x:vec -> unit = "ml_gsl_linalg_PTLQ_solve_T"
external _PTLQ_svx_T : lq:mat -> tau:vec -> Permut.permut -> x:vec -> unit = "ml_gsl_linalg_PTLQ_svx_T"
external _PTLQ_LQsolve_T : q:mat -> l:mat -> Permut.permut -> b:vec -> x:vec -> unit = "ml_gsl_linalg_PTLQ_LQsolve_T"
external _PTLQ_Lsolve_T : lq:mat -> Permut.permut -> b:vec -> x:vec -> unit = "ml_gsl_linalg_PTLQ_Lsolve_T"
external _PTLQ_Lsvx_T : lq:mat -> Permut.permut -> x:vec -> unit = "ml_gsl_linalg_PTLQ_Lsvx_T"
external _PTLQ_update : q:mat -> l:mat -> Permut.permut -> v:vec -> w:vec -> unit  = "ml_gsl_linalg_PTLQ_update"


(* Cholesky decomposition *)

external cho_decomp : mat -> unit
    = "ml_gsl_linalg_cholesky_decomp"

external cho_solve : mat -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_cholesky_solve"

external cho_svx : mat -> vec -> unit
    = "ml_gsl_linalg_cholesky_svx"

external cho_decomp_unit : mat -> vec -> unit
    = "ml_gsl_linalg_cholesky_decomp_unit"



(* Tridiagonal Decomposition of Real Symmetric Matrices *)

external symmtd_decomp : a:mat -> tau:vec -> unit
    = "ml_gsl_linalg_symmtd_decomp"

external symmtd_unpack : a:mat -> tau:vec -> 
  q:mat -> diag:vec -> subdiag:vec -> unit
    = "ml_gsl_linalg_symmtd_unpack"

external symmtd_unpack_T : a:mat -> diag:vec -> subdiag:vec -> unit
    = "ml_gsl_linalg_symmtd_unpack_T"


(* Tridiagonal Decomposition of Hermitian Matrices *)

external hermtd_decomp : a:cmat -> tau:cvec -> unit
    = "ml_gsl_linalg_hermtd_decomp"

external hermtd_unpack : a:cmat -> tau:cvec -> 
  q:cmat -> diag:vec -> subdiag:vec -> unit
    = "ml_gsl_linalg_hermtd_unpack"

external hermtd_unpack_T : a:cmat -> diag:vec -> subdiag:vec -> unit
    = "ml_gsl_linalg_hermtd_unpack_T"



(* Bidiagonalization *)

external bidiag_decomp : a:mat -> tau_u:vec -> tau_v:vec -> unit
    = "ml_gsl_linalg_bidiag_decomp"

external bidiag_unpack : a:mat -> tau_u:vec -> u:mat -> tau_v:vec -> v:mat -> diag:vec -> superdiag:vec -> unit
    = "ml_gsl_linalg_bidiag_unpack_bc" "ml_gsl_linalg_bidiag_unpack"

external bidiag_unpack2 : a:mat -> tau_u:vec -> tau_v:vec -> v:mat -> unit
    = "ml_gsl_linalg_bidiag_unpack2"

external bidiag_unpack_B : a:mat -> diag:vec -> superdiag:vec -> unit
    = "ml_gsl_linalg_bidiag_unpack_B"



(* Householder solver *)

external _HH_solve : mat -> b:vec -> x:vec -> unit
      = "ml_gsl_linalg_HH_solve"

external _HH_svx : mat -> vec -> unit
    = "ml_gsl_linalg_HH_svx"

let solve_HH ?(protect=true) mat b =
  let mA = mat_convert ~protect mat in
  let vB = vec_convert b in
  let vX = Vector_flat.create (Vectmat.length vB) in
  _HH_solve mA ~b:vB ~x:(`VF vX) ;
  vX.Vector_flat.data



(* Tridiagonal Systems *)

external solve_symm_tridiag : diag:vec -> offdiag:vec -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_solve_symm_tridiag"

external solve_tridiag : diag:vec -> abovediag:vec -> belowdiag:vec -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_solve_tridiag"

external solve_symm_cyc_tridiag : diag:vec -> offdiag:vec -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_solve_symm_cyc_tridiag"

external solve_cyc_tridiag : diag:vec -> abovediag:vec -> belowdiag:vec -> b:vec -> x:vec -> unit
    = "ml_gsl_linalg_solve_cyc_tridiag"



(* exponential *)

external _exponential : mat -> mat -> Fun.mode -> unit
    = "ml_gsl_linalg_exponential_ss"

let exponential ?(mode=Fun.DOUBLE) mat =
  let mA = Vectmat.mat_convert mat in
  let eA = Vectmat.tmp mA in
  _exponential mA 
    (eA : [`M of Matrix.matrix] :> mat)
    mode ;
  eA
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.